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Formation of soliton trains in Bose—Einstein condensates
as a nonlinear Fresnel diffraction of matter waves
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Abstract

The problem of generation of atomic soliton trains in elongated Bose—Einstein condensates is considered in framework
of Whitham theory of modulations of nonlinear waves. Complete analytical solution is presented for the case when the initial
density distribution has sharp enough boundaries. In this case the process of soliton train formation can be viewed as a nonlinear
Fresnel diffraction of matter waves. Theoretical predictions are compared with results of numerical simulations of one- and
three-dimensional Gross—Pitaevskii equation and with experimental data on formation of Bose—Einstein bright solitons in cigar-
shaped traps.

0 2003 Elsevier B.V. All rights reserved.

Realization of Bose—Einstein condensate (BEC) mation of bright soliton trains in nonlinear wave sys-
[1-3] has created new active field of research of quan- tems is often explained as a result of modulational in-
tum macroscopical behavior of matter. Among most stability, where selection of the most unstable mode is
spectacular evidences of such macroscopic behaviora result of interplay of interference and nonlinear ef-
one can mention formation of interference fringes be- fects (see, e.g., [9,10]). Such interconnection of inter-
tween two condensates [4] and creation of dark [5,6] ference and soliton phenomena is demonstrated most
and bright [7,8] solitons. The interference phenom- spectacularly in formation of solitons in vicinity of a
enon is usually considered in framework of a linear sharp edge of density distribution. In this case, at lin-
wave theory, whereas solitons are treated as a nonlin-ear stage of evolution the linear diffraction provides
ear wave effect. At the same time, basically, these two an initial modulation of the wave and further com-
phenomena have much in common. For example, for- bined action of interference and nonlinear effects leads
to formation of soliton trains. Without nonlinear ef-

fects, such kind of time evolution of a sharp wave front
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the sharp front of nonlinear wave can be called a non- where

linear Fresnel diffraction. 5
Similar formation of oscillatory structures at sharp . — _ & _ 2h%ay a) = h @)
wave front or after wave breaking in modulationally 2ra?  mga* magw 1

stablg sygtems described by "[‘h_e Kortgweg—de Vries that is the transversal degrees of freedom are frozen.
equation is well known as a dlss_lpatlonles_s _shO(_:k It is well known (see, e.g., [10]) that a homogeneous
vv_ave” (see, 9., [10]). lts theo_retlcal description is distribution with linear densityng = |¥|2 = const
given [11,12] in framework of Whitham theory of non- described by (2) with negativep (a, < 0) is unstable

linear wave modulations [13], where the o.scillatory. with respect to self-modulation with increment of
structure is presented as a modulated nonlinear per"instability equal in our present notation to

odic wave which parameters change little in one wave-
length and one period. Then slow evolution of the pa- i hK \/8|a Ino — (a, K)2 @)
rameters of the wave is governed by Whitham equa- 2mgay y ’

tions obtained by averaging of initial nonlinear wave \yherek is a wavenumber of small periodic modula-

equations over fast oscillations of the wave. Applica- tion. The most unstable mode has the wavenumber
tion of this method to modulationally unstable systems

has been given for important particular case of soliton Kmax= 2v/las|no /a1 (5)
train formation at the sharp front of a long step-like
initial pulse [14-17]. Here we shall consider by this
method formation of solitons in BEC with negative [7,a= 4|as|now . (6)
scattering length (attractive interaction of atoms).

We suppose that condensate is confined in a very
elongated cigar-shaped trap whose axial frequency
is much less than the radial frequenagy. In the first

and the corresponding increment is equal to

This means that after time 1/(|as|now. ) the homo-
geneous condensate splits into separate solitons (dif-
fraction fringes) and each soliton (diffraction fringe)

approximation we can neglect the axial trap potential CONtaiNs aboutVy ~ no/Kmax atoms. If in 3D2 GP
and suppose that condensate is contained in a cylindri-€duation (1) the nonlinear energyN; Kmax/ai ~
cal trap (. = 0) and its initial density distribution has ~ §70/a$ in each solitons is much less than the kinetic
a rectangular form. Evolution of BEC is governed by €nergy in the transverse direction,1?/mga%, then
three-dimensional (3D) Gross—Pitaevskii (GP) equa- the transverse motion is reduced to the ground state

tion oscillations and the 3D condensate wave function can
be factorized intoy = ¢o(x, y)¥(z,t), wheregg =
. 52 1 L, ., , (Vma) texg—(x2+y?)/(24%)]is the ground state
iy =— o Ay + EmawL(x + Y)Y + glv 1Y, wave function of transverse motion, a¥dz, r) obeys
a

1) to the effective 1D nonlinear Schrédinger (NLS) equa-
tion (2). Thus, the condition of applicability of 1D
for the condensate wave functiogh, where we use  equation (2) for description of solitons formation is
standard notatiory = A h2a /m, for the effective
nonlinear coupling constant, < 0 is thes-wave scat-  nolas| < 1, (7)
tering length, and) is normalized on the number of
particles in BEC,/ |¥|2dr = N. For analytical treat-

ment of nonlinear Fresnel diffraction it is important ¢ 7) i not satisfied, then the transverse motion has to
to determine conditions when the 3D equation (1) can pq taken into account which may lead to collapse of

be reduced to its one-dimensional (1D) approximation gec inside each separate soliton. Therefore we shall
(see, e.g., [18]) confine ourselves to the BEC described by the 1D NLS
equation under supposition that the initial distribution
/W'gdz _N satisfies the condition (7).
’ To simplify formulae in the analytic theory, we
(2) transform (2) to dimensionless variables =

which means that the instability wavelengthl/ K max
is much greater than the transverse radiuof BEC.

. h?
ihW, = ———W,. + g1p|¥|2Y,
2my
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2(lag|no)2w.t, & = 2jas|noz/aL, ¥ = /2las|nou, SO where siix, m) is the Jacobi elliptic function,
that (2) takes the form

b=t —Vr, V=-2a+§), (11)
fur +uce +2ulu =0, @) m=ays/[(@— B2+ +873] (12)
and u is normalized to the effective length of the parameters andy are determined by the initial

the condensate [u|?d¢ = L/a, measured in units  condition (9), and8 and s are slow functions of

of a,. We are interested in the process of formation and . Their evolution is governed by the Whitham
of solitons (nonlinear Fresnel diffraction fringes) at equation

the sharp boundary of initially rectangular distribution. ) .
Since this process takes place symmetrically at both B +id) + (B, 5)M =
sides of the rectangular distribution, we can confine T ¢
ourselves to the study of only one boundary. This where Whitham velocityv(8,8) is given by the
limitation remains correct until the nonlinear waves expression

propagating inside the condensate collide in its center.

If the initial distribution is long enough, this time V(89

0, (13)

is much greater than the time of solitons formation. = —2(a + )
Thus, we consider the initial distribution in the form 48[y —8+i(B —a)K

.0 = | 7 OP=2ie0), for ¢ <0, ©) (B—a)(K—E)+i[(6 —y)K+ 6+ y)El’
u(g,0)= 0, for¢ >0, (14)

K = K(@m) and E= E(m) being the complete elliptic
integrals of the first and second kind, respectively.
Since our initial condition (9) does not contain any
parameters with dimension of length, the parameters

wherey is the height of initial step-like distribution
and « characterizes the initial homogeneous phase.
The problem of this kind has already been consid-
ered in some other problems of nonlinear physics - .
[10,14-17] and we shpall present here only thpe )r/nain B andé can only depend on the self-similar variable
res’ults & = ¢ /7. Then Eq. (13) has the solution

qu to dispersion effects described by the ;econd cjt=E=v(B,9) (15)
termin Eq. (8), the sharp front transforms into slightly ) i
modulated wave which describes usual Fresnel dif- With v(8,8) given by (14). Separation of real and
fraction of atoms. In our case the diffraction pattern maginary parts yields the formulae

evolvgs with time rathgr than is “projected on th.e ob- C)t=—48 — 2(7/2 _ 82)/(,3 —a), (16)
servation plane. The linear stage of evolution is fol- 5 )
lowed by the nonlinear one in which combined action (@ — A+ —8° E@m) (17)

of dispersion and nonlinear terms yields the pattern (¢ —p)2+y2—3§2  K(m)’

which can be represented as a modulated nonlinear pe+ynich together with Eq. (12) determine implicitly
riodic wave or, in other words, a soliton train. We sup- dependence of ands on & = ¢ /. It is convenient

ber of solitons, so that their parameters change little in

one wavelength and one period. Then, in framework of B(m) =« — yVAA(m) — (L+mA(m))2, (18)
Whitham theory, the density of BEC can be approxi- s,y — ymA(m) (19)
mated by a modulated periodic solution of Eg. (8) (see

[10117]) where

(2—m)E(m) — 2(1 — m)K(@m)
2 —
n=|u(, v Alm) = m2E(m) ' (20)
= (y +8) Substitution of these expressions into (10), (11) yields

_ a2 2 the densityn as a function ofm. Since the space
47/3‘%2(\/(0[ Pty +9) e’m)’ (10) coordinates defined by Eq. (16) is also a function
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of m at given moment, we arrive at presentation of
dependence af on ¢ in parametric form. The limit
m — 0 corresponds to a vanishing modulation, and

409

except for the number of atoms which was chosen to
be N =5 x 10% in order to satisfy the condition (7),
so that|as|ng = 1.7 x 1073, We see that diffraction

this edge point moves inside the condensate according(soliton) pattern arises after the dimensionless time

to the law
¢t =(—4a+4v2y)r. (21)

The other edge witlhw — 1 moves according to the
law

§+ = —40[1', (22)

and corresponds to the bright solitons (or fringes of
nonlinear diffraction pattern) at the moment The
whole regions_ < ¢ < ¢4 describes the oscillatory
pattern arising due to nonlinear Fresnel diffraction of
the BEC with initially sharp boundary gt= 0.

We have performed numerical simulation of 1D and

t ~ 400 which corresponds after appropriate scaling
transformation tor >~ 2 in Fig. 1. The width of soli-
tons in Fig. 2 also agrees with the width predicted by
1D analytical theory and numerics. The spatial dis-
tribution of the condensate density (, z)|2 is illus-
trated by Fig. 3. The 3D nonlinear interference pat-
tern is clearly seen. For greater values of the conden-
sate density, when 1D theory does not apply, numer-
ical simulation demonstrates similar evolution of the
diffraction pattern up to the moment when collapse
starts in each separate soliton. Thus, formation of soli-
tons in the experiment [8] with large initial number
of atomsN ~ 10° goes through collapses with loss

3D GP equations with the aim to compare approxi- of atoms until the remaining atoms can form stable
mate Whitham theory with numerical results. The 1D separate soliton-like condensates. The present theory
density distributions calculated numerically from (8) emphasizes the importance of the initial stage of evo-

and analytically are shown in Fig. 1. We see excel-

lent agreement between the theoretical and numeri-

cal predictions of the height of the first soliton gen-
erated from initially step-like pulse, but its position
given by analytical formula is slightly shifted with re-

spect to numerical result. This is well-known feature
of asymptotic Whitham approach [11,12] which accu-
racy in prediction of location of the oscillatory pattern

lution with formation of the nonlinear Fresnel diffrac-
tion pattern.

Formation of soliton trains in BEC confined in a
cigar-shaped trap has also been studied numerically in
[19,20]. The results of 1D simulation in [19] agree
qualitatively with our results. In numerics of [20]
strong losses were introduced to prevent fast collapse
of BEC with large number of atoms. Nevertheless,

cannot be much better than one wavelength. Thus, weformation of soliton trains was also observed.

see that the above theory reproduces the numerical re-

sults quite well for period of time ~ 2. For much

The above theory is correct for evolution time much
less than period of oscillationsnZ2w, in the axial

greater time values some other unstable modes differ-trap. When the axial trap is taken into account, soli-

ent from one-phase periodic solution (10) can also give
considerable contribution into wave pattern. Neverthe-
less, the qualitative picture of soliton pattern remains
the same.

For 3D numerical simulation, the GP equation (1)
was transformed to dimensionless form by means
of substitutionsx =a,x’, y=a,y, z=a.17,t =
2wy, ¥ = (NY2/a¥?)y, so that it takes the form

iV = =AY + 1%y — @rNlasl/a)ly Py,  (23)
where primes are omitted for convenience of the nota-
tionand/ |y |?2nr drdz = 1,r? = x?+y2. Evolution

of the density distributiop (z) = [;° |v (r, 2)|?2r dr
along the axial direction is shown in Fig. 2 for the

values of the parameters corresponding to the experi-

ment [8] @; = —3ag, w1 =27 x 625 Hz,L = 30Qu)

tons acquire velocities in axial direction even if initial
phase is equal to zero. The number of solitons pro-
duced ultimately from some finite initial BEC distrib-
ution can be found by means of quasiclassical method
applied to an auxiliary spectral problem associated
with the NLS equation (8) in framework of the in-
verse scattering transform method [12,21]. If the ini-
tial wave function is represented in the foun(¢) =
V1no(¢) expligo(¢)), then the total number of solitons

is equal approximately to

1 v2(0) 1
M= [ \mo@)+ 02 ac - 3,

wherevg(¢) = d¢o(¢)/0¢ is the initial velocity distri-
bution of BEC. If there is no initial phase imprinted in

(24)
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T T T

- 1=2 numerics
— —— 1=2 Whitham theory

7=0.01 numerics

45 50

Fig. 1. Density distributions of BEC calculated by numerical solution of 1D GP equation (8) and given by Whitham theory with initial step-like

wave function (9) withy = —1,« =0.
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Fig. 2. Density distributions of BE®@(z) along axial direction for different moments of time calculated by numerical solution of 3D GP
equation (23) with cylindrical initial distribution.
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Fig. 3. Dependence of the density distributions on radiggnd axial,z, coordinates at time= 400.

BEC, then the total number of solitons is given by the theory with numerical simulations in [21]. The axial

formula potential influences mainly on velocities of solitons, so
the above estimate can be applied to the condensate in

Ny = (v/2las| /ay) / |¥]dz, (25) a cigar-shape trap under condition that inequality (7)
is fulfilled.

which is written in dimensional units and we have In conclusion, we have studied theoretically and

neglected a “one-half” term in (24). _ numerically the process of formation of soliton trains
In experiment, the initial stage is usually obtained near the sharp edges of the density distribution of
by sudden change of the sign of the scattering length gec The arising oscillatory regions can be consid-

from positive to negative one, so that initial density greq as nonlinear Fresnel diffraction fringes of matter
distribution has, for large enough number of atoms, the |;aves.

Thomas—Fermi form

W[ = (3N/4Z)(1 - 2%/ Z?), (26)
) ) Acknowledgements
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Up to constant factor, this estimate coincides with one
obtained in [20] by division ofL by the instability
wavelength 1Kmax. Note that this estimate includes
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