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We study the structure and stability of vortex lattices in two-component rotating Bose-Einstein condensates
with intrinsic dipole-dipole interactions and contact interactions. To address experimentally accessible coupled
systems, we consider '“Dy-'“Dy and '®Er-'Dy mixtures, which feature different miscibilities. The
corresponding dipole moments are jtpy = 10/p and pig, = 7, where pup is the Bohr magneton. For comparison
we also discuss a case where one of the species is nondipolar. Under a large aspect ratio of the trap, we consider
mixtures in the pancake-shaped format, which are modeled by effective two-dimensional coupled Gross-Pitaevskii
equations, with a fixed polarization of the magnetic dipoles. Then, the miscibility and vortex-lattice structures
are studied by varying the coefficients of the contact interactions (assuming the use of the Feshbach-resonance
mechanism) and the rotation frequency. We present phase diagrams for several types of lattices in the parameter
plane of the rotation frequency and the ratio of inter- and intraspecies scattering lengths. The vortex structures
are found to be diverse for the more miscible '*Dy-%’Dy composition, with a variety of shapes, whereas for the
less miscible case of '®Er-!%Dy, the lattice patterns mainly feature circular or square formats.
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I. INTRODUCTION

In Bose-Einstein condensates (BECs), quantized vortices
emerge above a certain critical rotation frequency [1], which
may be imposed by techniques such as rotating traps, laser
stirring, and the addition of an oscillatory excitation to the
trapping potential [2]. Experiments for vortices have also been
performed with multicomponent BECs. In this regard, we can
mention Ref. [3], as well as works cited in the recent review by
Martin et al. [4]. In particular, the study of vortices in binary
condensates is interesting due to the fact that interspecies
interactions produce diverse vortex structures in addition to
the fundamental Abrikosov’s triangular lattice, such as square-
shaped and coreless lattices, domain walls, droplets, and
isolated density peaks in the two-component mixtures [5—8].

Recent experiments with '®*Er and '®*Dy condensates have
also stimulated interest in properties of quantum droplets that
can be created in dipolar BECs [9-11]. These studies have
revealed that the droplets are self-trapped as many-body states
in bosonic gases, supported by the balance between attractive
and repulsive forces in these settings. With the attractive
forces being provided by dipole-dipole interactions (DDIs), the
repulsive cases are induced by the beyond-mean-field quantum
fluctuation effects, known as Lee-Huang-Yang corrections.
They are also used to predict stable droplets in nondipolar
two-component systems [12-14], which have been created
very recently in experiments [15-17].

The objective of this paper is to study rotational regimes of
two-component dipolar BECs. Previous studies dealing with
vortices in dipolar BECs have explained the role of DDIs in
the formation of vortices, as reported in the review [4]. In
particular, the theoretical analysis dealt with the calculation of
the critical rotation frequency and vortex structures under the
action of the DDI [18-20]. In the two-component setting with
one dipolar component and the other one carrying no dipole
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moments, the dipolar component features a smaller critical
rotation frequency than its nondipolar counterpart, and the
dipolar component produces a larger number of vortices than
the nondipolar one, at the same rotation frequency [21].

In general, vortex states in binary BECs are strongly
affected by the (im)miscibility. Completely miscible settings
feature triangular, square-shaped, and rectangular vortex
lattices, depending on the rotation frequency. On the other
hand, immiscible binary condensates support bound states of
vortices, stripes, and vortex sheets (domain walls) [5,6]. In
this regard, to explore vortex structures in binary condensates,
we rely on results obtained in a previous study, reported in
Ref. [22], for the miscibility of two-component dipolar sys-
tems. In this reference, by considering stability requirements
and miscibility properties, it was found more appropriate
to consider pancake-shaped symmetry for the trap, varying
the inter- and intraspecies contact interactions to modify the
miscibility properties.

In the present work, we report manifestations of the
miscibility-immiscibility transition in dipolar mixtures in
terms of vortex-lattice configurations. We address vortex-
lattice states in two-component BECs under the action of
the DDIs, by considering the same dipolar systems previ-
ously studied in Ref. [22]. Following that, our analysis is
performed for a pancake-shaped trap configuration, in which
the underlying system of three-dimensional (3D) coupled
Gross-Pitaevskii equations (GPEs) can be reduced to a two-
dimensional (2D) form.

First, we consider the system with parameters correspond-
ing to a nearly symmetric (with respect to the two components)
164pDy-192Dy mixture, where both components have equal
dipole moments, thus supporting the balance between intra-
and interspecies DDIs. In the absence of contact interactions,
this mixture is miscible. Its miscibility-controlling parameter
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is the ratio between scattering lengths of contact inter- and
intraspecies repulsion, if it is added to the DDI. Next,
we consider the setting with parameters of the asymmetric
18Er-1Dy mixture, with unequal dipole moments in the
two species, which gives rise to imbalance of the inter- and
intraspecies DDIs. This dipolar mixture produces immiscible
states, in the absence of contact interactions. In this case
too, mixing-demixing transition is controlled by the ratio
of the scattering lengths of intra- and interspecies contact
interactions, if they are present. The miscibility of these
binary dipolar condensates determines vortex-lattice structures
which can be created in them. We also briefly consider
another binary system, in which only one component carries
a dipole moment. The latter system favors the miscibility, in
comparison with the symmetric and asymmetric mixtures of
two dipolar components.

The paper is organized as follows. In Sec. II, we present the
2D mean-field model for the trapped two-component dipolar
BEC under rotation, and we present the numerical methods
used in this work. In Sec. III, we report numerical results
for phase diagrams of vortex-lattice patterns, varying the
strength of inter- and intraspecies contact interactions versus
the rotation frequency, for different dipolar mixtures. Some
analytical results, based on the Thomas-Fermi approximation
for the immiscible system, are presented too. The paper is
concluded by Sec. I'V.

II. COUPLED DIPOLAR CONDENSATES UNDER
ROTATION

The system of coupled GPEs for the binary condensate
with the DDI, for the two-component wave functions ¥;_; > =
W (r,t), can written as [23,24]

v,

2
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ih—7, = [_ — V2 V(1) = QAL + Y G N[ W[

ot 2m; P

2 N ,
o /cﬁ Vil — r)|wk|2}wj, )
k=1
where W, = W (r',¢). The masses, the number of atoms, and
the trapping potentials for the two species j are, respectively,
given by m;, N;, and V;(r). Further, VJ.(Z)(r—r’) are the
kernels of the DDI, € is a common rotation frequency
of both components, and iZL, = —ifi(xd/dy — yd/dx) is
the angular-momentum operator. The strengths of the con-
tact interactions are Gj; = (Znhz/mjk)ajk, where mj; =
mjmy/(m; + my) are the respective reduced masses, while
aji are the corresponding intraspecies (a;;) and interspecies
(ayp) two-body scattering lengths. Trapping is provided by
Harmonic-oscillator (HO) potentials with frequencies w;,

V(r) = m Wi+ y* 4+ 4720, ()
and the common aspect ratio A for both components, such
that the trap is spherically symmetric for A = 1, cigar-shaped
for A < 1, and pancake-shaped for A > 1. The DDI kernels in
Eq. (1) correspond to the configuration with dipole moments
polarized (by an external magnetic field) perpendicularly to
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the (x,y) plane:

vl —r) = D : 3)
where 0 is the angle between the polarized magnetic moments
and (r —r'), and D;; = uop;ipj, with the free-space perme-
ability .

For the pancake-shaped dipolar BEC (A > 1), we assume
the usual factorization of the wave function into the ground
state of the transverse HO trap and a 2D wave function:

2

1
\I-’j(r,t) = WCXP( 2d2)q) ()C y, t) (4)

where d, = /1/X is the trap’s HO length [24-27]. To derive
the effective coupled GPEs in 2D, we insert the ansatz (4)
in Eq. (1), multiplying the equation by another power of the
HO ground-state wave function, and perform integration over
z. The coupled equations are cast in a dimensionless format
by measuring the energy and the length in units of Zw; and

= /li/(m ), respectively. By taking x and y variables
in units of / (x — [x and y — ly), the accordingly rescaled
quantities are

p =xé + yér, T=wt,
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with the corresponding 2D wave function for the components
Jj = 1 and 2 given by

Wj(P,T)ElCDj(x’yJ)- (6)

In terms of this notation, for ¥; =v;(p,7) and ¥} =
¥ ;(p’,7) the coupled GPEs in 2D take the form of
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where the common rotation frequency of the two components
is written in terms of w;, such that Q = ﬁ/wl.

In Eq. (7) the DD-interaction terms can be expressed by
means of the convolution theorem,

2
> / dp'VO(p — pOIYI® = Fop [V k)it j(kp D], (8)
j=1
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where ]—'{Dl is the inverse 2D Fourier-transform operator, with
k, = /k)% + k%,

7k, 7) = / dpe™P 1y 127 (k) = e KEM T (9)

and

0 1> (3K U
V) = o= | dke( T35 = 1)1k
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V2nd, V2 2
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For the numerical solution of Eq. (7), we employed the split-
step Crank-Nicolson method, as in Refs. [27-29], combined
with the standard method for evaluating DDI integrals in
the momentum space [23,27]. To look for stable solutions,
numerical simulations were carried out in imaginary time
on a grid with 512 points in the x and y directions, spatial
steps Ax = Ay = 0.05, and time step At = 0.0005. Both
component wave functions are renormalized to 1, [ dp|y j|2 =
1, at each time step.

To calculate stationary vortex states, Eq. (7) was solved
with different initial conditions. From the tests, we chose
the following suitable initial conditions in the form of a
combination of angular harmonics [30],

L . 2
(x +iy)me=r /2
¥i(p,0) = y;) m

where R,, is a randomly generated number distributed uni-
formly between 0 and 1, with the arbitrary integer value for L
that we have consider up to L = 40. In addition, we checked
the convergence of the solutions with inputs as considered in
Ref. [31].

For the parameters, we follow the ones used in a previous
study on miscibility in coupled dipolar condensates, given in
Ref. [22], for atomic mixtures of erbium (‘**Er) and dyspro-
sium (1°21%Dy) isotopes. In terms of the Bohr magneton 1z,
the corresponding dipole moments are, respectively, u = 7up
and u = 10up. In the harmonic axial traps, defined in Eq. (2),
the assumed angular frequencies confining each species are
such that ; = 27 x 60s~! for the '®*Er and w; = 27 x 61
s~! for the '9>!%Dy, such that o defined in Eq. (5) is close to
1. The time and space units are such that 1 /w; = 2.65 ms and
[ =1pum(= 10*A = 1.89 x 10* ay). As found appropriate for
experimentally realistic settings, in all the following analysis
and results we are taking a pancake-shaped trap, with an
aspect ratio of A = 20, and we fix the number of atoms to
be equal for both species with N; = N, = 10*. The contact
and dipole-dipole interactions, expressed in terms of the Bohr
radius ap, are varied by considering several conditions of
interest in view of miscibility properties of the binary mixtures.
In particular, considering the corresponding dipole moments,

the strengths of the DDI are given as a(lap = ag) = 131ap

and a%) = aé‘ll) = 131 ay, for the 164Dy-l(’ZDy mixture; and

a9 =664y, a'¥ = 131ay, and a9 = o' = 944y, for the

exp(2riR,,), (11D
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168Er 164Dy mixture. Further, in order to explore various
families of vortex patterns, we varied the rotation frequency
Q.

As transitions between vortex-lattice structures are de-
termined by the miscibility, it is appropriate to consider a
parameter to measure the overlapping between densities of the
components, such as the one defined in Ref. [22]:

n=fll/fllll/ledpE/vllﬂllzllllezdp- (12)

As 1 and v, are both normalized to 1, a complete overlap
between the species has n = 1, with indications of partial
overlapping for smaller values of 1. Results reported in the
following are suggesting that values of n < 0.5 correspond
to almost clear demixing, as the maxima for the densities are
located at well-separated points. In the interval of 0.5 < n <
0.8, the system may be categorized as partially miscible, as one
can notice that the peaks of the densities are approaching each
other. The density maxima are nearly overlapping for n 2 0.8,
such that we can identify the system as a miscible one. The
applicability of these definitions was checked for all settings
considered in this work.

III. RESULTS

The numerical results presented in this section are organized
in four subsections, considering possible nonlinear effects due
to the interplay of the contact and dipolar interactions. We
start by considering a pure-dipolar case (Sec. III A). Next, in
other subsections, we vary the strength of contact interactions,
considering a nearly symmetric dysprosium-dysprosium mix-
ture (Sec.III B); a nonsymmetric erbium-dysprosium mixture
(Sec. III C); and, finally, a mixture of dipolar and nondipolar
species (Sec. III D). As mentioned above, the harmonic-trap
aspect ratio and the number of atoms in both components are
fixed, respectively, to A = 20 and N = N, = 10*, which are
adjusted to the previous studies of the stability and miscibility
of binary dipolar condensates [22]. All the following results
are produced with parameters of the contact and dipolar
interactions given in units of the Bohr radius (. Adopting the
length unitas/ = 1.89 x 10* gy, the coordinates and densities
are presented as dimensionless quantities.

A. Vortex structures in dipolar binary condensates in the
absence of contact interactions

To illustrate the miscible or immiscible states in the absence
of the contact interactions (a; = 0, for j,k = 1,2), we display
stable solutions for densities and phases, corresponding to the
dipolar mixtures '**Dy-'9’Dy (Fig. 1) and '®Er-'**Dy (Fig. 2).
In both cases, we apply the same rotation frequency 2 = 0.6
and aspectratio A = 20. As defined by Eq. (12), the miscibility
parameter is much larger for the '**Dy-'2Dy BEC mixture,
n = 0.81, corresponding to an almost completely miscible
state. On the other hand, for the '®Er-'%Dy system, we have
a smaller value of n = 0.19, implying an almost immiscible
composition. The predicted lattice patterns for the vortices,
considering these miscible and immiscible binary dipolar
condensates, are presented in Figs. 1 and 2, respectively.
The patterns may be naturally classified as squared- to
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FIG. 1. The 2D density (left panels) and phase (right panels) pat-
terns for the miscible '**Dy-'%?Dy system with no-contact interactions
are shown by the upper (component j = 1) and lower (component
Jj = 2) panels. The parameters are aj; = 0, a%) = 131ay, 2 = 0.6,
X =20,and N; = 10* (j,k = 1,2).

striped-shaped lattices in the more miscible case, and as having
a finite segment of a hexagonal lattice in one component,
surrounded by a ring in the other component in the immiscible
mixture.

B. The nearly symmetric '*Dy-'Dy mixture under
the action of contact interactions

To drive the mixing-demixing transition in the dipolar
mixtures in the presence of contact interactions, we use
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FIG. 2. The 2D density (left panels) and phase (right panels)
patterns for the immiscible '*Er-'‘Dy system with no-contact
interactions are shown by the upper (component j = 1) and lower
(component J = 2) frames. The parameters are aj; = 0, aﬁ‘f) = 66 ay,

a = 1314y, a\ = al = 94ay, 2 =0.6, A =20, and N; = 10*
(j,k=1,2).
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FIG. 3. The phase diagram of vortex patterns in the plane defined
by the angular velocity €2 and the ratio between inter- and intraspecies
scattering length 8 = ay,/a;, for the '**Dy-'Dy mixture. The
symbols for the observed patterns are as follows: triangles for
triangular lattices, squares for squared lattices, double circles inside
arectangle for rectangular or double-core vortices, circles for striped
vortices, and crossed circles for domain walls. Typical examples are
displayed in Figs. 4-6.

the scattering lengths as tuning parameters. For that, the
intraspecies scattering lengths are assumed to be equal, a;; =
a, with the ratio between inter- and intraspecies scattering
lengths being defined by

ar

§ =12 (13)
ar

Therefore, stable vortex states are explored by varying this
ratio 6 and the rotation frequency €2, which is given in units
of the trap frequency w;. We consider this parameter for
the rotation in the interval 0.4 < Q < 0.9, as this interval
adequately represents various types of vortex patterns which
the system can generate. In this work we restrict the analysis
to the case of equal intraspecies scattering lengths, a;; =
an, as effects produced by the variation of the interspecies
interaction/intraspecies interaction ratio §, defined by Eq. (13),
are essentially stronger (and more interesting) than what may
be controlled by the variation of ay,/a;;. Systematic analysis
of the latter effects may be considered separately, to keep the
length of the present paper within reasonable limits.

A commonly known result for spatially uniform states in
the absence of DDIs is that the miscibility and immiscibility
take place at 6 < 1 and § > 1, respectively [32]. Stable vortex
structures found in different domains of the (§,€2) plane for
parameters of the '®*Dy-!’Dy mixture (assuming that a;,
can be adjusted by means of the Feshbach resonance) are
summarized in the phase diagram exhibited in Fig. 3, with
typical examples of different stable patterns shown in Fig. 4
for 2 = 0.4.

In the well-miscible state, at § < 0.9, triangular- and
square-shaped vortex lattices are found as stable patterns. With
the onset of immiscibility, positions of vortices in one compo-
nent shift with respect to the other, which leads to a transition
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FIG. 4. The 2D component densities, |1//j|2 [(a;) to (f;), with
j = 1,2], for the '%Dy-'’Dy mixture in different patterns of stable
vortices, following the phase diagram in Fig. 3 for § varying from
0.5 to 1.65, as indicated. The lattices are triangular (a;—; ), squared
(bj=1,2), rectangular (c;—; »), striped (d;=; ), and with domain walls
[(ej=1,2) and (f} »)]. Other parameters are Nj_; » = 104, A = 20,a;, =
50ay, and 2 = 0.4.

in the respective lattice structure. Namely, at 0.9 < § < 1.02
the square-shaped lattice is transformed into the rectangle
one, as the vortices in each component tend to get closer and
form stripes. Therefore, in this regime, the system produces
rectangular and double-core vortices. Thus, in the immiscible

10
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state at § > 1, we observe vortex stripes and also patterns that
may be called domain walls [see the panels (f; ;) of Fig. 4].
Actually, the phase diagram displayed in Fig. 3 is similar
to its counterpart produced for nondipolar BEC in Ref. [6],
as well as to the phase diagram for nondipolar condensates
produced in Ref. [5] on the basis of the lowest-Landau-level
approximation. This similarity is explained by the fact that, in
the nearly symmetric '**Dy-'6Dy binary system, with equal
dipole moments of both species, effects of equal intra- and
interspecies DDIs on the miscibility almost cancel.

InFigs. 4 and 5, by considering the ' Dy- 92Dy mixture, we
display typical density plots for vortex lattices with different
patterns, such as triangular, squared, rectangular, stripes, and
domain walls, according to values of §, which may correspond
to miscible or immiscible cases. In Fig. 4, with Q = 0.4, one
can observe that the stripe pattern forms overlapping lines
of vortices in both components. In the double-core structure,
the vortex lattice in the second component is formed by pairs
of vortices with the same circulation and vortices in the first
component surrounded by those pairs. In the strongly phase-
separated regime, at § > 1, vortices in one component are
located very closely, merging into the domain wall, with the
walls in the two components being mutually interlaced. In
Fig. 5 we consider the same parameters as in Fig. 4, except
that the rotation frequency is changed to €2 = 0.6, in order to
verify how the lattice shapes are being affected by 2. In Fig. 6,
further examples for the '%*Dy-!9*Dy mixture are displayed by
striped vortices and domain walls, with § > 1, by considering
the large value 2 = 0.8 of the rotation frequency.

The Thomas-Fermi (TF) density distribution for the over-
lapping binary BECs subject to the solid rotation was verified
in Ref. [6] to be a good approximation to the corresponding
total density distribution ny = |1/])?> + [¢»]>. Due to the
repulsion between the species, a vortex in one component
corresponds to a density peak in the other, and vice versa. In
the present work, we have confirmed that the TF expression,
given in Ref. [6], which can also be derived by following the
lines of Ref. [33], nrr(p) = 2/a/m — ap?, holds also for the
parameter regimes we are considering in the presence of DDIs,
with o = (1 — Qz)/(gll +di + g12 + di12). The agreement
was confirmed for different miscible dipolar BEC mixtures.

FIG. 5. The 2D component densities, with the same parameters as in Fig. 4, by changing the rotation frequency to Q2 = 0.6.
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FIG. 6. The 2D component densities, with the same parameters
as in Fig. 4, by changing the rotation frequency to 2 = 0.8. The color
bar on the right specifies variation of the density from O (darker) to
0.01 (lighter).

In Fig. 7, the miscible structure of the binary system is
illustrated by the dependence of parameter 7, defined by
Eq. (12), on the ratio between inter- and intrascattering lengths
as defined by Eq. (13), for different values of €2.

C. The asymmetric '®*Er-'%Dy mixture under the
action of contact interactions

The phase diagram of vortex patterns for parameters
corresponding to the 'Er-'%*Dy mixture is displayed in
Fig. 8. Recall that, in the absence of contact interactions, this
system is immiscible, as shown above in Fig. 2. However,
imbalanced inter- and intraspecies contact interactions can
impose miscibility in this setting. The phase diagram of the
asymmetric system is drastically different from that for its
symmetric '**Dy-'9’Dy counterpart, due to the miscibility of
the latter in the absence of contact interactions (cf. Fig. 3). Note

1.0 T

n

0.6

A4 |
0.50 1.00 1.65

FIG. 7. Miscibility parameter 1 [Eq. (12)] is plotted in terms
of § for the '**Dy-'Dy mixture at different values of the rotation
frequency 2.
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FIG. 8. The phase diagram of vortex patterns in the plane defined
by 8 and the rotation frequency €2 plane, for the asymmetric
18Er- 164Dy mixture. The symbols for the observed lattice patterns
are as follows: triangles for triangular-shaped, squares for squared-
shaped, and concentric circles for circular lattices.

that, while the immiscibility in nondipolar binary condensates
takes place at § > 1, in the '*®Er-'®Dy system complete
immiscibility commences from § = 0.9. The shift to § < 1
is induced by the imbalance of the DDI.

In the case of immiscible states for the '*Er-1%*Dy system
at § > 0.9, only circular-shaped lattices are established. In
both the miscible and immiscible states, the squared- and
circular-shaped lattices are shown in Figs. 9 and 10. Due to
immiscibility, the first component is surrounded by the second
component, (cf. Fig. 2 which displays a similar arrangement
in the immiscible system of the '*Er-'%*Dy type). In such a
phase-segregated mixture, vortices in the second component
are arranged into a circular lattice. A similar situation may also
occur in asymmetric nondipolar systems with a;; # a; and
aip = /aiiax, when unequal intraspecies interactions may
balance the interspecies repulsion [8].

() 6=10

FIG. 9. Similar to Fig. 4, for the 'Er-'**Dy mixture, we have
the 2D densities [v; |2 for several values of 8. As in Fig. 4, we have
the rotation frequency 2 = 0.4, with the other parameters given by
Nj:l,z = 104, A= 20, and ap = 50&0.
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FIG. 10. The same as in Fig. 9, with the rotation frequency
changed to 2 = 0.8.

In Fig. 11, where the miscibility parameter n is shown
as a function of the scattering-length ratio § [see Eq. (13)],
one can verify that the behavior obtained for the asymmetric
18 Er-1Dy mixture is quite different from that of the nearly
symmetric '**Dy-'9Dy mixture shown in Fig. 7. By consid-
ering the same scattering lengths for both species (§ ~ 1)
we see that the large miscibility of the dipolar '®*Dy-1%2Dy
mixture (with n &~ 0.8) is not too much affected by the rotation.
However, in the same condition (§ ~ 1), the miscibility of the
dipolar asymmetric '®*Er-'®*Dy mixture is strongly affected
by the rotation: faster rotation increases the miscibility of
the mixture. As a general trend, for a large range of values
for §, faster rotations tend to enhance mixing (increasing 7)
of the asymmetric dipolar mixture. This behavior is reversed
only for § £ 1.5. When the interspecies scattering length a;,
is about 1.5ay; or larger, the miscibility decreases for larger
rotations. In Table 1, we can better verify the dependence of the

o5

FIG. 11. The miscibility parameter n [Eq. (12)] as a function
of 8 = ap/ay; (with a1y = az and aj, = 50 ag) for the '**Er-'%Dy
mixture is represented for three different values of the rotation
frequency 2 as indicated.
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TABLE I. Miscibility parameter 1 [Eq. (12)] as a function of
the interspecies and intraspecies scattering-length ratio, § = a,/a,;,
at different values of the rotation frequency 2 for the mixtures
considered in the paper. For the sake of comparison, in our analysis
a mixture with dipolar and nondipolar species, '**Dy-3Rb, is also
included.

) Q2 n n n
164Dy_162Dy 168Er_164Dy 164Dy_85Rb
0.5 0.0 1.0 0.86 0.93
0.4 0.95 0.81 0.83
0.9 0.92 0.82 0.82
1.0 0.0 0.99 0.32 0.73
0.4 0.83 0.30 0.69
0.9 0.83 0.48 0.69
1.5 0.0 0.23 0.17 0.59
0.4 0.39 0.15 0.53
0.9 0.46 0.13 0.54

miscibility on changes of the rotation parameter, for different
values of §, considering the two mixtures we are studying, as
well as a case where one of the species is nondipolar, which is
discussed in the following subsection.

D. The mixture of dipolar and nondipolar species

In this subsection we briefly comment on the coupled
164Dy-85Rb mixture, where the magnetic moment of the second
species (*Rb) is negligible. This type of mixture was discussed
in Ref. [34], where half-quantum vortex chains were reported,
such that here we just include our corresponding results in
Table I for the sake of comparison with the results we have
obtained for the symmetric and asymmetric dipolar mixtures.
We summarize in Table I our results for the dependence of
the miscibility parameter n on the relevant control parameters
which are considered in the present work, i.e., the scattering-
length ratio § [Eq. (13)] and the rotation frequency £2.

As a general remark, it is observed from the two-component
mixture of the '*Dy-*Rb type that the absence of the
dipole-dipole repulsion between the two components tends to
make the mixture less miscible in the presence of the rotation.
When there is no rotation, the strong role of the ratio between
the scattering lengths is clear, with the miscibility decreasing
significantly for larger values of §. This trend is attenuated
by increasing the rotation of the coupled systems, as faster
rotations tend to enhance mixing. Another remark is that
the asymmetric dipolar mixture, '*Er-'%Dy, is always less
miscible than the others two mixtures.

IV. SUMMARY AND CONCLUSION

Stimulated by the current interest from experiments with
dipolar BEC mixtures, we have developed a detailed theoreti-
cal analysis for two corotating mixtures: one nearly symmetric
(corresponding to parameters of the '**Dy-'92Dy system), and
one asymmetric, which represents the '®*Er-'®Dy mixture.
The dynamics of the mixtures is described by the effectively 2D
system of coupled GPEs (Gross-Pitaevskii equations), which
was derived from the full 3D system under the assumption of

063624-7



KUMAR, TOMIO, MALOMED, AND GAMMAL

strong confinement in the transverse direction. For that, we
consider pancake-type condensates with the aspect ratio given
by A = 20. The coupled equations include both the repulsive
dipole-dipole interactions and repulsive contact interactions,
with our results being presented in two-dimensional density
plots, complemented by phase diagram analysis relatint the
two main parameters found for the miscibility of the species:
the rotation angular parameter <2 and the ratio between scatter-
ing lengths for the inter- and intraspecies contact interactions,
given by §. The phase diagrams display stability regions for
several basic types of binary vortex lattices. In the absence of
the contact interactions, the symmetric system is miscible,
while the asymmetric one is not. The addition of contact
interactions can change significantly the situation. For the
symmetric mixture, '**Dy-1%2Dy, the phase diagram is similar
to those recently found for binary nondipolar condensates.
It includes regions supporting the following vortex lattices:
triangular, square-shaped, rectangular-shaped, double core,
striped, and with domain walls. The phase diagram for the
asymmetric mixture, ' Er-'*Dy, includes triangular, square-
shaped, and circular lattices.

To understand the origin of the observed vortex patterns, it
is relevant to recall a previous work [21], where vortices in a
dipolar-nondipolar mixture were considered. It was found that
the role of the dipolar component is to create vortices when
the long-range dipolar interactions dominate over the contact
nonlinearity. Following the pattern, we start the presentation
of our results by considering pure dipolar mixtures, with both
components involved in the dipolar interactions. In this case,
the long-range interactions give rise to two distinct kinds of
vortex patterns, displayed in Figs. 1 and 2, the selection of a
particular one being mainly determined by the miscibility or
the immiscibility of the two-component system. The miscible
system favors the square-shaped or striped lattices, whereas
the immiscibility tends to establish a hexagonal lattice in one
component, surrounded by a ring-shaped structure in the other.
It is concluded from the consideration of the settings which
include contact interactions that, in addition to the rotation
frequency, the shape of the observed patterns is strongly
affected by the (im)miscibility of the coupled system, which
may be effectively shifted by the contribution from the contact
interactions.

PHYSICAL REVIEW A 96, 063624 (2017)

By summarizing the net effect of rotation, as well as contact
interactions, in the miscibility of dipolar coupled systems,
complementing the analysis presented in the Figs. 7 and 11, we
include Table I, for three values of the rotation parameter €2 and
three values of the scattering-ratio parameter 6. In this table,
for the sake of comparison with the dipolar systems which we
have studied, we also add results obtained for a nondipolar
coupled system, the '**Dy-3Rb mixture, where the magnetic
moment of the second species (*'Rb) is negligible. As can be
seen, by increasing the rotation, the coupled system becomes
less miscible. The strong role of the ratio between the scattering
lengths § for the miscibility can be clearly verified from the
results given in the table, with the parameter n decreasing
significantly as we increase this ratio. The general trend of the
rotation is to attenuate such an effect by increasing the rotation
of the coupled systems.

To finally summarize, we have presented results on
vortex-lattice structures expected to be of general interest
in studies with dipolar mixtures. By considering particular
dipolar mixtures, in specific pancake-type geometry, we
are contemplating dipolar BEC systems in stable configu-
rations, which are under active investigations in cold-atom
laboratories, with promising potential realization. Possible
extensions of the present work on rotating binary condensates
could be by including spin-orbit coupling effects, following
analysis also studied in Ref. [35]. Another challenging
generalization can be by studying spatially anisotropic quasi-
2D configurations, with the magnetic dipoles oriented not
perpendicularly to the system’s plane, but rather in the
surface, considering that bright solitons were verified in such a
configuration [36].

ACKNOWLEDGMENTS

R.K.K. acknowledges the financial support from FAPESP
of Brazil (Contract No. 2014/01668-8). A.G. and L.T. thanks
CAPES, CNPq, and FAPESP of Brazil for partial support.
L.T. is also partially supported by INCT-FNA (Proc. No.
464898/2014-5). The work of B.A.M. is partly supported by
Grant No. 2015616 from the joint program of the National Sci-
ence Foundation (US) and the Binational Science Foundation
(US-Israel), and by Grant No. 1287/17 from the Israel Science
Foundation.

[1] A.L.Fetter, Ann. Phys. 70, 67 (1972); F. Dalfovo, S. Giorgini, L.
P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999);
A. L. Fetter and A. A. Svidzinsky, J. Phys.: Condens. Matter
13, R135 (2001); P. G. Kevrekidis, R. Carretero-Gonzdlez, D. J.
Frantzeskakis, and 1. G. Kevrekidis, Mod. Phys. Lett. B 18,
1481 (2004); A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009); H.
Saarikoski, S. M. Reimann, A. Harju, and M. Manninen, ibid. 82,
2785 (2010); S. Serafini, L. Galantucci, E. Iseni, T. Bienaimé,
R. N. Bisset, C. F. Barenghi, F. Dalfovo, G. Lamporesi, and G.
Ferrari, Phys. Rev. X 7, 021031 (2017).

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys.
Rev. Lett. 84, 806 (2000); B. P. Anderson, P. C. Haljan, C.
A. Regal, D. L. Feder, L. A. Collins, C. W. Clark, and E. A.

2

—

Cornell, ibid. 86, 2926 (2001); A. E. Leanhardt, A. Gorlitz, A.
P. Chikkatur, D. Kielpinski, Y. Shin, D. E. Pritchard, and W.
Ketterle, ibid. 89, 190403 (2002); E. A. L. Henn, J. A. Seman,
G. Roati, K. M. E. Magalhies, and V. S. Bagnato, ibid. 103,
045301 (2009).

[3] A. E. Leanhardt, Y. Shin, D. Kielpinski, D. E. Pritchard, and W.
Ketterle, Phys. Rev. Lett. 90, 140403 (2003).

[4] A.M. Martin, N. G. Marchant, D. H. J. O’Dell, and N. G. Parker,
J. Phys.: Condens. Matter 29, 103004 (2017).

[5] E.J. Mueller and T. L. Ho, Phys. Rev. Lett. 88, 180403 (2002).

[6] K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 91,
150406 (2003); K. Kasamatsu and M. Tsubota, Phys. Rev. A 79,
023606 (2009).

063624-8


https://doi.org/10.1016/0003-4916(72)90330-2
https://doi.org/10.1016/0003-4916(72)90330-2
https://doi.org/10.1016/0003-4916(72)90330-2
https://doi.org/10.1016/0003-4916(72)90330-2
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1088/0953-8984/13/12/201
https://doi.org/10.1088/0953-8984/13/12/201
https://doi.org/10.1088/0953-8984/13/12/201
https://doi.org/10.1088/0953-8984/13/12/201
https://doi.org/10.1142/S0217984904007967
https://doi.org/10.1142/S0217984904007967
https://doi.org/10.1142/S0217984904007967
https://doi.org/10.1142/S0217984904007967
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/RevModPhys.82.2785
https://doi.org/10.1103/RevModPhys.82.2785
https://doi.org/10.1103/RevModPhys.82.2785
https://doi.org/10.1103/RevModPhys.82.2785
https://doi.org/10.1103/PhysRevX.7.021031
https://doi.org/10.1103/PhysRevX.7.021031
https://doi.org/10.1103/PhysRevX.7.021031
https://doi.org/10.1103/PhysRevX.7.021031
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.86.2926
https://doi.org/10.1103/PhysRevLett.86.2926
https://doi.org/10.1103/PhysRevLett.86.2926
https://doi.org/10.1103/PhysRevLett.86.2926
https://doi.org/10.1103/PhysRevLett.89.190403
https://doi.org/10.1103/PhysRevLett.89.190403
https://doi.org/10.1103/PhysRevLett.89.190403
https://doi.org/10.1103/PhysRevLett.89.190403
https://doi.org/10.1103/PhysRevLett.103.045301
https://doi.org/10.1103/PhysRevLett.103.045301
https://doi.org/10.1103/PhysRevLett.103.045301
https://doi.org/10.1103/PhysRevLett.103.045301
https://doi.org/10.1103/PhysRevLett.90.140403
https://doi.org/10.1103/PhysRevLett.90.140403
https://doi.org/10.1103/PhysRevLett.90.140403
https://doi.org/10.1103/PhysRevLett.90.140403
https://doi.org/10.1088/1361-648X/aa53a6
https://doi.org/10.1088/1361-648X/aa53a6
https://doi.org/10.1088/1361-648X/aa53a6
https://doi.org/10.1088/1361-648X/aa53a6
https://doi.org/10.1103/PhysRevLett.88.180403
https://doi.org/10.1103/PhysRevLett.88.180403
https://doi.org/10.1103/PhysRevLett.88.180403
https://doi.org/10.1103/PhysRevLett.88.180403
https://doi.org/10.1103/PhysRevLett.91.150406
https://doi.org/10.1103/PhysRevLett.91.150406
https://doi.org/10.1103/PhysRevLett.91.150406
https://doi.org/10.1103/PhysRevLett.91.150406
https://doi.org/10.1103/PhysRevA.79.023606
https://doi.org/10.1103/PhysRevA.79.023606
https://doi.org/10.1103/PhysRevA.79.023606
https://doi.org/10.1103/PhysRevA.79.023606

VORTEX LATTICES IN BINARY BOSE-EINSTEIN ...

[7] N. Ghazanfari, A. Keles, and M. O. Oktel, Phys. Rev. A 89,
025601 (2014).

[8] P. Mason and A. Aftalion, Phys. Rev. A 84, 033611 (2011).

[9] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau,
Phys. Rev. Lett. 116, 215301 (2016).

[10] M. Schmitt, M. Wenzel, F. Bottcher, 1. Ferrier-Barbut, and T.
Pfau, Nature (London) 539, 259 (2016).

[11] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wichtler, L.
Santos, and F. Ferlaino, Phys. Rev. X 6, 041039 (2016).

[12] D. S. Petrov, Phys. Rev. Lett. 115, 155302 (2015).

[13] D. S. Petrov and G. E. Astrakharchik, Phys. Rev. Lett. 117,
100401 (2016).

[14] Y. Li, Z. Luo, Y. Liu, Z. Chen, C. Huang, S. Fu, H. Tan, and
B. A. Malomed, New J. Phys. 19, 113043 (2017).

[15] C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas,
P. Cheiney, and L. Tarruell, Science 358, eaa05686
(2017).

[16] G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk,
F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M.
Fattori, arXiv:1710.10890v1 [cond-mat.quant-gas].

[17] P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L.
Tarruell, arXiv:1710.11079v1 [cond-mat.quant-gas].

[18] S. Yi and H. Pu, Phys. Rev. A 73, 061602(R) (2006).

[19] F. Malet, T. Kristensen, S. M. Reimann, and G. M. Kavoulakis,
Phys. Rev. A 83, 033628 (2011).

[20] R. K. Kumar and P. Muruganandam, J. Phys. B: At. Mol. Opt.
Phys. 45, 215301 (2012); Eur. Phys. J. D 68, 289 (2014); R. K.
Kumar, T. Sriraman, H. Fabrelli, P. Muruganandam, and A.
Gammal, J. Phys. B: At. Mol. Opt. Phys. 49, 155301 (2016).

[21] Y. Zhao, J. An, and C. D. Gong, Phys. Rev. A 87, 013605
(2013).

[22] R. K. Kumar, P. Muruganandam, L. Tomio, and A. Gammal,
J. Phys. Commun. 1, 035012 (2017).

[23] K. Géral and L. Santos, Phys. Rev. A. 66, 023613 (2002).

[24] R. M. Wilson, C. Ticknor, J. L. Bohn, and E. Timmermans,
Phys. Rev. A 86, 033606 (2012).

PHYSICAL REVIEW A 96, 063624 (2017)

[25] L. Salasnich, Laser Phys. 12, 198 (2002); L. Salasnich, A. Parola,
and L. Reatto, Phys. Rev. A 65, 043614 (2002).

[26] L. Salasnich and B. A. Malomed, Phys. Rev. A 79, 053620
(2009).

[27] R. K. Kumar, L. E. Young-S, D. Vudragovi¢, A. Balaz, P.
Muruganandam, and S. K. Adhikari, Comput. Phys. Commun.
195, 117 (2015).

[28] A.Gammal, T. Frederico, and L. Tomio, Phys. Rev. A 64, 055602
(2001); A. Gammal, L. Tomio, and T. Frederico, ibid. 66,043619
(2002); M. Brtka, A. Gammal, and L. Tomio, Phys. Lett. A 359,
339 (2006).

[29] P. Muruganandam and S. K. Adhikari, Comp. Phys. Commun.
180, 1888 (2009); D. Vudragovié, 1. Vidanovi¢, A. Balaz, P.
Muruganandam, and S. K. Adhikari, ibid. 183, 2021 (2012).

[30] D. A.Butts and D. S. Rokhsar, Nature (London) 397, 327 (1998).

[31] W. Bao, H. Wang, and P. A. Markowich, Comm. Math. Sci. 3,
57 (2005); B. W. Jeng, Y. S. Wang, and C. S. Chien, Comput.
Phys. Commun. 184, 493 (2013).

[32] V. P. Mineev, Zh. Eksp. Teor. Fiz. 67, 263 (1974) [Sov. Phys.-
JETP 40, 132 (1975)].

[33] Y. Li, J. Liu, W. Pang, and B. A. Malomed, Phys. Rev. A 88,
053630 (2013).

[34] W. E. Shirley, B. M. Anderson, C. W. Clark, and R. M. Wilson,
Phys. Rev. Lett. 113, 165301 (2014).

[35] X.-Q. Xu and J. H. Han, Phys. Rev. Lett. 107, 200401 (2011);
T. Kawakami, T. Mizushima, and K. Machida, Phys. Rev. A 84,
011607(R) (2011); J. Radi¢, T. A. Sedrakyan, 1. B. Spielman,
and V. Galitski, ibid. 84, 063604 (2011); X.-F. Zhou, J. Zhou,
and C. Wu, ibid. 84, 063624 (2011); Z. F. Xu, Y. Kawaguchi,
L. You, and M. Ueda, ibid. 86, 033628 (2012); E. Ruokokoski,
J. A. M. Huhtamiki, and M. Motténen, ibid. 86, 051607(R)
(2012); B. Ramachandhran, B. Opanchuk, X.-J. Liu, H. Pu, P. D.
Drummond, and H. Hu, ibid. 85, 023606 (2012); H. Sakaguchi
and B. Li, ibid. 87, 015602 (2013).

[36] I. Tikhonenkov, B. A. Malomed, and A. Vardi, Phys. Rev. Lett.
100, 090406 (2008).

063624-9


https://doi.org/10.1103/PhysRevA.89.025601
https://doi.org/10.1103/PhysRevA.89.025601
https://doi.org/10.1103/PhysRevA.89.025601
https://doi.org/10.1103/PhysRevA.89.025601
https://doi.org/10.1103/PhysRevA.84.033611
https://doi.org/10.1103/PhysRevA.84.033611
https://doi.org/10.1103/PhysRevA.84.033611
https://doi.org/10.1103/PhysRevA.84.033611
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1038/nature20126
https://doi.org/10.1038/nature20126
https://doi.org/10.1038/nature20126
https://doi.org/10.1038/nature20126
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.1103/PhysRevLett.115.155302
https://doi.org/10.1103/PhysRevLett.115.155302
https://doi.org/10.1103/PhysRevLett.115.155302
https://doi.org/10.1103/PhysRevLett.115.155302
https://doi.org/10.1103/PhysRevLett.117.100401
https://doi.org/10.1103/PhysRevLett.117.100401
https://doi.org/10.1103/PhysRevLett.117.100401
https://doi.org/10.1103/PhysRevLett.117.100401
https://doi.org/10.1088/1367-2630/aa983b
https://doi.org/10.1088/1367-2630/aa983b
https://doi.org/10.1088/1367-2630/aa983b
https://doi.org/10.1088/1367-2630/aa983b
https://doi.org/10.1126/science.aao5686
https://doi.org/10.1126/science.aao5686
https://doi.org/10.1126/science.aao5686
https://doi.org/10.1126/science.aao5686
http://arxiv.org/abs/arXiv:1710.10890v1
http://arxiv.org/abs/arXiv:1710.11079v1
https://doi.org/10.1103/PhysRevA.73.061602
https://doi.org/10.1103/PhysRevA.73.061602
https://doi.org/10.1103/PhysRevA.73.061602
https://doi.org/10.1103/PhysRevA.73.061602
https://doi.org/10.1103/PhysRevA.83.033628
https://doi.org/10.1103/PhysRevA.83.033628
https://doi.org/10.1103/PhysRevA.83.033628
https://doi.org/10.1103/PhysRevA.83.033628
https://doi.org/10.1088/0953-4075/45/21/215301
https://doi.org/10.1088/0953-4075/45/21/215301
https://doi.org/10.1088/0953-4075/45/21/215301
https://doi.org/10.1088/0953-4075/45/21/215301
https://doi.org/10.1140/epjd/e2014-40787-1
https://doi.org/10.1140/epjd/e2014-40787-1
https://doi.org/10.1140/epjd/e2014-40787-1
https://doi.org/10.1140/epjd/e2014-40787-1
https://doi.org/10.1088/0953-4075/49/15/155301
https://doi.org/10.1088/0953-4075/49/15/155301
https://doi.org/10.1088/0953-4075/49/15/155301
https://doi.org/10.1088/0953-4075/49/15/155301
https://doi.org/10.1103/PhysRevA.87.013605
https://doi.org/10.1103/PhysRevA.87.013605
https://doi.org/10.1103/PhysRevA.87.013605
https://doi.org/10.1103/PhysRevA.87.013605
https://doi.org/10.1088/2399-6528/aa8db5
https://doi.org/10.1088/2399-6528/aa8db5
https://doi.org/10.1088/2399-6528/aa8db5
https://doi.org/10.1088/2399-6528/aa8db5
https://doi.org/10.1103/PhysRevA.66.023613
https://doi.org/10.1103/PhysRevA.66.023613
https://doi.org/10.1103/PhysRevA.66.023613
https://doi.org/10.1103/PhysRevA.66.023613
https://doi.org/10.1103/PhysRevA.86.033606
https://doi.org/10.1103/PhysRevA.86.033606
https://doi.org/10.1103/PhysRevA.86.033606
https://doi.org/10.1103/PhysRevA.86.033606
https://doi.org/10.1103/PhysRevA.65.043614
https://doi.org/10.1103/PhysRevA.65.043614
https://doi.org/10.1103/PhysRevA.65.043614
https://doi.org/10.1103/PhysRevA.65.043614
https://doi.org/10.1103/PhysRevA.79.053620
https://doi.org/10.1103/PhysRevA.79.053620
https://doi.org/10.1103/PhysRevA.79.053620
https://doi.org/10.1103/PhysRevA.79.053620
https://doi.org/10.1016/j.cpc.2015.03.024
https://doi.org/10.1016/j.cpc.2015.03.024
https://doi.org/10.1016/j.cpc.2015.03.024
https://doi.org/10.1016/j.cpc.2015.03.024
https://doi.org/10.1103/PhysRevA.64.055602
https://doi.org/10.1103/PhysRevA.64.055602
https://doi.org/10.1103/PhysRevA.64.055602
https://doi.org/10.1103/PhysRevA.64.055602
https://doi.org/10.1103/PhysRevA.66.043619
https://doi.org/10.1103/PhysRevA.66.043619
https://doi.org/10.1103/PhysRevA.66.043619
https://doi.org/10.1103/PhysRevA.66.043619
https://doi.org/10.1016/j.physleta.2006.05.067
https://doi.org/10.1016/j.physleta.2006.05.067
https://doi.org/10.1016/j.physleta.2006.05.067
https://doi.org/10.1016/j.physleta.2006.05.067
https://doi.org/10.1016/j.cpc.2009.04.015
https://doi.org/10.1016/j.cpc.2009.04.015
https://doi.org/10.1016/j.cpc.2009.04.015
https://doi.org/10.1016/j.cpc.2009.04.015
https://doi.org/10.1016/j.cpc.2012.03.022
https://doi.org/10.1016/j.cpc.2012.03.022
https://doi.org/10.1016/j.cpc.2012.03.022
https://doi.org/10.1016/j.cpc.2012.03.022
https://doi.org/10.1038/16865
https://doi.org/10.1038/16865
https://doi.org/10.1038/16865
https://doi.org/10.1038/16865
https://doi.org/10.4310/CMS.2005.v3.n1.a5
https://doi.org/10.4310/CMS.2005.v3.n1.a5
https://doi.org/10.4310/CMS.2005.v3.n1.a5
https://doi.org/10.4310/CMS.2005.v3.n1.a5
https://doi.org/10.1016/j.cpc.2012.10.001
https://doi.org/10.1016/j.cpc.2012.10.001
https://doi.org/10.1016/j.cpc.2012.10.001
https://doi.org/10.1016/j.cpc.2012.10.001
https://doi.org/10.1103/PhysRevA.88.053630
https://doi.org/10.1103/PhysRevA.88.053630
https://doi.org/10.1103/PhysRevA.88.053630
https://doi.org/10.1103/PhysRevA.88.053630
https://doi.org/10.1103/PhysRevLett.113.165301
https://doi.org/10.1103/PhysRevLett.113.165301
https://doi.org/10.1103/PhysRevLett.113.165301
https://doi.org/10.1103/PhysRevLett.113.165301
https://doi.org/10.1103/PhysRevLett.107.200401
https://doi.org/10.1103/PhysRevLett.107.200401
https://doi.org/10.1103/PhysRevLett.107.200401
https://doi.org/10.1103/PhysRevLett.107.200401
https://doi.org/10.1103/PhysRevA.84.011607
https://doi.org/10.1103/PhysRevA.84.011607
https://doi.org/10.1103/PhysRevA.84.011607
https://doi.org/10.1103/PhysRevA.84.011607
https://doi.org/10.1103/PhysRevA.84.063604
https://doi.org/10.1103/PhysRevA.84.063604
https://doi.org/10.1103/PhysRevA.84.063604
https://doi.org/10.1103/PhysRevA.84.063604
https://doi.org/10.1103/PhysRevA.84.063624
https://doi.org/10.1103/PhysRevA.84.063624
https://doi.org/10.1103/PhysRevA.84.063624
https://doi.org/10.1103/PhysRevA.84.063624
https://doi.org/10.1103/PhysRevA.86.033628
https://doi.org/10.1103/PhysRevA.86.033628
https://doi.org/10.1103/PhysRevA.86.033628
https://doi.org/10.1103/PhysRevA.86.033628
https://doi.org/10.1103/PhysRevA.86.051607
https://doi.org/10.1103/PhysRevA.86.051607
https://doi.org/10.1103/PhysRevA.86.051607
https://doi.org/10.1103/PhysRevA.86.051607
https://doi.org/10.1103/PhysRevA.85.023606
https://doi.org/10.1103/PhysRevA.85.023606
https://doi.org/10.1103/PhysRevA.85.023606
https://doi.org/10.1103/PhysRevA.85.023606
https://doi.org/10.1103/PhysRevA.87.015602
https://doi.org/10.1103/PhysRevA.87.015602
https://doi.org/10.1103/PhysRevA.87.015602
https://doi.org/10.1103/PhysRevA.87.015602
https://doi.org/10.1103/PhysRevLett.100.090406
https://doi.org/10.1103/PhysRevLett.100.090406
https://doi.org/10.1103/PhysRevLett.100.090406
https://doi.org/10.1103/PhysRevLett.100.090406



