Roteiro de Cálculo de Incertezas Análise de Experimentos Virtuais

1. Introdução

A análise de um experimento de física exige a avaliação da confiabilidade dos valores medidos por meio dos instrumentos. Não é possível encontrar o valor exato de uma grandeza, uma vez que ele só pode ser medido com um instrumento, que sempre tem limitações. No entanto, muitas grandezas, tais como a carga do elétron e a constante universal dos gases, têm um valor bem determinado, que chamaremos aqui de *valor verdadeiro*. Assim, numa medida, obtemos um valor *próximo* ao *valor verdadeiro*. Embora seja impossível determinar a diferença entre o valor medido e o valor verdadeiro, uma vez que este último é desconhecido, podemos definir grandezas que reflitam esta diferença de alguma forma, as chamadas **incertezas**, relacionadas diretamente com o conceito de **precisão**, que é tanto maior na medida quanto menor for a incerteza a ela associada. Infelizmente, não podemos quantificar a incerteza simplesmente pela média da diferença entre o valor medido e o verdadeiro, porque a diferença, que pode ser tanto positiva quanto negativa, tem valor médio nulo, nada informativo. Isso nos obriga a recorrer a elaborações matemáticas mais complexas.

A física faz uso das teorias da probabilidade e estatística na representação de suas medidas. Para a grande maioria dos experimentos, a forma de expressão do valor de uma grandeza x se fará por meio da média dos valores mensurados num conjunto de N medidas dela, isto é, $\{x_i \mid i=1, 2, ..., N\}$. O valor médio da grandeza x é dado por:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 (1.1)

O valor da incerteza associada às medições da grandeza x, por sua vez, pode ser tomado a partir da *variância* (σ^2) do conjunto das N medidas:

$$\sigma_x^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
 (1.2)

Note que a variância não tem a mesma dimensão física que a grandeza ($[\sigma^2_x] = [x]^2 \neq [x]$), de modo que a incerteza associada à medida da grandeza x é definida pelo *desvio-padrão* do conjunto das N medidas:

$$\sigma = \sqrt{\sigma_x^2} \qquad (1.3)$$

O desvio-padrão σ é, portanto, uma grandeza definida positiva por consequência da operação de radiciação, e representa a incerteza relacionada a *cada um* dos dados, ou seja, avalia a distância entre cada medida e o valor verdadeiro. Considerando que a média foi calculada sobre N medições, a representação padrão da grandeza x é dada por:

$$x = \bar{x} \pm \sigma_{x} \tag{1.4}$$

Onde a incerteza do valor médio é descrita pela Equação 1.5, pelo chamado desvio-padrão da média σ_x ,

$$\sigma_{x} = \frac{\sigma}{\sqrt{N}} \tag{1.5}$$

A interpretação da Equação 1.4 nos fornece a conclusão preliminar de que é mais provável que o valor verdadeiro da grandeza x esteja no intervalo $[\bar{x} - \sigma_x, \bar{x} + \sigma_x]$ que fora dele. Note que, quando efetuamos uma única medida, o desvio-padrão da média e o desvio-padrão do conjunto dos N dados da medida são idênticos (pois $\sqrt{N} = 1$).

A melhor forma de descobrir a incerteza de uma medição é repeti-la muitas vezes com instrumentos diferentes e determinar a variância pelo valor quadrático médio das diferenças dos dados com a média deles. No entanto, muitas vezes isso é praticamente impossível, em particular no caso das medições com instrumentos graduados, por exemplo, na medição do comprimento com uma régua milimetrada — onde conseguir muitas réguas de *fabricantes* diferentes? Nesses casos, costuma-se estimar o valor do desvio-padrão como a metade da menor divisão que se consegue ler na escala. Assim, quando se usa uma régua graduada em **milímetros**, a precisão do instrumento é aproximadamente de $0.5 \, mm$. Se a leitura da régua for $7.8 \, cm$, o resultado deve ser representado como $7.80 \pm 0.05 \, cm$, significando que o valor verdadeiro do comprimento do objeto provavelmente se encontra entre $7.75 \, cm$ e $7.85 \, cm$.

Nos experimentos virtuais, com freqüência leremos os valores das grandezas na escala de um instrumento, como no caso da *posição* do corpo (medida com uma trena) e o *instante* em que o corpo foi filmado em tal posição (definido pelo cronômetro da filmadora, estampado no *time code*). Há outras grandezas, entretanto, cuja medição não pode ser direta, como é o caso da *velocidade* de um carrinho ao longo de uma trajetória, uma vez que não possuímos uma "régua de velocidades". Podemos, porém, calculá-la a partir das grandezas que a definem (posição e tempo).

O objetivo deste guia é orientá-lo e ajudá-lo a compreender o modo pelo qual as incertezas foram calculadas em cada experimento virtual, detalhando os passos e as aproximações usadas. Na seção 3, classificaremos as aplicações que ocorrem repetidamente e apresentamos as fórmulas genéricas deduzidas a partir da aplicação às situações que aparecem nos experimentos. A seção 4 apresenta alguns casos particulares, enquanto que na seção 2 que desenvolveremos a teoria geral da propagação de incertezas, de uma maneira suficiente para as análises apresentadas aqui.

2. Propagação de incertezas

A medida da velocidade v de um móvel é realizada indiretamente por meio de medidas de posição, x_2 e x_1 , e tempo, t_2 e t_1 , de acordo com a Equação 2.1:

$$v = \frac{x_2 - x_1}{t_2 - t_1} \tag{2.1}$$

A incerteza da velocidade depende das incertezas das grandezas medidas diretamente, ou seja, das incertezas das posições e de seus respectivos instantes. Essa situação, da incerteza de uma grandeza deduzida ser proveniente das incertezas das grandezas das quais ela depende, é tão comum que vamos escrever a fórmula genérica que estabelece essa relação, para facilitar a adaptação a outros casos.

Seja f uma grandeza dependente de outras grandezas a, b, ..., z, independentes entre si. Assim, f pode ser representada como sendo uma função de várias variáveis: f = f(a, b, ..., z). Em nosso exemplo, f é a velocidade, enquanto que a, b, c e d são x_2 , x_1 , t_2 e t_1 , respectivamente.

A incerteza em f é dada pela **fórmula de propagação de incertezas**, enunciada da seguinte maneira: o desvio-padrão de f, σ_f , é a raiz quadrada da variância de f, calculada como

$$\sigma_f^2 = \left(\frac{\partial f}{\partial \bar{a}}\right)^2 \sigma_a^2 + \left(\frac{\partial f}{\partial \bar{b}}\right)^2 \sigma_b^2 + \dots + \left(\frac{\partial f}{\partial \bar{z}}\right)^2 \sigma_z^2 \tag{2.2}$$

Onde $\frac{\partial f}{\partial \bar{a}} = \frac{\partial f}{\partial a}\Big|_{\substack{a=\bar{a}\\b=\bar{b}}}$ é a derivada parcial de f com respeito a a calculada no ponto $(\bar{a}, \bar{b}, ..., \bar{z})$,

analogamente para $\frac{\partial f}{\partial \bar{b}}, \dots, \frac{\partial f}{\partial \bar{z}}$.

O símbolo $\frac{\partial f}{\partial a}$ representa a derivada parcial de f em relação a a, ou seja, a derivada da função f quando apenas a é tomada como variável, e b, c, ..., z são consideradas constantes. Por exemplo, consideremos uma função f = (a,b) definida por:

$$f(a,b) = a^3b^2 + 5a + 7b$$

As derivadas parciais da função f são então:

$$\begin{cases} \frac{\partial f}{\partial a} = 2ab^3 + 5\\ \frac{\partial f}{\partial b} = 3a^2b^2 + 7 \end{cases}$$

Assim, as derivadas parciais calculadas no ponto (\bar{a}, \bar{b}) são:

$$\begin{cases} \frac{\partial f}{\partial \bar{a}} = 2\bar{a}\bar{b}^3 + 5\\ \frac{\partial f}{\partial \bar{b}} = 3\bar{a}^2\bar{b}^2 + 7 \end{cases}$$

É importante lembrar que, por definição, σ_f , σ_a , σ_b , ..., σ_z são valores positivos, obtidos como a raiz quadrada da variância da variável correspondente. Não podemos tratar os desvios-padrão como médias, por exemplo, onde a média da soma é a soma das médias. Nunca se somam ou subtraem desvios padrões, apesar de as variâncias serem aditivas.

Condições de Validade

Esta fórmula tem validade geral, não só nos casos particulares que detalharemos abaixo, desde que duas condições sejam obedecidas:

- i) As variáveis do conjunto $(\bar{a}, \bar{b}, ..., \bar{z})$ são estatisticamente independentes. Isso significa que nenhuma das variáveis pode ser calculada a partir de uma ou algumas das variáveis do conjunto $(\bar{a}, \bar{b}, ..., \bar{z})$ nem sua medição interfere na medição de outra. Se isso acontecer, é necessário expandir suas fórmulas na expressão de f antes de aplicar a fórmula de propagação. O que acontece é que cada termo da Equação (2.2) precisa representar toda a dependência da função com relação à variável sobre a qual se calculou a derivada parcial; não pode haver dependências subjacentes nas outras variáveis. Note que se alguma das grandezas $(\bar{a}, \bar{b}, ..., \bar{z})$ for medida diretamente a partir de outras grandezas que não estejam nesse conjunto, podemos aplicar a fórmula de propagação de incertezas isoladamente a elas e usar as variâncias calculadas na fórmula de propagação.
- ii) Para cada grandeza x, precisamos que valha a desigualdade $\sigma_x \ll \bar{x}$. Em muitas das fórmulas de propagação que veremos, as variáveis aparecem no denominador, o que causa problemas se a variável puder ser nula, uma vez que seu inverso não estará definido. Mesmo que \bar{x} não seja nulo, quando $\sigma_x \approx \bar{x}$, há probabilidade de uma dada observação de x dar resultado nulo. A Equação (2.2) para propagação de incertezas supõe que as observações possam ser repetidas infinitas vezes; o resultado nada mais é do que o valor esperado para a média de infinitas observações, assim nunca poderemos recorrer a um valor indefinido ao utilizar a equação.

Uma Interpretação Importante

Vamos destrinchar um pouco mais a Equação (1.2) e chegar a alguns resultados importantes para as futuras análises dos experimentos. Se x é a medida de uma **variável aleatória** (ou seja, uma grandeza tal que o resultado experimental é diferente a cada realização da medição), teremos, pela Equação 1.2:

$$\sigma_x^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

Efetuando o produto notável interior ao somatório:

$$\sigma_x^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i^2 - 2x_i \bar{x} + \bar{x}^2)$$

Abrindo as adições envolvidas no somatório:

$$\sigma_x^2 = \frac{1}{N-1} [(x_1^2 - 2x_1\bar{x} + \bar{x}^2) + (x_2^2 - 2x_2\bar{x} + \bar{x}^2) + \dots + (x_N^2 - 2x_N\bar{x} + \bar{x}^2)]$$

Pelas propriedades comutativa e associativa da soma, podemos reescrever a expressão:

$$\sigma_x^2 = \frac{1}{N-1} \left[(x_1^2 + x_2^2 + \dots + x_N^2) - (2x_1\bar{x} + 2x_2\bar{x} + \dots + 2x_N\bar{x}) + (\bar{x}^2 + \bar{x}^2 + \dots + \bar{x}^2) \right]$$

Note que o terceiro conjunto de parcelas corresponde a somarmos N vezes o quadrado do valor médio de x. No segundo conjunto de parcelas $2\bar{x}$ é fator comum; podemos, portanto, pela propriedade distributiva da soma, reescrever a expressão acima por meio de outros somatórios:

$$\sigma_x^2 = \frac{1}{N-1} \left(\sum_{i=1}^N x_i^2 - 2\bar{x} \sum_{i=1}^N x_i + N\bar{x}^2 \right)$$

Além disso, pela Equação (1.1), temos a seguinte identidade:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \quad \Rightarrow \quad \sum_{i=1}^{N} x_i = N\bar{x}$$

Podemos recorrer a esta relação no segundo somatório:

$$\sigma_x^2 = \frac{1}{N-1} \left(\sum_{i=1}^N x_i^2 - 2N\bar{x}^2 + N\bar{x}^2 \right) = \frac{1}{N-1} \left(\sum_{i=1}^N x_i^2 - N\bar{x}^2 \right)$$

O somatório restante consiste no valor médio da grandeza x^2 :

$$\overline{x^2} = \frac{1}{N} \sum_{i=1}^{N} x_i^2 \Rightarrow N \overline{x^2} = \sum_{i=1}^{N} x_i^2$$

Logo, a variância de *x* é:

$$\sigma_x^2 = \frac{1}{N-1} \left(N \overline{x^2} - N \overline{x}^2 \right) = \frac{N}{N-1} \left(\overline{x^2} - \overline{x}^2 \right)$$
 (2.3)

Quando o número N de dados é muito grande, podemos aproximar $\frac{N}{N-1} = 1$, e assim:

$$\sigma_x^2 \cong \left(\overline{x^2} - \bar{x}^2\right)$$

Quando a média da variável x for nula, teremos:

$$\sigma_x^2 \cong \overline{x^2}$$
 (2.4)

Usaremos o resultado acima na estimativa da incerteza das Energias Cinética e Potencial Elástica.

3. Aplicações Comuns

3.1 Soma ou Subtração

Vemos com relativa frequência medidas de grandezas baseadas na **variação** (que é entendida como uma subtração) de outras grandezas, como é o caso da velocidade $\left(v = \frac{\Delta x}{\Delta t}\right)$, razão entre as variações de posição e tempo. Aplicando-se a fórmula de propagação de incertezas para o deslocamento $\Delta x(x,x_0) = x - x_0$, teremos, tomando-se Δx como certa função A, $\Delta x = A$:

$$\Delta x(x, x_0) = A(x, x_0) = x - x_0 \Rightarrow \sigma_A^2 = \left(\frac{\partial A}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial A}{\partial x_0}\right)^2 \sigma_{x_0}^2$$
 (3.1.1)

Calculando-se as derivadas, teremos $\frac{\partial A}{\partial x} = 1$ e $\frac{\partial A}{\partial x_0} = -1$. Substituindo estes resultados em (3.1), teremos:

$$\sigma_A^2 = \sigma_x^2 + \sigma_{x_0}^2 \qquad (3.1.2)$$

Como $\sigma_x = \sigma_{x_0}$ (pois as duas incertezas são relativas a distâncias, e estamos supondo tais medições feitas a partir de um mesmo instrumento de medida), temos que $\sigma_A^2 = 2\sigma_x^2 \Rightarrow \sigma_A = \sigma_x\sqrt{2}$. Portanto,

$$\sigma_{\Delta x} = \sigma_x \sqrt{2} \qquad (3.1.3)$$

A incerteza no intervalo de tempo pode ser calculada de maneira análoga, logo:

$$\sigma_{At} = \sigma_t \sqrt{2} \qquad (3.1.4)$$

As fórmulas de incerteza (3.3) e (3.4) são usadas nos cálculos de incerteza da **velocidade** dos corpos, nos experimentos de Trilho de Ar, Atrito, Colisões, Conservação de Energia e Dinâmica de Rotações. A relação (3.2) pode ser generalizada para um número qualquer de variáveis. Seja f uma função dada por $f = a \pm b \pm ... \pm z$. Assim, sua variância pode ser expressa como:

$$\sigma_f^2 = \sigma_a^2 + \sigma_b^2 + \dots + \sigma_z^2$$

E a incerteza no valor da função será:

$$\sigma_f = \sqrt{\sigma_f^2} \qquad (3.1.5)$$

Note que sempre tomamos σ_f como a raiz positiva da variância, pois, por definição, o desviopadrão tem um valor positivo.

3.2 Produto ou Razão

Aplicando-se a fórmula de propagação de incertezas à quantidade de movimento linear p=mv, onde m é a massa e v é a velocidade do corpo ou partícula em estudo, teremos:

$$p(m, v) = mv \Rightarrow \sigma_p^2 = \left(\frac{\partial p}{\partial m}\right)^2 \sigma_m^2 + \left(\frac{\partial p}{\partial v}\right)^2 \sigma_v^2$$
 (3.2.1)

Calculando as derivadas, teremos $\frac{\partial p}{\partial m} = v$ e $\frac{\partial p}{\partial v} = m$. Aplicando as derivadas em (3.2.1), obtemos:

$$\sigma_p^2 = v^2 \sigma_m^2 + m^2 \sigma_v^2 \tag{3.2.2}$$

Como p=mv, podemos proceder com passos algébricos de modo a simplificar (3.2.2):

$$\sigma_p^2 = v^2 \sigma_m^2 + m^2 \sigma_v^2 = \left(\frac{mv}{m}\right)^2 \sigma_m^2 + \left(\frac{mv}{v}\right)^2 \sigma_v^2 = p^2 \left[\left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_v}{v}\right)^2\right]$$
(3.2.3)

Na situação especial em que a incerteza da massa puder ser desconsiderada, teremos $\sigma_m \approx 0$, de modo que a variância reduz-se a:

$$\sigma_p^2 = p^2 \left(\frac{\sigma_v}{v}\right)^2 \Rightarrow \sigma_p = p \frac{\sigma_v}{v}$$
 (3.2.4)

Tais valores de incertezas são utilizados nos cálculos de **quantidade de movimento (momento linear)** dos corpos, no experimento de Colisões.

No caso geral, para uma função f dada por f=ab ou f=a/b, a incerteza do valor da função reduzse a:

$$\sigma_f^2 = \left(\frac{\partial f}{\partial a}\right)^2 \sigma_a^2 + \left(\frac{\partial f}{\partial b}\right)^2 \sigma_b^2 \quad \Rightarrow \quad \sigma_f = f \sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2}$$
 (3.2.5)

3.3 Razão das diferenças

Para calcular a incerteza associada à velocidade de um corpo, primeiro agruparemos as medidas de posição e tempo em duas funções, $\Delta x = A$ e $\Delta t = B$, e aplicaremos a fórmula de propagação de incertezas (2.2), depois substituiremos as incertezas de A e B. Assim, temos:

$$v(\Delta x, \Delta t) = \frac{\Delta x}{\Delta t} = \frac{A}{B} \implies \sigma_v^2 = \left(\frac{\partial v}{\partial A}\right)^2 \sigma_A^2 + \left(\frac{\partial v}{\partial B}\right)^2 \sigma_B^2$$

Calculando as derivadas, teremos $\frac{\partial v}{\partial A} = \frac{1}{B} e \frac{\partial v}{\partial B} = -\frac{A}{B^2}$. Logo,

$$\sigma_v^2 = \left(\frac{1}{B}\right)^2 \sigma_A^2 + \left(-\frac{A}{B^2}\right)^2 \sigma_B^2 = \frac{1}{B^2} \left(\sigma_A^2 + \frac{A^2}{B^2}\sigma_B^2\right)$$

Lembrando que $A = \Delta x$ e $B = \Delta t$, e usando (3.1.3) e (3.1.4) na expressão acima, teremos:

$$\sigma_{v}^{2} = \frac{1}{B^{2}} \left(\sigma_{A}^{2} + \frac{A^{2}}{B^{2}} \sigma_{B}^{2} \right) = \frac{1}{\Delta t^{2}} \left(\left(\sigma_{x} \sqrt{2} \right)^{2} + \frac{\Delta x^{2}}{\Delta t^{2}} \left(\sigma_{t} \sqrt{2} \right)^{2} \right) = \frac{2}{\Delta t^{2}} \left(\sigma_{x}^{2} + v^{2} \sigma_{t}^{2} \right)$$

Extraindo a raiz quadrada, teremos, portanto:

$$\sigma_v = \frac{\sqrt{2}}{\Delta t} \sqrt{\sigma_x^2 + v^2 \sigma_t^2} \qquad (3.3.1)$$

Na situação dos experimentos virtuais, em que a incerteza do tempo pode ser desconsiderada, teremos $\sigma_t \approx 0$ e a expressão acima se reduz a:

$$\sigma_v = \frac{\sqrt{2}}{\Delta t} \sigma_x \qquad (3.3.2)$$

A expressão (3.3.2) é a fórmula aplicada nas incertezas da **velocidade** dos corpos nos experimentos de Trilho de Ar, Atrito, Colisões, Conservação de Energia e Dinâmica de Rotações.

De um modo geral, para uma função f, dada por $f = \frac{\Delta a}{\Delta b}$, podemos aplicar o raciocínio desenvolvido até aqui de maneira generalizada e representar a incerteza da função f, de acordo com (3.2.5), como sendo decorrente das incertezas em a e b:

$$\frac{\sigma_f}{f} = \sqrt{\left(\frac{\sigma_{\Delta a}}{\Delta a}\right)^2 + \left(\frac{\sigma_{\Delta b}}{\Delta b}\right)^2} \tag{3.3.3}$$

4. Aplicações Aos Experimentos

4.1 Energia Cinética

A energia cinética *K* de um corpo na mecânica clássica pode ser calculada a partir de sua massa *m* e de sua velocidade *v*:

$$K(m,v) = \frac{mv^2}{2}$$

Pela expressão (2.2) de propagação de incertezas, as derivadas parciais da energia cinética em relação à massa e à velocidade são $\frac{\partial K}{\partial m} = \frac{v^2}{2}$ e $\frac{\partial K}{\partial v} = \frac{2mv}{2} = mv$. Após as devidas simplificações, obtemos:

$$\sigma_K^2 = \left(\frac{v^2}{2}\right)^2 \sigma_m^2 + (mv)^2 \sigma_v^2$$
 (4.1.1)

Esta expressão pode ser modificada algebricamente de modo a obter a aparência da fórmula geral para funções do tipo produto e razão:

$$\sigma_K^2 = \left(\frac{v^2}{2}\right)^2 \sigma_m^2 + (mv)^2 \sigma_v^2 = \left(\frac{mv^2}{2m}\right)^2 \sigma_m^2 + \left(\frac{2mv^2}{2v}\right)^2 \sigma_v^2 = \left(\frac{mv^2}{2}\right)^2 \left[\left(\frac{\sigma_m}{m}\right)^2 + \left(2\frac{\sigma_v}{v}\right)^2\right]$$

$$\sigma_K^2 = K^2 \left[\left(\frac{\sigma_m}{m}\right)^2 + \left(2\frac{\sigma_v}{v}\right)^2\right] \quad \Rightarrow \quad \sigma_K = K \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(2\frac{\sigma_v}{v}\right)^2} \tag{4.1.2}$$

O caso geral relacionado a este exemplo, e que pode ser deduzido por esse procedimento (faça este exercício), é o desvio-padrão do *produto de potências*.

Seja uma função f = f(a, b, c) tal que $f(a, b, c) = a^m b^n c^p$, com m, n e p inteiros. Assim, a incerteza propagada da função f é:

$$\sigma_f = f \sqrt{\left(m\frac{\sigma_a}{a}\right)^2 + \left(n\frac{\sigma_b}{b}\right)^2 + \left(p\frac{\sigma_c}{c}\right)^2}$$
 (4.1.3)

Ou seja, os expoentes se tornam multiplicadores das incertezas de suas respectivas variáveis. Na situação especial em que a incerteza da massa puder ser desconsiderada, teremos $\sigma_m \approx 0$ e, de (4.1.2), teremos:

$$\sigma_K = 2K \frac{\sigma_v}{v} \tag{4.1.4}$$

A grandeza v provém de uma razão entre variações e, na situação em que $\Delta x \approx 0$, temos que $v \approx 0$ e a expressão 4.1.4 não pode ser aplicada. No entanto, v consta no denominador da expressão devido a uma transformação algébrica feita ao longo da dedução. Voltando ao começo da dedução de (4.4.2), e lembrando que $\sigma_m \approx 0$, temos:

$$\sigma_K^2 = \left(\frac{v^2}{2}\right)^2 \sigma_m^2 + (mv)^2 \sigma_v^2 \approx (mv)^2 \sigma_v^2$$

Utilizemos a ideia descrita na seção 2, no tópico *Uma Interpretação Importante*. Segundo a equação (2.4), como a velocidade tende a zero, $\sigma_v^2 \cong \overline{v^2}$. Logo,

$$\sigma_K^2 \approx (mv)^2 \sigma_v^2 = m^2 v^2 \sigma_v^2 \approx m^2 \sigma_v^4 \quad \Rightarrow \quad \sigma_K \approx m \sigma_v^2$$
 (4.1.5)

Estas fórmulas de incertezas são empregadas com frequência nos cálculos de **energia cinética** dos corpos, por exemplo, no experimento de Energia.

4.2 Energia Potencial Elástica

A energia potencial elástica U de um corpo na mecânica clássica pode ser calculada a partir de sua distância da posição de equilíbrio Δx e da constante elástica k da mola:

$$U(\Delta x, k) = \frac{k(\Delta x)^2}{2}$$

Pela expressão (2.2) de propagação de incertezas, as derivadas parciais da energia potencial em relação à constante elástica e à elongação são $\frac{\partial U}{\partial k} = \frac{(\Delta x)^2}{2}$ e $\frac{\partial U}{\partial (\Delta x)} = \frac{2k(\Delta x)}{2} = k(\Delta x)$. Após as devidas simplificações, obtemos:

$$\sigma_U^2 = \left(\frac{(\Delta x)^2}{2}\right)^2 \sigma_k^2 + \left(k(\Delta x)\right)^2 \sigma_{\Delta x}^2 \qquad (4.2.1)$$

Esta expressão pode ser modificada algebricamente de modo a obter a aparência da fórmula geral para funções do tipo produto e razão:

$$\sigma_U^2 = \left(\frac{(\Delta x)^2}{2}\right)^2 \sigma_k^2 + \left(k(\Delta x)\right)^2 \sigma_{\Delta x}^2 = \left(\frac{k(\Delta x)^2}{2k}\right)^2 \sigma_k^2 + \left(\frac{2k(\Delta x)^2}{2(\Delta x)}\right)^2 \sigma_{\Delta x}^2$$
$$\sigma_U^2 = \left(\frac{k(\Delta x)^2}{2}\right)^2 \left[\left(\frac{\sigma_k}{k}\right)^2 + \left(2\frac{\sigma_{\Delta x}}{\Delta x}\right)^2\right]$$

$$\sigma_U^2 = U^2 \left[\left(\frac{\sigma_k}{k} \right)^2 + \left(\frac{2\sigma_{\Delta x}}{\Delta x} \right)^2 \right] \quad \Rightarrow \quad \sigma_U = U \sqrt{\left(\frac{\sigma_k}{k} \right)^2 + \left(2\frac{\sigma_{\Delta x}}{\Delta x} \right)^2} = U \sqrt{\left(\frac{\sigma_k}{k} \right)^2 + \left(2\sqrt{2}\frac{\sigma_x}{\Delta x} \right)^2} \tag{4.2.2}$$

Na situação especial em que a incerteza da constante elástica puder ser desconsiderada, teremos $\sigma_k \approx 0$ e, de (4.8), vem que:

$$\sigma_U = 2\sqrt{2}U\frac{\sigma_\chi}{\Delta \chi} \qquad (4.2.3)$$

Se, para certo instante de tempo, $\Delta x \approx 0$, teremos uma indeterminação em (4.2.3). Entretanto, Δx consta no denominador da expressão devido a uma transformação algébrica feita ao longo da dedução. Voltando ao começo da dedução de (4.2.2), e lembrando que $\sigma_k \approx 0$, temos:

$$\sigma_U^2 = \left(\frac{(\Delta x)^2}{2}\right)^2 \sigma_k^2 + \left(k(\Delta x)\right)^2 \sigma_{\Delta x}^2 \approx \left(k(\Delta x)\right)^2 \sigma_{\Delta x}^2$$

Utilizemos novamente a ideia descrita na seção 2, no tópico *Uma Interpretação Importante*. Segundo a equação (2.4), como o deslocamento tende a zero, $\sigma_{\Delta x}^2 \cong \overline{(\Delta x)^2}$. Logo,

$$\sigma_U^2 \approx \left(k(\Delta x)\right)^2 \sigma_{\Delta x}^2 = k^2 (\Delta x)^2 \sigma_{\Delta x}^2 \approx k^2 \sigma_{\Delta x}^4 \quad \Rightarrow \quad \sigma_U \approx k \sigma_{\Delta x}^2 \quad \Rightarrow \quad \sigma_U \approx \sqrt{2} k \sigma_{\Delta x}^2 \tag{4.2.4}$$

Estas fórmulas de incertezas são empregadas com frequência nos cálculos de **energia potencial elástica** dos corpos, por exemplo, no experimento de Energia.

4.3 Energia Mecânica

A energia mecânica *E* de um corpo na mecânica clássica pode ser calculada a partir da soma de suas energias cinética e potencial:

$$E(K,U) = K + U$$

Aplicando a expressão de propagação de incertezas para a energia mecânica, teremos:

$$\sigma_E^2 = \left(\frac{\partial E}{\partial K}\right)^2 \sigma_K^2 + \left(\frac{\partial E}{\partial U}\right)^2 \sigma_U^2$$
 (4.3.1)

Calculando as derivadas parciais, teremos $\frac{\partial E}{\partial K} = \frac{\partial E}{\partial U} = 1$. Logo, substituindo em (4.3.1) e realizando as devidas simplificações, teremos:

$$\sigma_E^2 = \sigma_K^2 + \sigma_U^2 \Rightarrow \sigma_E = \sqrt{\sigma_K^2 + \sigma_U^2}$$
 (4.3.2)

Lembre-se que o resultado obtido vale para o caso geral. Este valor de incerteza é utilizado nos cálculos de **energia mecânica** dos corpos, por exemplo, no experimento de Energia.

4.4 Velocidade angular na forma $\omega = \frac{\Delta \varphi}{\Delta t}$

Pela fórmula de propagação de incertezas, tomando $\Delta \varphi = A$ e $\Delta t = B$, teremos:

$$\omega(\Delta\varphi, \Delta t) = \frac{\Delta\varphi}{\Delta t} = \frac{A}{B} \Rightarrow \sigma_{\omega}^{2} = \left(\frac{\partial\omega}{\partial A}\right)^{2} \sigma_{A}^{2} + \left(\frac{\partial\omega}{\partial B}\right)^{2} \sigma_{B}^{2} \tag{4.3.3}$$

Calculando as derivadas parciais, $\frac{\partial \omega}{\partial A} = \frac{1}{B} e \frac{\partial \omega}{\partial B} = -\frac{A}{B^2}$. Logo,

$$\sigma_{\omega}^{2} = \left(\frac{1}{B}\right)^{2} \sigma_{A}^{2} + \left(\frac{-A}{B^{2}}\right)^{2} \sigma_{B}^{2} = \left(\frac{1}{\Delta t}\right)^{2} \sigma_{\Delta \varphi}^{2} + \left(\frac{-(\Delta \varphi)}{(\Delta t)^{2}}\right)^{2} \sigma_{\Delta t}^{2} = \frac{1}{(\Delta t)^{2}} \left[\sigma_{\Delta \varphi}^{2} + \frac{(\Delta \varphi)^{2} \sigma_{\Delta t}^{2}}{(\Delta t)^{2}}\right]$$

Substituindo (3.1.4) e a análoga de (3.1.3) para posição angular:

$$\sigma_{\omega}^{2} = \frac{1}{(\Delta t)^{2}} \left[2\sigma_{\varphi}^{2} + 2\frac{(\Delta \varphi)^{2}\sigma_{t}^{2}}{(\Delta t)^{2}} \right] = \frac{2}{(\Delta t)^{2}} \left[\sigma_{\varphi}^{2} + \omega^{2}\sigma_{t}^{2} \right] \Rightarrow \sigma_{\omega} = \frac{\sqrt{2}}{\Delta t} \sqrt{\sigma_{\varphi}^{2} + \omega^{2}\sigma_{t}^{2}}$$
(4.3.4)

Na situação especial em que a incerteza do tempo puder ser desconsiderada, teremos $\sigma_t \approx 0$ e, de (4.3.4), vem que:

$$\sigma_{\omega} = \frac{\sqrt{2}}{\Delta t} \sigma_{\varphi} \qquad (4.3.5)$$

4.5 Velocidade angular na forma $\omega = \frac{v}{r}$

Pela fórmula de propagação de incertezas, teremos:

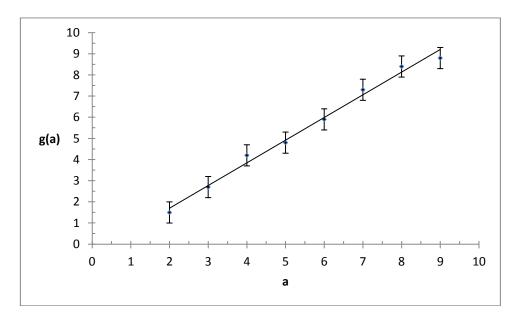
$$\omega(v,r) = \frac{v}{r} \Rightarrow \sigma_{\omega}^{2} = \left(\frac{\partial \omega}{\partial v}\right)^{2} \sigma_{v}^{2} + \left(\frac{\partial \omega}{\partial r}\right)^{2} \sigma_{r}^{2} \qquad (4.5.1)$$

Calculando as derivadas parciais, $\frac{\partial \omega}{\partial v} = \frac{1}{r} e^{\frac{\partial \omega}{\partial r}} = -\frac{v}{r^2}$. Logo,

$$\sigma_{\omega}^{2} = \left(\frac{1}{r}\right)^{2} \sigma_{v}^{2} + \left(-\frac{v}{r^{2}}\right)^{2} \sigma_{r}^{2} = \frac{1}{r^{2}} [\sigma_{v}^{2} + \omega^{2} \sigma_{r}^{2}] \Rightarrow \sigma_{\omega} = \frac{1}{r} \sqrt{\sigma_{v}^{2} + \omega^{2} \sigma_{r}^{2}}$$
(4.5.2)

4.6 Reta Média

Sejam g uma função e a uma variável, tais que g = g(a). Considere que somos capazes de efetuar medidas dos valores de g variando o parâmetro a. Considere ainda que nos seja interessante conhecer não o comportamento da função g, mas sim, o de sua função derivada: f = g'(a).



Para o gráfico acima, consideremos *T* como o intervalo compreendido pela variável *a*, para *N* pontos experimentais. A inclinação da reta média, isto é, a derivada da função *g*, representa a grandeza de interesse *f*. Além disso, a incerteza desta inclinação nos dá a própria incerteza em *f*. Podemos calcular esta incerteza na inclinação reta utilizando a seguinte expressão (que não demonstraremos pelo fato de a mesma não ser o foco do presente roteiro):

$$\sigma_f = \frac{\sigma_g}{T} \sqrt{\frac{12}{N}} \tag{4.6.1}$$

Podemos interpretar este resultado ao pensar, por exemplo, em a como sendo o tempo e g(a) um deslocamento:

$$\sigma_v = \frac{\sigma_x}{T} \sqrt{\frac{12}{N}}$$
 (4.6.2)

Por definição, a velocidade média é a razão entre as variações correspondentes na posição e no tempo:

$$v(\Delta x, \Delta t) = \frac{\Delta x}{\Delta t}$$

Se analisarmos o resultado ao qual chegamos em (3.3.2), $\sigma_v = \frac{\sqrt{2}}{\Delta t} \sigma_x$, ao compararmos o mesmo com o resultado de (4.6.2), perceberemos que são muito parecidas. Entretanto, existe um termo de diferença, devido ao fato de a análise estar sendo feita sobre intervalos de tempo e de espaço. Em outras palavras, o termo é devido à influência destes intervalos.

5. Outras aplicações

5.1 Torque

Aplicando a expressão de propagação de incerteza, teremos:

$$\tau(m, g, d) = mgd \Rightarrow \sigma_{\tau}^{2} = \left(\frac{\partial \tau}{\partial m}\right)^{2} \sigma_{m}^{2} + \left(\frac{\partial \tau}{\partial g}\right)^{2} \sigma_{g}^{2} + \left(\frac{\partial \tau}{\partial d}\right)^{2} \sigma_{d}^{2}$$
 (5.1.1)

Calculando as derivadas parciais, $\frac{\partial \tau}{\partial m} = gd$, $\frac{\partial \tau}{\partial g} = md$ e $\frac{\partial \tau}{\partial d} = mg$. Logo,

$$\sigma_{\tau}^{2} = (gd)^{2}\sigma_{m}^{2} + (md)^{2}\sigma_{g}^{2} + (mg)^{2}\sigma_{d}^{2} = \left(\frac{mgd}{m}\right)^{2}\sigma_{m}^{2} + \left(\frac{mgd}{g}\right)^{2}\sigma_{g}^{2} + \left(\frac{mgd}{d}\right)^{2}\sigma_{d}^{2}$$

$$\sigma_{\tau}^{2} = (mgd)^{2} \left[\left(\frac{\sigma_{m}}{m} \right)^{2} + \left(\frac{\sigma_{g}}{g} \right)^{2} + \left(\frac{\sigma_{d}}{d} \right)^{2} \right] \quad \Rightarrow \quad \sigma_{\tau} = |\tau| \sqrt{\left(\frac{\sigma_{m}}{m} \right)^{2} + \left(\frac{\sigma_{g}}{g} \right)^{2} + \left(\frac{\sigma_{d}}{d} \right)^{2}}$$

Desprezando a incerteza da aceleração da gravidade, quando a consideramos uma constante conhecida, isto é, $\sigma_g \approx 0$, teremos:

$$\sigma_{\tau} = |\tau| \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2}$$
 (5.1.2)

5.2 Momento de inércia de um cilindro uniforme no eixo longitudinal

Aplicando a expressão de propagação de incerteza, teremos:

$$I(m,r) = \frac{mr^2}{2} \Rightarrow \sigma_I^2 = \left(\frac{\partial I}{\partial m}\right)^2 \sigma_m^2 + \left(\frac{\partial I}{\partial r}\right)^2 \sigma_r^2 \qquad (5.2.1)$$

Calculando as derivadas parciais, $\frac{\partial I}{\partial m} = \frac{r^2}{2} e \frac{\partial I}{\partial r} = \frac{2mr}{2} = mr$. Logo,

$$\sigma_{I}^{2} = \left(\frac{\partial I}{\partial m}\right)^{2} \sigma_{m}^{2} + \left(\frac{\partial I}{\partial r}\right)^{2} \sigma_{r}^{2} = \left(\frac{mr^{2}}{2m}\right)^{2} \sigma_{m}^{2} + \left(\frac{2mr^{2}}{2r}\right)^{2} \sigma_{r}^{2} = \left(\frac{mr^{2}}{2}\right)^{2} \left[\left(\frac{\sigma_{m}}{m}\right)^{2} + \left(2\frac{\sigma_{r}}{r}\right)^{2}\right]$$

$$\sigma_{I} = I \sqrt{\left(\frac{\sigma_{m}}{m}\right)^{2} + \left(2\frac{\sigma_{r}}{r}\right)^{2}} \qquad (5.2.2)$$

5.3 Aceleração angular na forma $\alpha = \frac{\tau}{I}$

Pela 2ª Lei de Newton para a rotação, e pela fórmula de propagação de incertezas, teremos:

$$\alpha(\tau, I) = \frac{\tau}{I} \Rightarrow \sigma_{\alpha}^2 = \left(\frac{\partial \alpha}{\partial \tau}\right)^2 \sigma_{\tau}^2 + \left(\frac{\partial \alpha}{\partial I}\right)^2 \sigma_I^2$$
 (5.3.1)

Calculando as derivadas parciais, $\frac{\partial \alpha}{\partial \tau} = \frac{1}{I} e^{\frac{\partial \alpha}{\partial I}} = -\frac{\tau}{I^2}$. Logo,

$$\sigma_{\alpha}^{2} = \left(\frac{1}{I}\right)^{2} \sigma_{\tau}^{2} + \left(\frac{-\tau}{I^{2}}\right)^{2} \sigma_{I}^{2} = \frac{\tau^{2}}{I^{2}} \left[\frac{\sigma_{\tau}^{2}}{\tau^{2}} + \frac{\sigma_{I}^{2}}{I^{2}}\right] \quad \Rightarrow \quad \sigma_{\alpha} = |\alpha| \sqrt{\left(\frac{\sigma_{\tau}}{\tau}\right)^{2} + \left(\frac{\sigma_{I}}{I}\right)^{2}} \tag{5.3.2}$$

6. Bibliografia

- ➤ HELENE, Otaviano Augusto Marcondes, VANIN, Vito Roberto. *Tratamento Estatístico de Dados em Física Experimental*. Edgard Blücher, 2ª edição, 1991.
- > VUOLO, José Henrique. Fundamentos da Teoria de Erros. Edgard Blücher, 2ª edição, 1996.
- ➤ Bureau Internacional de Pesos e Medidas. Guide to the Expression of Uncertainty in Measurement (GUM). 2004