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Stability of trapped Bose-Einstein condensates
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In three-dimensional trapped Bose-Einstein condenéBELC), described by the time-dependent Gross-
Pitaevskii-Ginzburg equation, we study the effect of initial conditions on stability using a Gaussian variational
approach and exact numerical simulations. We also discuss the validity of the criterion for stability suggested
by Vakhitov and Kolokolov. The maximum initial chirfinitial focusing defocusing of cloydhat can lead a
stable condensate to collapse even before the number of atoms reaches its critical limit is obtained for several
specific cases. When we consider two- and three-body nonlinear terms, with negative cubic and positive quintic
terms, we have the conditions for the existence of two phases in the condensate. In this case, the magnitude of
the oscillations between the two phases are studied considering sufficient large initial chirps. The occurrence of
collapse in a BEC with repulsive two-body interaction is also shown to be possible.
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I. INTRODUCTION NLSE with trap potential were investigated in Ref4,8],
where the corresponding critical numbers were obtained
In trapped Bose-Einstein condensatB&EC's), it is well  [9,10. These works are extensions of Zakharov and co-
known that collapse occurs when the two-body interaction isvorkers’ theory of collaps¢11-14 to the case when an
attractive and if the number of atond exceeds a critical additional trap potential is included. The trap potential helps
valueN,, as in the case of atomic condensates With[1].  to prevent the collapsing process, which cannot be avoided if
In this case, experiments with attractive two-body interactiorthe number of atoms exceeds the critical limit. In Refs.
have been performef2], with results consistent with the [8,15], considering the moments method in the analysis of
limitation in the number of atoms and with the growth andthe equation for the average squared value of the width,
collapse scenario. As the nonlinear terms presented in th@?), the influence of the corresponding initial condition on
nonlinear Schrdinger equatioNLSE) (cubic, quintic, and the collapse was emphasized.
so on are due to the first terms of an expansion of the ef- Variational approaches were also used by many authors
fective many-body interaction in the mean-field approxima-for an analysis of the stability of NLSE, and proved to be
tion [3], a study of stability of the equation that describesuseful in many aspectsee Ref[4], for exampl¢. The varia-
BEC's is necessary, considering the observed few-body intional approachVA), using a simple Gaussian ansatz, gives
teractions that occur in the atomic gas. When the overall siga reasonable description of the conditions for collapse, and
of the effective many-body interaction is negative, we havealso an approximate value of the critical number of atoms. It
the conditions for the occurrence of collapse, with the stabilis interesting to apply the time-dependent variational ap-
ity of the condensate being restricted by the number of atproach to describe the dynamics of a BEC with attractive
oms. two-body interactions, and in particular to study the influ-
We should stress that the criteria for stability usually in-ence of the initial conditiongusing a chirp constarit in the
volves one parameter: the number of atoms. Here, in order twave function on the stability of a BEC. This can be impor-
introduce a criterion for stability of a trapped condensatetant for condensation in optical traps and in strongly inho-
with two- and three-body effective interactions, we introducemogeneous traps. Also, recentlin Ref. [16]) a stability
another parameter: a chirp, that is related to the initial focusanalysis was performed, using both VA and exact calcula-
ing (defocusing of the cloud. Without a trap, a chirp param- tions, considering that the condensate can unstabilize by tun-
eter was previously introduced in Ré#f] to study the sta- neling, due to quantum fluctuations.
bility of the NLSE; with a trap, the stability was studied in ~ When the two-body interaction term is switched off, for
Refs.[5—7]. One should also note that an oscillating conden-example by tuning an external magnetic figld], the three-
sate always has a chirped wave function, where the chirp ibody interaction term can play an important role. Thus it is
proportional to the time variation of the width, which is a interesting to study collapse conditions in a model with a
periodic function of time. Thus a real condensate, for extrap potential term and an attractive three-body interaction
ample in optical traps, always has a nonzero initial chirp, thatquintic) term. Recently, in Ref[18], the collapse in a one-
should be taken into account. dimensional(1D) model with attractive three-body interac-
Collapses for two- and three-dimensional geometries of aions was investigated. The trap was narrow, and induced a
radiative loss of atoms, reducing the number below the criti-
cal value, which made an arrest of the collapse possible. The
*On leave of absence from Physical-Technical Institute, Tashkentwo-dimensional case, with cubic nonlinearitywo-body in-
Uzbekistan. teraction$, may be useful in modulation theory around the
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Townes solitorf19]. Then it is possible to estimate the role two- and three-body nonlinear terms with opposite signs.
played by the continuum. We extend the study of the stability of the NLSE with
In the present work, we first consider a review of thecubic(two-body and quintic(three-body terms, through the
stability criterions, without application of initial chirp. Next analysis of chirp response, and through the frequency of col-
we analyze the role of an initial chirp in the wave function of lective excitations. By applying the perturbation techniques

a stable condensate with an attractive two-body nonlineaio the theory of nonlinear oscillatiori25], we also derive
term, which can be useful for actual experimental analysis ifhe frequency of weakly nonlinear collective excitations.
BEC's. A generalization of this study of stability is consid- ThiS study extends the numerical calculations performed in
ered with the inclusion of a three-body interaction term inRef. [3] for the frequencies of collective excitations.
the NLSE. Such a study can be relevant to the perspective of ONne should also note that such a study is of actual inter-
atomic systems with enhanced three-body effects, that cafSt: as recently Ref26] reported observations of nonlinear
occur as the two-body scattering length is altef&d. oscillations in BEC's of a gas with rubidium gtoms. The
When a positive three-body interaction term is included inPresent study can be of interest not only to atomic BEC's but
a trapped 3D NLSE with negative two-body interaction,aISO.tO other branghes of' physics and mathematics, where
there already exists the possibility of extending the region oftonlinear effective interactions are added to a trapped poten-
stability of the equation to a larger number of atoms, with thefi@! in the time-dependent Schtinger equation, in, e.g., op-
occurrence of two stable phases in the conderf@@@1. In  tics and soliton physics. o _
Ref.[3], the frequency of the collective excitations in denser N Sec. II, we give a description of the model, using a
(liquid) and dilute(gas phases of the condensate was Ca|Cu_var|at|onal.approach for alsystem erhd|.men3|ons. In Sec. .
lated. Here we investigate a bifurcation phenomenon relatelll, We denye an expression for th_? chirp parameter t.hgj[ is
to the time variation of the width parameter of the theory, byconsidered in our analysis of stability. The maximum initial
switching the oscillations from one phase to the other. Th&hirp to keep the system oscillating in the same phase,
present study is done with the aid of a time-dependent varigd"ound a minimum of the energy, without collapsing or with-
tional approach for the collapse of the atomic cloud in a 3D°Ut & phase transition, is obtained in this section by consid-
model with harmonic trap potential. We compare the predic N9 both variational and exact numerical calc'ulatlons. In
tions of the VA with exact numerical simulations of the par- S€¢- IV, we follow the study of Sec. Ill, and obtain frequen-
tial differential equation(PDE). As detailed in our conclu- Ci€S for 'Fhe linear and nonlinear OSC|II_at|ons. In_ th|s sectlor_1
sions, the Gaussian VA gives a good estimate of thave consujer the presence pf both cubic arjd qumtlc term;, in
observables in the region of stability, and begins to deviatéev?ral d|ffer§nt conﬁgurafuons. The VK criterion of stability
from exact results when the system is close to the collapst discussed in Sec. V. Finally, in Sec. VI, we present our
conditions, and particularly for the unstable solutionsconcluding remarks.
(maxima of the total energy. For this regions, where the
Gaussian VA fails, one should improve the ansatz or take the Il. DESCRIPTION OF THE MODEL

results as a qualitative picture to guide the exact numerical . . . . . .
calculations. q P g In this section we will consider the dynamics described by

In cases without traps, the NLSE was previously studied® NLSE Wi_th a harm_on_ic potential and with cubic and quintic
by Vakhitov and Kolokolo\VK) [22], where a criterion for terms. _Usmg a variational approach fo_r a system V‘E.uh
stability was settled. This and other criteria for stability in dimensions, ffom the Lagr_anglan we d(_arlve an expression .
nonlinear systems have been studied and extensively used B} anharmonic  potential - considering the mechanical
many authorgsee Ref$23,12, and references therginrhe a alogy.' . L .
VK criterion was recently detailed in Rdf12]. When a trap The_ tlme-dept_endent_Gross-Pltaevsku-Glnzburg equation,
potential was added to a NLSE with a negative cubic termtnat Will be considered in the present approach, is given by
an alternative stability criterion was derived in Rigf], after o 2 4
considering similarities between BEC atomic systems and 21 == AP+ Vit NP 2g+ Nl ¢l @
compact objects like neutron stars. Recently, the VK crite- ) ) ) ] ) o
rion for a trapped BEC with a cubic term was formally dem- In this equation and in the following equations, the explicit
onstrated in Ref[24]. space ar_1q time dep.er)dences of the varlables_ and parameters

In recent numerical studié8,21,2q one can also observe &€ |mpI|C|t, qnlgss it is necessary or convenient for clarity.
that the VK criterion is not generally valid; it cannot be 1he time derivatives will be denoted by indicedn Eq. (1)
extended, for example, to the case of a trapped system with€ assume _dlmensmnl_ess variables: the unit of energy is
both attractive cubic and repulsive quintic terms. The soluft@/2, the unit of length is/%/(me), and the unit of time is
tions can be stable irrespective of the sign of the derivativdl/w. V=V(r) is a static trap potential, and we assume a
of the eigenvalues of the NLSE with respect to the number oharmonic oscillator with spherical symmetry given by
atoms,du/dN. Whengs is positive, and for a large enough =r? in the present units\, and\ ; are the parameters of the
number of atoms, the NLSE is stable adg/dN can be two- and three-body interactions, which in general can be
positive (see, for example, Ref3]), implying that the crite- complex quantities. The imaginary parts 0§ and \; de-
rion cannot be extended to a trapped NLSE with two- andscribe, the effects of inelastic two- and three-body collisions
three-body terms. Here the nonvalidity of the VK criterion is on the dynamics of BEC's, respectively. In the present paper,
clearly verified when we have a positive harmonic trap, withwe are not considering dissipative terms, and such cubic and
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quintic parameters are real. In order to compare with the 1 )\ZNa—(D+2) 2)\3N2a‘(2D+2)
formalism given in Ref[3], A, is proportional to the two- bt=—4—b2— o T S
body scattering lengthg., and is given by ,=87ag.. a 2(2m)®? 3(m3)

The chemical potentiglk, is given by the eigenvalue so- (10)

lutions of Eq.(1), with ¢(r,t)=e I(M)‘P(r)' Equation(9) expresses the chirp parametewia initial fo-
po=—Ag+r20+ N, ¢|20+ N3¢l 2) cusing (defocusing (a;) of the wave function. Combining
Egs.(9) and(10), we have
The Lagrangian density corresponding to EL.is given by

1 P Q
A A ay=——-at—+——, (11
c=2m(y )~V y2=r2l2= Z2ul*=Z1l. Tad o alty o atory
G ! h p= 2l
A. Gaussian variational approac =,
. P 2\(2mP
To analyze the dynamics of BEC’s under two- and three- (12)
body interactions, it is convenient to follow the variational 2\ N2 (2)®+3) \
approach developed in Ref&7,18. This approach was suc- Q= 3 = 23p2
cessfully employed, recently, in Rdf28] for a BEC with 3(my3)P  (3)(P12H1) )\2

two-body interaction. We choose the simple Gaussian ansatz
Comparing the result o&;; with D=2, from Eg. (11),

r2 b(tr? with that of Ref.[28], we observe that the resulting equation
p(r,t)y=A(t)exp — YT +ti——+ig() [, (4  obtained by the variational approach coincides with one ob-
a*(t) tained by the moments methd@9]. The equation is also

whereA(t) is the amplitudea(t) is the width, ¢(t) is the close to the one obtained by the modulation method for the

linear phase of the condensate, axd) is the “chirp” pa- 2D_T_o_wnes solitor{19]. WheanS, e_xpressing the above
rameter previously discussed. definitions by the parameters given in RE21], where,

Without dissipative terms, the normalization of the wave =87asc In our dimensionless _unitsal. is the two-body
function is conserved, and given by the number of particle$cattering length andN= n/(2\2]asd),
N. The mean-square radius and the normalization, for a sys- 5
tem with D dimensions, are _n _on
|P|=—= and Q=

2 9my3 ¥

The anharmonic potential is derived using the mechanical

analogy. By explicitly using the dimensions in ,
For a system wittD dimensions and radial symmetry, the 9y- By explcty g H&)

(13

D
<r2>=§az, and N=A?(\/ma)P=const.  (5)

averaged Lagrangian expression is given by D [ 4 \12
R=\(r’)=1/5a —) : (14)
—L=(Jma)PA?| 2¢+ —a?| bi+— +b>+1
2 a* 2 \F 5o\ 12
— R—/— 2
NoAZ \A* MaeR s N2 me (mw) } (19
+ st (6)
2‘/5 3‘/§ results that can be identified with
where WUp(R)  [ho \F M| Y2U .
) "k ~\2)Nb\w] G @9
5f Ldt=0 where L:flj(r,t)dr. (7)
where
Analyzing the corresponding Euler-Lagrange equations, "
w
L d dL 0 ® UP(R)EU(3)7- (17
dni dt gy e

The total energy for a BEC system wibhparticles is given

where; refer to the variational parametdi&(t),a(t),b(t), by
and ¢(t)], we obtain . .
a,=ab (9) ET=NUP(R)=NU(a)TEE(a)7_ (18

and So, for the dimensionless quantities, we obtain
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TABLE I. For lower dimensions, we show the results of par-
—=—(D)ay. (19 ticular cases where exact analytical solutions can be foayslare
Ja real and positive roots of the mean-square radius that extremize the
total energyf E;=NU(%Aw/2)]; P, andQ, are the critical param-
eters for stability of the NLSE in just one local minimum. Hor
=3, whenP and Q are nonzero, we show just one critical set of
parameters for the existence of two phadds.and u. are the

With Eqg. (11), we have the anharmonic potential in dimen-
sionless units:

Ua)= E a2+ i + £+ Q . (20) corresponding critical values df(a) and the chemical potential
2 a?) aP 2a® w(a).
Correspondingly, from Eq(2), the chemical potential is D (P.,Q) (P¢.Qc) a; a; U ne
given by
D ) l ZP 3Q 1 (O,Q) (O! 1) 1+Q 0 0 a(Z:
/-L(a)_E a"‘; +§+m. (21 o
2 (P,0) (-1,0) 1+P o 0 —
The asymptotic limita—o for U(a) is the same as for &
the oscillatorf U()—<], and is not determined by the pa- 2.3 4 53 173
rametersP and Q. So, the only limiting condition that is 0Q) (OvT) Fa. (22 3 2 12
strongly affected by these parameters is the limitO. _1 1 1 32
When Q+#0, the three-body term is dominant in the limit 3 0Q) (o,_) Zr A /_+Q i 22 22
U(0)~Q/(2a?P). Two cases have to be consider€k:0 4 2 2
gives usU(0)——=, andQ>0 will give usU(0)»+=. 5 (p psy (_(})ML) Eq.22 © 32 -2
As the other end is fixed by the oscillator conditigd () 8/ '64 8 2 4
— +00], in the first case@Q<0) we cannot obtain more than
one maximum and one minimum for finie that will de- 4  (P.0) (2;/570) Eq. (22) g 53 8\
pend on the sign and relative value of the paramBtefhe 2 3
caseQ>0 can be very interesting iIP<0: at both ends -1 1 1 15
U(a) goes to+, such that in between we can have two®  (P.0) (T’O) 5=\3tP 2 42 3

minima and one maximum for the total energy. The two
minima will represent two possible phases, and a rich dy-
namics can be described by the NLSE. From this analysis,
we should note that a phase transition is possible only wher:-2, the resulP,= — 1 for the particular case when the quin-
Q>0, with P<0. WhenQ=0, there is only a single phase. tic term is zero Q=0) is well known, and corresponds to
v=2 in Ref.[30]. The solutions will be unstable foP=
B. Critical parameters for stability —|P| with |P|>1.

Actually, one of the interesting cases occurs when the
cubic term is zeroP=0), for D=1 and 3, in view of the
possibility of altering the two-body scattering length by an

The relevant extremes &f (a) are given by the real and
positive roots of

1 P Q external magnetic fielfl17]. If this condition is realized P
ag——z——D—%:o_ (22 =0), the effect of the three-body nonlinear term in the
ag ag ag mean-field approximation of the condensate will be en-
N ) hanced. In case such a three-bddyintic) term is negative,
In such extreme positions, we obtain as shown in Table I, the present variational ansatz gives ana-
5 o lytical estimates for the critical parameters, and for physical
2 guantities such as the mean-square-radius, energy and chemi-
U(as)=Dag+ E(z_ D)+ a2P (1-D), @3y potentials. In Sec. IV we study this case in more detail.

Other particular cases occur when phase transitions are
possible. As explained above, these situations can only occur
w(ag)=Da’+ %(4—D)+ %(3_[))_ (24  if both parameters> and Q are nonzero an@>0 with P

s 2ag < 0. An absolute collapse is not possible in the condensate;
hower, one can obtain transitions between two phases. This

In Table | we show the particular cases, from the abovamplies that, for a system with a two-body attractive interac-
three equations, where exact analytical solutions can bgon and a three-body repulsive one, as we increase the num-
found for the extremes df) and the corresponding critical ber of atoms in the condensaté®( increases we can reach
parameters for stability. We note that, once a solution for a critical limit where only one phaséstable remains. In
system withD dimensions and®=0 is known, the same other words, for a particular value &= P, the positiona
solution can be used for the roots of a system with @-  of one of the minima ofJ coincides with the maximum, and
mensions and@)=0, by just exchanging® and Q. WhenD we have an inflection point dfl.
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24 . . where P is the momentum conjugate t8, given in Eq.
(14). In our dimensionless variables, the corresponding ini-
tial Hamiltonian is given by

3
Hozi(at) lotU(ag)= 5

agbi+U(ag), (26

22t .
where EQq.(9) was used. Thus, by varying the initial condi-
' ' tionsay andbg, we alterH,.

This case was recently analyzed using the moments meth-
ods in Refs[1,8,15, under some specific assumptions. The
4 assumptiona;|,=0 was considered in Refgl,15, and

Toot 8 a]o#0 in Ref. [8]. In Ref. [15], a generalization of the
Weinstein criterion for the collapgé4] was obtained, in the
case of three dimensions, and when there is only cubic term
in the NLSE.

-5 05 ] It will be interesting to derive criteria for stability more

a generally applied, using a variational approach and by com-
parison with results obtained with numerical simulations. For
this purpose, we should first obtain expressions for the mean-
square root that extremizes the total energy. In the varia-
tional approach, fob dimensions, the equations for the total
energy and chemical potential are given by E@D) and
(21). So, whereD =3, the equations corresponding to Egs.
(22), (23), and(24) are

As an example, in Table | we show one particular case
where we have a phase transition, and also an analytical
solution for one of the roots of E¢22), whenD =3. We can

FIG. 1. For a stable BEC with ,<0, A\3>0, andD=3, we
show a variational plot of the potential energya) (upper framg
in units of (A w)/2, as a function of the width, and the correspond-
ing phase plane defined bg,(,a). The parameters are dimension-
less, withP=—0.5495 andQ=0.0099.a is related to the mean-
square radius ag2)=3a?%/2.

a-al-Pai-Q=0, (27)

observe that this condition is realized if >P=P, , 1 P 5a 1 Q
= —(1/8)¥. When Q=P®, the critical limit occurs for V@)=2ast 5+ 5= T2 o &
P.=—(1/8)* and we have three roots far,, given by s S S s
ag1=as=|P¢=0.5946 andag;=0.4696. 5

A typical plot of the potential(a) as a function of the u(ag)=3a2+ i: E_ i_ g (29)
width a, and the corresponding phase portrait defined in the S S 283 2 232 2a°

plane @;,a) for negativex , and positive\ 5, is given in Fig.
1 for the caséd =3 of a stable BEC. The parameters for the  Here we should note that an exact expression for the
attractive cubic and repulsive quintic terms used in the figure4amiltonian, corresponding to the VA given by Edg0),

are such thah=1.948 andg;=0.016, corresponding t8  can be derived for the general case. This will be useful for
=—0.5495 andQ=0.0099. The number of atoms corre- the exact numerical calculations that we are going to perform
sponds to the situation in which we have two minima within three dimensions. We consider the following scaling in the
the same value fot(a). From the variational expressions wave functionys of the systenj24]:
given in this section and our mechanical analogy, one should

observe that, in the pictorial example of Fig. 1, if we have a

. _or
solution located at the right minimutfor exampleg it cannot p=a y(¢) with &=—. (30)
migrate to the left minimum, unless the chirp parameter cor- @
responds to an energy greater than the difference between ttheqen for the total Hamiltonian. we obtain
right minimum and the maximum that is in between. ' '
XS 2 2 )\2 YS }\3 ZS
I1l. ANALYSIS OF THE OSCILLATIONS OF THE BEC H(a)= —2+a <§ >+? —3+? & (31
IN THREE DIMENSIONS @ @ @
The different dynamical regimes in the condensate oscilwhere
lations can be described by the cross sections of the curve of
U(a) with the levels of the effective total energy. Following N 3 5 o 1243
our mechanical analogy, we have sE—f x'Axd%, (& >=f &xl*d%¢, (32
P
H(PR,R)= 7 +Up(R), (25 YSEJ |x|4d3¢, ZSEJ |x|6d3¢. (33
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FIG. 2. For \,<0 (with n=0.6, or P=-0.1692) and\,
=0 (Q=0), as in Fig. 1, we show a variational plot &f(a)
(upper framg as a function of the widtla, and the corresponding
phase plane defined by, a).

By taking 6H(a)/d«a|,-1=0, we obtain the characteristic
equation

3
Xs—(r3)+ 20 2YstAsZe=0. (34
With the above equation for the energy, we have
2Xs 4 0 Ny
H—T+§<r >—ZY5. (35)

Correspondingly, for the chemical potential, we obtain

2 A2
w=2(r >+ZYS. (36)

PHYSICAL REVIEW A 63 043604

chirp) must be smaller than the corresponding variation of
the potential energy, in order to maintain stable oscillations
around the minimumwherea=ag;). The initial chirp bg
must satisfy the condition

b2a% < - EAU(a)
0%s1™— 3 ’

(37)

whereas, is the value ofa corresponding to the maximum of
U(a), andag, corresponds to the minimum af(a). The
maximum initial chirp is given by

. _\ﬁwasz)—umsl)
om- 3 asl '

(39

From the above equation, we should also note that the criti-
cal values for the number of atoms, related to the parameters
P and Q, can be obtained by the condition thél(as,)
—U(ag). We should also observe that the chirp parameter
is introduced in the exact wave function by an exponential
factor, as in the VA'see Eq.(4)].

The frequency of the linear collective oscillations, , is
another relevant quantity with which to analyze the stability
of the condensate. When the system becomes unstable, it
reaches the value zero. From the radial variation of the force
around a minimumag,;, obtained from Eqs(27) and (28),

., in units of the trap frequency, is given by

1 d?U

a= asl
B 8 4 3P (39
agl agl.

One of the requirements for the instability of the BEC is that

It is interesting to observe that when the two-body interacw,_ is zero, when the minimum and maximum df disap-
tion is zero, the exact result for the chemical potential ispear. So it is convenient to analyze the critical points when

twice the mean-square radius, as shown alhovegreement
with the variational result of Eq29), whereaZ=2/3(r?)].

the system becomes unstable; at such points, the system col-
lapses(if we have only one minimupnor one of the phases

As specific cases will be considered in the next subsectiongcharacterized by a minimundisappears. From E¢28),

we will discuss this point in more detail. For now, we can

use the specific example =0, represented in Fig. 2, in 1 d?U 5a—al+3Q
order to illustrate the validity of the general criteri¢also 3 da? - 8
valid for Q+ 0) that we consider. In this case, we have just a=ag s
one minimum and a maximum a&f(a). 8a8— 4a.— 3P
A given chirpb(t) in the wave function corresponds to _ s~ 4as (40)
the square root of the kinetic energy, given by the Hamil- a2 '

tonian in Eq.(26). With a small initial chirp, we should have
oscillations around the minimum &f(a). The square of the

We can only have two minimégiven byag; andags) and

chirp must be larger than the difference between the minione maximumat ag,) for negativeP and positiveQ. In this

mum and maximum of the effective potential enetdya)
for the system to become unstable. So, from &), and

case, two critical limits are possible, corresponding to the
situations in which the position of one of the mininag; or

given thatH, is conserved, we can derive a minimum crite- ag3, is equal to the position of the maximufone of the

rion for stability. The given kinetic energfrelated to the

phases disappeardNote that in the critical limit we have
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Aamin=a8max=ac- In the next two subsections, we will con-
sider particular cases in which we have only one nonlinear
term present in the NLSE: a cubic term or a quintic term. E 8f
The discussion of more general cases, where both terms are
present in the NLSE, we leave for Sec. IV.

A. Case of Q=0, with attractive two-body term

The roots for the maximumag,) and the minimum &)
of U can be obtained from E@27):

aJ—ag+|P|=0. (41) '
——- VA static
Combining this equation with Eq40), we have R \F’,géns‘t;‘iepe"d' 1
' R 0O PDE time—depend. |
Ld 5- 2 (42) 2 i
3q2| g ‘ . e
3 da a=ag as O0 0.5 1 15 2

In the critical limit [31.9] FIG. 3. Results foQ=0, as functions of, the reduced number

1\ 4 4 1/4 of atoms defined in the text. In the upper frame we hBwenU,
_) . P.e=— _(_) = —0.53499, the total energy in units ofN/n) (% w/2); in the middle frame, the

aC: 5 5 5 . 2 . . .
mean-square radiug ©), in units of #/(mw); and, in the lower

frame, the maximum initial chirp. In the critical limit).=1.8965
Ne= 27| P¢|=1.8965. (43 and P,=—0.53499, the total energy is given B=nU=n_\5

=4.2407, corresponding &= 5N (A w/2).
where Eqgs(41) and(13) were used. With the above root of P g Br=5Nc(fw/2)

Eq. (41), the other roots can also be easﬂ_y found ngr_nerlcallystood by a small dephasing of the wave that occurs near the
for any value ofP. GivenP, once we obtain the positions of . L .

2 ) wall of the oscillator, when it is bouncing back.
the minimum @g;) and maximum &,) of U, we can calcu-

late the value of the maximum initial chirp for the collapse For the mean-square radius, we observe that the VA re-
using Eq.(39): P PSE: sults approaches the exact PDE results in the unstable branch

in the limit n—0. These results are consistent with results

> 2 obtained in Ref[24], where it was shown that, for a trapped
- 851785 1-5a2 a2 44 NLSE with a cubic term, the unstable branch of the chemical
om 4 2 ( asla52)- ( ) . . . - i 2 .
3agas, potential diverges in the limih— 0, with (r<) collapsing to

zero (this limit is the nontrapped solution of the NLEE
Our results, when we have only the cubic term in the non-
linear effective potential@=0), are shown in Figs. 2 and 3.

In Fig. 2, forP=—0.1693(corresponding tm=0.6), in the B. Case ofP=0 with attractive three-body term

lower frame we show the phase space giverapyersusa. As in Sec. llIA, for a stable condensate the maximum
In the upper frame, we have the total energy, in units ofinitial chirp is given by Eq.(38), where the roots are given
N(3/2)hw, as a function of. by Eq.(27). The real and positive roots correspond to stable

In Fig. 3, in the lower frame we show our results for the solutions, such that only one is meaningful wh@n>0.
maximum initial chirpbg,,, as a function ofn, for stable When Q<0, we obtain two real and positive roots af
solutions.n is the reduced number of atoms, given by Eq.where 0>Q= —1/4. These roots are
(13). In this figure, we also represent the total enefggyper
frame and the average of the square radiug), as a func-
tion of n.

The static variational expression for the maximum initial
chirp was derived from Eq9) and energy conservation re- \yhere the minimum ol is given bya, (=ag,), and the

quirements given by Eq37). The circles correspond to re- 1 avimum bya_(=as). The critical limit occurs ata®
sults obtained by the time-dependent VA, by increasing the_ 5 or Q.= —|Q.| = — 1/4. From Eqs(45) and (40)
initial conditions for the chirp until the system collapses. We ¢ ¢ ' '

1 1

Agys2=a4 /- = Ei Z+Q ) (45)

also obtain results for the maximum initial chirp using the

same Eq(37), considering exact PDE results for the observ- 1 d?u B +2\/1—4|Q| 17VI=4[Q]), (@6
ables presented in the equation. The results for the static case 3 da2 T |Q| (1= Q.
are represented by a solid line, and those for the time- a=as

dependent case by squares. We observed small differences in
the absolute values dfy,, when considering the tral, as  and the frequency of the linear collective oscillations,,
positive or negative. This fact can be qualitatively under-near the minimum is given by
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FIG. 5. Results for the maximum initial chitm,,, considering
A3<0 and\,=0, using the VA and exact PDE results.

0 05 1 results in this case, that the effective interaction contains
n; only a trap and a quintic term, are in agreement with the VK
criterion [22]. The observed exact relation between the

FIG. 4. Results foP=0, as f_unctl_ons of the reduced n_umbfer of chemical potential and the mean-square radijus: 2<r2>),
atomsns. The total energy is given in the upper frame, in units of .

(N/n3)(hw/2); in the middle frame we have the chemical potential in the present Casg,zzo, was prov_ed in E¢(36). .
in units of (Aw)/2; and, in the lower frame, the frequencies of the In the b.ranCh V.Vlth unstable solutions, we observe numeri-
collective breathing mode. In the VA, the critical limit for stability, cally that in the Ilrgltn3—>0 _the wave functlzon approaqhes
Q=Q.=—1/4, corresponds tons.=1.2371, whereE=n,U, the form yocexp(—r</2)/r, with u—1 and(r°)—1/2. This

=2/2n,,=3.499[corresponding t&;=2 2N (% w/2)]. solution is proved analytically to be an irregular solution of
' the oscillator[Recall that, whem,=0 and\;=0, in Eq.
— (2), the regular oscillator solution gives= 3; for the irregu-
L= \/2 1-4|Q| (1-1-4|Q)). (47) lar solution in the origin we havee=1 in our energy unit
1Ql (hwl2)]. Thus for unstable solutions, with smalD|, the

anussian ansatatarted by considering the exact regular so-
. = . oo ution of the oscillator in the liminy;=0) fails. By keeping
with P=0. As noted in Eqs(29) and (36) (the variational (artificially) the Gaussian shape for the unstable solutions,

and exact expressions, respectiyelhe chemical potential the radius is forced to be zero. This explains the discrepancy

Is exacily twice the mean-square radius. In the plots, the VAetween the present VA and PDE results in the unstable
results are shown by dashed lines and the exact PDE by sol gion. A more appropriate ansatz for the trapped NLSE

. . . e . . _ _ 4_
lines. The variational critical ImiQ=Q.=—1/4@a;=1/2)  (yhen\, and/or\ is nonzerd could be built by considering

corresponds {03, =1.2371 wheren is the reduced number o o (regular and irregularsolutions of the harmonic os-
of atoms, that is given by the normalization of the wave .jator.

function. In this case, Eq(12) will give us the relations Even considering the discrepancy between VA and PDE
between|Ql, [\s|, andn: results for unstablémaxima solutions, there is a reasonable

In Fig. 4, we present the main results of this subsectio

> agreement for the results obtained for the maximum initial
_ VIAgIN and Q= 8n3 (49  Chirp bom, as shown in Fig. 5. In Fig. 6, we have a varia-
2 PNE tional result for the potential energy as a functionapfand

the corresponding phase space, as in Figs. 1 and 2. Static
Given \3, we can obtain the corresponding critical numberpredictions on the PDE are also in good agreement for the

of atoms, maximum initial chirp. In PDE calculations we have numeri-
cally verified small differences between negative and posi-
\ 37323Y4 77729 49 tive by, as in the case analyzed and explained in Sec. Ill A
= = ' related to Fig. 3 Using Eq.(38) with P=0, the maximum
NN TSN W] ( g- B g Eq.(38)

initial chirp is given by
a result consistent with no limit in the number of atoms if \/ 1
om—

N3—0. == (1-2V]QN[V1—-4[Q[-1+2]Q]]

In Fig. 4, we also observe thaitu/dn;<0 (branch of 3[Q|
minima) anddu/dny>0 (branch of maximacorrespond, re- 5 34[Q]
spectively, to stable and unstable solutions. We note that a .  / /1_ |Q|) for |Q|<1. (50)
localized stable structure can only exist for positive The 3\/@ \ 2
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6 where
3 4P 7
4 + Bl:1+—4+_5+_8Q1
U a1 85 Ag
21 6 10P 280
Bo=— 5% "5 (52)
ok asl asl asl
2 -
10 20P 84Q
1t 3= T 7 T T
ag dg g
a! -
0 Then, applying the perturbation techniques to the theory of
b nonlinear oscillation$25], we find the frequency of weakly
nonlinear collective excitations,
2o ' ' 3B, 5B2
: 3 2
a wN| = \/B— 1+| =—=—— a?|, 53)
NE T (881 125%) 1 (

FIG. 6. ForA3<0 andA,=0 (Q<0 and P=0), with ng
=0.5, as in Figs. 1 and 2, we present results of the VA for the totalvhere o is the amplitude of the oscillations. The correction
potential energyJ as a function of, and a plot of the phase space to the linear frequency is proportional to the square of the
of a; vs a. amplitude of oscillations of the condensate.
The above estimate of the nonlinear oscillations in BEC,
The above result shows that, when the three-body paramet@en both the two- and three-body terms are positive, can be
is negative and small, the maximum initial chirpi$Q| %, 3 relevant piece of information to determine a possible mani-

or «(1/\/n3), as shown in Fig. 5. festation of three-body interaction in the condensates, and its
magnitude. We should observe that recently, in R&6), an
IV. DYNAMICS OF BEC WITH TWO- AND THREE-BODY observation was reported of nonlinear oscillations in BEC’s
INTERACTIONS of a gas with rubidium atoms.

In thi " | h h h Let us estimate the amplitude of oscillations of the width
n this section, we analyze the cases where we nave Ny yne aromic cloud. The points of maximum and minimum
zero cubic {,) and quintic {3) interaction terms in the

: S ; . width are defined by the section points of the likkg
NLSE. The different possibilities relative to the signs of the _ : : ;
two and three-body interactions are studied in the next thre const with the potential curvél(a). For large width,a

g . .
subsections, where we exclude one of the cases in which th>e1’ we can obtain the estimate

signs are the same. Whéhhas the same sign & the basic H 5
physical picture is not essentially altered in comparison to o= \/_Oi /(ﬂ) 1, (54)
the cases already discussed, where one of these quantities is 3 3

zero. However, it is worthwhile to examine the changes in

the collective excitations wheh, and 5 are positive, as WHEré 04 ()= 0maymin) - It is natural to assume that the
such observables can be useful to obtain information abo@Symptotic value of the width is the averaged value between

possible manifestations of three-body interactions. Omax &Nd i -

A. Case of repulsive cubic and quintic interactions B. Case of attractive cubic and repulsive quintic interactions
(A,>0 and A3>0) (Ap,<0 and A3>0)

From Eq.(39), one should observe that the frequency of N this case, there is no collapse, but the condensate can
the collective oscillations will decrease as we increser ~ have up to two distinct phases whexy,| is smaller than a
if the position of the minimumay,, decreases. As all quan- Critical value. From the beginning, whewy=0, U has one
tities present in Eq(39) are positive, this frequency in the MinNimum ata:agl_ and a maximum af=as. BY ?OHSId'
VA has an upper limit at the value\2, such that a reason- €ing a fixed positivgand small A5, a second minimum of
able frequency of oscillations around the minimum will be U (&s3) appears, corresponding to a denser phase in the con-
smaller than thatalso see Ref(32]). densate. As we increase the value|Bf, we can reach a
The effects of the unharmonicity of the oscillations can becfitical value where the minimum of the normal phase dis-
taken into account by the expansion of the effective potentiafPPears3].

near the bottora,, on the power of deviationg=a—a;. When Ho/3<AU=|U(as)-U(ag)|, with as=as or
The equation fory(t) is ag3, we have small-amplitude oscillations near the fixed
point as. With Ho/3>AU, the character of the oscillations
Y= — By —Boy?—Bagy?, (51)  changes, and we have large-amplitude oscillations, due to the
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motion of the effective particle between the wall given by 48 ' - - - '
the repulsive three-body interaction and the other curve
given by the quadratic potential. Withs close toag; and
Ho/3<AU,=|U(as;) —U(ag)|, the condensate oscillates ¢
with an amplitude restricted from below lag,.

The position of the minimunag; of U(a) is defined by
the equilibrium between two- and three-body interactions;
the positions of the other extrema Uf the fixed pointsag,
andags, are mainly defined by the contributions of the two-
and three-body terms. These considerations allow us to ob 0| 7
tain analytical expressions for such fixed points, that are
given by the real and positive roots of the equation given by *"
the first derivative olU(a). 0

In order to analyze the frequencies of the linear oscilla-

tions [given by Eq.(39)], we return to Eq(40), where P 0.0 . . . . .

=—|P| andQ=|Q|. The physically relevant situations oc- 18 18 19 195 2 205 21

cur when|P| is a fraction of 1 andQ<1. Of particular

interest are the cases where two pha@esresponding to FIG. 7. VA results for the total energy and for the corresponding
two minima are possible, ai=ay; anda=ag;. maximum initial chirp, as functions of the reduced number of atoms

Let us consider, for example, the particular case examineb: when we have an attractive two-body interactions and a fixed
in Table |, that we have a one-point solution givendyy  repulsive three-body interaction witiy=0.016.
=|P| andQ=a% =|P|®. This example is chosen not only
for convenience but because it is not far from a more realistic CIPELCTED (55
situation. Usually we scale the normalization of the wave__ . ) ) i i
function with a value oh that is directly proportional tbP|. This unequality for the frequencies was also confirmed in

Thus the three-body parametey is related to the particular nur_lr_frical PII_DEdcaI(;uIﬁtions clj_one in R%?]'. i the d
point we are considering. The critical limit in this case is e amplitude of the noniinear oscillations in the dense

iven by |P..14=(1/8) (IP..|=0.59486) an —1/64, as phase can be found from the observation #hat<1l. Then
ghown 3|/n| -F;'me (1 c):o(r|re§l|f|Jonding tu)>cl=g.Q1C678 andg; ~ erms witha™® anda 2 are dominant in the effective poten-
—0.021[see Eq.(13]respectively. At such a critical limit U2l €nergy, and an approximate solution can be found:
the frequency of the linear oscillations around the minimum

> 13
ag; goes to zerdIn a practical situation, before the system o o |P| + P -~ Q (56)
reaches this critical limit in the normal phase, it tunnels to a MM 2[Hol TV 4HZ  2[H(|

denser phase, when both energies are gquéth |P| larger

than|P.|, there is only one phageninimum) corresponding An interesting phenomenon occurs when the iniéigh

to a denser phase. As we reduce the valugPpf we reach a =agb, is large. Then the character of the cloud oscillations

second critical point abiy,=ag=|P¢3/, Whereag; is the  will change, from oscillations neaag; and ag; to large-

position of the minimum of the denser phase. A given valueamplitude oscillations defined mainly by the quadratic poten-

of |P| should be between the limit® 3| <|P|<|P.,| forthe tial (see Fig. 1 Let us estimate the criterion for the bifurca-

existence of two phases. tion phenomenon in the oscillations. Taking into account the
Thus, for the normal phase, we note that the corresponcexpression for the energyt,, the bifurcation point is given

ing frequencies of the oscillations are approximately giverby

by the harmonic oscillator, witlw, ;~2 (twice the trap fre-

guency. This can be seen in previous cases, where one of [2AU 1
the nonlinear terms is zero and the other is small. bom= 3 ay’ (57)

Consider the case exemplified in Fig. 1, wheRe
~—0.55 (=1.95) andQ~0.01 @;=0.016), and the cor- The result is shown in Fig. 7, using our Gaussian VA, which
responding roots for the minima ame;~0.386 andag;  gives us a qualitative picture of the exact results that were
~0.726. Using Eq(39), we can observe that the frequency already presented in Ref3].
of the oscillations in the denser phagg,,=4.493, is much In Fig. 8 we show a full numerical PDE calculation for a
larger than the frequency of the normal phasg;=1.339.  system beginning in the gas phase, which corresponds to the
If we take more realistic parameters like for examplg, right minimum of the Fig. 1. Our results show that for a
=0.001 andn=1.5, using Eqs(13) and (27), we obtain small chirp ©;<0.10), the mean-square radius oscillates
a5 =0.840 (minimum of the “gas” phasg ag,=0.434  with small amplitude, according to its collective frequency.
(maximum, and ag3=0.105 (minimum of the “liquid” Applying a stronger chirp, nedr,=0.11, we observe tran-
phasé. The corresponding frequencies of the linear oscilla-sitions back and forth between two phases, characterized by
tions of the two phases aig ;=1.73 andw ,=258. So, in different amplitudes of the oscillations. Ab, is large
general, we observe that it should be expected that enough we observe that the oscillation pattern remain almost
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FIG. 8. Time evolution of the square radius with the full PDE in . L
the case of a phase transition fa=1.754 andg;=0.016 {, 0 1 2 3
<0, \g>0), beginning in the gadess densephase solution. The a

initial conditions (chirp) considered aré,=0.05 (dotted ling, b,

_ . _ L N FIG. 9. Asin Figs. 1, 2 and 5, in the upper frame we have the
;a(;.&géd”c:]t};dashed ling: bo=0.11 (solid line), andb,=0.15 (long potential energyJ(a), and, in the lower frame, a plot of the cor-

responding phase spaceayfvs a. We have nonzero values for both

) ) o ) ) two- and three-body parameters, wittb>0 and A3;<0 (g3
fixed for large amplitude. A similar picture can be seen if we— _q 5).

begin in the denser phase, with different initial conditions

given by the chirp. These results were obtained by using the . .

exact PDE calculation, and they are in qualitative agreement OOne sh(z)uld nlote thgt this part||cu[ar cfaSepéO- ands ith
with the VA approach. The quantitative agreement betwee <E % can fe rejvaprt] In an analysis o hexp;lerlments lw.'t
the VA and the exact PDE deviates considerably in the phas S periormed with atomic sys'gems that ave repuisive
transition region. This should be expected, as we are far frorﬁ’vo'bOOIy interactions. No collapse is expected if a real three-

the harmonic-oscillator behavior, in a region where an im- ody e_ffect is not mgnifested, or if the possiple three-body
provement in the ansatz is neceésary effect is also repulsive. However, an attractive three-body

effect will change this scenario, as the system must collapse
for a certain critical maximum number of atoms. In this per-
C. Case of repulsive cubic and attractive quintic interactions spective, the present analysis shows that experiments with
(Ax>0 and A3<0) BEC's may be useful in detecting negative three-body
As both two- and three-body nonlinear terms are nonzerdorces. The corresponding maximum critical number of at-
and have opposite sigriwith attractive three-body and re- oms for the stability of the condensate can also be obtained
pulsive two-body interactionsone could expect a behavior
similar to the case that was analyzed in Sec. IV B, and alsc ' ' ' -
represented in Fig. where the two-body interaction is at- 20 K S~_ T )
tractive and the three-body interaction is repulsiBut con- ™ e~
trary to such expectation, this case shows a different behav N\ IR
ior for a small radius, and no phase transition is possible. We . I \ \‘\\ ]
observe that in this case the system can collapse, as the b~ \ N ]
havior for a small radius is dominated by the three-body ‘\
term, which is negative. This is represented in Fig. 9, in a®, !
variational plot of U(a) versusa, together with a corre- 10 ‘l
sponding plot for the phase space. : .\
In Fig. 10, we present the breathing-mode collective ex- | ;
|
|
[
[
|
I

citations for a few values of5 calculated in the variational 05
approximation. The collective excitations show that even for
small negativeg; a limited number of atoms is allowed in
the condensate. Now only a region of stationary 0 s ]
condensate—the denser phase—exists. Two points exist th: 0 20 40 60 80 100
extremize the energy: onay, is stable; and the othea,,, n

is unstable. Here the situation is similar to the cases where F|G. 10. Collective excitations for the breathing mode of the
we have a single attractive nonlinear tefoabic or quinti¢;  condensate for a positive two-body interaction,®0), and for a

the condition for collapse, in terms of the initial ching, is  set of negative three-body interactions;&0), as shown inside the
such that it must be larger thdm, given in Eq.(38). figure.
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' ' ' ' mum and minimum of the energy. This implies that, when

2 //4’/ we have a positive two-body interaction {>0), the pres-
E8 I ////// i ence of a negative three-body termz&0) can be detected
Pt in principle even if a number of atoms has not achieved a
4t b -7 . critical number. The initial maximum chirp plays a relevant
= role in this case.
2 — . . .

V. VK CRITERION

In the context of stability analysis of NLSE bound states,
. the orbital stability, or stability with respect to the form, was
first settled by the so-called Vakhitov-Kolokolov criterion
[22], that was detailed in a recent review in REf2]. A
solitary wave is orbitally stable if the initial orbit, chosen
near the ground-state orbit, implies that the orbit of the so-
T lution at anyt>0 remains close to the ground state. The
criterion was first demonstrated in R¢R3], by minimizing

the deviations between the orbital states and the ground state
with respect to the initial position parameters. In our nota-
tion, the VK criterion for stability can be written hs

2
<r> 4

-2 4 dN
—<0. (58
I

FIG. |11. ';otal energi, mear_1-hsqua_re radi“(52>t’1 and cl;emi:;al However, the original VK criterion and the above-cited
potential , for negativeAs (with g;=—0.5). The dashed line 4o monstration only considered cases without trap, with non-
corresponds to the variational approach, and the solid line to exa‘l"ltr‘learities expressed bf/(| ¢|2) More recently, a general
numerical Ca'?mat'ons' Depar.tlng from= 3.’ to the right or left, condition that guarantees the orbital stability of stationary
we have solutions corresponding to the minima of the total energyt, d d ¢ d ibed by the NLSE with bi
until critical valuesn,, (in both sideg are reached. After the critical rappe corf1 ensﬁ‘ 83’ escribe d)l:) g, | V;|4 a cubic
numbers, the curves follow lower branches, corresponding t(ilegrrrgé%v:rft v(\fi;rf??e:ultsegr?:l;tzrgéein R[)é‘ﬂ fg:?ﬁ:éa[se]\'lvr']r;n
maxima.

the cubic term is negative.

from the present approach, by taking the lirjf,,—0 (or The validity of the VK criterion appears to be solidly
as,—ay). For instance, whegs= —0.5, the critical num- consolidated by the above-described formal demonstrations,

bern can be obtained from the right-hand sigesitiver,) ~ and by the specific cases that have been considered. These
of Fig. 11. results appear to support an extended range of applicability
In Fig. 11 we present, for a fixed attractive three-body©f the VK criterion to the NLSE. In the several cases that we

interaction withgs= — 0.5, the total energ)E, the mean- considered in the present papiby an exact numerical pro-
square-radiugr2), and the chemical potential, as functions c€dure and also by a Gaussian variational appipase ap-

of the reduced number of atomsmultiplied by the sign of plicability of the VK criterion is out of the question in the
the two-body interaction. We consider both negative ( C2S€S that have been examined by other authors. We have

<0) and positive X,>0) two-body interactions, and the also confirmed the applicability of the criterion in the case
value ofgs=—0.5 was chosen for numerical convenience. When we have only a trap and a quintic term in the effective

The variational approactdashed linggives a good descrip- Nt€raction, as shown in Fig. 4.
tion of the minima for smalln|, but fails for the maxima The validity of the VK criterion cannot be extended to a

solutions, as one can see in the figure when comparing witf@PPed NLSE with two- and three-body terms,f wher;] the
the exact resultgsolid lineg. In agreement with the varia- Wo-body term is negative, as one can observe from the re-

tional results of collective excitations, the number of atomsSU!ts obtained in Re{3]. This is an unexpected result, con-
allowed is limited to a critical numben,~ 3.5 (the corre- sidering that the criterion is applicable for nontrapped sys-

sponding exact result is-2.93). For a more realistic value tems (‘(’j‘”th cubic hand/or ﬂumtm t<|%m)h$ andb.also fﬁr the_ .
of the three-body parameter, with= —0.01, the exact criti- :rappe CdaS?S w et;: we avihoP%/ ihet cu |ch0r t teh quintic
cal number isn .~ 4200. erms(and also in the cases that both terms have the same

In the upper frame of Fig. 11 we show a similar patternSign)' The VK criterion is also not applicable when>0,

for the minimum and the maximum of the energy, as already"‘s. opservgd in Fig. 11, on the right side of the pIoF. The
described with\s=0 when\,<0 and with \s>0 when criterion fails particularly in the region near the oscillator

X,=0. Such results also indicate that an initial wave func-S°lution (where x=3), where we can observe thau/Jn

tion with a larger enough chirp can make the condensate
unstable, and that the corresponding magnitudbgf can
be inferred from the absolute difference between the maxi- *We should note that corresponds te-\ of Ref.[12].
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>0 in a stable branctupped and also in the unstable branch ~ The VA starts to deviate from the exact results when the
(lower). (We recognize the stable branch as the one that coisystem is close to collapse conditions, and particularly for
responds to minima of the eneryyfherefore, in the present unstable solutiongmaxima of the total energy. For these
work, we confirm the conclusion about the limitation of the regions, where the Gaussian VA fails, one should improve
VK criterion: The nonvalidity of the VK criterion is verified the ansatz or take the results as a qualitative picture to guide
numerically when we have a positive harmonic trap, withthe exact numerical calculations. In this respect, one should
two- and three-body nonlinear terms with opposite signs. note that, for a NLSE without a trap potential, it is well
known that the time-dependent variational approach fails to
VI. CONCLUSIONS describe the region near the collapée,13.
- ) Considering that in this work we have shown the rel-
The stability of a trapped condensate, with two- and threegyance of an initial chirp parameter to study the stability of
body nonlinear terms, was studied in the present work, conhe condensate, we should observe that a good estimate for
sidering several aspects, as the initial conditions in the wavgch a parameter relies on a good approach to determing
function and the validity of the Vakhitov-Kolokolov crite- poth minimum (stablé and maximum(unstablé solutions
rion. For the initial conditions we considered a chirp param-gr the total energy. The Gaussian VA is in good agreement
eter, which is related to the initial focusiridefocusing of (quantitatively with exact results for the minima, but can
the cloud. A nonzero initial chirp, introduces oscillations only give a qualitative description for the maxima. Still we
in the condensate near the minimum of the energy, such thatn observe that the VA calculations of the chirp parameter,
it can lead a previously stable system to collapse, wien \when compared with exact numerical calculations, are in rea-
reaches a maximum limh , that corresponds to the energy spnable agreement. We also would like to point out that the
difference between a minimum and a maximum of the tOtabresent approach can be extended to study the stability of

potential energy. So, in the presence of a fixed value of thehirped laser beams in inhomogeneous three dimensional
chirp, the number of atoms of a stable condensate with afedia with Kerr nonlinearity.

attractive interaction is smaller than the corresponding value Finally, the main results of the present work are as fol-

when the chirp is zero. When the potential has two minimaows: (i) A chirp parameter in the wave function was shown
(when cubic and quintic terms are present in the NLSE to be useful to study the initial conditions for a stable con-
related to two phases of the condensate, a bifurcation phetensate to remain stablgi) We showed that the VK crite-
nomenon is predicted depending on the value of the initialion cannot be extended to cases of a harmonic trapped BEC
chirp. A maximum initial chirp can affect the system in suchwhen the nonlinear two- and three-body terms have opposite
a way that the oscillations can switch from a gas phase to digns. (iii) If an atomic system has a repulsive two-body
liquid phase, and vice versa. interaction, collapse is possible if the effective three-body
The present study was performed by using exact numerinteraction is negative. By this perspective, one can use the
cal solutions of the partial differential equation, as well as byopserved critical number of atoms in order to determine the

a Corresponding variational approach. Analytical prediction%orresponding three_body parameter_
based on the time-dependent VA, using a Gaussian ansatz,

were qualitatively confirmed by the exact time-dependent

numerical S|mulat|qns. We would like to 'pomt'out the advan- ACKNOWLEDGMENTS

tages of the Gaussian VA when comparing with the moments
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