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Abstract
We consider elementary excitations in a Bose–Einstein condensate, carrying a finite amount of
angular momentum. We show that these elementary excitations are modified Bogoliubov
oscillations or phonons with a helical wave structure. These twisted phonon modes can
contribute to the total vorticity in a quantum fluid, thus complementing the contribution of the
traditional quantum vortices. Linear and nonlinear versions of twisted phonon modes will be
discussed. New envelope soliton solutions are shown to exist in a condensate.
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1. Introduction

Vorticity has been a central problem in Bose–Einstein
condensates and superfluids, as discussed in several review
papers [1, 2] and books [3–6]. Rotating condensates with
vortical structures have also been studied experimentally
by many groups [7–9]. Furthermore, vortex structures are
considered a central piece of the turbulence state in quantum
fluids. According to the traditional view, turbulence in a
condensate is made of a superposition of vortex structures and
phonon modes. Vortices are local structures of quantum origin,
which can occur around regions of phase singularity. Phonons
are elementary excitations of the condensed fluid which, in
principle, carry no finite vorticity. However, as shown here,
these elementary excitations can also carry a finite amount of
vorticity and can be seen as a new kind of propagating vortical
structure.

Twisted phonons, or acoustic waves with a finite amount
of angular momentum, have already been considered in
classical fluids [12, 13]. It is the purpose of the present work to
show that similar modes can also be considered in a quantum
fluid. We will consider both linear and nonlinear phonon-mode
solutions in a condensate carrying a finite angular momentum.
In particular, we will show that new kinds of soliton solutions
exist in a condensate, which are distinct from the usual soliton
solutions of the Gross–Pitaevskii (GP) equation. In contrast
with the usual view of solitons in a condensate, they are
envelope solitons associated with elementary oscillations. In

that sense, they can be seen as the nonlinear version of the
twisted phonons and can also carry a finite amount of angular
momentum.

The structure of the paper is the following. In section 2,
we state our basic equations and derive a nonlinear wave
equation for phonons in a condensate, which will be used as
the starting point of our calculations. In section 3, we consider
a linear mode analysis which will allow us to establish the
space and time structure of twisted Bogoliubov oscillations.
We will show that the linear wave solutions can be described
as a superposition of Laguerre–Gauss (LG) modes, similar
to those already considered in classical fluids. Each of these
modes carries a finite amount of angular momentum, as shown
in section 4. These results can be extended to the nonlinear
regime, as shown in section 5. Twisted envelope solitons,
which are different from the traditional soliton solutions
considered in condensates [5, 6] are shown to exist. They
are described by a defocusing nonlinear Schrödinger (NLS)
equation for the phonon mode amplitude. Finally, in section 6,
we state some conclusions.

2. Basic equations

We start with the GP equation, which is formally identical to a
NLS equation and adequately describes the condensate in the
mean field approximation. It can be written as

i�
∂

∂t
ψ =

[
−�

2∇2

2M
+ Vext + g |ψ |2

]
ψ, (1)
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where Vext is an external confining potential, M is the mass
of the condensed atoms, g is the coupling parameter resulting
from binary atomic collisions in the zero energy limit and
ψ ≡ ψ(r, t) is the wave function of the condensed matter.
Using the Madelung transformation

ψ(r, t) = √
n exp (iφ), (2)

where n is the density and φ is the phase function, and defining
the fluid velocity as v = �∇φ/M, we can derive from (1) the
quantum fluid equations, as

∂n

∂t
+ ∇ · (nv) = 0,

∂v
∂t

+ v · ∇v = −∇P

Mn
− 1

M
∇(Vext + VB), (3)

where the pressure P results from the atomic collisions, and the
Bohm potential VB describes quantum non-locality, are defined
by

P = 1

2
gn2, VB = − �

2

2M

∇2√n√
n

. (4)

The quantity VB is also usually called the quantum pressure.
Taking the time derivative of the first of equation (3), and using
vectorial identities, we can derive an evolution equation of the
form

∂2n

∂t2
= ∇ · [v∇ · (nv) + nv · ∇v] + ∇2

(
1

2M
gn2

)

+ 1

M
∇ · [n∇(Vext + VB)]. (5)

This will be the basic equation of our present model. Up to
this point, no approximations have been made. The linear and
nonlinear vortex solutions of this equation will be considered
successively. Our analysis will be able to show that phonon
vortices can be excited in a condensate. They are intrinsically
different from the well-known quantum vortex solutions, in
the sense that they are spacetime structures propagating in the
bulk of the condensed gas, and can be described by a linear
model, as shown next.

3. Twisted phonon modes

Let us first consider a small density perturbation ñ, such that
|ñ| � n0, where n0 is the equilibrium density. Retaining only
the linear terms in (5), we obtain

∂2ñ

∂t2
− n0

M
∇2(gñ + ṼB) = 0, (6)

with the perturbed Bohm potential

ṼB = − �
2

4M

∇2ñ

n0
. (7)

The perturbations associated with the external potential Vext

are ignored here. This is justified for small-scale elementary
excitations in the condensate, which are assumed much smaller
than the size of the condensed cloud. At this scale, the
equilibrium density can be assumed flat, in contrast with the
analysis of global modes, where density profiles and boundary
conditions become an essential ingredient [10, 11].

Let us then assume propagation of an acoustic mode along
some arbitrary direction Oz, as described by a solution of the
form

ñ(r, t) = a(r) exp(ikz − iωt), (8)

where ω is the mode frequency, and a(r) is a slowly varying
amplitude satisfying the paraxial approximation∣∣∣∣∂2a

∂z2

∣∣∣∣ �
∣∣∣∣k∂a

∂z

∣∣∣∣ . (9)

Replacing this in the linearized equation (6), we obtain(
c2

s ∇2
p + �

2

4M
∇4

p

)
a = 0, (10)

where

∇2
p = ∇2

⊥ + 2ik
∂

∂z
(11)

is the paraxial operator, and cs = √
gn0/M is the Bogoliubov

sound speed. In the derivation of equation (10), we have
assumed that the frequency ω satisfies the quantum phonon
dispersion

ω2 = csk
2 + �

2k4

4M2
. (12)

In order to solve the evolution of the mode amplitude a(r),
we note that equation (10) is satisfied if the following reduced
equation is also satisfied:

∇2
p a ≡

(
∇2

⊥ + 2i
∂

∂z

)
a = 0. (13)

This is the well-known paraxial equation describing the
evolution of a wave beam near the focal region. Although
the solutions of equation (13) also satisfy the generalized
paraxial equation (10), the reverse is not necessarily true. In
the following, we will focus our analysis on the solutions of
this simple paraxial equation. It is well known that any solution
of equation (13) can be represented as a superposition of LG
modes of the form

a(r) =
∑

pl

aplFpl(r), (14)

where apl are the amplitudes, the integers p and l are the radial
and azimuthal quantum numbers, and the LG basic functions
are defined by

Fpl (r, θ, z) = CplL
|l|
p (X )X |l|e−X/2eilθ , (15)

where cylindrical coordinates were used, r⊥ ≡ (r, θ ), Ll
p are

the associated Laguerre polynomials and Cpl are normalization
constants and defined by

Cpl = 1

2
√

π

[
(l + p)!

p!

]1/2

,

Ll
p(X ) = eX X−l

l!

dp

dX p
(e−X Xl+p). (16)

It is important to note that the LG modes (15) satisfy the
orthogonality relations∫ ∞

0
r dr

∫ 2π

0
dθ F∗

plFp′l′ = δpp′δll′ . (17)

We have also used an auxiliary variable X = r2/w2, where
the beam waist w ≡ w(z) is a slowly varying function of

2
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the axial variable z. Each of these (p, l) modes represents a
phonon vortex structure, which can be called a twisted phonon.
These modes carry a finite amount of angular momentum, as
explicitly considered below. It is important to note that the
surfaces of constant phase of these twisted modes are not
planes as in the usual phonon mode structure, but are helical
surfaces instead, as determined by the condition ϕ ≡ kz+lθ =
const. Finally, it should be noted that the same orthogonal
decomposition could be used to represent the solutions of
equation (10).

4. Phonon vorticity

We now consider the energy, momentum and angular
momentum carried by each LG mode. We start by considering
the linear momentum density, as defined by G = Mnv. The
average momentum associated with the LG mode spectrum
inside the condensate can then be determined by

G = 1

2
M

∑
pl

(ñplv∗
pl + ñ∗

plvpl ). (18)

Using the continuity equation, we can determine the velocity
perturbations associated with the LG phonon modes, as given
by ωñpl = n0(i∇⊥ + kez) · vpl , enabling us to write

vpl = ω

q2

ñpl

n0
q, (19)

where the wavevector q is perpendicular to the helical surfaces
of constant phase ϕ ≡ kz + lθ = const. We therefore obtain
q = ∇ϕ or

q = k ez + l

r
eθ . (20)

A small radial component could also be added, but is ignored
here for simplicity. Replacing this in equation (18), and noting
that in the paraxial approximation, we have |q| 
 k, we can
write for the modes with frequency ω the expression

G = M

n0

( ω

k2

) ∑
pl

|ñpl|2q. (21)

We can now define the angular momentum density of the
phonon spectrum as M = (r × G). As a result, the average
angular momentum associated with the phonon modes can be
determined by

M = 1

2
M

∑
pl

[ñpl(r × v∗
pl ) + ñ∗

pl(r × vpl )]. (22)

Using the above results, we can then establish the axial
component of the angular momentum Mz associated with
phonon modes at the frequency ω as

Mz = M

n0

( ω

k2

) ∑
pl

l|ñpl |2. (23)

This shows that each LG mode carries an axial angular
momentum given by

Mz(p, l) = l f (p, l) , f (p, l) = M

n0

( ω

k2

)
|lñpl |2. (24)

Finally, we can define the energy density, following [12], as

E = 1

2
Mn0v

2 + 1

2

P2

Mn0c2
s

. (25)

Using the velocity perturbations (19) and considering average
pressure perturbations of the form

P̃ = 1
2 gn0ñ = 1

2 Mc2
s ñ, (26)

we establish the average value of the energy density as

E = M

n0

[(ω

k

)2
+ 1

4
c2

s

]∑
pl

l|ñpl |2. (27)

Noting that c2
s 
 (ω/k)2, we can simplify this expression to

E 
 M

n0

(ω

k

)2 ∑
pl

l|ñpl|2. (28)

It then becomes obvious that the energy density for a given
LG mode can be determined by

E (p, l) = ω f (p, l). (29)

From here we obtain a simple relation between the energy and
the axial angular momentum of the twisted phonon mode as

Mz(p, l) = l

ω
E (p, l). (30)

A similar relation exists between the energy and the axial
component of the linear momentum G. Using (21), we can
write G = ∑

pl G(p, l), with

Gz(p, l) = k f (p, l) = k

ω
E (p, l). (31)

Similar results have already been obtained for sound waves
in classical fluids [12, 13]. These relations can easily be
transposed to the quantum operator language. If we describe
the spectrum of phonon perturbations as a boson field, with
creation and destruction operators per mode b̂†

pl and b̂pl , we
can define the energy operator per mode as

Ê (p, l) = �ω
(

N̂pl + 1
2

)
, (32)

with the phonon mode number operator N̂pl = b̂†
pl b̂pl . The

axial linear and angular momentum operators become

Ĝz(p, l) = �k
(

N̂pl + 1
2

)
, M̂z(p, l) = �l

(
N̂pl + 1

2

)
. (33)

This shows that the axial linear and angular momenta of an
elementary quantum LG excitation are equal to �k and �l,
respectively. The vorticity content of an LG phonon is therefore
of the same order of the vorticity associated with the usual
quantum vortices. This completes our discussion of the linear
properties of the twisted phonon modes in a condensate. Next,
we discuss the possible existence of nonlinear twisted phonon
oscillations in the form of exact soliton solutions.

5. Twisted solitons

Let us then consider nonlinear wave solutions of our basic
equation (5). For this purpose, we expand it up to the third
order in the density perturbation ñ. We obtain

∂2ñ

∂t2
− n0

M
∇2(gñ + ṼB) = NL, (34)

3
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where ṼB is still given by (7), and the second- and third-order
nonlinear terms are represented by NL = NL2nd + NL3rd,
with

NL2nd = n0∇ · [v∇ · v + v · ∇v] + g

2M
∇2ñ2

− �
2

4M2

[
ñ

n0
∇2ñ − (∇ñ)2

2n0

]
, (35)

and

NL3rd = ∇ · [
v∇ · (ñv) + ñv · ∇v

]
− �

2

4M2

[
ñ2

n2
0

∇2ñ + 2ñ

n2
0

(∇ñ)2

]
. (36)

We now focus on twisted wave solutions of form (8), but
consider a single LG mode as described by

ñ(r, t) = a(z, t)Fpl (r) exp (−iωt) , (37)

where we assume that a(z, t) is a slowly varying function
of time, but also includes a fast scale spatial variation
approximately given by exp(ikz), as specified later. Noting
that only the third-order terms of equation (36) contribute to
this mode, and that the second-order terms of equation (35) are
only relevant to nonlinear wave mixing and not to single mode
analysis, we obtain after integration over the perpendicular
space variable r⊥, the following evolution equation:[

ω2 + 2iω
∂

∂t
−

(
c2

s − �
2

4M2

∂2

∂z2

)
∂2

∂z2

]
a

= k2Rpl

(
|v|2 + 3�

2k2

4M2

|a|2
n2

0

)
a, (38)

where we have defined

Rpl =
∫ ∞

0

∣∣F2
pl(r)

∣∣2
r dr. (39)

It can easily be realized that, in this expression, the integrand
is independent of the angular variable θ . Using the linear
wave solutions for the velocity perturbations, as given by
equation (19), and noting that q 
 k, we obtain

|v|2 = ω2

k2

|a|2
n2

0

. (40)

This allows us to rewrite the nonlinear mode equation (38) in
the following compact form:(

ω2 + 2iω
∂

∂t
− D2

Dz2

)
a + W (ω)|a|2a = 0, (41)

where we have introduced the notation
D2

Dz2
≡

(
c2

s − �
2

4M2

∂2

∂z2

)
∂2

∂z2
, (42)

and defined the nonlinear coupling coefficient W (ω), such that

W (ω) = Rpl

n2
0

(
ω2 + 3�

2k4

4M2

)
. (43)

This shows an explicit contribution of quantum dispersion to
the nonlinear coupling. At this point, the formal similarity
of equation (41) to a NLS equation should be noted. Such
a similarity will be explored further. It is now useful to
introduce a variable transformation, from the old space and
time variables (z, t) to the new variables (ξ , τ ), such that

ξ = z − ω

k
t , τ = W (ω)t. (44)

With such a transformation, we can replace the amplitude
function a(z, t) by a solution of the form

a(ξ , τ ) = A(ξ , τ ) exp(ikz) ≡ A(ξ , τ ) exp

(
ikξ − i

ω

W (ω)
τ

)
.

(45)

Replacing this in (41), retaining the dominant terms of the
operator (42) and using the linear dispersion relation (12), we
finally obtain for the slowly varying amplitude A(ξ , τ ) the
simple evolution equation

i
∂A

∂τ
+ ω

2k2W (ω)

∂2A

∂ξ 2
− |A|2

2ω
A = 0. (46)

This is a defocusing NLS equation, similar to the initial GP
equation (1) for repulsive interactions g > 0. However, it has
a very different physical meaning, because it concerns the
amplitude of twisted phonon modes and not the condensate
wavefunction. Furthermore, it is insensitive to the nature of
the atomic collisions, because the new nonlinear terms are
independent of the sign of the interaction parameter g. In
order to discuss the solutions of this equation pertinent to our
problem, it is useful to introduce new dimensionless variables
(η, s), and a new amplitude function u(η, s), as defined by

s = ω

W (ω)
τ = ωt, η = kξ = kz − ωt,

A(η, s) = ω

√
2

W (ω)
u(η, s). (47)

We can then rewrite equation (46) as

i
∂u

∂s
+ 1

2

∂2u

∂η2
− |u|2u = 0. (48)

This is the defocusing NLS equation in its standard form.
It is well known that such an equation satisfies dark soliton
solutions as given by

u(η, s) = u0 tanh(u0η) exp(iu2
0s), (49)

where u0 is a constant. Going back to the initial spacetime
variables (z, t), we can write the corresponding density
perturbations as

ñ(r, t) = A0Fpl(r) tanh[u0(kz − ωt)] exp(ikz − ω′t), (50)

where we have introduced a new amplitude A0 and defined the
nonlinear mode frequency ω′ as

A0 =
√

2

W (ω)
ωu0, ω′ = ω(1 − u2

0). (51)

This shows that nonlinear twisted phonon modes, with dark
soliton envelopes, can exist in a Bose–Einstein condensate,
which are different from the soliton structures usually
considered in a condensate [5, 6, 14]. We can however find
some resemblance with the case of hollow solitons considered
in a cigar-shaped waveguide [15], which can occur for g < 0.
In contrast, our solutions stay valid for g > 0 as well.
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6. Conclusions

In this work, we have considered the existence of twisted
phonon modes in a condensate. These are elementary
excitations satisfying the usual Bogoliubov dispersion relation,
but carrying a finite amount of angular momentum or vorticity.
They can be seen as phonon vortices, clearly distinct from the
usual quantum vortices, which are static nonlinear structures
with no dispersion relation. We have established the space
and time solutions of these twisted modes and determined
the associated angular momentum. We have also shown that
nonlinear twisted phonon structures can also exist, as described
by the solutions of a defocusing NLS equation, similar to
the GP equation of the condensate but now related to the
phonon field. New soliton solutions were shown to exist, which
correspond to envelope acoustic solitons, insensitive to the sign
of the interaction parameter g.

We note that the existence of such twisted modes in
a condensate, described by both linear and nonlinear wave
solutions, changes our traditional view of turbulence in a
condensate, according to which vorticity was only carried
by quantum vortices and phonons could only carry linear
momentum. A new paradigm is therefore needed, where
quantum vortices at zero frequency coexist with phonon
vortices with a broad frequency spectrum.

Finally, we would like to add that the paraxial wave
approximation was only used here for practical reasons and
is not a limitation for the existence of phonons with finite
vorticity. The existence of twisted phonons can indeed be
equally demonstrated for non-paraxial wave geometries. In
general, twisted modes could be described by expanding the
three-dimensional wave equation (6) in spherical harmonics.
This would lead to a similar but much heavier theoretical

description of vortical phonons. The possible excitation of such
vortical or twisted phonons by a potential perturbation moving
through a condensate, similar to that recently considered by
[16], and the relevance of nonlinear mode coupling phenomena
[17] will be described in a future publication.
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