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We consider a binary Bose-Einstein condensate (BEC) described by a system of two-dimensional (2D)
Gross-Pitaevskii equations with the harmonic-oscillator trapping potential. The intraspecies interactions are
attractive, while the interaction between the species may have either sign. The same model applies to the
copropagation of bimodal beams in photonic-crystal fibers. We consider a family of trapped hidden-vorticity
(HV) modes in the form of bound states of two components with opposite vorticities S1,2 = ±1, the total angular
momentum being zero. A challenging problem is the stability of the HV modes. By means of a linear-stability
analysis and direct simulations, stability domains are identified in a relevant parameter plane. In direct simulations,
stable HV modes feature robustness against large perturbations, while unstable ones split into fragments whose
number is identical to the azimuthal index of the fastest growing perturbation eigenmode. Conditions allowing
for the creation of the HV modes in the experiment are discussed too. For comparison, a similar but simpler
problem is studied in an analytical form, viz., the modulational instability of an HV state in a one-dimensional
(1D) system with periodic boundary conditions (this system models a counterflow in a binary BEC mixture
loaded into a toroidal trap or a bimodal optical beam coupled into a cylindrical shell). We demonstrate that the
stabilization of the 1D HV modes is impossible, which stresses the significance of the stabilization of the HV
modes in the 2D setting.
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I. INTRODUCTION

Vortices are fundamental topological excitations in Bose-
Einstein condensates (BECs) [1]. In the case of repulsive
interactions between atoms in a BEC, the vortices may be
considered as two-dimensional (2D) dark solitons. Similar to
their counterparts in self-defocusing optical media [2], the
fundamental vortices with topological charge (spin) S = 1
are stable, while multiple vortices split into unitary ones.
On the other hand, trapped BECs with attractive interactions
may support vortex solitons (i.e., localized matter-wave modes
with embedded vorticity). The creation of such solitons, which
are subject to strong instabilities, remains a challenge to the
experiment, although various stabilization schemes for them
have been elaborated theoretically [3].

Vortex-soliton solutions are generated by the 2D Gross-
Pitaevskii equation (GPE), which describes the BEC in the
pancake geometry. Such a setting can be created using the
superposition of a tight optical trap acting in the perpendicular
direction (z), with confinement size az, and a loose harmonic-
oscillator (HO) trapping potential with frequency �, induced
by the nonuniform magnetic field in the (x,y) plane [4].
Accordingly, the underlying three-dimensional GPE may be
reduced to its 2D counterpart under the condition that the
HO length aho = √

h̄/(m�) (m is the atomic mass) is much
larger than az [i.e., � � π2h̄/(ma2

z )]. This condition is easy
to realize in the experiment.

Vortex-soliton solutions that exist in the free 2D space [5]
are unstable against the collapse. They are still more vulnerable
to azimuthal perturbations, which break their axial symmetry,
even if the collapse is suppressed by using a saturable or
quadratic nonlinearity, instead of the cubic term [6] (full
stabilization of vortex solitons in a part of their existence
domain may be provided by competing nonlinearities, which

include self-focusing and defocusing terms [7], or by nonlocal
nonlinear terms [8], an example relevant to BECs being the
stabilization of solitary vortices by the long-range dipole-
dipole interactions [9]). In the 2D geometry, matter-wave
solitons of the vortex type can be stabilized by an external
potential periodic in x and y (optical lattice) [3,10], although
such vortices completely lose their axial symmetry, being built
as a set of four density peaks with phase shifts between them
corresponding to topological charge S = 1. On the other hand,
vortical states existing in the 2D linear Schrödinger equation
with axisymmetric potentials (in particular, those represented
by Bessel lattices) persist as stable states in the GPE with the
repulsive nonlinearity [11].

The simplest 2D setting admitting stable solitons and
vortices in the self-attractive BEC is based on the isotropic
HO potential m�2r2/2, acting along radial coordinate r . The
stability of trapped states in this setting was studied in several
works [12,13]. In particular, zero-spin (S = 0) states are stable
against the collapse, provided that their norm does not exceed
the value corresponding to the collapse threshold in the free
space (alias the norm of the Townes soliton [14]) N < N (S=0)

max .
Formally, vorticity S = 1 gives rise to a dramatic increase of
the 2D collapse threshold:

N (S=1)
max ≈ 4N (S=0)

max (1)

[5]. However, the actual increase of the stability limit for the
vortex with S = 1 trapped in the HO potential is a more modest
effect, amounting to N

(S=1)
lim � (1/3)N (S=1)

max . In an adjacent
interval 0.33N (S=1)

max < N < 0.43N (S=1)
max , the vortex exhibits a

semistable behavior, periodically splitting into two fragments,
which recombine back into the vortex. In the remaining part of
the vortex’s existence region 0.43N (S=1)

max < N < N (S=1)
max , the

fragments fail to recombine, undergoing collapse.
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Another type of localized states, which seem to be vortices
(axisymmetric modes with zero intensity at the pivot point),
but carry zero net angular momentum, are known in several
models of nonlinear optics involving two nonlinearly coupled-
wave fields. These are hidden-vorticity (HV) modes, with
two symmetric components carrying opposite spins, S = ±1.
In particular, it was demonstrated that HV modes may be
weakly unstable [15] or completely stable [16] in 2D bimodal
systems with the saturable nonlinearity, including a model
of photorefractive media [17]. The competition of cubic and
quintic [18] or quadratic and cubic [19] self-focusing and
self-defocusing terms may also stabilize spatial solitons of
the HV type in the respective two-component systems. Stable
HV modes were found in bimodal discrete systems too [20].

Systems of nonlinearly coupled GPEs are accurate models
of binary BECs [21]. In this connection, a challenging problem
is the stability of HV states in the binary condensate trapped in
the HO potential. The difference from the above-mentioned
systems studied in nonlinear optics is that, to the best of
our knowledge, the stability of HV states has never been
demonstrated in models with the (most fundamental) cubic
nonlinearity. This is the subject of the present paper. We
demonstrate that a finite-stability domain for such states can
be found in the symmetric system, with the self-attraction
acting in each component, while the interaction between
the components may be both attractive and repulsive. The
relative strength and sign of the self- and cross interactions
in the binary BEC may be controlled by means of the
Feshbach-resonance technique, which applies not only to
single-component condensates, but also to their mixtures [22].

To better understand the purpose of the results produced
by the system of coupled 2D GPEs, we also consider its
one-dimensional (1D) version, with periodic (cyclic) boundary
conditions (BC), which emulate the finite radius of the 2D
HV modes trapped in the axisymmetric potential. Physical
realizations of the 1D system subject to the cyclic BC are
provided by a binary BEC mixture loaded into a toroidal trap,
which is available to the experiment [23] or by a bimodal
optical signal coupled into a hollow cylindrical waveguide.
The 1D counterpart of the HV modes is represented by
continuous waves (CWs) with equal amplitudes and opposite
momenta of the components (i.e., counterflows in the two
components of the binary BEC loaded into the toroidal trap).
The similarity between the HV states in the 2D and 1D
settings was mentioned in Ref. [16]; however, the role of the
periodic BC was not considered there, and the nonlinearity
was essentially different—saturable, rather than cubic. We
demonstrate that the 1D HV modes can never be stabilized
by the cyclic BC, which illustrates the nontrivial character of
the stability of the HV modes in the 2D setting.

It is relevant to mention that objects called HVs were
recently predicted in the single-component 2D BEC model
including a rotating double-well potential [24]. These modes
carry an explicit angular momentum, being hidden in the sense
that their cores are not directly visible, sitting at the central
barrier of the rotating potential. Another type of distantly
related objects is ghost vortices that are located in a peripheral
region of the single-component trapped BEC, which are almost
invisible because of the vanishingly small density of the
density supporting the ghosts [25].

The rest of the paper is structured as follows. The basic and
auxiliary (2D and 1D) models and the necessary formalism
are introduced in Sec. II. Stability domains for the symmetric
HV modes in the 2D system are reported in Sec. III. In the
same section, the development of instabilities accounted for
by different modes of small perturbations are illustrated by
direct simulations, for those 2D modes, which are unstable
(the robustness of stable modes against strong random pertur-
bations is illustrated too). The analytical investigation of the
modulational (in)stability of the HV states in the 1D system
with the periodic BC is briefly presented in Sec. IV. The paper
is concluded in Sec. V.

II. THE MODEL AND TECHNICAL FRAMEWORK

A. The main (2D) and additional (1D) models

We start with the system of coupled GPEs in 2D, written
for mean-field wave functions ψ1,2 of the two components of
the binary BEC. In the scaled form, the equations are [21]

i
∂ψ1

∂t
=

[
−1

2

(
∂2

∂x2
+ ∂2

∂y2

)
+ 1

2
(x2 + y2)

− (|ψ1|2 + β|ψ2|2)

]
ψ1, (2a)

i
∂ψ2

∂t
=

[
−1

2

(
∂2

∂x2
+ ∂2

∂y2

)
+ 1

2
(x2 + y2)

− (|ψ2|2 + β|ψ1|2)

]
ψ2. (2b)

We assume that the system is fully symmetric, with equal
atomic masses and scattering lengths of the self-interaction in
both components, as well as equal HO frequencies, which
are rescaled to be 1. This setting implies that ψ1 and ψ2

represent two different hyperfine states of the same atomic
species. Using the remaining scaling invariance, we set the
coefficients of the self-attraction to be 1, while β, that may
be both positive and negative, is the relative strength of the
interaction between the species (attraction for β > 0 and
repulsion for β < 0; as mentioned earlier, the sign of the
intercomponent interaction may be reversed by means of
the Feshbach-resonance technique). In the present notation,
the collapse threshold for the symmetric (ψ1 = ψ2) zero-spin
soliton is

N (S=0)
max ≈ 5.85(1 + β)−1 (3)

[14] (recall this is the norm of one component, the total norm
being twice as large; this expression makes sense for β > −1).

Equations (2), with t replaced by transmission distance
z, apply as well to the description of the bimodal light
propagation in photonic-crystal fibers [26], with fields ψ1,2

representing two orthogonal linear polarizations of light. In
that case, β = 2/3 is the most natural relative value of the
XPM coefficient, but other values are possible too.

Equations (2) conserve two atomic numbers (norms of
the components, or total powers of the two polarizations, in
terms of the optical model) N1,2 = ∫ ∫ |ψ1,2(x,y,t)|2 dx dy,
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along with the energy (Hamiltonian) and the total angular
momentum,

J =
∫ 2π

0
dθ

∫ ∞

0
r dr

( ∑
n=1,2

|ψn|2 ∂�n

∂θ

)
. (4)

In Eq. (4), �1,2 are phases of complex wave functions ψ1,2,
and (r,θ ) are the polar coordinates in the plane of (x,y)
(obviously, angular momenta of each component are not
conserved separately).

We seek for stationary solutions to Eqs. (2), for vortices
with the HV, as

ψ1,2 = R1,2(r) exp(iS1,2θ − iµ1,2t), S1 = −S2 = 1. (5)

Note that total angular momentum (4) of such a state is simply
related to the norms of its components: J = S(N1 − N2),
hence it vanishes for the states with equal norms, N1 = N2.

In the following, we focus on the symmetric modes, with
R1 = R2 ≡ R and µ1 = µ2 ≡ µ, where real function R(x)
obeys the equation,

R′′ + r−1R′ + (2µ − S2r−2 − r2)R + 2(1 + β)R3 = 0. (6)

In addition to the basic 2D model (2), we will consider the
1D system,

i
∂ψ1

∂t
=

[
−1

2

∂2

∂x2
−

(
1

|β| |ψ1|2 + sgn(β)|ψ2|2
)]

ψ1, (7a)

i
∂ψ2

∂t
=

[
−1

2

∂2

∂x2
−

(
1

|β| |ψ2|2 + sgn(β)|ψ1|2
)]

ψ2, (7b)

with the periodic BC,

ψ1,2(x + 2π�) ≡ ψ1,2(x). (8)

As mentioned previously, Eqs. (7) describe a binary BEC
mixture confined in a toroidal trap of radius �, or the
copropagation of two optical waves in a cylindrical shell of
the same radius. In these equations, the wave functions are
rescaled, in comparison with Eqs. (2), by ψ1,2 → |β|−1/2ψ1,2,
the purpose of which is to include the limit case of |β| → ∞.
In the latter case, the nonlinearity is represented solely by the
XPM term, implying that the intraspecies interaction may be
effectively switched off by means of the Feshbach-resonance
technique. The 1D system (7) conserves the two norms, N1,2 =∫ 2π�

0 |ψ1,2(x,t)|2 dx, Hamiltonian, and the total momentum,
cf. Eq. (4):

P =
∫ 2π�

0
dx

∑
n=1,2

(
|ψn|2 ∂�n

∂x

)
. (9)

B. An outline of numerical methods

The stability of the stationary states was investigated by
the linearization of the coupled GPEs for perturbed solutions,
taken as

ψ1,2(r,t)

= [R(r) + u1,2(r)e−iωt−iLθ + v∗
1,2(r)eiω∗t+iLθ ]e−iµt+iS1,2θ ,

(10)

where integer L is the azimuthal index of perturbation
eigenmodes with infinitesimal amplitudes u1,2(r), v1,2(r),

and ω is the respective eigenvalue, the stability condition
being Im{ω} = 0 for all the eigenvalues. The substitution of
expression (10) into Eqs. (2) and the linearization lead to the
following eigenvalue problem [cf. Ref. [27], that was dealing
with the (in)stability of two-component modes with equal spins
S1 = S2]:

⎛
⎜⎜⎜⎝

D−
1 −R2 −βR2 −βR2

R2 −D+
1 βR2 βR2

−βR2 −βR2 D−
2 −R2

βR2 βR2 R2 −D+
2

⎞
⎟⎟⎟⎠ U = ωU, (11)

where U = (u1,v1,u2,v2), and the following set of op-
erators is introduced: D±

m = −
(L±Sm)
r /2 + r2/2 − (2 + β)

R2 − µ, with 
(M)
r ≡ ∂2/∂r2 + (1/r)(∂/∂r) − M2/r2. Solu-

tions um(r) and vm(r) of Eq. (11) must exponentially decay at
r → ∞ and behave as r |Sm±L| at r → 0.

Numerical solutions for stationary modes (5) were obtained
by setting ψ1,2 = R1,2(r,t) exp (iS1,2θ ), and solving the cor-
responding radial reduction of Eqs. (2) in the imaginary time
(t → −iτ , with real τ � 0), following the lines of Ref. [28]. To
this end, a grid formed by up to 400 points was used in interval
0 < r < 5, and the integration in the imaginary time was run
with step 
τ = 10−4. After producing stationary modes, the
stability problem (11) was solved for azimuthal perturbation
numbers 1 � L � 5.

To check the predictions concerning the (in)stability of the
HV states, direct numerical simulations of Eqs. (2) were run
in real time, which added sufficiently strong random perturba-
tions to the stationary modes. The real-time simulations were
run by means of the D’yakonov [29] splitting algorithm and
iterative solution of the nonlinear subsystem, with time step

t = 0.01–0.001, and using up to 400 × 400 points in the
Cartesian grid, which covered the domain −10 < x, y < +10.

III. NUMERICAL RESULTS FOR THE MAIN (2D) MODEL

A. The linear-stability analysis

Families of the stationary symmetric HV solutions are
represented by curves N (µ) in Fig. 1, for several fixed values
of coefficient β > 0, which account for the attraction between
the species. As follows from Eq. (6), the curves that pertain to
different values of β are actually equivalent to that for β = 0
because of the scaling invariance: N (µ,β) = N (µ,0)/(1 + β).
In the limit of N → 0, all the curves converge to µ = 2, which
is the eigenvalue of the linear Schrödinger equation for the
isotropic HO potential [i.e., Eq. (6) with the last term dropped],
which corresponds to S = 1. As for shapes of the HV modes,
they can be seen as initial images displayed later in Figs. 6–9.

The most essential issue is the stability of the HV modes.
The respective findings, produced by the systematic numerical
solution of the eigenvalue problem (11), are collected in Fig. 2.
In this figure, the instability growth rates, γL ≡ |Im{ωL}|, are
displayed as functions of the HV-mode’s chemical potential,
for perturbation azimuthal numbers L = 1,2,3,4 and several
values of the nonlinear-coupling coefficient β (no instability
was found for L � 5). Each panel reveals instability-free
windows, which abut on the edge point, µ = 2 (i.e., N = 0).

In particular, a large stability region 1.09 � µ � 2, which
corresponds to N � 7.76, exists for β = 0.2. In this case,
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β=0.8

FIG. 1. Chemical potential µ of the HV symmetric modes versus
norm N (of one component), for different values of interaction
parameter β.

the instability at µ < 1.09 is dominated by the perturbation
mode with L = 2. An interesting situation is observed for
β = 0.235: As seen in the inset to the respective panel in
Fig. 2, the stability region is split into two parts by an interval
of a very weak instability (in the physical applications, such

a weak instability may be ignored). In other cases displayed
in Fig. 2, β = ±0.5, different perturbation azimuthal numbers
L play the dominant role in different parts of the instability
regions.

The overall results are further summarized in the form of
the stability diagram displayed in Fig. 3, which depicts both
the stability domain, in the plane of (N,β), and those regions
where perturbation eigenmodes, which pertain to L = 1, 2,
3, or 4, control the instability. According to Eqs. (1) and (3),
the border of the forbidden region, in which the HV modes
do not exist, is located at N = N (S=1)

max ≈ 23.4(1 + β)−1. The
cut of the stability diagram through β = 0 is tantamount
to findings reported for the single-component model in
Ref. [13] (in particular, the relative width of the stability
domain, with respect to the existence region, is �1/3, as
mentioned before).

Naturally, the stability domain is larger at β < 0, as the
repulsion between the components helps to stabilize the HV
mode. The stability domain abruptly shrinks with the increase
of |β|. In fact, at large |β|, only the quasilinear HV mode,
which corresponds to very small N , remains stable, which
is explained by the fact that the vortex eigenstates in the
isotropic HO potential are stable within the framework of
the linear Schrödinger equation. It is also worthy to note that
the instability regions dominated by the perturbation modes

−5 −4 −3 −2 −1 0 1 2
µ

0

2

4

6

8

10

γ L

 β=0.2

L=2

L=1

L=3

L=4

−5 −4 −3 −2 −1 0 1 2
µ

0

2

4

6

8

10

γ L

β=0.235

L=2

L=1

L=3

L=4

L=1
L=2

L=3

1 2µ
0

0.01

0.02

γL

−5 −4 −3 −2 −1 0 1 2
µ

0

2

4

6

γ L

1.8 1.9 2
µ

0

0.05

γL

β=0.5

L=1

L=2

L=3

L=1

L=4

0 0.5 1 1.5 2
µ

0

2

4

6

γ L

L=2

L=4

β=−0.5

L=3

L=1

FIG. 2. (Color online) The instability growth rates for different values of the azimuthal index (L) of the perturbation eigenmodes, and
different fixed values of the interaction coefficient β. Insets display blowups of portions of the diagrams which are critical to the identification
of the stability regions.
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FIG. 3. The stability diagram for symmetric HV modes, in the
plane of the norm (of one component) and interaction coefficient.
Instability areas are labeled by the azimuthal index of the dominating
perturbation eigenmode.

with L = 2, 3, and 4 are split, respectively, into two, three,
and four disjoint segments.

The predicted stable HV states can easily be interpreted in
terms if experimental parameters—in particular, for different
hyperfine states in 7Li (in fact, the estimates are not essentially
different from those pertaining to stable vortices trapped in
the single-component BEC [13]). Rewriting the underlying
equations (2) in physical units, with the HO trapping frequency

ω = 2π × 10 Hz and the scattering length of the interatomic
interactions as � −0.1 nm, we conclude that the largest
number of atoms in the stable HV states, corresponding to
scaled norm N <∼ 10 in Fig. 3, is estimated as 105, while
the characteristic radius of the HV ring-shaped pattern is
10 µm, and the time unit in the scaled notation corresponds to
∼0.1 ms.

B. Direct tests of the stability and self-trapping

The predictions of the linear-stability analysis have been
checked by means of direct simulations. First, systematic
simulations, using large random perturbations added to the HV
modes, demonstrate that all the modes which were predicted to
be stable are indeed robust objects, which keep their intrinsic
HV structure (vorticities S = ±1 of the two components) and
quickly relax to the unperturbed shape through an effective
self-cleaning. We stress that the perturbations had a random
structure in the plane of (x,y), hence they tested the stability of
the HV states against both the collapse and the breakup of the
axial symmetry. A typical example is displayed in Fig. 4. Note
that, although the HV mode, the stability of which is tested in
the figure, is located close to the upper and right borders of
the stability area in Fig. 3 (at N = 7.05 and β = 0.2) and the
random amplitude perturbation is large enough (5%), the HV
pattern exhibits a very fast self-cleaning and suppression of the
perturbation. By the moment of time t = 0.1, the perturbation
remains only in small ripples of the phase pattern, which safely
keeps the initial vorticity.
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FIG. 4. (Color online) The top and bottom panels display, respectively, the evolution of the density and phase of the first component (ψ1)
of a perturbed stable HV mode with half-norm N = 7.05 and µ = 1.2, at β = 0.2. The initial state (at t = 0) includes a random perturbation
of |ψ1(x,y)| at the 5% level. The self-cleaning of the perturbed mode was practically completed by t = 0.1.
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|ψ
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β=0
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FIG. 5. The density-profile cross sections drawn through the
center [i.e., |ψ1(x,0)|2] for the initial single-component vortical state,
which corresponds to β = 0, and for the eventual self-trapped HV
mode, which pertains to β = 0.2. The norm of the mode (in one
component) is N = 5.65, and the chemical potential of the initial
single-component vortex is µ = 1.5.

Another essential dynamical test aims to simulate an
experimentally relevant scenario of the creation of the HV
mode. The most straightforward approach is to prepare two
separate single-component condensates, with vorticities +1
and −1, and then load them into a common potential trap. In
the optical realization of the model, the same scenario implies

the coupling of two beams, carrying the opposite vorticities,
into a common bulk waveguide. In either case, the modeling of
this scenario means simulating Eqs. (2) with initial conditions
which correspond to ψ1 and ψ2 taken as numerically exact
solutions of the single-component equations, with β = 0 and
vorticities ±1. Figure 5 displays a typical example: In the
course of the simulation, β was ramped from 0 to 0.2 during
the time interval of 
t = 20. The simulations demonstrate
(in this and other cases) that the initial vortex-antivortex
mixture readily self-traps into the stationary HV state. Note
that, although the example displayed in this figure, which
pertains to N = 5.65 and the final value of β = 0.2, is located
rather close to the instability border in Fig. 3, the evolution
of the input mixture into the HV state does not excite any
instability. We stress that this simulation was performed in
the Cartesian coordinates, which would allow the onset of an
axial-symmetry-breaking instability if the evolving mode was
vulnerable to it.

C. The evolution of unstable HV states

It is also interesting to identify the outcome of the evolution
of those HV modes which are unstable. Typical results are
displayed in Figs. 6–8 for β = 0.5. This value of the interaction
coefficient was chosen because the corresponding dominant
instability modes feature three different values of the azimuthal
index, viz., L = 1,2,3, see Fig. 3. Accordingly, in Figs. 6, 7,
and 8, we display the evolution of unstable HV states with
N = 7.5, 13.5, and 8.75, that give rise to the leading unstable
modes with L = 1, 2, and 3, respectively. We stress that, unlike
the tests of the stable modes, no perturbations were added to
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FIG. 6. (Color online) The evolution of the two components ψ1 and ψ2 of an unstable HV mode with half-norm N = 7.5 and µ = 0.83.
Density distributions are displayed at moments of time indicated above the respective panels. In this and two subsequent figures, β = 0.5 is
fixed.
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FIG. 7. (Color online) The same as in Fig. 6, but for N = 13.49, µ = −1.3.

the unstable ones when simulating their evolution. The weak
intrinsic noise generated by truncation errors of the numerical
scheme was sufficient to invoke the instability.

The instability development driven by the eigenmode
with L = 1, which is displayed in Fig. 6, is similar to
that reported in Ref. [27], which studied the instability of

two-component modes with the explicit vorticity (equal spins
in the two components): The instability transforms the original
axisymmetric mode into a deformed crescent-shaped pattern.
Eventually, the pattern splits into two segments, which end
up with the collapse. The splitting may be explained by the
proximity to the instability mode corresponding to L = 2, see
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FIG. 8. (Color online) The evolution of an unstable HV state with N = 8.75, µ = 0.57. In this case, the sequence of the density plots is
shown only for ψ1, the evolution of the second component being similar.
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Fig. 3 (when the latter mode is the dominant one, it leads to
the splitting, see Fig. 7).

In Fig. 7, the HV mode remains stable only up to
t ∼ 13—roughly, ten times as short as in Fig. 6, which may
be readily explained by a much larger respective value of the
instability growth rate, see Fig. 2. The eventual splitting of
the unstable mode into two segments, which will collapse
at a later stage of the evolution, is naturally explained by
the azimuthal index of the dominant instability mode L = 2,
similar to the instability of single- and two-component modes
with the explicit vorticity [13,27].

The situation shown in Fig. 8 is somewhat different: The
HV mode remains stable up to t � 52. After that, it splits
into three segments, in accordance with the fact that the linear
instability is dominated by the mode with L = 3 in this case.
The subsequent evolution leads to the temporary revival of the
axisymmetric mode, around t = 65. It eventually becomes un-
stable at t � 73, splitting into two, rather than three, segments
(probably, this happens under the action of the second strongest
unstable mode, with L = 2), which ultimately undergo the
collapse. The trend for the temporary revival of the HV mode
was observed in other cases too (for instance, at N = 8.75 and
β = 0.8, although, in that case, the revival was incomplete).

We have checked that, in all cases, the (initial) splitting of
unstable HV modes leads to the number of segments equal
to the value of L, which corresponds to the most unstable
perturbation eigenmode, provided that the initial norm is
smaller than the above-mentioned collapse threshold N (S=1)

max
(if N exceeds this value, the mode directly proceeds to the
collapse). In particular, the fast splitting into a set of four
segments is observed too, as shown in Fig. 9, at β = −0.5,
when the instability is dominated by the mode with L = 4,
which has a large instability growth rate. It is also relevant to
mention that the set of the splinters does not feature rotation,
in accordance with the fact that the total angular moment of
the original modes is zero.

IV. THE ANALYSIS OF THE 1D MODEL

The counterflow solutions to Eqs. (7), subject to BC (8),
are

ψ1,2 = A exp

(
± iS

x

�
− iµt

)
, (12)

where S is the integer vorticity (+S and −S correspond to ψ1

and ψ2), µ is the chemical potential, and the amplitude is

A2 =
[

1

|β| + sgn (β)

]−1(
µ − S2

2�2

)
. (13)

Solution (12) is the 1D counterpart of the HV mode, cf. Eq. (5).
The modulational instability of the CWs is analyzed

by means of the standard approach [30], which takes the
amplitude and phase of perturbed solutions as [cf. Eq. (10)]

a1,2(x,t) = A + b1,2 exp

(
− iωt + iL

x

�

)
, (14)

�1,2(x,t) = −µt ± S
x

�
+ χ1,2 exp

(
− iωt + iL

x

�

)
, (15)

where b1,2 and χ1,2 are amplitudes of small perturbations,
Im{ω} and L being the respective instability growth rate and
azimuthal index. The substitution of these expressions into
Eqs. (7), and the subsequent linearization yield, after simple
algebraic manipulations, the following dispersion relations
for ω:

ω2 = L2

�2

[
S2 + L2

4
− A2�2

|β|

±
√

A2�2

(
A2�2 − 4S2

|β|
)

+ S2L2

]
. (16)

A difference from the 2D model is that ω does not depend on
the sign of the nonlinear coupling coefficient β.

The HV state is stable if expression (16) yields solely real
values of ω (i.e., ω2 > 0). It is easy to see that this stability
condition holds at

L2 � L2
max ≡ 4[S2 + (1 + |β|−1)A2�2]. (17)

The commonly known possibility to suppress the modulational
instability of zero-vorticity CWs, with S = 0, by means of the
cyclic BC is to choose � small enough, so as to make L2

max � 1,
hence all integers L will satisfy condition (17). However, in the
case of HV states, with S � 1, this is obviously impossible. On
the other hand, further consideration of Eq. (16) demonstrates
that, in the case of |β| � 2, the instability region of L2 may
also be bounded from below:

4[S2 − (1 − |β|−1)A2�2] ≡ L2
min < L2 < L2

max, (18)
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FIG. 9. (Color online) The same as in Fig. 8, but for β = −0.5 and N = 34.1, µ = −0.2. In this case, the HV state quickly splits into a set
of four segments.
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where Lmax is the same as in Eq. (17), and an additional
condition is L2

min > 0 (a similar situation occurs in the study
of the modulational instability in the system of XPM-coupled
nonlinear Schrödinger equations in fiber optics, with the
self-defocusing nonlinearity and β = −2, the role of the HV
(opposite momenta in the two components), being is played
by the group-velocity mismatch between the two waves [30]).
Thus, another stabilization mechanism for the HV state might
be possible if no integer L would get into interval (18) for given
S � 1. However, an explicit analysis of the latter condition
leads, eventually, to inequality L < 2S < L + 1, which must
hold for some integer L � 1, but, obviously, it can never
hold [the meaning of this inequality is the existence of a
stability window between instability regions (18) for L and
L + 1]. Thus, the HV states in the simple 1D model (7) can
never be stable, contrary to their HV counterparts in the 2D
system (2).

V. CONCLUSION

In this paper, we have investigated a family of 2D nonlinear
trapped modes in the form of the symmetric bound state of
two components with opposite vorticities S1,2 = ±1, in the
system with attractive cubic interactions, which act inside the
components, while the interaction between the components
may be either attractive or repulsive. Although the shape of the
unperturbed modes is the same as in previously investigated
states with explicit vorticity (S1 = S2 = 1), the stability of
the presently considered HV modes is a novel problem. The
stability region for the HV state has been identified through the
calculation of the stability eigenvalues for small perturbations
and verified against direct simulations with large random
perturbations added to the HV mode. The stability domain is
the main result of this paper (a priori, it was not obvious if HV
modes might be stable at all; indeed, analyzing the simplified

1D model, based on the system of coupled equations with the
cyclic BC, we have found that the 1D system can never give
rise to stable HV modes). As could be expected, when the
2D HV modes are unstable, in direct simulations, they split
into sets of fragments whose number is equal to the azimuthal
index (L) of the most unstable perturbation eigenmode. If the
instability is weak, which corresponds to L = 3, the splitting
HV mode is temporarily recovered before the final splitting.

The 2D model directly applies to the description of the
trapped binary BEC and may also describe the propagation
of bimodal beams of light in photonic-crystal fibers. The
simplified 1D system models the binary BEC in a toroidal
trap, where the HV state corresponds to the counterflows in
the two components and the propagation of a bimodal optical
beam in a hollow cylindrical waveguide.

In the experiment, the 2D HV state in the optical system
can easily be created by coupling the two beams with opposite
vorticities into the same bulk waveguide. In the BEC, it
may be difficult to directly impart opposite vorticities to
two components, which represent different states of the same
atomic species. However, another scenario may be realized: At
first, two states with the opposite vorticities can be prepared
separately, and then loaded into the same trap, as illustrated
previously by Fig. 5.

A challenging problem for the extension of the present
analysis is to consider 3D bimodal solitons with the HV. It
may also be interesting to consider two-component vortical
gap solitons of the HV type, supported by an optical lattice in
the 2D system with the repulsive nonlinearity.
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