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Chaos in collapsing Bose-condensed gas
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We reinvestigate the dynamics of the grow and collapse of Bose-Einstein condensates in a system of trapped
ultracold atoms with negative scattering lengths, and found a new behavior in the long time scale evolution: the
number of atoms can go far beyond the static stability limit. The condensed state is described by the solution
of the time-dependent nonlinear ScHirmger equation, in a model that includes atomic feeding and three-body
dissipation. Our results for the model show that, by changing the feeding parameter and when a substantial
depletion of the ground-state exists, a chaotic behavior is found. We consider a criterion proposed by Deissler
and KanekdPhys. Lett. A119, 397 (1987] to diagnose spatiotemporal chaos.

PACS numbgs): 03.75.Fi, 05.45.Mt, 32.80.Pj, 05.45.Pq

It has been shown numericall§] and by experiments?] The main purpose of the present paper is to analyze the
that Bose-Einstein condensatié€BEC) can occur in atomic model given in Ref[3], and the consequences of the corre-
traps even with attractive two-body interactions, aglin In sponding parametrization. Actually, it is very relevant to
this case, it was observed the occurrence of a critical maxibuild a realistic model to describe the grow and collapse of
mum number of atomsN;) in the ground state level; above the condensate for atomic systems with attractive two-body
such limit the condensate collapses under two body attradnteractions, and Ref13] gives a very important contribu-
tion. Recombination losses prevent the condensate to cotion in this respect. The mean-field approximation was found
lapse to a point. Numerical simulations of this process werdo be a good approximation in the thermodynamical equilib-
considered in Ref.3], by studying the time evolution of the rium, as observed in a quantum Monte Carlo calculation in
condensed wave function of atoms @fi [4]. As noticed in  Ref. [7]; however, the validity of this approximation to de-
Ref.[4], even considering the qualitative similar behavior of scribe a physical system can be questionable in a complex
the theoretical simulation of Reff3] and their experimental dynamics scenario. In the present study, as it will be shown,
measurements, there is relevant quantitative difference bder certain regime of the nonlinear parameters, the mean-
tween the predictions with respect to the remaining numbefield approximation can lead to a chaotic behavior. This is a
of atoms in the condensate. It is also reported in Rfthat  new fact that should be considered in any improvements of
their observations could be “a first indicator of a complexthe model.
dynamics accompanying BEC in a gas with attractive inter- In the present work, we use the criterions considered in
actions.” This strongly suggests to study the time evolutionRef. [5] in order to verify numerically the onset of chaotic
of BEC atoms for long periods, through the numerical solu-behavior of the solution of the time-dependent NLSE, which
tion of the corresponding time-dependent nonlinear Schrowas considered in Ref3] for a trapped gas with attractive
dinger equatioNLSE), as given in Ref[3]. This equation two-body interaction. In Ref.8], the complex dynamics ac-
includes two nonconservati@naginary terms: one, linear, companying BEC of’Li atoms, was observed in the time
related to the feeding of the condensate from the nonequilibevolution of the number of atoms in the condensate. It was
rium thermal cloud, another, nonlinear and dissipative, corverified the high sensibility of the numerical accuracy with
responding to three-body recombination. the change of parameters, such that when a repulsive three-

It is also well known that systems with complex dynamicsbody interaction was considered, the numerical results were
can present chaotic behaviors for some appropriate range afore stable for the condens&8]. Later on, we verified that
parameters. In particular, we should note that the transitiothe numerical precision decreases very fast by increasing the
from a complex dynamics to chaos was previously considmodulus of the strength of an attractive three-body interac-
ered in the time-dependent NLSE by other authé6]. As  tion. This preliminary result lead us to the suspicion of a
shown in Ref.[6], for a definite set of parameters, small possible chaotic behavior of the time-dependent NLSE with
errors of the order of roundoff grow rapidly and saturate atrapped atoms. In the next, we briefly describe the NLSE for
values comparable in magnitude to the amplitude of thdrapped atoms considered in this letter, followed by the main
wave function itself, which lead to serious numerical insta-results and conclusions.
bilities of the solutions. Deissler and Kaneko, in REd], We start our dynamical study by considering the NLSE
have also proposed a useful criterion to diagnose spatiotencorresponding to the one given in R¢8] for the trapped
poral chaos in NLSE, which relies on the determination ofatoms with attractive two-body interaction. Two nonconser-
the time evolution of a function defined by the integral of thevative terms were added to take into account, respectively,
square modulus of the difference between wave functionghe decrease of the density due to three-body recombination
with nearby initial conditions. The average slope of this(parametrized by), and the feeding of the condensate from
function, when plotted as a function of time, gives the largesthe nonequilibrium thermal clouthbarametrized byy). The
Lyapunov exponent. NLSE considered in this work is the mean-field approxima-
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FIG. 1. Number of condensed atoms as a function of time for
wt=<1000. The parameters ane=0.1 and£=0.001. A doubling
pattern is observed fant<50, as shown in the inset. All quantities
shown are dimensionless.

FIG. 2. The central densityy,(t)=N|¥(0t)|?, in dimension-
less units, withpy defined byp,=(1/47a)(Mmw/#), is represented
as a function ofwt, for wt<<100.

tion to the quantum many-body problem of a dilute gas inthree orders of magnitude larger than the experimental one
which the average interparticle distance is much larger thahl0]. However, for our general study of E¢l) we use the
the absolute value of the scattering length. Also, the validityParameters given in Reff3], in the perspective of application

larger than the average interparticle distance. note that, in principle, as discussed in F{éﬂ],'it is possible
In dimensionless units, as given in E@) of Ref.[8], the 0 alter experimentally the two-body interaction by means of
swave radial NLSE can be written as light or induced magnetic field, and consequently affecting
the three-body recombination rate. In respect to the feeding
L) dz 1 |D|? |®|* y parametery, we allow a range of values up to the value used

+ _X2_7_2i§F+i 5|®» (D in Ref.[3]. The chaotic behavior of Eq1) is very sensible

— =] — —
dr dx? 4 to the increasing of such parameter.

. . I In Fig. 1 we show the evolution of the number of atoms
where x 'i related to the physical radius by x for wt=<1000(about 20 times larger than the maximum time
=vy2mo/h|r|, r=wt is the dimensionless time variable, considered in Fig. 1 of Ref.3]). As already explained in
with w the frequency of the harmonic trap interactidnis  Ref. [3], some dynamical collapses occur with frequency
the dissipation parameter, originated from three-body colli-— ;. Nevertheless a more careful analysis of such dynamical
sions, andy is a parameter related to the feeding of atomscollapses show that the number of small peaks begins to
from the thermal cloudRef.[3] gives an estimative for such double after each strong collapse, in a kind of fractal pattern
parameters ®=®(x,7) is related to the physical wave (see inset of Fig. 1 The doubling pattern observed in Fig. 1
function W (r,t) by ®(x,7)=8xN(t)[a[|r|¥(r.t), where is also revealed by the time evolution of the central density,
N(t) is the number of atoms aradis the two-body scattering which is given by p.(t)=N|¥(0;t)|?, in Fig. 2. The ob-
length (here, assumed to be negajivéJsing these defini- served strong fluctuations in the density increase for larger
tions, ¥ (r,t) is normalized to one and@(x, 7) is normalized  times. These results support a conjecture that the system, by

to the reduced number of atomgr)=2N(t)|a| V2maw/4: doubling the peaks indefinitely, starts to excite a whole spec-
trum of frequencies.

w0 5 One can also observe a striking feature in Fig. 1, that the
fo dx|@(x,7)|*=n(7). (2)  number of atoms described by the NLSE go far beyond the
static critical limit, in the long time scafeln a dynamical
In order to obtain numerical solutions of EG), we ap-  Situation, one should note that the number of atoms can grow

plied the semi-implicit Crank-NicolsoiCN) algorithm as ~beyondNc, which is not possible in the static cadé refers
described, for instance, in ReP] for nonlinear problems. 10 the critical limit for the number of atoms in the ground
We consider the same parameters given in F&3f(y=0.1 state; however, the excited states allow more atoms than the
and ¢=0.001) and use the same initial condition they used

for the number of atoms in the condensdtd(t)/N,

=n(7)/n.=0.75]. We should remark that, for théLi con- 1This behavior is not observed in the numerical solutions of the
densed gas, the above dissipation paramgterabout two to  quantum Boltzmann depicted in Fig. 1 of RE4]
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. 4 - . - observe that a complex dynamical structure starts to appear
2 28 Foooo = ' ] as the value of the parameter increases. Forr=0,
¥ 20l i ‘ ] V(X?(7)) is close to 1.52 andd/d7) V{x?(7)) is zero, in all
s g > 3 4 the cases. Initially, fory=0.01, the radius decreases to a
. 100 - ' center near 1.34 with zero derivative, then it starts to oscil-
2 58 3 S = ] late with larger radius, but keeping the center fixed. A simi-
% sl - lar behavior is found fory<<0.01. For larger values of, the
=100, - P> ? center of the oscillation iXX grows up to the point it reaches
s TO0F o - ' ] an attractor at very large radius. In casejyof 0.1, for ex-
= r o ] ample, the plot clearly resembles a chaotic behavior with a
3 0 a0 > e strange attractor, which is arount{r)~23. We have ob-
-100 : , served a fast transition in the pattern of the trajectory, when
0 5 10 15 N . .
400 ' - . ' - comparing the results obtained fgr=0.01 andy=0.012, in
% 388 P ] a similar plot. This gives an indication of the existence of a
3 10° ., B Y 3 critical range of values for the parametefor the transition
~100 ¢ : m i 0 Py 2 from orde_r to chaos. In_ this quel, the_ signature of 'Fhe onset
X(1) of chaos is a noncontinuous increasing of the radius up to

very large values, compared to some typical ground-state

FIG. 3. Phase-space plots, characterized by different values afalue, as we found foy>0.02. The chaotic behavior of the
the feeding parametey (given inside the plots for the mean-  system, for this set of parameters, will be demonstrated
square radiuX()=(x*()), in dimensionless units. In all the through the calculation of the largest Lyapunov exponent,
cases¢ equal to 0.001 and the wave functions were evolved untilyhich will be defined in the following.
wt=1000. We should note that we kept fixed the dissipative term of

Eqg. (1); however, the indication of transition to chaos can

ground state, as shown in RgL2]. So, the number of atoms also be found by changingwith vy fixed. In other words, by
higher than the static critical lim{after some period of time  keeping fixedy to a certain nonzero value, a similar behavior
can be interpreted as if not all the particles are in the grounis reached as we decrease the value of the paraie@ur
state, but that the excited states are also becoming populatesim in the next is to determine the existence of spatiotempo-
After a long enough period of timew(>100), one can ob- ral chaos in the time evolution of trapped atoms described by
serve that the number of atoms remains higher tNagna  Eq. (1), by considering a general procedure for nonlinear
result which is consistent with the interpretation that a largepartial differential equations.
fraction of the particles are populating the first radial excited In [5], it was studied the complex quintic Ginzburg-
state. Within the same interpretation, other excited states cdrandau equation and showed that, for an appropriate choice
be populated in a longer enough period of time. As a consesf the parameters the system could present a chaotic behav-
quence, in the long time scale, the picture of a condensater. In order to characterize the chaotic behavior, for a spa-
with atoms in the ground state, assumed to be described hiotemporal equation, the following functiof was defined
Eq. (1), is no longer valid, as the feeding process is populat{5]:
ing the excited states. This scenario is also confirmed by the
large values of the mean-square radius attained by the wave ((t 9 2
function, as shown in Fig. 3. b(n)= fo |9 (x,7)["dx] . ®

The present results show possible limitations of the model
given in[3], when trying to describe BEC atoms with attrac- The average slope of this function plotted as a function of
tive two-body interactions. As verified in Fig. 3, the growth time, gives the largest Lyapunov exponghl. The chaotic
above the critical value is strongly dependent on the noncorbsehavior is characterized by a positive slope. The calculation
servative parameters. One should also observe that in Rejf §& as described in Ref5] can also be related to the
[3] they have considered the case of a decreasing time dexcitation of collective modes by an infinitesimal perturba-
pendenty, that shows saturation just after the beginning oftion of the wave function. The onset of the chaotic behavior
the collapses. Effectively, this is a way one can try for acan be interpreted as the increase of the magnitude of the
better description of the experimental data, together with &ollective excitations, or alternatively, by the creation of
more general study of the parameters in the nonlinear termsiany quasiparticle states, with the corresponding depletion
of the NLSE. of the ground-state occupatidi3,14). In this sense, the

One particular interesting observable, to further analyzenean-field approximation should be valid for times in which
the dynamical behavior of Eqg. 1, is the mean-square radiushe wavelength is much larger than the average interparticle
We define this observable in dimensionless unitsXfy) distance.
= /(x?(7)). In Fig. 3, we plot (i/d7)X(7) as a function of The formal main difference between the complex quintic
X(7), for a set of values of the parametey(y  Ginzburg-Landau equation and the Ef) is the presence of
=0.01,0.02,0.05,0.1). In all cases, the wave-functions weréhe trap in the latter. The similarity of these equations led us
evoluted up towt=1000 and the strength of the three-body to consider the criterion used in Rg5], applying the Eq(3)
dissipative interaction is kept fixed & 0.001. In Fig. 3, we to the wave functions obtained from E@.). We are mainly
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perturbed wave function gives the separation of the trajecto-
ries 6®(x,7), which is used to obtain our results for E§)
shown in Fig. 4. As one can observe, there is an approxi-
mately exponential increase i as the time grows for all
cases presented wit>0.01, such that we can draw a con-

0.05 clusion about the chaotic behavior of E@). This is better
_ J— characterized fory=0.1. This confirms the suspicion raised
T -0 / /’/M”"W”M T when analyzing the results obtained in Figs. 1-3, as one can
, -~ 0.02 clearly obtain from such results the values of the feeding
/ / parameter for the system to become chaotic.
20 In conclusion, the NLSE used for the description of the
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dynamics of the Bose condensed wave function in atomic
traps with attractive interactions i8], for certain class of
parametergas, for example, the parameters considered in
[3], £=0.001 andy=0.1), is chaotic. The chaotic behavior
of Eq. (1) starts to disappear as one decreages increases

&. In our understanding, this is an important result of the

FIG. 4. Logarithmic representation of the separation betweerformalism considered for the description of Bose-Einstein
two nearby states, as given by E®), for several values of the condensed states. The onset of chaos is accompanied by a

parametery (shown near the corresponding plaf is maintained  noncontinuous increasing of the radius up to very large val-
leed to 0.001 and= wt. All quantities are given in dimensionless ues, Compared to some typ|ca| ground_state value. As excited
units. states start to be populated, the feeding process described by
. . . . i he equation is not limited to the ground state, and a chaotic
interested in studying the time evolution of the condenseqggime js observed in the model under consideration. In this

wave function for a negative two-atom scattering Iength,sense, the validity of the mean-field approximation to de-

through the investigation of the numerical accuracy of thegcrine the physical system is questionable in the long-time
results for certain parameters used. By considering a genergl, ,ain. Further investigations are in progress.

example, we keep fixed the value of the three-body dissipa-
tive parameteg (£=0.001, as in Ref.3]), and study a range We would like to thank Professors C. Grebogi, R.G. Hu-
of values for the feeding parameter. let, and F.Kh. Abdullaev for useful and stimulating discus-
In order to calculate Eq3), we use the same initial wave sions. We also thank G.V. Shlyapnikov and A.E. Muryshev
function ®(x,7) as in Ref.[3], i.e., with initial number of for useful help concerned with the numerical approach. This
atoms equal to 0.7%.. This initial wave function was also work was partially supported by Fundacde Amparo #Pes-
evoluted with an added small random perturbatfn(x,0) quisa do Estado de 8aPaulo and Conselho Nacional de
~10" ! The difference between the wave function and theDesenvolvimento Cierfico e Tecnolgico.
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