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Abstract
We introduce an effectively one-dimensional model of a bosonic gas of particles carrying
collinear dipole moments which are induced by an external polarizing field with the strength
periodically modulated along the coordinate, which gives rise to an effective nonlocal
nonlinear lattice in the condensate. The existence, shape and stability of bright solitons,
appearing in this model, are investigated by means of the variational approximation and
numerical methods. The mobility of solitons and interactions between them are studied too.
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1. Introduction

Ultracold bosonic gases with dipole–dipole interactions (DDI)
have attracted a great deal of attention in the past few years,
which is stimulated by new experimental achievements such
as the achievement of Bose–Einstein condensation (BEC) in
gases made of atoms carrying permanent magnetic moments,
such as chromium [1], dysprosium [2], and erbium [3], and the
development of efficient theoretical methods for the analysis
of such condensates [4]. The long-range and anisotropic
character of the DDI leads to new physical phenomena,
which are not expected in BEC with contact interactions;
see the reviews [5–7]. Among these phenomena, particularly
well known are pattern-formation scenarios [8], the d-wave
collapse [9], nonlocally coupled solitons in stacked systems
[10], multidimensional anisotropic solitons [11], solitons in
dipolar condensates in optical lattices [12–15], and others. In
addition to direct-current (dc) external magnetic fields, various
configurations of dipolar condensates can also be controlled

by combinations including those of alternating-current (ac)
components [16, 17].

Another novel and potentially important ingredient
available in BEC settings is spatially periodic modulation
of the local strength of the contact interactions by means of
the Feshbach resonance controlled by periodically patterned
laser or magnetic fields, as considered, e.g., in [18], leading
to the concept of optically or magnetically induced nonlinear
lattices. The nonlinearity modulation in space gives rise to
new kinds of solitons and solitary vortices, as summarized in
the review [19]. In particular, it was recently demonstrated
that periodic modulation of the local orientation of permanent
atomic or molecular dipole moments in an effectively one-
dimensional (1D) setting, which may be induced by a
periodically inhomogeneous external polarizing field, makes it
possible to create DDI-induced nonlocal nonlinear lattices in
atomic condensates [20]. The necessary periodic field structure
can be built using the available technique of magnetic lattices
[21], or similar ferroelectric lattices (see, e.g., [22]). The
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analysis in [20] was focused on 1D solitons in the dipolar
condensate with periodic variations of the angle between
dipoles.

Another possibility for the creation of nonlocal nonlinear
lattices and the study of self-trapped matter–wave modes in
them is to use a bosonic gas of polarizable particles, which
do not carry permanent dipole moments, while a spatially
periodic distribution of the dipolar density is induced by an
external spatially varying polarizing field [17]. In particular,
a promising possibility is to consider an ultracold gas of
polarizable molecules, with dipole moments induced by a
spatially modulated dc electric field (such periodic settings
were not considered in [17]). The DDI in gases of field-
induced dipoles may be very strong and give rise to a number
of significant effects [6, 17, 23].

In the present work we consider a quasi-1D dipolar BEC
with electric dipole moments of particles induced by the dc
field with the local strength periodically varying in space, while
its direction is uniform, being oriented along the system’s axis,
thus giving rise to the attractive DDI in the condensate (in
contrast to the repulsive interactions between induced dipoles
polarized perpendicular to the system’s axis or plane, which
was the subject of the analysis in [17]). The objective is to
investigate the existence and stability of bright solitons in
this system, controlled by the effective DDI-induced nonlocal
nonlinear lattice. The mobility and collisions of the solitons
are considered too.

The paper is organized as follows. The model is presented
in section 2, and this is followed by the study of the existence
and stability of bright solitons in section 3. Results for the
dynamics and collisions of solitons are reported in section 4.
Conclusions and perspectives are summarized in section 5.

2. The model

We consider the condensate elongated along axis x, with dipole
moments of polarizable molecules or atoms induced by an
external field directed along x too. The local strength of the
polarizing field also varies along x. Accordingly, one can use
the effectively 1D Gross–Pitaevskii equation (GPE), with the
DDI term derived from the underlying 3D GPE, as shown
below. The necessary spatially modulated dc electric and/or
magnetic field can be imposed, as said above, by ferroelectric
or ferromagnetic lattices. Below, we consider a local dipole
moment induced by a polarizing electric field. One can also
consider magnetic dipole moments induced by a solenoid, as
shown at the end of this section.

Besides being provided by a ferroelectric lattice, the
periodic modulation of the strength of the electric field oriented
perpendicular to the system’s axis (x) can be provided by a
capacitor with the separation between its electrodes modulated
in x periodically, as per equation (23) written below; cf [17].
However, the most essential part of the analysis is developed
below for the periodically modulated strength of the electric
field directed along x, to fix the attractive character of the
respective DDI. This configuration of the electric field can be
provided by a stacked capacitor built along the x-axis (with
the array of parallel electrodes made as grids, to prevent

interference with the BEC flow along the axis), assuming
periodic modulation of the dc voltage applied to adjacent pairs
of electrodes.

The derivation of the 1D Gross–Pitaevskii equation

The GPE for the 3D mean-field wavefunction !(r, t) is

i!∂!

∂t
=− !2

2m
∇2!+ m

2

[
ω2

∥x2 + d(x)E (x) + ω2
⊥(y2 + z2)

]
!

+ g3D|!|2! +
[∫

|!(r′, t)|2WDD(r − r′) d3r′
]

!, (1)

where d(x) = γ E (x) is the local dipole moment, induced by
external field E (x), which is directed and modulated along
x, γ is the molecular or atomic polarizability, and g3D is
defined by the two-body scattering length as and atomic mass
m: g3D ≡ 4π!2as/m. Further, the DDI kernel is given by

WDD(r − r′) = d(x)d(x′)

|r − r′|3

[
1 − 3(x − x′)2

|r − r′|2

]
(2)

and the wavefunction is normalized to the number of atoms,

N =
∫

|!(r, t)|2 d3r. (3)

The field-induced dipole moment is essential in the range
of

d · E ∼ B, (4)
where B is the rotational constant, determined by the
equilibrium internuclear distance r and reduced mass mr of
the polarizable molecule: B = !2/(2mrr2) [6]. Typical values
of the parameters are: d ∼ 1 D (debye) and B ∼ h ×
10 GHz, which yields an estimate for the necessary electric
field strength of E ∼ 104 V cm−1. Such fields are accessible
to experiments with BEC in atomic gases (see appendix B of
[6]).

Thus, the spatial variation of the strength of the polarizing
dc electric field,

E (x) = E0 f (x), (5)
leads to the respective spatial modulation of the DDI, with
d(x) = d0 f (x). In particular, the periodic variation of the field,
such as that adopted below in equation (24), induces the above-
mentioned effective nonlocal nonlinear lattice in the GPE.

To derive the equation for the wavefunction in the quasi-
1D case, we use the method elaborated in [24]. If the ground
state in the transverse plane, (y, z), is imposed by the trapping
potential, the 3D wavefunction may be factorized as usual [25]:

!(r, t) = ψ (x, t)
(√

πa⊥
)−1 exp(−ρ2/2a2

⊥), (6)
with ρ2 ≡ y2 + z2 and a2

⊥ ≡ !/mω⊥. Substituting this
expression into (1) and integrating over (y, z), the effective
one-dimensional DDI is derived with a kernel

W1DD = 2d2

a3
⊥

[
2|x|
a⊥

−
√

π

(
1+ 2x2

a2
⊥

)
exp

(
x2

a2
⊥

)
erfc

( |x|
a⊥

)]
,

(7)
where erfc is the complementary error function. Next, we
introduce dimensionless variables,

x → a⊥x, t → t
ω⊥

, ψ (x, t) →

√
5

π3/2ad
φ(x, t),

α =
ω2

∥

2ω2
⊥

, g = 10as

π3/2ad
,

2
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where ad = md2/!2 is the characteristic DDI length. Defining
the rescaled polarizability, β ≡ γ E2

0 /2(a⊥ω⊥)2, where E0 is
the amplitude of modulated field (5), the original 3D GPE (1)
is thus reduced to the 1D equation

i
∂φ

∂t
= −1

2
∂2φ

∂x2
+ αx2φ + β f 2(x)φ + g|φ|2φ − f (x)φ

×
∫ +∞

−∞
f (x′)|φ′|2R(x − x′) dx′, (8)

where φ ≡ φ(x, t) and φ′ ≡ φ(x′, t), and the effective 1D
kernel, following from equation (7), is (cf [24]) given by

R(x) = σ
10
π

[
(1 + 2x2) exp(x2) erfc(|x|) − 2√

π
|x|

]
. (9)

Here we have added an extra parameter, which takes values
σ = +1 for the attractive DDI and σ = −1/2 for the repulsive
DDI between dipoles oriented perpendicular to x, which makes
it possible to consider the latter case too. Actually, the rather
complex kernel (9) can be replaced by a simplified expression,

R(x) = 10σ

π
√

(π x2 + 1)3
, (10)

which is very close to the exact one (9) [12], barring the fact
that expression (10) is smooth near x = 0, while its counterpart
(9) has a cusp at this point.

Note that the DDI can be represented by a pseudopotential
which includes a contact-interaction (delta-functional) term
[5, 26]. Then, spatially modulated d(x) may induce a position-
dependent part of the contact interactions too. Such a
combination of nonlinear local and dipolar lattices may be
a subject of interest for a separate investigation. However,
in the present setting, the regularization scale a⊥ in kernel
(7) eliminates the singular part of the DDI at scales |x| !
a⊥. Therefore, in this work we restrict ourselves to the
consideration of the pure nonlinear nonlocal lattice.

We assume that the dynamics of the system in
the perpendicular directions is completely frozen, i.e., the
transverse trapping frequency, ω⊥, is much larger than the
longitudinal one, ω⊥ ≫ ω||. On the other hand, if ω⊥ is not
too large, interesting transverse effects may occur, such as the
Einstein–de Haas effect [27–30], the consideration of which
is beyond the scope of the present work.

In the potential given in equation (8) we can identify the
usual harmonic-trap potential, αx2, the nonlinear term g|φ|2φ
accounting for the collisional interaction, and an effective DDI
potential, composed of linear and nonlinear terms:

V (DDI)
eff (x; |φ|2) = f (x)

[
β f (x)

−
∫ +∞

−∞
f (x′)|φ′|2R(x − x′) dx′

]
, (11)

where the modulation function (see equation (5)) is chosen, as
stated above, in the form of a periodic one:

f (x) = f0 + f1 cos(kx), (12)

with the constant parameters f0, f1, and k ≡ 2πa⊥/λ = 2π/*.
Parameter β in equation (8) can vary from 1 to 10, under typical
physical conditions, if the constant part of the modulation
function is fixed as f0 ≡ 1.

The Hamiltonian corresponding to equation (8) is

H =
∫ +∞

−∞
dx

[
1
2

∣∣∣∣
∂φ

∂x

∣∣∣∣
2

+ g
2
|φ|4 + αx2|φ|2 + β f 2(x)|φ|2

]

−1
2

∫ +∞

−∞
dx f (x)|φ|2

∫ +∞

−∞
dx′ f (x′)|φ′|2R(x − x′).

(13)

Note that it contains not only the spatially modulated nonlinear
DDI, but also the additional linear potential, β f 2(x), which
is induced by the interaction of the locally induced dipole
moment with the polarizing field; cf [17]. The Hamiltonian
term corresponding to this potential is denoted as HDE below.

Evaluation of parameters

The energy of the interaction of the dipole with the external
electric field can be estimated, as per equation (4), as HDE =
d · E ∼ B ∼ h × 10 GHz. As the total wavefunction is
normalized to the number of atoms (see equation (3)), i.e.,
|+|2 ∼ N/a3

⊥, for the DDI energy we have

HDD =
∫

|+|2WDD(r) d3r ∼ d2 N
a3

⊥
∼ ad!2

m
N
a3

⊥
, (14)

where the characteristic DDI length is ad = d2m/!2.
Therefore, with regard to a2

⊥ = !/(mω⊥), we obtain

HDD ∼ N(ad/a⊥)!ω⊥. (15)

For N ∼ 105,ω⊥ ∼ 104 Hz and ad ∼ 104as, we thus conclude
that HDE ∼ HDD.

We note a peculiarity of the modulation period of the
polarizing field in the dimensionless equation. Physical values
of the period should be, evidently, of the order of or larger
than the µm scale. The characteristic length related to HDE

is ld ∼
√

!2/mB ∼ 10−2a⊥. Further, we use an estimate
B ∼ !2/(ml2

d ) = 104!2/(ma2
⊥) = 104!ω⊥. Therefore, with

HDE ∼ B, we again obtain HDE ∼ HDD. One possible way
to suppress the interaction represented by HDE, and thus to
focus on nonlinear DDI effects, is to decrease the induced
dipolar moment d up to the level of 10−2 D (which remains
experimentally observable [31]), and so reduce HDE.

Another possible approach for suppressing the linear-
interaction term HDE, which was proposed in [17], is
considering the polarization imposed by a combination of dc
and ac electric fields [32–36], oriented along the z-direction
(i.e., perpendicular to the system’s axis, x):

G(r) = F(r)[ fdc + fac cos(ωt)]ez. (16)

Then the local dipolar moment g = g(t)ez of the atom or
molecule is determined by the intrinsic equation of motion,
considered here in the classical approximation [37]:

d2g
dt2

+ ω2
0g + ,

dg
dt

= F(r)[λ(0) fdc + λ(ω) fac cos(ωt)],

(17)

where ω0 is the intrinsic eigenfrequency and , is the damping
coefficient, while λ(0) ≡ λ0 and λ(ω) are the effective
static and dynamical susceptibilities, respectively. In the off-
resonance situation, when the ac frequency, ω, is not too close

3



J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 075301 F Kh Abdullaev et al

0 1 2 3 4 5 6
N

−4

−3

−2

−1

0

µ

β=0 β=2 β=4 β=6

−3 −2 −1 0 1 2 3
x

0

1

2

|φ|

Figure 1. Left panel: chemical potential µ as a function of the norm N, obtained from direct numerical solutions of equation (25) (solid
lines), and from the corresponding variational approach (dashed lines). This figure stresses the effect of the nonlinearity parameter, β (the
scaled polarizability) on the results. Other parameters are α = g = 0, σ = 1, f0 = 1, f1 = 0.5 and $ = 0.5 (corresponding to k = 4π ).
Right panel: the numerical solution (the solid line) for the profile of the wavefunction, centred at x = 0, is compared to the corresponding
variational result (the dotted curve), for β = 6 and µ = 0. In this right panel, we also plot the function f 2(x), as a dashed line.

to ω0, the small dissipative term in equation (17) is negligible,
which gives rise to the following solution:

goff(r) = F(r)
[

λ0

ω2
0

fdc + λ(ω) fac

ω2 − ω2
0

cos(ωt)
]

. (18)

On the other hand, close to the resonance the ac drive
yields

gres(r) = F(r)
λ(ω0)

(ω0
sin(ω0t). (19)

These results lead to the following time-averaged DDI strength
[17]:

⟨goff(r1)goff(r2)⟩ = F(r1)F(r2)

[
λ2

0

ω4
0

f 2
dc + λ2(ω) f 2

ac

2
(
ω2

0 − ω2
)2

]

,

⟨gres(r1)gres(r2)⟩ = F(r1)F(r2)
λ2

2(2ω2
0

. (20)

In addition to yielding the DDI, in the off-resonance situation
the field-induced dipole moments give rise to the above-
mentioned effective dipole–field interaction:

VDE(r) = − ⟨goffG⟩ = −(F(r))2

[
λ0

ω2
0

f 2
dc + λ(ω) f 2

ac

2
(
ω2

0 − ω2
)
]

= − χF2(r), (21)

where χ is the effective average polarizability, while in the
resonant situation, with fdc = 0, the substitution of expression
(19) immediately yields VDE(r) = 0. Then, it is obvious that
potential (21) vanishes at ω = *, with * defined by the
equation

*

ω0
=

√

1 + λ(*)

2λ(0)

f 2
dc

f 2
ac

, (22)

while the effective strength (20) does not vanish under
condition (22):

⟨goff(r1)goff(r2)⟩ = F(r1)F(r2)

[
λ2

0 fdc

ω4
0

(
1 + 2

f 2
dc

f 2
ac

)]
.

In the case where the local dipole moment is induced
by a magnetic field, we consider the field with a fixed
(x) orientation, produced by a solenoid of a diameter D,
periodically varying along the solenoid’s axis, D = D(x),
with period L, such as

D(x) = D0 + D1 cos(2πx/L). (23)

The local magnetic field in this configuration is

H = +

πD2(x)
= +

[
D0 + D1 cos

(
2πx

L

)]−2

≈ +

πD2
0

[
1 − 2

D1

D0
cos

(
2πx

L

)]
, (24)

where + is the magnetic flux trapped in the solenoid, and the
approximation is valid for D1/D0 ≪ 1. It should be noted that
this scheme requires a strong magnetic field, which can be
difficult to achieve in experiments. Therefore, in this work we
consider induced electric dipole moments.

3. Bright solitons: existence and stability

The existence of bright-soliton solutions can be investigated
by solving the corresponding eigenvalue problem, obtained
from equations (8) and (11), with φ = |φ| e−iµt :

− 1
2

∂2φ

∂x2
+ αx2φ + g|φ|2φ + V DDI

eff (x; |φ|2)φ = µφ. (25)

We consider full numerical solutions of equation (25), as
well as corresponding variational approaches (VA), for two
characteristic cases, as defined in the following subsections.
The VA results will be compared with the numerical solutions.
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Veff(x)
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Figure 2. The top panel: chemical potentials, as obtained from numerical solutions and from the VA, are shown for ! = π (i.e., k = 2 ).
Other parameters are α = g = 0, σ = 1, f0 = 1 , f1 = 0.5 and β = 6. In this panel, we indicate three regions (1, 2 and 3) for the numerical
solutions, following the variation of the chemical potential (µ1, µ2 and µ3), to identify the corresponding profiles that are shown in the
bottom left panel. For reference, in the top panel we also plot the total energy (solid red line), as obtained from the numerical solution. The
modulation function, f 2(x), is shown by the black dashed line in the bottom left panel. The numerical results for the corresponding effective
DDI potential, given in equation (11), are shown in the bottom right panel for three different values of the chemical potential.

3.1. The variational approximation for α = 0, β ̸= 0

To derive the VA, we start from the averaged Lagrangian,
L =

∫ +∞
−∞ L dx, with density

L = µ|φ|2 − 1
2

∣∣∣∣
dφ

dx

∣∣∣∣
2

− β [ f (x)]2 |φ|2 − g
2
|φ|4 + f (x)

2
|φ|2

×
∫ +∞

−∞
f (x′)R(x − x′)|φ′|2 dx′. (26)

For the wavefunction of the condensate, we assume the
following Gaussian ansatz with the centre set at x = ζ :

φ = A exp
(

− (x − ζ )2

2a2

)
. (27)

The corresponding averaged Lagrangian L is given by

L
N

= µr − 1
4a2

− β

(
2 f1 f0 e−a2k2/4 cos(kζ )

+
f 2
1

2
e−a2k2

cos(2kζ )

)
− gN

2
√

2πa
+ N

2πa2
F(a, ζ , f0, f1),

where we have N =
√

πA2a, µr ≡ µ−β
[

f 2
0 + (1/2) f 2

1

]
, and

F(a, ζ , f0, f1) ≡
∫ +∞

−∞
dx f (x) e−[(x−ζ )/a]2

×
∫ +∞

−∞
dy f (y)R(x − y) e−[(y−ζ )/a]2

. (28)

By means of a variable transformation, with R defined by
equation (10), F can be represented in terms of single-variable

5
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integrals:

F(a, ζ , f0, f1) =
[

f 2
0 + 1

2
f 2
1 cos (2kζ ) e−(ka)2/2

]
h0(a)

+1
2

f 2
1 h2(a) + 2 f0 f1 cos (kζ ) e−(ka)2/8h1(a), (29)

where

hn(a)|n=0,1,2 ≡ 10σ√
π

a
∫ +∞

−∞
dz

e−(z/a)2

√
2π z2 + 1

3 cos
(

nkz√
2

)
.

(30)

The corresponding Euler–Lagrange equations, ∂L/∂N =
∂L/∂a = ∂L/∂ζ = 0, take the following form:

µ = 1
4a2

+ (
√

2πga − 2F )
N

2πa2
+ β

[
f 2
0 +

f 2
1

2

×(1 + e−(ka)2
cos(2kζ )) + 2 f0 f1 e−(ka/2)2

cos(kζ )

]
,

(31)

N =

2π
1+2β(ka2)2 f1[ f0 e−(ka/2)2

cos(kζ )+ f1 e−(ka)2
cos(2kζ )]

4F − 2a∂F/∂a −
√

2πga
,

(32)

ζ = 0, π/k, 2π/k, . . . , (33)

where F ≡ F(a, ζ , f0, f1). The condition (33) leads to two
solutions (cos(kζ ) = ±1), which correspond to changing the
relative signs of the constants f0 and f1, and equations (31)
and (32) can be written as

µ± = 1
4a2

+ β

[
f 2
0 + 1

2
f 2
1 (1 + e−(ka)2

) ± 2 f0 f1 e−(ka/2)2

]

+ (
√

2πga − 2F±)
N±

2πa2
, (34)

N± = 2π
1 + 2β(ka2)2 f1( f1 e−(ka)2 ± f0 e−(ka/2)2

)

4F± − 2a∂F±/∂a −
√

2πga
, (35)

where F+ ≡ F(a, 0, f0, f1) and F− ≡ F(a,π/k, f0, f1).
The solutions produced by the VA are compared with

their numerically obtained counterparts in figures 1 and 2, for
g = α = 0, f0 = 1, f1 = 0.5, and ' = 0.5 (k = 4π ).
The corresponding numerical solutions of equation (25) were
obtained by means of the relaxation technique, as described
in [38]. The effect of parameter β is illustrated by plots of the
chemical potential µ versus the number of atoms, N, in the left
panel of figure 1. The figure demonstrates that the VA provides
good agreement with the numerical results. Variational and
numerically obtained profiles of the solitons are compared in
the right panel of the figures, for µ = 0 and β = 6. In the
right panel, we also show the oscillatory function, f 2(x), by
the dashed line.

The VA produces more accurate results for large β

because, in this case, the contribution of the linear lattice
grows, and it is known that the Gaussian ansatz, that we use
here, works well with linear lattice potentials [19]. Further, the
steady increase of µ with β in the left panel of figure 1 is also

−10 −5 0 5 10
x

0

1

2

3

4

5

|φ|

µ=5
µ=4
µ=3
µ=2
µ=1

Figure 3. Solution profiles for σ = −1/2, with the other parameters
the same as for figure 2 (in particular, ' = π and β = 6).

explained by the fact that the linear potential in equation (8) is
multiplied by β.

In the top panel of figure 2, for k = 2 (' = π ) and
β = 6, with the other parameters the same as in figure 1, the
numerical results for the µ(N) dependences are shown in three
distinct regions: two stable (1 and 3) and one unstable (region
2). The profiles, displayed in the bottom left panel, clearly
show that the wavefunction profiles are centred at x = π/2 in
stable region 1. In unstable region 2, we verify a transition from
stable region 1 to stable region 3, with the centre of the profiles
moving to x = 0. For reference, the effective DDI potential, as
defined by equation (11), is displayed in the bottom right panel
for three values of the chemical potential. A noteworthy feature
is the asymmetry with respect to the reflection, x → −x, which
can also be observed in the profiles shown in the bottom left
panel of figure 2.

As seen in figure 2, the VA gives a perfect agreement with
the numerical solutions in region 1 (where the centre of the
profile is located at x = ζ = π/2), when µ > −2, and in
region 3 (where the centre of the profile is at x = ζ = 0),
when µ < −9. However, the VA cannot follow the behaviour
presented by the numerical results in region 2, because the
simple Gaussian ansatz is not an adequate one, in this case. In
the top panel, we also present the corresponding total energy,
obtained from the numerical solutions. In the bottom left panel,
together with the profiles, f 2(x) is displayed, by the dashed
line.

For the perpendicular orientation of the dipoles,
corresponding to the repulsive DDI, with σ = −1/2 (while
other parameters are the same as in 2), we demonstrate in
figure 3, by means of numerical results for different values of
µ, that the wavefunction profiles are delocalized, i.e., they do
not build bright solitons.

In figure 4, we present numerical results for µ(N) (the left
panels), compared with VA findings for β = 0, in the absence
of the linear trap (α = 0). In the left panels we consider
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Figure 4. Left panels: plots of µ(N), for different values of f1 (as indicated in the frames), with β = 0, f0 = 1, and " = 1 or 0.5 (the top
and bottom panels, respectively). In the top right frame, profiles found numerically are displayed for different values of µ, corresponding to
the case with f1 = 0.9, which is shown in the top left panel. We consider in the bottom right frame the case with µ = −6 and f1 = 2, where
three variational profiles are displayed for different values of N.

different values of f1, with " = 1 (top left) and 0.5 (bottom
left). According to the Vakhitov–Kolokolov (VK) criterion,
the solutions may be stable if the condition ∂µ/∂N < 0 holds
[39]. This assumption is well verified by our numerical results,
for the whole range of parameters that we have analysed.
Simulations of the corresponding temporal evolution (not
shown in this figure) validate the VK criterion in the present
model. However, the VA results cannot follow the numerical
findings to the full extension, except that they present very
good agreement for large negative values of µ. As seen in the
top left panel of figure 4, for " = 1 the VA correctly predicts
the stability and converges to numerical results for µ < −1.5
at all values of f1. In the case of " = 0.5 (the bottom left
panel), the VA is equally accurate at µ < −6. On the other
hand, in the case of f1 = 2.0 and " = 0.5, the VA represents a
set of two solutions, one being nearly insensitive to variations
of f1.

3.2. The pure nonlocal nonlinear lattice (α = β = 0)

Fixing α = 0 and β = 0, we have analysed the model with
the repulsive contact interactions (g > 0). The corresponding
term in equation (1) tends to expand the wavefunction, in
contrast to the attractive nonlocal nonlinear interaction; cf
[12]. In figure 5, fixing other parameters as f0 = 1, f1 = 0.5,
" = 0.5, and µ = −2, we present stationary solutions for
different magnitudes of g, in the left panel. As g increases,
the wavefunction does indeed get broader and the number
of atoms trapped in the soliton increases. Beyond a critical
value, gc = 3.45, no solution can be found. In the right panel
of figure 5, keeping the chemical potential µ and the other
parameters, given in the left panel, fixed, we present gc and
the corresponding value of N for different values of f1. It
is observed that N decreases and gc increases with increase
of f1.
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Figure 5. The left panel: numerical results for the wavefunction profiles with fixed µ = −2 and a few values of the contact-interaction
strength g. The corresponding values of N are indicated inside the panel. Other parameters are f0 = 1, f1 = 0.5 and ! = 0.5. These results
for f1 = 0.5 define critical maximum values gc = 3.45 and Nc = 52, above which no bright soliton were found. In the right panel, varying
the modulation amplitude f1 in the interval of 0 ! f1 ! 2 and keeping other parameters as in the left panel, we display a curve
corresponding to the critical values of N and g. Critical values gc are indicated for some data points along the curve.
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Figure 6. Propagation of a soliton. In the left panel, soliton profiles are shown with time intervals "t = 10 (the velocity is 1), for µ = −1
and N ≈ 1.02. In the right panel, µ = −10 and N ≈ 4.86, with the profiles shown with intervals "t = 2. In both cases, f0 = 1, f1 = 0.5 and
! = 0.5 (with α = β = 0).

This dependence can be explained from considering
the broad soliton case. Then the nonlocal term can be
approximated as the local one with an effective nonlinearity
coefficient,

γeff = f 2(x)

∫ +∞

−∞
dy R(y)

and the bright solitons should exist, provided that g >

f 2
∫ +∞
−∞ dy R(y). This arguments explain the growth of gc

with the increase of f1, as observed in the right panel of
figure 5.

4. Dynamics of bright solitons

In this section we address the mobility of solitons and
their collisions. The soliton motion in nonlinear lattices
was previously considered in [40–43]. First, we present
full numerical solutions of the 1D GPE (8), exploring a
parameter region for finding stable bright-soliton solutions.
This is followed by consideration of a dynamical version of
the VA, with some results for frequencies of oscillations of
perturbed solitons being compared with the full numerical
calculations.

8



J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 075301 F Kh Abdullaev et al

−2 −1 0 1 2
x

0

0.4

0.8

1.2

1.6

|φ|

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

t =

−2 −1 0 1 2
x

0

2

4

6

|φ|

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

t = 

−2 −1 0 1 2
x

0

2

4

6

|φ|

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

t =

−2 −1 0 1 2
x

0

2

4

6

|φ|

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

t =

Figure 7. The interaction of two solitons, with µ = −10 and N ≈ 4.86, is shown in four panels at different moments of time, with !t = 0.1
(the average velocity is zero), as indicated in the panels. In all the cases, the parameters are f0 = 1, f1 = 0.5 and " = 0.5 (a⊥ = 2, λ = 1).
The phase difference between the solitons is zero; therefore they attract each other. One can see a transition from a bound state to a breather.

The propagation of a soliton is presented in two panels of
figure 6. In the left panel, for µ = −1 and N ≈ 1.02, we show
the soliton propagation by considering, in dimensionless units,
a time interval from 0 to 20, and velocity equal to 1. In the right
panel, we present the case of µ = −10 and N ≈ 4.86, showing
profiles separated by time intervals !t = 2. In the latter case,
the soliton ends up getting trapped at a fixed position. In both
the cases, we have α = β = g = 0, and f0 = 1, f1 = 0.5,
" = 0.5.

The interaction of two solitons is shown in four panels of
figure 7, for µ = −10 and N ≈ 4.86. The field profiles are
displayed with time intervals !t = 0.1, the average velocity
being zero. The parameters are the same as in figure 6 ( f0 = 1,
f1 = 0.5 and " = 0.5). We consider the solitons with
zero phase difference between them; hence they attract each
other. These panels display a transition from a bound state
to a breather. The density plot corresponding to the results
presented in figure 7 is displayed in figure 8. For the same

parameters, we have verified that the solitons demonstrate
almost no interaction when the phase shift between them is
π .

Next, for the comparison with numerical solutions, we
here present a dynamical version of the VA, which is based on
the following Gaussian ansatz:

φ(x, t) = A(t) exp
{

− [x − ζ (t)]2

2(a(t))2
+ ib(t)[x − ζ (t)]2

+ iκ(t)[x − ζ (t)] − iµt
}
. (36)

To derive evolution equations for soliton parameters
A, a, ζ , b, k, p, we calculate the respective averaged
Lagrangian, taken with the full dynamical density:

L(x, t) = Im
(

φ
∂φ∗

∂t

)
− 1

2

∣∣∣∣
∂φ

∂x

∣∣∣∣
2

− (αx2 + β f (x)2)|φ|2

−g
2
|φ|4 + f (x)|φ|2

2

∫ ∞

−∞
dx′R(x − x′) f (x′)|φ(x′)|2
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Figure 8. The density plot corresponding to the results shown in figure 7.
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Figure 9. The left panel: variational results (44) (red solid lines with squares) and numerical solutions (black solid lines with circles) for
frequencies of small oscillations of perturbed solitons, ωa, as functions of N. The parameters, as given in the panel, are f0 = 1, f1 = 0.5,
" = 0.5, and β = 0. The right panel: for the same parameters, we show the corresponding variational results for the frequencies of
oscillations of the soliton’s centre of mass, ωζ (as given by equation (45)), compared to the numerical calculations.

(cf its static counterpart (26)). The averaged Lagrangian per
particle is given by
L
N

= −1
2

a2 db
dt

+ κ(t)
dζ

dt
+ µr − 1

4a2
− a2b2 − 1

2
κ(t)2

−α

2
a2 − αζ 2 − 2β f0 f1 cos(kζ ) e−a2k2/4

−β

2
f 2
1 cos(2kζ ) e−a2k2 − gN

2
√

2πa
+ NF

2πa2
, (37)

where, as in the static setting, we have N =
√

πA2a, with
F ≡ F(a, ζ , f0, f1) given by equation (28). The Euler–
Lagrange equations following from Lagrangian (37) give rise
to the coupled evolution equations for the soliton’s width and
the location of the centre of mass:

att ≡ d2a
dt2

= 1
a3

− 2αa + 2ak2β f1[ f0 cos(kζ ) e−a2k2/4

+ f1 cos(2kζ ) e−a2k2
] + gN√

2πa2
− 2NF

πa3
+ N

πa2

∂F
∂a

= −∂Ua

∂a
, (38)

ζtt ≡ d2ζ

dt2
= −2αζ + 2kβ f1 sin(kζ )[ f0 e−a2k2/4

+ f1 cos(kζ ) e−a2k2
] + N

2πa2

∂F
∂ζ

= −∂Uζ

∂ζ
, (39)

from where the following effective potentials are identified:

Ua = αa2 + 1
2a2

+ 4β f0 f1 cos(kζ ) e−a2k2/4

+β f 2
1 cos(2kζ ) e−a2k2 + gN√

2πa
− NF

πa2
, (40)
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Uζ = αζ 2 + 2β f0 f1 cos(kζ ) e−a2k2/4

+ β

2
f 2
1 cos(2kζ ) e−a2k2 − NF

2πa2
. (41)

Frequencies of small oscillations for the width and centre of
mass can be obtained from equations (38)–(41). To this end,
we set ζ = ζs + δζ , δζ ≪ ζs, where ζs is the fixed point, and
a = as + δa, δa ≪ a. By linearizing equation (38) in δa, and
equation (39) in δζ , respectively, we find

δatt = ∂att

∂a
δa + ∂att

∂ζ
δζ , (42)

δζtt = ∂ζtt

∂ζ
δζ + ∂ζtt

∂a
δa, (43)

from where we can derive the corresponding frequencies:

ω2
a = −∂att

∂a
= 2α + 3

a4
s

+ βk2 f0 f1(a2
s k2 − 2)

× cos(kζs) e−a2
s k2/4 + 2βk2 f 2

1 (2a2
s k2 − 1) cos(2kζs) e−a2

s k2

+ 2gN√
2πa3

s

− 6NF
πa4

+ 4N
πa3

∂F
∂a

∣∣∣∣
a=as

− N
πa2

∂2F
∂a2

∣∣∣∣
a=as

,

(44)

ω2
ζ = −∂ζtt

∂ζ
= 2α − 2β f1k2[ f0 e−a2

s k2/4 cos(kζs)

+ f1 e−a2
s k2

cos(2kζs)] − N
2πa2

∂2F
∂ζ 2

∣∣∣∣
s
. (45)

Finally, in figure 9 we show results for both frequencies
of small oscillations of the solitons, ωa and ωζ , comparing
the VA predictions to numerical findings. In the left panel we
consider perturbations of their widths, where we observe a
good agreement of the numerical results with the VA. The
parameters in this case are β = 0, ( = 0.5, f0 = 1, and
f1 = 0.5. In the right panel of this figure, we follow the same
procedure by comparing the numerical results with the VA
for frequencies related to small oscillations of the centre of
mass, near ζ = 0. Note that the numerical results displayed
in the left panel of figure 9 show that the frequency of the
width oscillations grows almost linearly with N, in both cases
of β = 0 and β = 6. The VA gives a good description of
the results for smaller values of N, and the approximation is
improved for larger values of β. For the case of the centre-of-
mass oscillations, displayed only for β = 0, we also observe
that the frequency increases with N, although in this case the
VA is less accurate, especially for larger N, which is explained
by the inadequate shape of the underlying ansatz (36).

5. Conclusion

The objective of this work is to expand the range of settings
based on dipolar BECs, by introducing a model in which atoms
or molecules in the free condensate carry no dipolar moments,
but local moments are induced by a spatially modulated
external polarizing field. The DDI (dipole–dipole interactions)

in this setting give rise to an effective nonlocal nonlinear
lattice in the condensate. In the case where the respective
interactions are attractive, they support bright solitons. We
have investigated conditions for the existence of such solitons
(including the situation when the attractive DDI competes
with the local repulsion) in the semi-analytical form, by
dint of the VA (variational approximation) based on the
Gaussian ansatz. The results were verified by comparison
with numerical solutions of the respective one-dimensional
GPE (Gross–Pitaevskii equation). The stability of the soliton
families exactly obeys by the VK criterion. The dynamics of
solitons and interactions between them, including the merging
into breathers, were investigated too. In particular, it was found
that the dynamical version of the VA provides for a good
prediction for frequencies of small oscillations of perturbed
solitons.

An issue of obvious interest is to extend the analysis
reported here to 2D configurations.
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Nikolić B, Balaž A and Pelster A 2013 Phys. Rev. A 88 013624
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