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Abstract

We consider interference patterns produced by coherent arrays of Bose—Einstein condensates during their one-dimensional
expansion. Several characteristic pattern structures are distinguished depending on value of the evolution time. Transformation
of Talbot “collapse-revival” behavior to Fraunhofer interference fringes is studied in detail.

0 2004 Elsevier B.V. All rights reserved.

1. Introduction and revivals of wave functions due to nonlinear inter-
action of BECs in tightly confined states formed by
three-dimensional periodic trapping potential.

It is well known (see, e.g., [7]) that mentioned
above “collapse—revival” behavior of quantum-mecha-
nical wave functions [8,9] is a temporal counterpart of
optical Talbot effect [10,11] in which interference pat-
tern behind the grating restores at distances multiple of
the so-called Talbot distan@8/x (d is the slit spacing

The interference measurements [1,2] on two ex-
panding Bose—Einstein condensates (BECs) have cre-
ated new important field of research where the den-
sity profile of gas, imaged after releasing from the
trap, provides important information about the phase
of the ground-state wave function. Expansion of co-
herent arrays of BECs provides new opportunities to

test the phase properties of the system [3—6]. For ex- N the grating and. is the wavelength of light). Simi-
ample, Fraunhofer interference patterns observed in lar Talbot effect was also observed in atom optics [12,

[4] demonstrate strong coherence of BECs confined +5]- Analogy between spatial Talbot effect and tempo-

in separate traps, and experiment [6] shows that this ral collapse-revival behavior of wave functions sug-

coherence can be manipulated by means of coIIapsesgeStS that such collapses—-revivals should exist in inter-
ference of matter waves emitted from arrays of BECs

provided evolution time is small enough, and indeed
" Corresponding author. such effect was observed in [14]. In this connection
E-mail address; kamch@isan.troitsk.ru (A.M. Kamchatnov). it is natural to ask how this short-time Talbot behav-
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ior evolves for finite array of condensates to long-time
Fraunhofer behavior observed in [4]. This Letter is de-
voted to consideration of this problem.

In Section 2 we present general formulas for the
wave function produced by a linear array of BECs.
We confine ourselves with one-dimensional theory
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function and, hence, we represent the initial state of

BEC as
1 ‘ (x — kd)?
_ i}
w(x’o)_nl/4\/5 Ek Are'® exp| — i|,

202

(4)

under supposition that condensate remains confinedwhereN;, = |A;|? is equal to number of atoms ith

in radial direction after turning off a periodic optical

potential and evolution takes place only along the axial
direction of the BECs array. This formulas permit us to
distinguish characteristic stages of evolution—short-
time Talbot stage with revivals of the wave function

in the central part of the array, intermediate time stage
when Fraunhofer fringes already formed with Fresnel
diffraction pattern inside each of them, and long-time
Fraunhofer stage with standard density distribution
along fringes. These stages of evolution of the wave
function are studied in detail in Section 3 (Talbot

stage) and Section 4 (transition to Fraunhofer stage).

The last Section 5 is devoted to conclusions.

2. General formulas

After switching off the periodic optical potential

condensate (we suppose thatk d) and ¢y is its
phase. Then Eg. (2) yields the solution

1

a4 /o (1+iht/mo?)
X Z Age' P exp[—
k

Yix, 1) =

(x — kd)?
202(1+iht/mo?)

®)

This formula should be specified in accordance with
the problem under consideration. In the case of large
number of condensates in the array confined in axial
direction by a parabolic potential, the Thomas—Fermi

approximation can be used for calculation of number
of atoms inkth condensate which gives [4]

the condensate density decreases and under conditiowhere

that the initial size~ o of each BEC is much less
than the spacing! between sites, the interatomic
interaction can be neglected during most time of the
evolution and, hence, the wave function obeys the
linear Schrédinger equation
],-l2

ihl/ft :_%Wxx- (1)
If the initial state is given by (x, 0) = ¥(x), then
after timer it evolves into

e @]

Vi) = / Glx —x', Yo (x) dx',

—00

)

whereG(x — x/, t) is well-known Green function of
Eq. (1) (see, e.g., [15])

b m im(x —x)?
Glx—x,0= V 2wiht exp[ 2ht } 3)

To simplify calculations, we suppose that the initial
wave function of BEC in the site of the array with
the coordinatéd can be approximated by a Gaussian

15N k2 \?
_ A2
N’f—Ak—m(l‘@)’ ©
2hd (15  a d\Y°
ky= | — (2 NZZ) 7
M mw§d2<8ﬁ ahoo) 0

N = > Ni is the total number of atomsp =
(0xw?)Y/3 is the geometric mean of the magnetic trap
frequenciesgno = /fi/ma is the corresponding oscil-
lator length, and: > O is thes-wave scattering length.

In the experiment [4] there wag; = 107 > 1, and
this large parameter suggests that there are different
stages of evolution.

For

md?

<= (8)
each condensate evolves independently of each other
and there is no their interference effects.

For
md? md?
t~— L kpyy—— 9
- <km— ()

we have interference between condensates, but in the
central part of the array the influence of its finite
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size is negligibly small and local interference pattern function is given by
can be approximated by that of an infinite periodic A

lattice of condensates which leads to temporal Talbot ¥ (x. ) = —— , >
effect. nl/4 /o (1+iht/mo?)

For > — kd)?
x Y exp[— 2(x : ) 5 ] (13)
2 2 o 204(1+iht/mo?)
md 5 md 10 =-00
kMT L kMT (10) With the use of definition oPs-function (see, e.g.,
. . _[16])
the Fraunhofer fringes begin to form. Indeed, their ~
positions are given by (see, e.qg., [4]) 03(z. 7) = Z exp[in(rkz n sz)] (14)
_ 2xnh k=00
Xn (1) = in%l, n=0,12..., (11) the wave function (13) can be presented in the form
: 2
and if + satisfies the condition (10), then distances Wx, 1) = n4A /Eex (_”” >93<i _})
between neighboring fringes 27 ht/md are much d T d°t v’ 1)’
greater than the size of each fringe 2kyd (see (15)
below). At the same time, the interference pattern where
inside each fringe is formed by only some part of 2ric? iht
the array and hence we get Fresnel diffraction pattern T = 7( W) (16)
along the fringe. )
At last, for By means of transformation formula (see [16])
1 772
5 md? 93(3, ——) =+/—it exp(m—z)ég(z, 7) a7
> kM— (12) T T T
h we transform (15) into
we arrive at usu_al Fra_unhqfer diffraction Wher_l the VoroA [«
whole array contributes into interference pattern inside w(x,t)zw% E’t . (18)
each fringe. T

To illustrate these stages of evolution of the wave Then the periodicity property ofis-function, s(z,
function, we have shown in Fig. 1 the distributions © % 2) = 63(z, 7), leads at once to the periodicity of
of densityp = ||? calculated from formulas (5)-(7)  the wave function,
with ¢ = 02(coherent corjden_sat_es)._ We see that for U, t 1) = Y(x, D), (19)

t K ky(md</h) the density distribution reproduces
periodically in time with period, ~ md?/h (see exact
formula (20)), the side fringes begin to form at- md?

kn (md?/h), and fort > ky (md?/h) there are peaks  r = 5~ (20)

of dgnsity at the coordinates given by (11) agd profiles |t the array of BECs is realized in optical periodic
of frmges_take Fraunhofer form for>? (Kpd)“m/h. potential with light wavelength., then the spacing
The solution (5) permits us to investigate these stages between neighboring lattice sites is equalite- 5./2

of evolution analytically. and the revival time can be expressed in the form

with the period

12nh
=g (21)
3. Talbot revivals of wave function R
where
For time values in the region (9), we can approx- Ep— h?q? 22)
imate the array by infinite lattice of equidistant con- 2m

densates so that for coherent condensates their waves the recoil energyy = 27 /1.).
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Fig. 1. Evolution of the density profile of array of condensates with time calculated according to Egs. (5)—@73tlr = 1 (in dimensionless
units) andky; = 10. Atr = 0.3¢-, wheret, is given by Eqg. (20), we see complex interference pattern (“collapse” of wave functiany; @6z,

the central part coincides with that for= 0 but shifted to a half-period/2; att =z, the initial distribution is almost completely restored; at
t = 5t the side fringes start to form, and, finally,rat 30r- we see Fraunhofer diffraction of matter waves from finite “grating”.

The evolutiontime, /2 corresponds to the transfor-
mation ofgz-functionfs(z, t + 1) = 04(z, 1) = 63(z +
1/2, 1), that is we obtain the wave function shifted to
the distancel /2 with respect to its initial form:

V(x,t+1/2) =Y (x +d/2,1). (23)

Above calculation explains periodic restoration of
initial wave function by means of transformation
properties of@-functions. To relate this approach

with standard one (see, e.g., [9]), let us consider
the problem from a different point of view. The
linear Schrddinger equation (1) with periodic initial
condition

(x — kd)?
202

A o
¥ (x,0)= A kgoo E'Xp|: ] (24)

can be solved by the Fourier method which gives
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Y(x, 1)
V27144
d

o0
X {1+22exp[—
k=1

eof3))

2m 202
d2

iht

we2)]

(25)

(2+

(The relationships between presentations (13) and (25) ¥ (x. =

of the same wave functiogi (x, r) is expressed by the
known identity for these two series; see, e.g., [17].)
We see that at equal to multiple of Talbot time,,

t = nt,, all phase factors in (25) become equal to
unity and (25) reduces to the Fourier series for the
initial periodic wave function (24). This method of
derivation of time-periodicity of the wave function
shows that periodic restoration of the initial state
is not a specific feature of the initial state (24)
built of Gaussian functions. Indeed, any periodic
initial function can be expanded into Fourier series
and harmonics c@@nrxk/d), k = 1,2,..., evolve
with time according to factors eXaii’:—;’z’kz) which
become equal to unity at= nt,. Thus, any periodic
initial wave function completely restores periodically
its form. The described above picture of periodic in
time changes of the interference pattern is shown in
Fig. 2 where even for relatively small number of
condensates first several revivals are clearly seen.
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Fig. 2. Evolution of density profiles for BEC arrays with zero
relative phase. Two first revivals at= nt,, n = 1,2, are clearly
seen as well as “fractional revivals” at intermediate momemnt8,

t /4, 3 /8,1 /2, etc.
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The above theory can be generalized on non-zero
phases in the initial state and hence in the solution
(2). For example, in the case of alternating phases of

condensates,
e = (=DF, (26)

the wave function can be expressed in term®.of
function [16],

%A [20i
d T
X ex imx® o = ! (27)
a2t ) N\ae ")
or, with the use of the transformation formula [16],
1 772
m(i-—)=¢—nmmcfi)@@Jy (28)
T T T

in the form

V2mo A b

Then the propertyz(z, T + 1) = exp(wi/4)602(z, 1)
leads to restoration of the initial state (up to inessential
constant phase factor) after revival time

md?  12nh
T 2rh 8 Egr’
Let us estimate an order of magnitude of the revival
time for arrays of BECs. In the case [6] 6fRb
BECs array loaded into optical potential with light
wavelengthh = 838 nm formula (21) gives >~ 75 pus.
This is about one order of magnitude less than the
revival time, caused by nonlinear interaction, of single
condensate in the experiment [6]. In this experiment
absorption images were taken after a time-of-flight
period of 16 ms which is much greater (with factor
~ 200) than our estimate af. For number of sites
in 3D lattice ~ 10° we haveky ~ 10 and, hence,
the observed interference patterns correspond to the
Fraunhofer limit (12). In this case the difference
of interference patterns was caused by difference in
initial states of condensates at different “hold times”
of evolution of each condensate in strongly confined
states formed by 3D periodic trapping potential.

In the experiment [4] the revival time is >~ 69 us
and a typical image was takenrat 29 ms, that is for
ky ~ 100 again in the Fraunhofer limit (in accordance
with the theory developed in this Letter).

(30)

tr



232

4. Transition to Fraunhofer interference

Now we shall turn to the regions (10) and (12). Ef-
fects of Fresnel diffraction can be noticed in Fig. 1
for + = 10¢,.. However, they are not expressed clearly
enough because of smooth distribution (6) of density
in the array used in our calculations. Therefore it is
more instructive to consider finite array with equal am-
plitudesA; = 1 of wave functions in each condensate
and takeg, = A¢ - k, that is with equal differences

A¢ of phases between neighboring condensates. Then

Eq. (5) witht >> mo?/h reduces to

Y(x, 1)
imx2 mo2x?
~ 1 Eel% e 2n2?
a4\ iht
ky . 2
m imd< ,
exp —i| — — A¢ |k k-,
I O
k=—ky

(31)
where we have taken into account only leading real
and imaginary contributions in the series expansion of
the exponential in powers afio?/ft. The sum here
has maximal amplitude when all terms are in phase
in linear in k approximation. This condition defines
coordinates;, of the centers of fringes,

2nh A
_E (0

~ md 2

To consider profiles of fringes, we introduce the
coordinate’ which is reckoned from the center of the
fringe:

Xn

)t, n=0,+1,42,.... (32

X =x,+3, (33)

so that dependence @énis determined mainly by the
factor

9%
&S, 1) = Z exp(—

k=—ky

im

d8k+
ht

imd?
T kz). (34)

If # satisfies the condition (10), then both terms in the

exponential have the same order of magnitude and, on

one hand, the fringe width is of order of magnitude of
the array lengthj ~ 2ky,d, and, on the other hand, itis

much less than the distance between fringes. Therefore

the coordinater in the factor exp—m202x2/2h%t?)
can be replaced by,. Thus, the wave function in

A. Gammal, A.M. Kamchatnov / Physics Letters A 324 (2004) 227-234

p
.04
a
0.02
0.01
300 -200 100 100 200 300 X
p
0.04
b
0.02
0.01
X
600 -400 -200 200 400 600
o.04 P
C
0.02
0.01
X
-1000 500 500 1000

Fig. 3. The central fringe profile for several values of the number
of sites in the array. Time corresponds to the region (10). The
plots are calculated faf = 8, 0 =1 and (a)ky; = 20 atr = 40, ;

(b) kps = 40 atr = 80r,; (C) kyy = 80 atr = 16Q,-. Formation of the
Fresnel pattern is clearly seen.

vicinity of the nth fringe is given by

wl’l(-xvt)
l mo imft
T
27202 A¢ 2
- — o
><exp|: 72 <n+2n)] @,1), (35)

whered = x — x,,. Now, forky > 1 the sum in (34)
can be approximated by integrals which are easily
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Fig. 4. Evolution of density profile of central fringe on time. Values of the parameters are equal & o = 1, k); = 80 and (ay = 500, ;
(b) r = 100Q;; (c) t = 2000Q;; (d) t = 16000, . Transformation of Fresnel profile shown in Fig. 3(c) to standard Fraunhofer profile is clearly
seen.

expressed in terms of Fresnel functions [18]: % { [C( 2 kppd + 3))
2h
.2 m 2
B, 1) = /nh;e% +C( /%(kMd—S))}
md
m
m + |:S( —(kpyd + 3))
—_— 2ht
x [C( 5 (kand + 3)) )
m
+c( %(kMd—a)) +S< %(kw_‘”)] } 7

The exponential factor determines the number of

ti (S( / %(kMd + 5)) atoms in thexth fringe:
1t

m . _471202 Ap 2
+ S( %(kMd - 3))>i|. (36) N, = constx exp[ 7z \" + o= . (38)

This formulareducesto Eq. (6) of Ref. [4] favgp = 0.
Thus, distribution of density in theth fringe is given  Dependence of determines fine interference pattern
by inside fringes. It is expressed by the factor in curly
brackets and demonstrates typical Fresnel form (see,
2 2 2 e.g., [15, Section 3.3], or [19, Section 8.7]) of diffrac-
Y| = “/za exp[—“—f(rz + ﬂ) ] tion from a slit with width Zyd equal to the whole
d d 2 array length. Accuracy of this analytical description
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