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Auxiliary Guide 

The standard deviation of the inclination of a straight line 

Consider the affine function relating a predictive (or independent) variable x to the 

response (or dependent) variable 𝑦  

𝑦 = 𝑎𝑥 + 𝑏 

with 𝑎 and 𝑏 real constants. When using the Least Squares Method (LSM) to fit 𝑎 and 𝑏 

to a dataset  {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1. . 𝑁} where the standard deviation of the response variable 𝑦𝑖 

is 𝜎𝑖 , the variance of 𝑎 (the variance is the square of the standard deviation) can be 

calculated as [4] 
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When all 𝜎𝑖 = 𝜎, this expression reduces to  
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In order to obtain a simpler formula, we define a central coordinate xc 
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and relative coordinates 𝛿𝑖 

𝛿𝑖 = 𝑥𝑖 − 𝑥𝑐      (E3) 

The denominator of eq. (E1), after substituting both definitions, reduces to 
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The first identity comes from the cancelation of the last term of the left member with one 

of the terms in the expansion of the sum of squares of 𝛿𝑖 + 𝑥𝑐, and the second, from the 

fact that ∑ 𝛿𝑖
𝑁
𝑖=1 = 0. Using the obtained result in the denominator of eq. (E1), it reduces 

to 
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This result shows that the uncertainty on 𝑎 depends only on the uncertainty of the data 𝑦 

(not on the coordinate values) and the dispersion of the x-values chosen for measurement. 
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An even more interesting expression can be obtained whenever the variable x is sampled 

uniformly, using a consistent interval ∆𝑥 between adjacent measurements. For algebraic 

simplicity, we choose 𝑁 odd, so we can express this set of data by 

𝑥𝑖 = 𝑥𝑐 + 𝑖∆𝑥     (E5) 

 

where 𝑖 is an integer in the range −
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 . To make the algebraic manipulations 

easier, we define an integer  𝜈 =
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2
  which enters only the intermediate calculations. 

Using relation (E5) to evaluate the denominator of eq. (4), it follows 

∑ 𝛿𝑖
2

𝑁

𝑖=1

= ∆𝑥2 ∑ 𝑖2

𝜈

𝑖=−𝜈

= ∆𝑥2
1

3
𝜈(𝜈 + 1)(2𝜈 + 1) = ∆𝑥2

1

12
(𝑁3 − 𝑁) 

For sufficiently big 𝑁, the last 𝑁 in the parentheses can be ignored. Replacing the 

denominator of eq. (E4) by the resulting expression, it is obtained 
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Although expression (E6) solves the problem, it is interesting to highlight the role of the 

choice of measurement interval in the uncertainty in 𝑎. If 𝑥𝑜 is the smallest observed 

value of 𝑥, the greatest value is  

 

𝑥𝑓 = (𝑁 − 1)∆𝑥 + 𝑥𝑜   ⇔   𝑥𝑓 − 𝑥𝑜 = (𝑁 − 1)∆𝑥 ≈ 𝑁 ∆𝑥     

a good approximation when N is large, which is often the case. Replacing this result in in 

formula (E6), gives 
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This expression shows clearly that the uncertainty in the inclination 𝑎 depends only on 

the range of values x, the uncertainty in the response variable 𝑦 , and in the number of 

observed points, not on the quality of the fit. 
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