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We recorded the motion of a ring rolling and slipping in front of a gridded
panel, whose cells allow to take measurements of the angular and linear ring
positions. From the angular and translational velocity graphs, the dynamics
of the ring motion can be deduced.

Important: The experiment was recorded four times, and from each take
we selected three sets of frames. You should analyse the set of frames assigned
to your team by the professor. Each set of frames is identified by the number
of the take (01 to 04) and a letter (A, B or C). Although you should acquire the
data from just one set of frames, named “situação 01-A” or “situação 03-B”,
etc., it will be useful to inspect all the frames from the take.

1 Analysis procedure

1. Watch the video snippet and observe the peculiar motion of the ring, in
particular:

• The initial linear motion of the ring, its direction and its changes
along the experiment.

• The initial angular motion of the ring, in special its direction of
rotation (clockwise or counter-clockwise), and the evolution of the
angular velocity during the experiment.

• If the ring velocity goes to zero sometime.
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Before starting the quantitative analysis of the ring motion as directed
below, watch once more the video snippet, and inspect all the frames
from the take assigned to you. However, acquire data just for the set of
frames assigned to you.

2. Fill a spreadsheet containing, for each frame i, the values of linear posi-
tion, xi, angular position, θi, and time, ti, considering that the cells on
the background gridded panel are squares of 2 cm side and the time code
is in seconds. The procedure to obtain these values are detailed in sec-
tion 3 below. The uncertainty in time is negligible, but adopt 1.0 cm and
0.04 rad for the uncertainties in the linear and angular positions, respec-
tively; you can find more information about uncertainties at section 4 if
you wish, but that is not required by now. Important:

• Note that there is an instant when the translational movement
ceases and the ring rotates apparently in the same position dur-
ing some time. The fact that the position is the same does not
mean that the data are identical, because the times are different;
register the same position for the different time codes in your data
table.

• During all the data acquisition, keep the reference system fixed to
the adopted origin and pointing to the adopted direction, even after
the ring did reverse its motion.

3. Plot the graphs of xi and θi in function of time and draw the respective
uncertainty bars.

4. With the collected data, compute linear and angular average velocities
for each time interval [ti−1; ti+1]. The formulas are

v[ti−1;ti+1] =
x(i+1) − x(i−1)
t(i+1) − t(i−1)

(1)

and

ω[ti−1;ti+1] =
θ(i+1) − θ(i−1)
t(i+1) − t(i−1)

(2)

where x, θ and t are the positions read in item 2 above.

As [ti−1; ti+1] intervals are short, we will adopt

v[ti−1;ti+1]
∼= v(ti) (3)
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ω[ti−1;ti+1]
∼= ω(ti) (4)

where v(ti) and ω(ti) correspond to linear and angular instantaneous
velocities, respectively, in the mean time ti given by1

ti =
ti+1 + ti−1

2
(5)

Fill a spreadsheet with the obtained values (ti, v(ti) and ω(ti)), with their
respective uncertainties. If you need help with the uncertainties prop-
agation, see the text “Roteiro de Cálculo de Incertezas” (Uncertainties
calculation roadmap, in Portuguese) in the flap “Guias”.

5. Plot the calculated speeds with their respective uncertainties in function
of time and check whether your expectations of their evolution match
what you have obtained. Interpret the results on view of the dynamics
of the motion and identify regions with different behaviours. From the
kinematics, deduce the time intervals when the resultant force has differ-
ent values. Evaluate and plot the linear and angular velocity tendency
lines for each stage of the motion. Which physical magnitudes can be
obtained from the slopes of the tendency lines?

6. From the velocities graphs, try to identify the instant when the ring
begins the rolling without slipping motion. Think about the procedure
you can use to determine this instant.

7. Try to find answers for the questions below, that will be asked in your
homework. Notice, however, that you do not need to get them right,
since this content was not yet explored in the lecture classes.

i. Does the ring move to the left or to the right at the start? Does it
change direction along the experiment?

ii. Does the ring rotates clockwise or counter-clockwise at the start?
Does it change the direction of rotation during the motion?

iii. When or where the ring has zero speed? Search an explanation when
and why does it happen.

1What we are doing, in fact, is to evaluate numerically the speed as the derivative of the
position with respect to time. For more information, see the text “Como calcular a derivada
de uma função numericamente” (How to compute numerically the derivative of a function)
in the flap “Guias” of the virtual experiment site.
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iv. Identify any forces acting on the ring. Make two diagrams of the
ring, one for the forward motion and the other for the backward
motion, and represent the forces acting on it, as well as the linear
and angular motion directions in both situations.

v. Find the sets of points where the ring is moving with a constant
translational acceleration and interpret the slope of the tendency
lines for each region. Do the same for the angular motion.

vi. Try to develop mathematical expressions to describe the translation
and rotation speeds in function of time. Pay attention to the time
ranges in which the expressions are valid.

2 Homework

Every team should hand in a report. We stress that you will get good marks
if you accomplished the tasks and use your own words in the writing. The
report should reflect your thinkings about the subject. By now, interpretation
accuracy is not being graded.

The report must consider the following items:

I. Introduction: Describe briefly the experiment, the arrangement used
and its objectives. Provide the answers to questions i and ii in the last
topic of the preceding section, using your own words.

II. Data analysis: Identify the set of frames assigned to your team, and
give the corresponding tables and graphs with:

• the measured positions (xi and θi along with ti) and

• the calculated velocities (vi and ωi for all ti), with the respective
tendency lines.

III. Discussion: Provide the answers of items iii to vi in the last topic of the
preceding section — your findings in your own words.

IV. Conclusion: State what you have discovered and understood about the
rolling with slipping motion. If you find connections with the main ob-
jectives presented in the Introduction, show them. Explain, if possible,
why this experiment was useful (or not) to your study and if it gave a
hint on the underlying physical laws. If you have an idea for a different
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analysis procedure for this experiment or even for another experiment on
this subject, explain it.

3 Data acquisition

Before you start taking data, it is interesting to scan all frames of the take
assigned to you, in order to get a feeling about the motion, which is easier
when seeing a sequence of images taken with smaller time intervals. After
that, restrict yourself to the assigned set of frames, and measure first the
linear positions and then the angular positions.

3.1 Reading linear position

• Observe in figure 1 the presence of two strips attached to the ring and
intersecting perpendicularly at its center. Use the intersection point, P,
to track the ring translational motion.

• To begin with the measurement procedure you should choose, in the
background gridded panel, the origin of the reference system; see figure 1
for an example. The back grid provides the measurement unities: blue
squares have sides of 10 cm and red squares, 2 cm. It is worth remarking
that the reference system origin O for the linear positions must remain
fixed throughout the experiment.

• The consecutive linear positions are obtained measuring the distance
from P in each frame to the adopted origin, as in the example of figure 1.

3.2 Reading angular position

Any fixed point on the ring can, in principle, be used to follow its rotation,
and the quadrant where the angle is measured is arbitrary. Since it is easier to
follow the motion of one line than one point, we suggest to refer the angular
position to a half of one of the strips — the guide radius. Also, we have found
that the measurement of the position of the guide radius in any quadrant but
the first is prone to error. We suggest, therefore, to measure the angle formed
between the Px′ axis and the strip that is seen on the first quadrant — the
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Figure 1: Distances must be measured from the origin O to the center of the
ring, P, in this frame 23 red squares = 46 cm. The time is 1,301 s.

Figure 2: The angular position of the guide radius in the second quadrant can
be obtained from the angular position of the auxiliary radius by adding π

2
to

the value measured in the first quadrant.

auxiliary radius — and add the angle it forms with the guide radius, always a
multiple of π/2, see Figure 2.

Below, we list the tasks needed to obtain the angular position in function
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of time.

• The angle θa between the auxiliary radius and the axes Px′ can be ob-
tained from the orthogonal projections of the auxiliary radius using the
cells on the gridded back panel, see figure 3, and is given by

tan θa =
y′a
x′a

Figure 3 highlights the relationship between θa and the number of cells
in each x′-y′ projection of the auxiliary radius.

Figure 3: x′a and y′a auxiliary radius projections on x′ and y′ axes, respectively.

• Prepare a spreadsheet to list the raw data and deduce the angles. Reserve
columns for t, x′a and y′a, since for each frame you will count and register
the number of cells of x′ and y′ auxiliary radius projections, besides the
time code.

• The angles will increase with time because the ring rotates always in the
same direction, but when the measurement is done in a single quadrant,
you must correct for the angle between the auxiliary and guide radii, as
illustrated by figures 2 and 4. When q designates the quadrant occupied
by the guide ray, this angle is

∆θq = (q − 1)
π

2
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Also, the number of turns completed, n, must be taken into account, and
generates another angular displacement

∆θn = 2π n

Therefore, add two more columns to the spreadsheet to accommodate q
and n.

Figure 4: Corrections for measurements in the first quadrant when the guide-
ray is in the third quadrant (left) and fourth quadrant (right).

• In the last column of the spreadsheet, evaluate the angle according to

θ = arctan
y′a
x′a

+ (q − 1)
π

2
+ 2π n

where q is the number of the quadrant where the guide radius is, and n
is the number of completed turns. Table 1 shows an example of how to
tabulate the data.

You should verify that all the angular positions are in ascending order (as
in Table 1).
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Table 1: Spreadsheet model and data organization. The symbols defining the
columns are explained in the text.

t (s) x′a y′a q n θ (rd)

0.067 13 7 0.49
0.1 9.5 10.5 1 0 0.84

0.133 5.5 14 1.2

0.167 14 1 1.64
0.2 13 6 2.00

0.234 9.5 10 2 0 2.30
0.267 5.5 13 2.74
0.3 0.5 14 3.11

0.334 14 5 3.48
0.367 10.5 9 3 0 3.85
0.4 7 12 4.18

0.434 2.5 14 4.54

0.467 13.5 2.5 4.90
0.5 12.5 6 5.16

0.534 10 10 4 0 5.50
0.567 6.5 12 5.79
0.601 2.5 13.5 6.10

0.634 13.5 2 6.43
0.667 12.5 5.5 6.70
0.701 10.5 9 1 1 6.99
0.734 8 11.5 7.25
0.767 4.5 13 7.52
0.801 0.5 14 7.82

0.843 13.5 3.5 8.11
0.868 11.5 7 8.40
0.901 10 9 2 1 8.59
0.934 7.5 12 8.87
0.968 4 13 9.13
1.001 1 14 9.35

1.034 13.5 2 9.57
1.068 12.5 5 3 1 9.81
1.101 11.5 7 9.97
1.134 9.5 10 10.24
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4 Uncertainties

4.1 Uncertainty in position measurements

The uncertainty in linear position was estimated considering the gridded back-
ground. The small cells are 2 cm wide, an the crossing of the strips is often
blurred, therefore the minimum readable unit is somewhere between 1 and 2
cm. Assigning a confidence level of 95 % to this reading, a reasonable value for
the standard deviation would be 0.5 to 1.0 cm. When we analysed all frames
of all takes, we have found that the higher of these values represent better the
standard deviation. We suggest, therefore, using 1.0 cm for the linear position
uncertainty, that represents an overall average.

4.2 Angular position uncertainty estimate

The angular position uncertainty can be estimated considering the gridded
background panel. As the numbers of cells in x and y directions are used
to compute the angular position

(
θ = arctan y′a

x′a

)
, the uncertainty in θ can be

determined by the usual propagation formula:

σ2
θ =

[
∂θ

∂y
σy′a

]2
+

[
∂θ

∂x
σx′a

]2

From this expression, we find, after some algebra

σ2
θ =

[
x′a

x′a
2 + y′a

2

]2
σ2
x′a

+

[
y′a

x′a
2 + y′a

2

]2
σ2
y′a

Adopting σy′a = σx′a and noting that x′a
2 + y′a

2 = R2, the expression simplifies
to

σθ =
σx′a
R
∼= 0.04 rd (6)

where we adopted σx′a = 1.0 and rounded the result to one significant figure.

4.3 Uncertainty in the slope of a tendency line

Spreadsheets evaluate the tendency line parameters using the least-squares
method assuming that all data have the same weight, which is a good assump-
tion in this experiment. However, the determination of the uncertainty in the
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slope of the tendency line requires some calculations in the framework of the
least squares method. Here we show a shortcut if you don’t want to go through
these calculations. When all coordinate values have the same standard devia-
tion, σspeed, the abscissas are equally spaced, and the number of data points,
N , is reasonably big, a good estimate of the standard deviation of the slope is
given by

σc =
σspeed

√
12

T
√
N

, (7)

where T is the time interval sampled, i.e., the difference between the maximum
and minimum values of the abscissa values.

5 Ring mass, size and rotational inertia

In table 2, you will find the parameters of the ring used in the experiment and
are important to explain its mechanical behaviour.

Table 2: Size and inertia parameters of the ring used in the experiment.
Parameter Value

Internal radius (Ri) (27.1± 0.1) cm
External radius (R) (28.6± 0.1) cm

Moment of Inertia — CM axis (288± 5)× 103 g cm2

Mass (381.3± 0.5) g

The radii were obtained with a measuring tape and the mass with a balance.
The moment of inertia was calculated from the ring dimensions and shape,
neglecting small holes for the rays and the air valve in the bicycle hoop we
have used. It was calculated as the sum of rings with different masses and
radii, filling all the range Ri < r < R and the uncertainty evaluated as 1/6 of
the extreme values - all mass located in the internal or the external radius.
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