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Abstract

We calculated numerically the energy interaction of two point charged particles. The integral has simple analytical result

but is not easily solved numerically. Commercial programs as Mathematica 3.0TM and Maple VTM could not evaluate the

integral and Gauss±Legendre method gave poor results. The method of Runge±Kutta integration was capable of solving it with

good results. This integral showed to be a useful prototype for definite integration for double integration with poles. # 1998

IMACS/Elsevier Science B.V.
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A very simple problem of electrostatics is to calculate analytically the energy stored by two point
charges. But if we try to solve it numerically by integrating the fields we are faced with a very difficult
problem of numerical integration of a double integral with poles. The Gauss±Legendre method [1]
showed to be unsatisfactory for this problem and also the commercial programs Mathematica 3.0TM [2]
or Maple VTM could not solve it. The method of Runge±Kutta [3] succeeded as it is appropriate for
treachery functions. We now proceed with the description of the analytical part and subsequently we
show the numerical results.

The electric field E of a point charge q can be described by [4]

E � q

4��0r2
r̂ (1)

where r is the radial distance, r̂ � r=r and �0 is the dielectric constant. The energy stored in the field of
a point charge in the volume V is

E � �0
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that is named the self-energy of a point charge.
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If we have two point charges 1 and 2 separated by a distance of 2a, using the superposition principle,
the resulting field will be

E � E1 � E2: (3)

The total energy stored in the field generated by the two charges is given by [4]
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where r̂1 � r1=r1 and r̂2 � r2=r2:
Removing the self-energy of each charge we have the interaction energy
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In cylindrical coordinates, r1 � �� cos�; � sin�; z� a� and r2 � �� cos�; � sin�; zÿ a�. The interac-
tion energy (5) can be written as

Eint � 1
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The interaction energy can also be calculated by the work to move the charge 2 to infinity, i.e.,

Eint � Force� displacement �
Z

q2E1 � dl �
Z1
2a
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comparing the results (6) with (7) we have
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We can define
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that is equal to 1 for whatever value of a>0, according to Eq. (8).
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So although the integral of interaction energy looks a little cumbersome, it has a very simple
analytical result. We tried to solve it by Mathematica 3.0TM and by Maple VTM by analytical and by
numerical methods but we do not obtain the proper results. Also using the Gauss±Legendre method
with routine gauleg.f from [3], gave poor results as shown in Table 1.

As the function has poles it is considered as a treachery integral and in this case is better to use the
Runge±Kutta method of integration [3]. We applied the Runge±Kutta method of integration with the
subroutines odeint.f, rkck.f, rqck.f, derivs.f from [3]. Integrating first in � and later in z the method
succeeded as shown in Table 2. The parameter eps is the step used in the method and the smaller the
step better is the integration. The comparison for distance a�1 and a�10 show that the precision has
little dependence on a. Surprisingly it could not integrate by exchanging the order of integration
between � and z.

Concluding, the energy interaction between two point charges generates a double integral with poles
over the charge points. This integral has a simple analytical result. This integral can be used as a
prototype for double integration with poles. Mathematica 3.0TM and Maple VTM could not solve the
integral neither analytically nor numerically and Gauss±Legendre method gives poor results. Runge±
Kutta method succeeded but only integrating first � and later z.

The calculations were all made with double precision in a DigitalTM alpha2000 server.
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Table 1

Numerical integration of I with variable change �u � �=�1ÿ ��, �u2(0,1) and zu � z=�1ÿ jzj�, zu2(ÿ1,1) (exchanging the

order of integration gave similar numerical results)

N.points z N.points � Ia�1 Ia�10 Delay

50 50 1.00908917858613 1.11237253285843 <1 s

100 100 0.972914740382022 0.924051121779205 <1 s

500 500 1.00908917858613 0.993471125547867 <1 s

1000 1000 0.997280353909560 1.00641014440464 15 s

5000 5000 1.00090710285742 1.00092943464365 5 min

Table 2

Numerical integration of the interaction energy of two point charges

eps Ia�1 Ia�10 Delay

10ÿ4 0.998299125109709 0.998449022955381 <1 s

10ÿ6 0.999993228949804 0.999996822852136 <1 s

10ÿ8 0.999999752816064 1.00000007700164 20 s

10ÿ10 0.999999999868884 0.999999997838525 2 min

Evaluation of I by Runge±Kutta method with variable change �u � �=�1ÿ ��, �u2(0,1) and zu � z=�1ÿ jzj�, zu2(ÿ1,1).

The infinity value was taken as �u�|zu|�1ÿ10ÿ10. First integrating in � and later in z.
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