Auxiliary Guide

The standard deviation of the inclination of a straight line

Consider the affine function relating a predictive (or independent) variable x to the response (or dependent) variable y

$$
y=a x+b
$$

with a and b real constants. When using the Least Squares Method (LSM) to fit a and b to a dataset $\left\{\left(x_{i}, y_{i}\right), i=1 . . N\right\}$ where the standard deviation of the response variable y_{i} is σ_{i}, the variance of a (the variance is the square of the standard deviation) can be calculated as [4]

$$
\sigma_{a}^{2}=\frac{\sum_{1}^{\mathrm{n}} \frac{1}{\sigma_{\mathrm{i}}^{2}}}{\sum_{1}^{n} \frac{1}{\sigma_{\mathrm{i}}^{2}} \sum_{1}^{n} \frac{x_{i}^{2}}{\sigma_{\mathrm{i}}^{2}}-\left(\sum_{1}^{n} \frac{x_{i}}{\sigma_{\mathrm{i}}^{2}}\right)^{2}}
$$

When all $\sigma_{i}=\sigma$, this expression reduces to

$$
\begin{equation*}
\sigma_{a}^{2}=\frac{N \sigma^{2}}{N \sum_{1}^{n} x_{i}^{2}-\left(\sum_{1}^{n} x_{i}\right)^{2}} \tag{E1}
\end{equation*}
$$

In order to obtain a simpler formula, we define a central coordinate x_{c}

$$
\begin{equation*}
x_{c}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \tag{E2}
\end{equation*}
$$

and relative coordinates δ_{i}

$$
\begin{equation*}
\delta_{i}=x_{i}-x_{c} \tag{E3}
\end{equation*}
$$

The denominator of eq. (E1), after substituting both definitions, reduces to

$$
N \sum_{i=1}^{N}\left(\delta_{i}+x_{c}\right)^{2}-N^{2} x_{c}{ }^{2}=N \sum_{i=1}^{N} \delta_{i}^{2}+2 N x_{c} \sum_{i=1}^{N} \delta_{i}=N \sum_{i=1}^{N} \delta_{i}{ }^{2}
$$

The first identity comes from the cancelation of the last term of the left member with one of the terms in the expansion of the sum of squares of $\delta_{i}+x_{c}$, and the second, from the fact that $\sum_{i=1}^{N} \delta_{i}=0$. Using the obtained result in the denominator of eq. (E1), it reduces to

$$
\begin{equation*}
\sigma_{a}{ }^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{N} \delta_{i}^{2}} \tag{E4}
\end{equation*}
$$

This result shows that the uncertainty on a depends only on the uncertainty of the data y (not on the coordinate values) and the dispersion of the x-values chosen for measurement.

An even more interesting expression can be obtained whenever the variable x is sampled uniformly, using a consistent interval Δx between adjacent measurements. For algebraic simplicity, we choose N odd, so we can express this set of data by

$$
\begin{equation*}
x_{i}=x_{c}+i \Delta x \tag{E5}
\end{equation*}
$$

where i is an integer in the range $-\frac{N-1}{2} \leq i \leq \frac{N-1}{2}$. To make the algebraic manipulations easier, we define an integer $v=\frac{N-1}{2}$ which enters only the intermediate calculations. Using relation (E5) to evaluate the denominator of eq. (4), it follows

$$
\sum_{i=1}^{N} \delta_{i}^{2}=\Delta x^{2} \sum_{i=-v}^{v} i^{2}=\Delta x^{2} \frac{1}{3} v(v+1)(2 v+1)=\Delta x^{2} \frac{1}{12}\left(N^{3}-N\right)
$$

For sufficiently big N, the last N in the parentheses can be ignored. Replacing the denominator of eq. (E4) by the resulting expression, it is obtained

$$
\begin{equation*}
\sigma_{a}^{2} \cong \frac{12 \sigma^{2}}{N(N \Delta x)^{2}} \tag{E6}
\end{equation*}
$$

Although expression (E6) solves the problem, it is interesting to highlight the role of the choice of measurement interval in the uncertainty in a. If x_{o} is the smallest observed value of x, the greatest value is

$$
x_{f}=(N-1) \Delta x+x_{o} \Leftrightarrow x_{f}-x_{o}=(N-1) \Delta x \approx N \Delta x
$$

a good approximation when N is large, which is often the case. Replacing this result in in formula (E6), gives

$$
\sigma_{a}^{2} \cong \frac{12 \sigma^{2}}{N\left(x_{f}-x_{o}\right)^{2}}
$$

or

$$
\begin{equation*}
\sigma_{a} \approx \frac{\sigma}{x_{f}-x_{0}} \sqrt{\frac{12}{N}} \tag{E7}
\end{equation*}
$$

This expression shows clearly that the uncertainty in the inclination a depends only on the range of values x, the uncertainty in the response variable y, and in the number of observed points, not on the quality of the fit.

Reference: Draper, N. R., Smith, H., 1998. Applied Regression Analysis, 3rd Edition. Wiley, Hoboken, New Jersey.

