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Quantum entropy dynamics for chaotic systems beyond the classical limit
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The entropy production rate for an open quantum system with a classically chaotic limit has been previously
argued to be independent of £ and D, the parameter denoting coupling to the environment, and to be equal to
the sum of generalized Lyapunov exponents, with these results applying in the near-classical regime. We
present results for a specific system going well beyond earlier work, considering how these dynamics are
altered for the Duffing problem by changing #,D and show that the entropy dynamics have a transition from
classical to quantum behavior that scales, at least for a finite time, as a function of #2/D.
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Consider a quantum system with a nonlinear classical
limit: Nonclassical effects depend on the size of Planck’s
constant 7 compared to the characteristic action. Further, the
system-environment interaction as measured through some
parameter D, is crucial [1]. The dynamics of the classical
limit of the problem are important [2] particularly through
the classical Lyapunov exponents A. It has recently been
found that the quantum entanglement rate for chaotic sys-
tems shows a valuable speed-up [3] but this is to be balanced
against the observed enhanced decoherence effects for cha-
otic systems in the classical limit [4—6]. However, there is
increased stability against fidelity decay deep in the quantum
parameter regime [7], leading to the proposal to “chaoticize”
quantum computation [8]. This complex multiparameter
quantum-classical transition is fundamental, poorly under-
stood, and also valuable in understanding the behavior of
quantum devices.

A recent analysis [9], summarized below, suggested that
headway could be made in characterizing the full range of
behavior by considering composite parameters and scaling.
That is, the quantum-classical difference as measured by
some quantity QC,(f,D,\) should be the simpler function
QC/({) of a single composite parameter {=A*DAN\?Y. Evi-
dence has begun to accumulate [10] supporting this perspec-
tive. These come mostly from studying the effect of chang-
ing D, i on time-independent (usually from ¢— c0) measures
QC,. The change with \ is harder to study since the classical
phase-space changes along with A. A different but related
issue is the nonequilibrium statistical mechanics of a nonlin-
ear quantum system as measured through the system’s en-
tropy dynamics. A powerful result of broad interest is that the
entropy production rate for an open quantum system with a
classically chaotic limit is independent of # and D and is
equal to the sum of generalized Lyapunov exponents [4—6].
However, this has been verified only in the classical limit,
and despite the considerable interest in this, there are few
useful results away from this limit.

In this paper, we start with the argument that quantum-
classical distance can be measured sensibly with a quantum
system’s linear entropy. We then study the entropy dynamics
for the chaotic Duffing oscillator as a function of #,D to
obtain several results that considerably extend results on en-
tropy decay as well as generalize the scaling results. Specifi-
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cally, the Lyapunov exponent dependence is shown to be
valid only for a small parameter range and for times. We
look, more usefully, at the time-dependent entropy itself
which unexpectedly shows scaling with a single parameter
Ly=h*/D, thus generalizing previous results from time-
independent measures [9,10]. That is, behavior from widely
varied #,D collapse onto curves that depend only on ¢,
which we explain on the basis of an expansion in ¢, as well
as direct comparison of dynamics. This enables the charac-
terization of entropy dynamics over a much wider range of
parameters and times than previously attempted. We show
dynamical regimes which we term (I) classical, (IT) semiclas-
sical, and (III) quantum, with a smooth transtion between
these regimes with increasing {,.

We begin with the master equation for the evolution of a
quantum Wigner quasiprobability py under Hamiltonian
flow with potential V(g) while coupled to an external envi-
ronment [4]:

Ipw
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The first term, the Poisson bracket L., generates the classical
evolution for py,. The terms in # are the quantal “correction”
terms (denoted L,). The environmental coupling (7) is mod-
eled by the diffusive D term and the dissipative y term. We
assume, as typical, short time scales or high temperatures
such that the y term is negligible. A QC, can then be con-
sidered by propagating the same initial condition with L,
+L.+T, compared to using only L., or more appropriately
using L.+ 7T from above.

If OC, is the difference between the expectation values of
an observable, it becomes strongly dependent on the observ-
able. For example, even when the centroids of a quantum
and classical distribution are behaving identically, differ-
ences exist in higher-order moments. Further, measures such
as the time when the QCy hits a predefined value introduce
subjectivity. Moreover, while powerful in the abstract, it is
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inherently unphysical to propagate something both classi-
cally and quantally. Some of these problems can be avoided
by monitoring the quantum entropy, which does not measure
distances but directly addresses relevant issues of informa-
tion. The linear or Renyi entropy of second order S, is also
the natural logarithm of the purity P as S,=In(P)
=In[Tr{p?}]. Note that P=27h Tr{p%v} where the Tr now rep-
resents integration over all phase-space variables. This has
been extensively studied and for a system with a classically
chaotic limit, it has been argued [4,6] that in the weak-noise,
small-7 classical limit, —dS,/dt equals the sum of the posi-
tive classical Lyapunov exponents. More careful consider-
ations generalize this to a weighted sum over Lyapunov ex-
ponents [5]. For the classical limit itself, this should arguably
be further generalized to time-dependent versions [11]. That
is, although the previous results apply in some limits or spe-
cial cases, even the classical behavior is not fully understood.
Less is known about the quantum system, particularly the
impact of changing scale or noise through #,D, which is
what we address below. We work with the Hamiltonian H

=§1—Bx2+§x4+Ax cos(wr). This is the Duffing oscillator,
which as a one-dimensional driven problem with a quartic
nonlinearity is one of the simplest flows with a rich phase-
space structure and hence is a paradigmatic problem in
Hamiltonian chaos. The quantum version has also been fre-
quently studied, including decoherence issues [6,12].

We briefly review the behavior of the classical density p,
in the limit of only the L.+7 evolution. As a result of chaos
due to L. alone, p,. increases the fine-scale structure exponen-
tially rapidly, with a rate given by a generalized Lyapunov
exponent. When the structure gets to sufficiently fine scales,
the noise T becomes important, and it acts to decrease, or
coarse-grain, fine-scale structure. These competing effects
can be profitably studied using the measure

o _TilpVp] _Trl[Vp.[’]
X Tlp0?] T Tl

where ¥ is approximately the mean-square radius of the
Fourier transform of p, measuring the structure in the distri-
bution [13]. Most importantly, Eq. (2) yields the identity
dS,/dt=-2Dx? [6,14] with this valid classically or quantum
mechanically, that is, with both S,, x> computed for p, or py
[5], respectively. For a classically uniformly chaotic system,
the dynamics of x*> can be written approximately [15] as a
competition between chaos and diffusion as
2
% ~2Ax*-4Dx". (4)

3)

This implies that y* settles after a transient to the metastable
(that is, constant for finite-time) value

X =A2D, (3)

where A is a p dependent generalized Lyapunov exponent
[15,16]. This classical argument leads to the argument [4—6]
that quantum entropy-production rates are equal to general-
ized Lyapunov exponents. This applies to a greater range of
parameters than might be anticipated because decoherence
suppresses quantum effects. While this behavior has been
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FIG. 1. (Color online) Entropy production rate S, [where S,
=In(P) for states with purity P] for the quantum Duffing oscillator
with m=1, B=10, C=1,A=1, w=5.35, and #,D as indicated, show-
ing a wide variation in behavior. The initial conditions are Gauss-
ians in the chaotic region with (x),_o=1.0, the spread o>=0.05,
(P)=0=0.0, and the spread 0'[2] is set by the constraint of defining a
minimum-uncertainty state and hence by the particular value of #.

shown in several instances, it does not capture the complete
picture, particularly the effect of changing #,D. We show this
in Fig. 1 plotting dS,/dt for the Duffing problem with m
=1, B=10, C=1, A=1, w=5.35, as previously used [6]. The
behavior, over a wide parameter and time range, is quite
complicated. If a subset (all of those with #=0.1) are plotted
for a short time (¢<<15) as in [6], they show the classical
Lyapunov exponent entropy-production behavior [4—6]. This
is valid only for some small range of parameters and short
times. There has been a suggestion of a superposition of
classical and quantal exponential decay [17] for the purity.
This would lead to a crossover transition within a fairly nar-
row range from one constant value to another in Fig. 1,
which we do not see. Other ways of considering the data (as
in Fig. 2 below) also do not support this. In general the
search for these small regimes of linear decay for entropy is
not as helpful as understanding the broader parameter depen-
dence.

To do this, consider as in Fig. 2, Tr{p%v(t)}/Tr{p%V(O)}.
Since the y axis is logarithmic, we are effectively looking at
In(Tr{py, (1)) ~In(Tr{py(0))=S,(1) = S,(0)=S(z) ~ for our
pure-state Gaussians. This shows useful organization invis-
ible in Fig. 1 due to the small-scale variation in a narrow
range. Most interestingly, the entropy dynamics for the wide
variety of parameters considered is captured entirely for the
times shown by the composite parameter #%/D={,, even
though a wide range of behavior, not obviously characterized
as exponential decay, is seen as {, is varied. Larger {, cor-
responds to high A or low noise D or both, and remains
closer to a pure quantum state for longer times, which makes
physical sense. Note also that there is some ¢, dependence
for the time scale of scaling, with a long-term separation of
curves.

We understand this ¢, dependence by considering quan-
tum corrections to the classical dynamics, which depend [see
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FIG. 2. Evolution of the normalized purity for the same states as
Fig. 1 in the quantum Duffing oscillator. Scaling is observed rela-
tive to the parameter {,=7%2/D. (I) Classical: {,=2, (a) #=0.1, D
=510 (b) £=0.2, D=2X 1072, and (c) #=0.5, D=0.125. (1)
Semi-classical: £,=40, (d) £=0.004"2, D=10"% (e) £=0.1, D
=2.5x 107, and (f) £=0.2, D=1073. (IlI) Quantum: £,=100, (g)
£=0.1, D=107%, (h) #=0.5, D=2.5% 1073, and (i) A=1, D=1072.

Eq. (2)] on the derivatives of the Wigner function. Given that
the second derivatives & py, > x°, these corrections scale as
. &Z"HV(q) (92;1+1pw
aq2n+1 (9p2n+ 1
where V") denotes the rth derivative of V. When the phase-
space distribution hits a metastable state such that x? settles

to the fixed value A/2D, the difference between the quantum
and classical evolution may be estimated to depend on

é« = ﬁznAn+1/2D_(n+l/2)\/(2n+l)(x) , (7)

Lq ~4 ~ h2nX2n+lV(2n+l)(x), (6)

where, since y is a “length” in Fourier space, we have that
x=~x'=vy2D/A. This is essentially the same result as that
derived in Ref. [12] from a completely different perspective
and is also the root of the suggestion in Ref. [9] to search for
scaling. Therefore the first order quantum corrections in a
semiclassical regime should scale, in complete generality,
with the single parameter . The particular form of { is de-
cided by the details of the Hamiltonian and the difference
between the quantal and classical propagators. For the Duf-
fing problem, the only quantum term of Eq. (6) comes from
the third derivative of the quartic term where Eq. (7) gives
that the quantum term goes as {=#%2y?; for any other form of
the potential, we expect different corrections and hence dif-
ferent scaling as below.

We now use this in an expansion technique for entropy
dynamics that may be applied in general. In the Duffing

problem, even though S, is not a simple function of {, a
scaling relationship still obtains in the two parameters %,D as
follows. To zeroth order, the classical and quantal phase-
space distributions are the same, pyy=p., and X50= Xf,
where the entropy production rate qu0=—2D)(§0 and the nu-

merical subscripts on )(q,pW,qu indicates the order of the
approximation. We now use the results from Egs. (6) and (7)
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that the quantum-classical distance for this system behaves
as fi2x2. To first order we insert the zeroth order solution in
this to write

pw1 = pwo + ali> X’ pwo = pe + ab’xp.., (8)

where a is constant for the metastable state, but time-
dependent in general. We substitute this in Eq. (3) to get that
Xfﬂz X>+ah’x?}. Corrections from the denominator of Eg.
(3) are of higher order, and also tend to cancel the higher
order corrections from the numerator. We insert this first or-
der quantally corrected form for the dynamical term into Eq.
(4) to get that to first order in #2, y? obeys

d 2

d_)i‘ ~ 2A(x* + ah*x*) — 4Dy* 9)
and in parallel to Eq. (5) we get that

2% A

")
2D\ 1—-——
4D

(10)

leading finally to Sp,=-2Dx%=—Al1+%5) that is, the
quantum correction scales as 72/D. This expansion around
the metastable state can occur only when the growth of struc-
ture is balanced by noise, only when ¥ is large enough that
the diffusion term becomes relevant. Since a is in general
time-dependent, at each value of {, we expect a different
entropy dynamics, as in fact we see. In summary, this expan-
sion for the entropy dynamics around the metastable state
yields a #2/D dependence for entropy, although the time-
dependence itself is not easy to extract.

This expansion must fail for arbitrarily large ¢, in the
quantum regime. Here an alternate approach applies: the
Poisson bracket term is neglected and the dynamics are given
approximately by the competition between the L, and T
terms alone. To compare them, consider L,: For the Duffing
system, there is a third-derivative of py multiplied by x (re-
sulting in this acting like a second derivative overall), com-
pared to the second derivative from the diffusion term [18].
This means that the terms have essentially the same scale,
with quantum dynamics continuing to add structure and the
noise smoothing it out. The entropy-production then depends
only on the ratio of the parameters multiplying these terms
which is again #%/D = {,. This last parameter regime is con-
sistent with recent results [7,17]. Finally, consider some de-
tails of the time dependence: The rate of purity decay de-
creases with . Physically, the time-asymptotic dynamics
are dominated by essentially classical diffusive behavior,
with a common final state (the natural invariant measure) for
all py. Since Tr{p3(0)}xA~" (see above), the time-
asymptotic value of Tr{p},(1)}/Tr{p3,(0)} <A~". With the dif-
ferent rates of purity decay, the system approaches the time-
asymptotic state later as {,, increases. Further, within each ¢,
the different values of # separate out from the scaling curve
as the final diffusive regime kicks in, as seen in Fig. 2.

The values of {, where these regimes change is in general
determined by the parameters of the potential, i.e., by the
quantity labeled as a in Eq. (8) above. Given the continuous
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behavior as a function of ¢, the actual transition is subjec-
tive. In Fig. 2 we label what corresponds to rapidly decoher-
ing and hence essentially classical behavior as (I), the rela-
tively slowly decohering and hence deep quantum behavior
as (III) and in-between semiclassical behavior as (II) in the
three sets of curves with ({,=2,100,40), respectively. That
is, for this potential, empirically {,={.= 10 sets the approxi-
mate upper limit of the rapidly decohering regime (I), and by

extension the quantum regime (IIT) kicks in at §0:§qx§2

~100. We note the same scaling also holds (results not
shown) for other diagnostics as well as for very different
parameters for the Duffing oscillator, A=10, w=6.07, a re-
gime of significantly increased chaos [6].

In conclusion, our results strengthen the argument that it
is valuable to study the behavior of nonlinear open quantum

systems through the scaling behavior of appropriate diagnos-
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tics, as recently suggested [9]. In particular, this is used to
study the nonequilibrium statistical mechanics of an open
quantum system with a classically chaotic counterpart over a
wide parameter range in #,D. We show that the entropy dy-
namics of this system can be dramatically different from the
broadly accepted Lyapunov exponent dependence which is
only valid in the classical limit (and is itself arguably suspect
[11]). We show a %%/D scaling in the time-dependent entropy
dynamics, although the particular form of the scaling is ex-
pected to depend on the form of the nonlinearity in general.

A. K. P. acknowledges support from the Research Corpo-
ration, sabbatical leave support from Carleton College
through the SIT, Wallin, and Class of 1949 Faculty Develop-
ment Funds, and hospitality from CiC (Cuernavaca) during
this work.

[1] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).

[2] See, e.g., A. R. R. Carvalho and A. Buchleitner, Phys. Rev.
Lett. 93, 204101 (2004).

[3] P. A. Miller and S. Sarkar, Phys. Rev. E 60, 1542 (1999); A.
Lakshminarayan, ibid. 64, 036207 (2001); X. Wang, S. Ghose,
B. C. Sanders, and B. Hu, ibid. 70, 016217 (2004).

[4] W. H. Zurek and J. P. Paz, Phys. Rev. Lett. 72, 2508 (1994);
Physica D 83, 300 (1995).

[5] A. K. Pattanayak, Phys. Rev. Lett. 83, 4526 (1999).

[6] D. Monteoliva and J. P. Paz, Phys. Rev. Lett. 85, 3373 (2000);
Phys. Rev. E 64, 056238 (2001).

[7] T. Prosen and M. Znidaric, New J. Phys. 5, 109 (2003); Phys.
Rev. Lett. 94, 044101 (2005).

[8] T. Prosen and M. Znidaric, J. Phys. A 34, L681 (2001).

[9] A. K. Pattanayak, B. Sundaram, and B. D. Greenbaum, Phys.
Rev. Lett. 90, 014103 (2003).

[10] N. Wiebe and L. E. Ballentine, Phys. Rev. A 72, 022109

(2005); F. Toscano, R. L. de Matos Filho, and L. Davidovich,
ibid. 71, 010101(R) (2005); A. R. R. Carvalho, R. L. de Matos

Filho, and L. Davidovich, Phys. Rev. E 70, 026211 (2004).

[11] M. Falcioni, L. Palatella, and A. Vulpiani, Phys. Rev. E 71,
016118 (2005).

[12] S. Habib, K. Shizume, and W. H. Zurek, Phys. Rev. Lett. 80,
4361 (1998).

[13] A. K. Pattanayak and P. Brumer, Phys. Rev. E 56, 5174
(1997); see also Yuan Gu, Phys. Lett. A 149, 95 (1990).

[14] Our argument assumes environmental coupling symmetrically
to all phase-space variables, with T of the form V? rather than
&;. This simplifies calculations, but note that for a chaotic sys-
tem there is no difference between the behavior of these two
forms.

[15] A. K. Pattanayak, Physica D 148, 1 (2001).

[16] C. Beck and F. Schldgl, Thermodynamics of Chaotic Systems
(Cambridge University Press, New York, 1993).

[17] C. Petitjean and Ph. Jacquod, Phys. Rev. Lett. 97, 194103
(2006); Ph. Jacquod, ibid. 92, 150403 (2004).

[18] Again, this should be different for different potentials and re-
sult in different scaling functions in this regime.

036221-4



