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A relaxation method is employed to study a rotating dense Bose-Einstein condensate beyond the Thomas-
Fermi approximation. We use a slave-boson model to describe the strongly interacting condensate and derive
a generalized nonlinear Schrödinger equation with a kinetic term for the rotating condensate. In comparison
with previous calculations, based on the Thomas-Fermi approximation, significant improvements are found in
regions where the condensate in a trap potential is not smooth. The critical angular velocity of the vortex
formation is higher than in the Thomas-Fermi prediction.
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I. INTRODUCTION

The appearance of vortices in a rotating dilute Bose-
Einstein condensate �BEC� is a phenomenon that is intrinsi-
cally related to the existence of superfluidity �1,2�. This has
been intensively studied �3,4� after the achievement of BEC
in alkali-metal gases �5,6�. The vortex formation can be un-
derstood as a local suppression of the BEC due to rotation. It
happens when the angular velocity � exceeds a critical value
�c �7�. The critical angular velocity is obtained by an energy
argument �7�, in which the energy of the BEC without a
vortex is higher than the energy of the BEC with a vortex for
���c. With higher angular velocities, more than one vortex
can be created to minimize the energy of the BEC. In this
paper we will concentrate on values of � where only the
creation of a single vortex is possible.

Since vortices are accompanied by a local suppression of
the BEC, other mechanisms of BEC suppression may inter-
fere with the vortex formation. An important example is the
depletion of the BEC by a strong interaction between the
bosonic particles. The latter is possible in the form of repul-
sive s-wave scattering in a dense BEC �11�.

In the case of a dilute BEC �i.e., for weak interaction� a
mean-field theory in terms of the Gross-Pitaevskii equation
provides a description of the vortex formation �8�. The rela-
tion between the number of particles in the BEC and the
critical angular velocity was determined within this approach
�9�. This can be extended to a dense Bose gas, where not all
particles contribute to the BEC �i.e., there is a depletion of
the BEC�. The discussion of the dense Bose gas requires a
statistical description of the entire Bose gas, using, for in-
stance, a functional-integral representation �10�. Neverthe-
less, it turns out that a classical field equation for the BEC
order parameter can also be derived, which is equivalent to
the Gross-Pitaevskii equation in the limit of a dilute Bose gas
�11� and a renormalized Gross-Pitaevskii equation for higher
densities. In the regime of high densities, the strongly inter-
acting Bose gas has been studied within this statistical ap-
proach �10–16�. A relatively simple method to study strong
interaction is the slave-boson approach. This method was
originally suggested for strongly interacting fermions �17,18�
and was later also applied to bosons �10�. The central idea of
the method is to construct operators or fields for particles and

holes in a fictitious vacuum, and to introduce a constraint,
which guarantees that each position is occupied either by a
particle or by a hole. This leads to a dynamics, where tun-
neling of physical particles is described by an exchange of a
particle with a hole, and no multiple occupation by particles
is possible. Although this construction makes the theory
more complex �because of the additional holes�, it also pro-
vides more freedom to choose a proper mean-field approxi-
mation. Moreover, the bosonic version of the slave-boson
approach, which will be applied in this paper, allows for an
exact treatment of the constraint �10�. Here we will not
present the details of the slave-boson approach but refer to
the literature. A recent discussion can be found in Ref. �15�.
Within a mean-field �Thomas-Fermi� approximation of
slave-boson theory we were able to study the formation of a
vortex in the BEC of a dense Bose gas �15�. However, a
mean-field approach is a reliable approximation only for a
BEC that is smoothly changing in space. The latter is not the
case near the core of a vortex, where the condensate density
is changing strongly on short scales. Therefore, it is impor-
tant to extend the mean-field theory to a classical field theory
with a kinetic term. This leads to a nonlinear partial differ-
ential equation which can be treated with a numerical
method. In the present work we are using a relaxation ap-
proach. Relaxation techniques have been extensively used to
obtain the ground-state solution of the Gross-Pitaevskii equa-
tion �21–25�. These techniques require interaction and need
little computational effort. The method provides stable solu-
tions of the slave-boson approach.

This work is organized as follows. In Sec. II we summa-
rize the main equations of the slave-boson approach. The
trapped condensate is shown in spherical and cylindrical co-
ordinates in Sec. III. In Sec. IV we discuss the numerical
procedure used in this work and present the numerical results
with and without vortices. Afterward, we review our main
results in Sec. V.

II. SLAVE-BOSON APPROACH

We consider a grand-canonical ensemble of bosons with
chemical potential � at temperature T=1 /kB�. Its thermody-
namics is described by the partition function
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Z = Tre−��H−�N�, �1�

where H is the Hamiltonian of the interacting Bose gas, N
the particle number operator, and Tr the trace over all pos-
sible quantum states of the system. If the interaction is due to
a hard core of a given radius a, the Bose gas can be approxi-
mated by a lattice gas with lattice constant a. Then we can
apply the slave-boson approach �10–16� which allows us to
write the partition function Z as a functional integral with
respect to a complex �order-parameter� field ��r�. Here we
start with an expression for Z, whose derivation was given in
Ref. �15�:

Z =� e−S�
r

d��r� �2�

with the continuum action

S =� ����*�r��−
�

�1 + ��2

a2

6
�2 +

1

1 + 1/�	
���r� − ln Z�r�
ddr , �3�

where

Z�r� =� e−����r�2 sinh�������r� + ��/2�2 + 
��r�
2�

�������r� + ��/2�2 + 
��r�
2�
d��r� .

�4�

� is a free parameter which appears as an ambiguity in the
functional integral �19�. It is necessary for the integration,
but the exact functional integral Z does not depend on the
choice of �. However, approximations may depend on it. In
agreement with a previous work �11� we choose �=1 /5.5 for
the following calculation. In S we have introduced the pa-
rameters

�� = �J�, �� =
�

�J
, �5�

where J is the tunneling rate of the lattice model �i.e., before
taking the continuum limit�.

Since � is the order-parameter field, the number of con-
densed bosons can be written as an integral over 
��r�
2:

N0 =
1

a3

1

�1 + 1/��2 � 
��r�
2d3r . �6�

Thus we can associate 
��r�
2 /a3�1+1 /��2 with the density
of condensed bosons.

The evaluation of the partition function in Eq. �2� requires
a functional integration. This can be performed approxi-
mately by a saddle-point integration. The saddle point is de-
termined as the solution of a vanishing variation of S �i.e.,
	S=0�. This leads to

�−
Ja2

6
�2 + �1 + ��J − �J

�1 + 1/��2

��

� ln Z�r�
��
��r�
2�	��r� = 0,

�7�

where the last term can be explicitly evaluated as


 �
� log Z�r�
�
��r�
2

=
1

2

1

Z�r��−�

+�

d��r�e−��r�2� cosh �

�2 −
sinh �

�3 	 ,

�8�

with

� = ����r� + ��/2�2 + 
��r�
2. �9�

Equations �7� corresponds to the Gross-Pitaevskii �GP� equa-
tion �20�

�−

2

2M
�2 − �GP + V�r� + g
��r�
2	��r� = 0. �10�

The latter is obtained as a special case of Eq. �7� for a weakly
interacting Bose gas �15�. Here M is the mass of the bosons,
and the interaction strength of the two-particle interaction g
is related to the s-wave scattering length as by

g =
4�as


2

M
. �11�

There is a direct correspondence between the parameters J,
�, and a in Eq. �7�, and the parameters M, �̃, and g in Eq.
�10� �16�:


2

2M
�

Ja2

6
, g � 2a3J, �GP � � − J . �12�

Since Eq. �7� describes the condensate for arbitrary density,
we will use this in the subsequent calculation to evaluate the
condensate profile of a trapped and rotating dense Bose gas.

III. DENSE CONDENSATE IN A SPHERICAL HARMONIC
TRAP POTENTIAL

We assume a spherical trap potential given by

V�r� =
M

2
�ho

2 r2, �13�

where �ho is the trap angular frequency measured in rad/s. In
typical experiments, the oscillator length dho=�
 /M�ho is of
the order of a few micrometers �20�. The external potential
can now be included in a space-dependent chemical potential
as �→��r�=�−V�r�.

Considering, for instance, 85Rb atoms near a Feshbach
resonance �26�, we can study a Bose gas in a dense regime
with a scattering length as�a�200 nm. In our calculations
we choose the parameters

�� = 1,
kBT


�ho
= 36.93,

a

dho
= 0.1215, �14�

in order to compare with previous results in Ref. �15�.
In a spherical symmetric trap we can assume that the con-

densate is also spherically symmetric:

��r� = ��r� . �15�

Then Eq. �7� takes the form
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�−
a2

6�
� �2

�r2 +
2

r

�

�r
	 + �1 + 1/��

−
�1 + 1/��2

��

�

��
��r�
2�
ln Z�r�
��r� = 0. �16�

Now we consider a Bose gas that rotates with angular veloc-
ity � about the z axis. In the rotating frame this can be

described by adding −
�L̂z to the kinetic energy in Eq. �7�,
where the z component of the angular momentum operator is

L̂z = − i�x
�

�y
− y

�

�x
	 = − i

�

��
, �17�

and � is the polar angle in cylindrical coordinates.
For a condensate with a single vortex along the z axis, we

use cylindrical coordinates �r� ,z ,�� and make the ansatz

��r� = ��r�,z�eim� �18�

for the condensate order parameter. For m=0 there is no
vortex and for m=1 there is a single vortex. Then the clas-
sical field equation reads

�−
a2

6�
� �2

�r�
2 +

1

r�

�

�r�

+
�2

�z2	 + �1 + 1/�� + � a2m2

6�r�
2 − m��	

−
�1 + 1/��2

��

�

��
��r�,z�
2�
ln Z�r�,z�
��r�,z� = 0,

�19�

where �� is the rescaled angular velocity

�� �

�

�J
. �20�

The action is expressed as

S���� = 2�� ����−
�

�1 + ��2

a2

6
�*�r�,z

2 �

+ � �

�1 + ��2

a2m2

6r�
2 − m��	
�
2 +


�
2

�1 + ��2

− ln Z�r�,z��dr�dz �21�

IV. NUMERICAL RESULTS

The slave-boson equations �16� and �19� for a trapped
condensate without and with vortex, respectively, can be
solved numerically by means of a relaxation algorithm. The
full solutions are compared to previous results, which were
calculated from the Thomas-Fermi approximation �TFA�
�15�. In the TFA it is assumed that the kinetic energy can be
neglected in comparison to the potential energy �20�. Thus
the kinetic term containing the spatial derivatives is ne-
glected. This leads to a transcendental equation which is
easier to solve than the full differential equation.

The relaxation algorithm that we employ now is similar to
that applied for the GP equation in Ref. �27�, scheme B.

First, we introduce an artificial dynamics by writing Eq. �19�
in a time-dependent form as

��̃�r�,z�
�t

= �−
a2

6�
�r�,z

2 + �1 + 1/�� + � a2m2

6�r�
2 − m��	

−
�1 + 1/��2

��


�̃�r�,z� , �22�

where 
�̃
2�
�
2 /�, ���
�
2d3r. With this substitution the
function �̃ will always be normalized to 1 and bounded to
values not too big or too small to be operated numerically by
the kinetic term. This provides more stability to the code.

Equation �22� is discretized in the split-step form

�̃n+1/3 ← �̃n +
3��t

a2 ��� + 1

�
	 + � a2m2

6�r�
2 − m��	

− �� + 1

���2 	2


n
 ,

�̃n+2/3 ← OCN�̃n+1/3,

�̃n+1 ← �̃n +
3��t

a2 ��� + 1

�
	 + � a2m2

6�r�
2 − m��	

− �� + 1

���2 	2


n
 ,

�n+1 ← �n� 
�̃n+1
2d3r ,

�̃n+1 ←
�̃n+1

� 
�̃n+1
2d3r

, �23�

where the subscripts containing n correspond to the nth time
step. OCN corresponds to the Crank-Nicolson evolution algo-
rithm alternating in r� and z directions �28�. In the r� direc-
tion, Neumann boundary conditions ����r�=0,z� /�r�=0�
were taken at the origin. The integrals of 
 and Z can be
evaluated efficiently at each time step by Gauss-Hermite
quadrature with good convergence using only nine points.
The algorithm starts with an initial ansatz distribution loaded
to �̃. After evolving for sufficient long time the time deriva-
tive Eq. �22� vanishes, �̃n converges to the stationary solu-
tion, and �n converge to the norm of �.

In Fig. 1 we show the condensate density profile of a
trapped Bose gas at rest. As the chemical potential increases
from �a� to �c�, the total density of the Bose gas increases. It
should be kept in mind that the total density is always mono-
tonically decreasing from the center of the trap �cf. Ref.
�11��. Due to increased interaction at higher total densities,
depletion of the condensate reduces the condensate density at
the center of the trap. As we can see in Fig. 1�a�, at small
chemical potential �i.e., at low total density� the condensate
density is monotonically decreasing from the center, but at
higher values of the chemical potential depletion suppresses
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the condensate. This effect is stronger in regions with higher
total densities �i.e., near the center of the trap�, such that at
sufficiently high total densities the condensate is entirely de-
stroyed at the center �cf. Fig. 1�c��.

We also compare the full solution of Eq. �16� and the TFA
solution of Ref. �15� in Fig. 1. Although the difference be-
tween these solutions is small, the full solution shows that
the effect of the kinetic term is to smooth the abrupt changes
of the TFA. Otherwise, the TFA is a very good approxima-
tion in the regime considered here. Moreover, the depletion
of the condensate density at the center shows a perfect agree-
ment between the full solution and the TFA in this region.

In order to compare the slave-boson �SB� approach with
results for the dilute Bose gas in the existing literature, we
first evaluate the condensate density profile from the Gross-
Pitaevskii equation �10� without �m=0� and with �m=1� a
vortex for the TFA and for the full kinetic GP equation. The
results are shown in Fig. 2. Without a vortex we observe the
smoothing of the kinetic term near the discontinuity around
r=5. In the vortex case, on the other hand, we find the for-
mation of a core in the TFA. This core is also smoothed by
the kinetic term in the full solution.

Next, we evaluate the condensate density profile from the
slave-boson approach, using Eq. �7�, for corresponding pa-
rameter values. The results are presented in Fig. 3. The pa-
rameters where chosen so that the number of condensed at-
oms roughly agree in Figs. 2 and 3.

These results show a general similarity of the GP and SB
profiles. The cases of the GP and the SB calculations without
a vortex indicate that there is a noticeable depletion of the
central condensate density in the SB approach. There is prac-

tically no difference between the TFA and the full solution.
In the vortex case, the SB calculation shows that the core is
also smooth when the kinetic term is added, as shown in the
inset. Therefore the depletion in the center is overestimated
by the TFA. This indicates that the formation of a vortex is
less favorable than predicted by the TFA. Comparing the SB
and the GP calculation in the vortex case, we also observe
that the maximum of the SB profile is lower than that of the
GP equation. Thus the depletion is more effective in the SB
approach than in the GP equation. These results are in agree-
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FIG. 1. Radial profile of the condensate density. Thomas-Fermi
approximation results �dashed line� and the solution of the full dif-
ferential equation of slave-boson approach �solid line� with ��=1
for the case without vortex �m=0�. Thomas-Fermi results were pre-
viously published in Ref. �15�. Chemical potential ��= �a� 0, �b� 1,
and �c� 2 �units of J�. The atomic density n0 is given by Eq. �6�. r is
the distance from the center of the trap and dho is the harmonic
oscillator length. Labels are in dimensionless units, as in all the
following plots. �It should be noticed that the radial profile of the
total density of particles is monotonic with its maximum at r=0
�11�.�
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FIG. 2. Condensate density profiles obtained from the Gross-
Pitaesvkii �GP� equation using the Thomas-Fermi approximation
�TFA� and full numerical solution for the cases without �m=0� and
with vortex �m=1�. The parameters are the chemical potential
�GP=0.5 and the total number of atoms N=9095. r is the distance
from the center of the trap and dho is the harmonic oscillator length.
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FIG. 3. Condensate density profiles obtained from slave-boson
equation using Thomas-Fermi approximation �TFA� and full nu-
merical solution without �m=0� and with vortex �m=1�. The pa-
rameters are ��=10, chemical potential �=−4.85J, and number of
condensed particles N0=9112.
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ment with the general idea that the SB approach takes into
account higher-order interaction terms, leading to a more
pronounced depletion at the center.

The depletion at the center of the condensate should be
observed experimentally by measuring the critical angular
velocity of a stable vortex formation. In order to include
strong interaction, the measurement should be performed
near a Feshbach resonance, where the scattering length is
very large. The critical angular velocity can be evaluated in
the SB approach by following the procedure outlined previ-
ously in Ref. �9�. A vortex in a rotating condensate is stable
if the action, given in Eq. �3�, is smaller than the action of
the condensate without vortex

Sm=1��� � Sm=0. �24�

Solving numerically Eq. �19� and using this stability crite-
rion, we find the critical angular velocity �c for a vortex
formation. In Fig. 4 we compile these results by plotting the
critical angular velocity as a function of the number of con-
densed atoms. The TFA shows a lower critical angular veloc-
ity, in both the SB and the GP approaches, than the full
numerical solutions. This is in qualitative agreement with
previous results for the GP equation �29�. It can be simply
understood in terms of our analysis above: Adding the ki-

netic term smooths the core generated by TFA. Thus the
kinetic term adds condensed particles to the center. This ef-
fect suppresses the vortex formation. A comparison indicates
that for a small number of atoms, i.e., low density, the SB
prediction is practically the same as that of the GP equation.
However, as we increase the number of atoms, the SB ap-
proach significantly deviates from the GP equation, showing
lower critical angular velocity for a vortex formation. This
can be explained with the profile analysis described above:
the SB approach causes a stronger depletion than the GP
equation. This difference is even enhanced as the total den-
sity increases. As a consequence, a stronger depletion will
favor a vortex formation and thus a lower critical angular
velocity.

V. CONCLUSION

We employed the relaxation method to solve the slave-
boson model. With this method we obtained results beyond
the Thomas-Fermi approximation by including the kinetic
term of the field equation. We noticed that the depletion of
the condensate is overestimated by the Thomas-Fermi ap-
proximation. Therefore, in this approximation the critical an-
gular velocities are smaller than in the full solution. We also
compared the full slave-boson model with the full Gross-
Pitaevskii equation in the limit of low temperatures. In this
limit, the slave-boson condensate profiles are very similar to
the Gross-Pitaevskii condensate profiles at low densities. As
the density is increased, there is a significant enhancement of
the depletion in the slave-boson approach as compared to the
Gross-Pitaevskii equation. This causes the critical angular
velocity of vortex formation to be lower than expected from
the Gross-Pitaevskii equation. The latter results corroborate
previous estimates within the Thomas-Fermi approximation
done in Ref. �15�. All these effects should be observable in a
Bose gas near a Feshbach resonance, where the scattering
length is comparable with the mean distance of atoms.
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