Auxiliary Guide

The standard deviation of the inclination of a straight line
Consider the affine function relating a predictive (or independent) variable x to the
response (or dependent) variable y
y=ax+b
with a and b real constants. When using the Least Squares Method (LSM) to fit a and b
to a dataset {(x;,y;),i = 1.. N} where the standard deviation of the response variable y;
is g; , the variance of a (the variance is the square of the standard deviation) can be

calculated as [4]
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When all g; = o, this expression reduces to
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In order to obtain a simpler formula, we define a central coordinate xc
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The denominator of eq. (E1), after substituting both definitions, reduces to
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The first identity comes from the cancelation of the last term of the left member with one

and relative coordinates 6;

of the terms in the expansion of the sum of squares of §; + x., and the second, from the
fact that Y, 8; = 0. Using the obtained result in the denominator of eq. (E1), it reduces

to
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This result shows that the uncertainty on a depends only on the uncertainty of the data y

(not on the coordinate values) and the dispersion of the x-values chosen for measurement.



An even more interesting expression can be obtained whenever the variable x is sampled
uniformly, using a consistent interval Ax between adjacent measurements. For algebraic
simplicity, we choose N odd, so we can express this set of data by
x;i = x. +iAx (E5)
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where i is an integer in the range — —-Sis—. To make the algebraic manipulations
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easier, we define an integer v = - which enters only the intermediate calculations.

Using relation (E5) to evaluate the denominator of eq. (4), it follows
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For sufficiently big N, the last N in the parentheses can be ignored. Replacing the

denominator of eq. (E4) by the resulting expression, it is obtained
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Although expression (E6) solves the problem, it is interesting to highlight the role of the
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choice of measurement interval in the uncertainty in a. If x, is the smallest observed

value of x, the greatest value is

xp=WN—-DAx+x, © x—x,=(N—1)Ax = N Ax
a good approximation when N is large, which is often the case. Replacing this result in in

formula (E6), gives
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This expression shows clearly that the uncertainty in the inclination a depends only on
the range of values x, the uncertainty in the response variable y , and in the number of

observed points, not on the quality of the fit.
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