Roteiro de Integração Numérica (Método de Euler)

Análise de Experimentos Virtuais

Quando uma partícula se move sob influência de forças com resultante constante, sua aceleração também é constante, e podemos encontrar sua velocidade e posição a cada instante a partir de fórmulas bem conhecidas. Considere, porém, uma partícula que se move em um espaço onde a força resultante e, portanto, sua aceleração, dependem da posição e da velocidade. Nesse caso, a posição, a velocidade e a aceleração da partícula em um instante determinam a posição e a velocidade em um instante seguinte, que por sua vez, determinam a aceleração neste instante. Portanto, todas as três grandezas: posição, velocidade e aceleração do corpo variam continuamente no tempo. Uma das formas de resolver numericamente o problema consiste em substituir a variação contínua do tempo por uma seqüência de pequenos intervalos de duração Δt . A aproximação mais simples é a que supõe que a aceleração seja constante durante cada intervalo, que dá origem ao **método de Euler**. Se o intervalo de tempo for suficientemente pequeno, a variação da aceleração durante o intervalo será pequena e poderá ser desconsiderada.

Sejam x_o , v_{ox} e a_{ox} respectivamente a posição, velocidade e aceleração na direção x da partícula no instante inicial t_o . Quando ignoramos a variação da velocidade durante o intervalo de tempo, a nova posição é dada por:

$$x_1 = x_o + v_{ox} \Delta t \tag{1}$$

De maneira similar, se a aceleração durante Δt for constante, a velocidade no tempo $t_1 = t_o + \Delta t$ será dada por

$$v_1 = v_{ox} + a_{ox} \Delta t \tag{2}$$

Podemos usar os valores de x_1 e v_1 para calcular a nova aceleração a_{1x} usando a equação de movimento e depois calcular x_2 e v_{2x} usando x_1 , v_{1x} e a_{1x} :

$$x_2 = x_1 + v_1 \Delta x$$
 (3)

$$v_2 = v_1 + a_x \Delta t$$
 (4)

As relações entre a posição e a velocidade nos tempos t_n e $t_{n+1} = t_n + \Delta t$ são dadas por

$$x_{n+1} = x_n + v_{nx} \Delta t \tag{5}$$

$$v_{n+1} = v_{nx} + a_{nx} \Delta t \tag{6}$$

que são generalizações das fórmulas (1) e (2).

Para encontrar a velocidade e a posição em algum tempo t, dividimos, portanto, o intervalo de tempo $t-t_o$ em um grande número de intervalos menores Δt e aplicamos repetidamente as equações (5) e (6), começando no tempo inicial t_o . Isso envolve um grande número de cálculos repetitivos que são realizados mais facilmente em um computador. A técnica de dividir o intervalo de tempo em pequenos trechos e calcular a aceleração, velocidade e posição a cada novo passo usando os valores do passo anterior é chamada de *integração numérica*.

A fim de ilustrar essa técnica, vamos considerar um problema no qual um paraquedista em repouso se larga de uma certa altura, quando ele passa a ser influenciado tanto pela gravidade quanto pela força de arrasto, que é proporcional ao quadrado da rapidez. Encontraremos a velocidade v_y e a distância percorrida y como funções do tempo por meio da integração numérica.

A equação que descreve o movimento de um objeto de massa *m* largado do repouso, quando se ignora o empuxo, é

$$mg - bv^2 = ma_y \tag{7}$$

em que se adotou um referencial Oy orientado no sentido da força da gravidade. A aceleração é, portanto,

$$a_{y} = g - \frac{b}{m}v^{2} \tag{8}$$

É conveniente escrever a constante $\frac{b}{m}$ em termos da rapidez terminal v_T . Colocando $a_y = 0$ na equação (8), obtemos

Experimentos Virtuais (WEB)

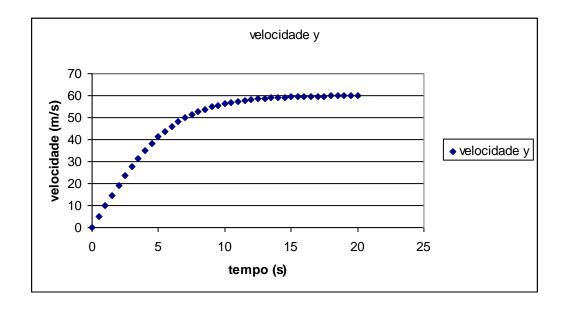
$$0 = g - \frac{b}{m} v_T^2 \tag{9}$$

$$\frac{b}{m} = \frac{g}{v_T^2} \tag{10}$$

Substituindo (10) em (8), fica

$$a_{y} = g \left(1 - \frac{v^2}{v_T^2} \right) \tag{11}$$

Para resolver numericamente a equação (11), precisamos usar valores numéricos para g e para v_T . Em "Fisica para cientistas e engenheiros, Paul Tipler" [1] é sugerido que uma rapidez terminal razoável para um paraquedista seja de 60 m/s. Escolhendo-se $y_o = 0$ para a posição inicial, $v_o = 0$ para a velocidade inicial e $a_{oy} = g = 9.8$ m/s² para a aceleração da gravidade, encontra-se a velocidade v_y e a posição y em algum tempo posterior, digamos para um instante de tempo t = 20 s, divide-se o intervalo de tempo $0 \le t \le 20$ s em muitos intervalos pequenos Δt e aplicamos as equações (5), (6) e (11). Faz-se isso usando uma planilha eletrônica de cálculo, como mostrado no apêndice, em que escolhemos $\Delta t = 0.5$ s e obtivemos os gráficos das figuras 1 e 2 e. Para t = 20 s os resultados v = 59.9 m/s e y = 939.9 m.



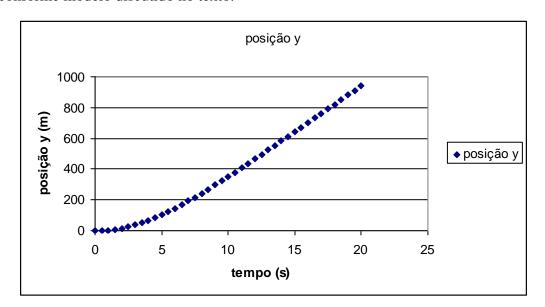


Figura 1: Velocidade adquirida pelo paraquedista em função do tempo, calculado conforme modelo discutido no texto.

Figura 2: Posição vertical do pára-quedista em função do tempo, calculado conforme modelo discutido no texto.

Podemos esperar que seja melhor adotar intervalos de tempo muito pequenos, digamos $\Delta t = 0,000.000.001$ s. Mas existem pelo menos duas razões para não se adotar intervalos de tempo extremamente pequenos. Primeiro, quanto menor o intervalo de tempo, maior será o número de cálculos necessários e mais tempo o programa levará para rodar. Segundo, o computador guarda apenas um número fixo de algarismos em cada passo do cálculo, de forma que em cada passo existe um erro de arredondamento, que vai se acumulando conforme o tempo aumenta. Quanto maior o número de cálculos, mais importante ficao erro de arredondamento. Segundo "Física para cientistas e engenheiros, Paul Tipler" [1], uma boa regra é não usar mais do que cerca de 10^5 intervalos de tempo para cada integração numérica típica.

Observação 1: Este método tem finalidade didática e dá uma boa aproximação em casos simples, como o do movimento de uma moeda num plano inclinado, mas normalmente se usa o método de Runge-Kutta ^[2], que é acessível ao estudante que entendeu o método de Euler.

Observação 2: A equação (7) não leva em conta o ar carregado pelo paraquedas, o que depende da situação analisada e pode não ser uma boa aproximação. Para a solução completa, veja referência [3].

Apêndice

Planilha de cálculo para o problema do pára-quedista:

Δt=	0,5	s
x ₀ =	0	m
v ₀ =	0	m/s
a ₀ =	9,81	m/s ²
V _T =	60	m/s

Т	у	V	а
(s)	(m)	(m/s)	(m/s ²)
0	0	0	9,81
0,5	0	4,905	9,744439
1	2,4525	9,77722	9,549506
1,5	7,34111	14,55197	9,232954
2	14,6171	19,16845	8,808755
2,5	24,20132	23,57283	8,295777
3	35,98773	27,72072	7,716006
3,5	49,84809	31,57872	7,092588
4	65,63745	35,12501	6,447986
4,5	83,19996	38,34901	5,802489

5	102,3745	41,25025	5,173186
5,5	122,9996	43,83684	4,573452
6	144,918	46,12357	4,01288
6,5	167,9798	48,13001	3,497544
7	192,0448	49,87878	3,030492
7,5	216,9842	51,39403	2,612332
8	242,6812	52,70019	2,241829
8,5	269,0313	53,82111	1,916461
9	295,9419	54,77934	1,632886
9,5	323,3315	55,59578	1,387322
10	351,1294	56,28944	1,175834
10,5	379,2741	56,87736	0,994532
11	407,7128	57,37463	0,839715
11,5	436,4001	57,79448	0,707949
12	465,2974	58,14846	0,596113
12,5	494,3716	58,44651	0,501414
13	523,5949	58,69722	0,421384
13,5	552,9435	58,90791	0,353863

14	582,3974	59,08484	0,296974
14,5	611,9398	59,23333	0,249099
15	641,5565	59,35788	0,20885
15,5	671,2354	59,46231	0,175038
16	700,9666	59,54982	0,146655
16,5	730,7415	59,62315	0,122842
17	760,5531	59,68457	0,102873

17,5	790,3954	59,73601	0,086135
18	820,2634	59,77908	0,072109
18,5	850,1529	59,81513	0,060359
19	880,0605	59,84531	0,050518
19,5	909,9831	59,87057	0,042278
20	939,9184	59,89171	0,035379

Exercício

Você está praticando balonismo e atira diretamente para baixo uma bola de tênis com uma rapidez inicial v_0 . A bola cai com uma rapidez terminal de 150 km/h. Suponha que o arraste do ar seja proporcional ao quadrado da rapidez da bola. Use o método de Euler para responder as questões abaixo.

- a) Quando $v_0 = 35$ km/h, estime a rapidez da bola depois de 10,0 s.
- b) Quando $v_0 = 0$ km/h, determine o tempo que a bola leva para atingir 99% de sua rapidez terminal, bem como a distância percorrida entre o lançamento e este instante.

Bibliografia

- [1] Tipler, Paul A., Mosca, Gene. Física para Cientistas e Engenheiros, volume 1, 6ª edição, LTC.
- [2] The Feynman Lectures on Physics.
- [3] The parachute paradox. (David Auerbach). Am. J. Phys. 62 (11) 1041, November 1994.