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Stability of trapped Bose-Einstein condensates
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In three-dimensional trapped Bose-Einstein condensate~BEC!, described by the time-dependent Gross-
Pitaevskii-Ginzburg equation, we study the effect of initial conditions on stability using a Gaussian variational
approach and exact numerical simulations. We also discuss the validity of the criterion for stability suggested
by Vakhitov and Kolokolov. The maximum initial chirp~initial focusing defocusing of cloud! that can lead a
stable condensate to collapse even before the number of atoms reaches its critical limit is obtained for several
specific cases. When we consider two- and three-body nonlinear terms, with negative cubic and positive quintic
terms, we have the conditions for the existence of two phases in the condensate. In this case, the magnitude of
the oscillations between the two phases are studied considering sufficient large initial chirps. The occurrence of
collapse in a BEC with repulsive two-body interaction is also shown to be possible.
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I. INTRODUCTION

In trapped Bose-Einstein condensates~BEC’s!, it is well
known that collapse occurs when the two-body interactio
attractive and if the number of atomsN exceeds a critica
valueNc , as in the case of atomic condensates with7Li @1#.
In this case, experiments with attractive two-body interact
have been performed@2#, with results consistent with the
limitation in the number of atoms and with the growth a
collapse scenario. As the nonlinear terms presented in
nonlinear Schro¨dinger equation~NLSE! ~cubic, quintic, and
so on! are due to the first terms of an expansion of the
fective many-body interaction in the mean-field approxim
tion @3#, a study of stability of the equation that describ
BEC’s is necessary, considering the observed few-body
teractions that occur in the atomic gas. When the overall s
of the effective many-body interaction is negative, we ha
the conditions for the occurrence of collapse, with the sta
ity of the condensate being restricted by the number of
oms.

We should stress that the criteria for stability usually
volves one parameter: the number of atoms. Here, in orde
introduce a criterion for stability of a trapped condens
with two- and three-body effective interactions, we introdu
another parameter: a chirp, that is related to the initial foc
ing ~defocusing! of the cloud. Without a trap, a chirp param
eter was previously introduced in Ref.@4# to study the sta-
bility of the NLSE; with a trap, the stability was studied
Refs.@5–7#. One should also note that an oscillating conde
sate always has a chirped wave function, where the chir
proportional to the time variation of the width, which is
periodic function of time. Thus a real condensate, for
ample in optical traps, always has a nonzero initial chirp, t
should be taken into account.

Collapses for two- and three-dimensional geometries o

*On leave of absence from Physical-Technical Institute, Tashk
Uzbekistan.
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NLSE with trap potential were investigated in Refs.@1,8#,
where the corresponding critical numbers were obtain
@9,10#. These works are extensions of Zakharov and
workers’ theory of collapse@11–14# to the case when an
additional trap potential is included. The trap potential he
to prevent the collapsing process, which cannot be avoide
the number of atoms exceeds the critical limit. In Re
@8,15#, considering the moments method in the analysis
the equation for the average squared value of the wid
^a2&, the influence of the corresponding initial condition o
the collapse was emphasized.

Variational approaches were also used by many auth
for an analysis of the stability of NLSE, and proved to
useful in many aspects~see Ref.@4#, for example!. The varia-
tional approach~VA !, using a simple Gaussian ansatz, giv
a reasonable description of the conditions for collapse,
also an approximate value of the critical number of atoms
is interesting to apply the time-dependent variational
proach to describe the dynamics of a BEC with attract
two-body interactions, and in particular to study the infl
ence of the initial conditions~using a chirp constantb in the
wave function! on the stability of a BEC. This can be impo
tant for condensation in optical traps and in strongly inh
mogeneous traps. Also, recently~in Ref. @16#! a stability
analysis was performed, using both VA and exact calcu
tions, considering that the condensate can unstabilize by
neling, due to quantum fluctuations.

When the two-body interaction term is switched off, f
example by tuning an external magnetic field@17#, the three-
body interaction term can play an important role. Thus it
interesting to study collapse conditions in a model with
trap potential term and an attractive three-body interact
~quintic! term. Recently, in Ref.@18#, the collapse in a one
dimensional~1D! model with attractive three-body interac
tions was investigated. The trap was narrow, and induce
radiative loss of atoms, reducing the number below the c
cal value, which made an arrest of the collapse possible.
two-dimensional case, with cubic nonlinearity~two-body in-
teractions!, may be useful in modulation theory around th
t,
©2001 The American Physical Society04-1
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Townes soliton@19#. Then it is possible to estimate the ro
played by the continuum.

In the present work, we first consider a review of t
stability criterions, without application of initial chirp. Nex
we analyze the role of an initial chirp in the wave function
a stable condensate with an attractive two-body nonlin
term, which can be useful for actual experimental analysi
BEC’s. A generalization of this study of stability is consi
ered with the inclusion of a three-body interaction term
the NLSE. Such a study can be relevant to the perspectiv
atomic systems with enhanced three-body effects, that
occur as the two-body scattering length is altered@17#.

When a positive three-body interaction term is included
a trapped 3D NLSE with negative two-body interactio
there already exists the possibility of extending the region
stability of the equation to a larger number of atoms, with
occurrence of two stable phases in the condensate@20,21#. In
Ref. @3#, the frequency of the collective excitations in dens
~liquid! and dilute~gas! phases of the condensate was cal
lated. Here we investigate a bifurcation phenomenon rela
to the time variation of the width parameter of the theory,
switching the oscillations from one phase to the other. T
present study is done with the aid of a time-dependent va
tional approach for the collapse of the atomic cloud in a
model with harmonic trap potential. We compare the pred
tions of the VA with exact numerical simulations of the pa
tial differential equation~PDE!. As detailed in our conclu-
sions, the Gaussian VA gives a good estimate of
observables in the region of stability, and begins to dev
from exact results when the system is close to the colla
conditions, and particularly for the unstable solutio
~maxima! of the total energy. For this regions, where t
Gaussian VA fails, one should improve the ansatz or take
results as a qualitative picture to guide the exact numer
calculations.

In cases without traps, the NLSE was previously stud
by Vakhitov and Kolokolov~VK ! @22#, where a criterion for
stability was settled. This and other criteria for stability
nonlinear systems have been studied and extensively use
many authors~see Refs@23,12#, and references therein!. The
VK criterion was recently detailed in Ref.@12#. When a trap
potential was added to a NLSE with a negative cubic te
an alternative stability criterion was derived in Ref.@7#, after
considering similarities between BEC atomic systems
compact objects like neutron stars. Recently, the VK cr
rion for a trapped BEC with a cubic term was formally dem
onstrated in Ref.@24#.

In recent numerical studies@3,21,20# one can also observ
that the VK criterion is not generally valid; it cannot b
extended, for example, to the case of a trapped system
both attractive cubic and repulsive quintic terms. The so
tions can be stable irrespective of the sign of the deriva
of the eigenvalues of the NLSE with respect to the numbe
atoms,dm/dN. Wheng3 is positive, and for a large enoug
number of atoms, the NLSE is stable anddm/dN can be
positive~see, for example, Ref.@3#!, implying that the crite-
rion cannot be extended to a trapped NLSE with two- a
three-body terms. Here the nonvalidity of the VK criterion
clearly verified when we have a positive harmonic trap, w
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two- and three-body nonlinear terms with opposite signs
We extend the study of the stability of the NLSE wi

cubic ~two-body! and quintic~three-body! terms, through the
analysis of chirp response, and through the frequency of
lective excitations. By applying the perturbation techniqu
to the theory of nonlinear oscillations@25#, we also derive
the frequency of weakly nonlinear collective excitation
This study extends the numerical calculations performed
Ref. @3# for the frequencies of collective excitations.

One should also note that such a study is of actual in
est, as recently Ref.@26# reported observations of nonlinea
oscillations in BEC’s of a gas with rubidium atoms. Th
present study can be of interest not only to atomic BEC’s
also to other branches of physics and mathematics, wh
nonlinear effective interactions are added to a trapped po
tial in the time-dependent Schro¨dinger equation, in, e.g., op
tics and soliton physics.

In Sec. II, we give a description of the model, using
variational approach for a system withD dimensions. In Sec
III, we derive an expression for the chirp parameter tha
considered in our analysis of stability. The maximum init
chirp to keep the system oscillating in the same pha
around a minimum of the energy, without collapsing or wit
out a phase transition, is obtained in this section by con
ering both variational and exact numerical calculations.
Sec. IV, we follow the study of Sec. III, and obtain freque
cies for the linear and nonlinear oscillations. In this sect
we consider the presence of both cubic and quintic terms
several different configurations. The VK criterion of stabili
is discussed in Sec. V. Finally, in Sec. VI, we present o
concluding remarks.

II. DESCRIPTION OF THE MODEL

In this section we will consider the dynamics described
a NLSE with a harmonic potential and with cubic and quin
terms. Using a variational approach for a system withD
dimensions, from the Lagrangian we derive an expression
the anharmonic potential considering the mechan
analogy.

The time-dependent Gross-Pitaevskii-Ginzburg equat
that will be considered in the present approach, is given

2ic t52Dc1Vc1l2ucu2c1l3ucu4c. ~1!

In this equation and in the following equations, the expli
space and time dependences of the variables and param
are implicit, unless it is necessary or convenient for clar
The time derivatives will be denoted by indicest. In Eq. ~1!
we assume dimensionless variables: the unit of energ
\v/2, the unit of length isA\/(mv), and the unit of time is
1/v. V[V(rW) is a static trap potential, and we assume
harmonic oscillator with spherical symmetry given byV
5r 2 in the present units.l2 andl3 are the parameters of th
two- and three-body interactions, which in general can
complex quantities. The imaginary parts ofl2 and l3 de-
scribe, the effects of inelastic two- and three-body collisio
on the dynamics of BEC’s, respectively. In the present pap
we are not considering dissipative terms, and such cubic
4-2
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STABILITY OF TRAPPED BOSE-EINSTEIN CONDENSATES PHYSICAL REVIEW A63 043604
quintic parameters are real. In order to compare with
formalism given in Ref.@3#, l2 is proportional to the two-
body scattering lengthasc , and is given byl2[8pasc .

The chemical potentialm, is given by the eigenvalue so
lutions of Eq.~1!, with c(r ,t)5e2 i(mt/2)w(r ):

mw52Dw1r 2w1l2uwu2w1l3uwu4w. ~2!

The Lagrangian density corresponding to Eq.~1! is given by

L52 Im~c t* c!2u¹cu22r 2ucu22
l2

2
ucu42

l3

3
ucu6. ~3!

A. Gaussian variational approach

To analyze the dynamics of BEC’s under two- and thr
body interactions, it is convenient to follow the variation
approach developed in Refs.@27,18#. This approach was suc
cessfully employed, recently, in Ref.@28# for a BEC with
two-body interaction. We choose the simple Gaussian an

c~r ,t !5A~ t !expS 2
r 2

2a2~ t !
1 i

b~ t !r 2

2
1 if~ t !D , ~4!

whereA(t) is the amplitude,a(t) is the width,f(t) is the
linear phase of the condensate, andb(t) is the ‘‘chirp’’ pa-
rameter previously discussed.

Without dissipative terms, the normalization of the wa
function is conserved, and given by the number of partic
N. The mean-square radius and the normalization, for a
tem with D dimensions, are

^r 2&5
D

2
a2, and N5A2~Apa!D5const. ~5!

For a system withD dimensions and radial symmetry, th
averaged Lagrangian expression is given by

2L5~Apa!DA2F2f t1
D

2
a2S bt1

1

a4
1b211D

1
l2A2

2A2D
1

l3A4

3A3DG , ~6!

where

dE Ldt50 where L5E L~r ,t !drW. ~7!

Analyzing the corresponding Euler-Lagrange equations,

]L

]h i
2

d

dt

]L

]ḣ i

50, ~8!

whereh i refer to the variational parameters@A(t),a(t),b(t),
andf(t)#, we obtain

at5ab ~9!

and
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1

a4
2b2211

l2Na2(D12)

2~2p!(D/2)
1

2l3N2a2(2D12)

3~pA3!D
.

~10!

Equation~9! expresses the chirp parameterb via initial fo-
cusing ~defocusing! (at) of the wave function. Combining
Eqs.~9! and ~10!, we have

att5
1

a3
2a1

P

a(D11)
1

Q

a(2D11)
, ~11!

P[
l2N

2A~2p!D
,

~12!

Q[
2l3N2

3~pA3!D
5

~2!(D13)

~3!(D/211)

l3

l2
2

P2.

Comparing the result ofatt with D52, from Eq. ~11!,
with that of Ref.@28#, we observe that the resulting equatio
obtained by the variational approach coincides with one
tained by the moments method@29#. The equation is also
close to the one obtained by the modulation method for
2D Townes soliton@19#. WhenD53, expressing the abov
definitions by the parameters given in Ref.@21#, wherel2
58pasc in our dimensionless units (asc is the two-body
scattering length!, andN5n/(2A2uascu),

uPu5
n

2Ap
and Q5

8n2

9pA3
g3 . ~13!

The anharmonic potential is derived using the mechan
analogy. By explicitly using the dimensions in Eq.~5!,

R[A^r 2&5AD

2
aS \

mv D 1/2

, ~14!

m
d2

dt2
R5AD

2
attFmv2S \

mv D 1/2G , ~15!

results that can be identified with

2
]UP~R!

]R
52S \v

2 DA2

DS mv

\ D 1/2]U

]a
, ~16!

where

UP~R![U~a!
\v

2
. ~17!

The total energy for a BEC system withN particles is given
by

ET5NUP~R!5NU~a!
\v

2
[E~a!

\v

2
. ~18!

So, for the dimensionless quantities, we obtain
4-3
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]U

]a
52~D !att . ~19!

With Eq. ~11!, we have the anharmonic potential in dime
sionless units:

U~a!5
D

2 S a21
1

a2D 1
P

aD
1

Q

2 a(2D)
. ~20!

Correspondingly, from Eq.~2!, the chemical potential is
given by

m~a!5
D

2 S a21
1

a2D 1
2P

aD
1

3Q

2 a(2D)
. ~21!

The asymptotic limita→` for U(a) is the same as fo
the oscillator@U(`)→`#, and is not determined by the pa
rametersP and Q. So, the only limiting condition that is
strongly affected by these parameters is the limita50.
When QÞ0, the three-body term is dominant in the lim
U(0)'Q/(2a2D). Two cases have to be considered:Q,0
gives usU(0)→2`, and Q.0 will give us U(0)→1`.
As the other end is fixed by the oscillator condition@U(`)
→1`#, in the first case (Q,0) we cannot obtain more tha
one maximum and one minimum for finitea, that will de-
pend on the sign and relative value of the parameterP. The
caseQ.0 can be very interesting ifP,0: at both ends
U(a) goes to1`, such that in between we can have tw
minima and one maximum for the total energy. The tw
minima will represent two possible phases, and a rich
namics can be described by the NLSE. From this analy
we should note that a phase transition is possible only w
Q.0, with P,0. WhenQ<0, there is only a single phase

B. Critical parameters for stability

The relevant extremes ofU(a) are given by the real and
positive roots of

as
22

1

as
2

2
P

as
D

2
Q

as
2D

50. ~22!

In such extreme positions, we obtain

U~as!5Das
21

P

2as
D

~22D !1
Q

2as
2D

~12D !, ~23!

m~as!5Das
21

P

2as
D

~42D !1
Q

2as
2D

~32D !. ~24!

In Table I we show the particular cases, from the abo
three equations, where exact analytical solutions can
found for the extremes ofU and the corresponding critica
parameters for stability. We note that, once a solution fo
system withD dimensions andP50 is known, the same
solution can be used for the roots of a system with 2D di-
mensions andQ50, by just exchangingP andQ. WhenD
04360
-
s,
n

e
e

a

52, the resultPc521 for the particular case when the quin
tic term is zero (Q50) is well known, and corresponds t
n52 in Ref. @30#. The solutions will be unstable forP5
2uPu with uPu.1.

Actually, one of the interesting cases occurs when
cubic term is zero (P50), for D51 and 3, in view of the
possibility of altering the two-body scattering length by
external magnetic field@17#. If this condition is realized (P
50), the effect of the three-body nonlinear term in t
mean-field approximation of the condensate will be e
hanced. In case such a three-body~quintic! term is negative,
as shown in Table I, the present variational ansatz gives a
lytical estimates for the critical parameters, and for physi
quantities such as the mean-square-radius, energy and ch
cal potentials. In Sec. IV we study this case in more deta

Other particular cases occur when phase transitions
possible. As explained above, these situations can only o
if both parametersP and Q are nonzero andQ.0 with P
,0. An absolute collapse is not possible in the condens
hower, one can obtain transitions between two phases.
implies that, for a system with a two-body attractive intera
tion and a three-body repulsive one, as we increase the n
ber of atoms in the condensate (uPu increases!, we can reach
a critical limit where only one phase~stable! remains. In
other words, for a particular value ofP5Pc , the positiona
of one of the minima ofU coincides with the maximum, and
we have an inflection point ofU.

TABLE I. For lower dimensions, we show the results of pa
ticular cases where exact analytical solutions can be found.as’s are
real and positive roots of the mean-square radius that extremize
total energy@ET5NU(\v/2)#; Pc and Qc are the critical param-
eters for stability of the NLSE in just one local minimum. ForD
53, whenP and Q are nonzero, we show just one critical set
parameters for the existence of two phases.Uc and mc are the
corresponding critical values ofU(a) and the chemical potentia
m(a).

D (P,Q) (Pc ,Qc) as
4 ac

4 Uc mc

1 (0,Q) (0,21) 11Q 0 0
21

ac
2

2 (P,0) (21,0) 11P 0 0
21

ac
2

2 (0,Q) S0,
2A3

9 D Eq. ~22!
4

3

5A3

4

17A3

12

3 (0,Q) S0,
21

4 D 1

2
6A1

4
1Q

1
2 2A2

3A2

2

3 (P,P8) S2S18D
1/4

,
1

64D Eq. ~22!
1

8

3A2

2

2A2

4

4 (P,0) S2A3

9
,0D Eq. ~22!

4

3
5A3

2
8A3

3

6 (P,0) S21

4
,0D 1

2
6A1

4
1P

1

2 4A2
7A2

2

4-4
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As an example, in Table I we show one particular ca
where we have a phase transition, and also an analy
solution for one of the roots of Eq.~22!, whenD53. We can
observe that this condition is realized if 0.P>Pc
52(1/8)(1/4). When Q5P8, the critical limit occurs for
Pc52(1/8)(1/4) and we have three roots foras , given by
as15as25uPcu50.5946 andas350.4696.

A typical plot of the potentialU(a) as a function of the
width a, and the corresponding phase portrait defined in
plane (at ,a) for negativel2 and positivel3, is given in Fig.
1 for the caseD53 of a stable BEC. The parameters for t
attractive cubic and repulsive quintic terms used in the fig
are such thatn51.948 andg350.016, corresponding toP
520.5495 andQ50.0099. The number of atoms corr
sponds to the situation in which we have two minima w
the same value forU(a). From the variational expression
given in this section and our mechanical analogy, one sho
observe that, in the pictorial example of Fig. 1, if we have
solution located at the right minimum~for example! it cannot
migrate to the left minimum, unless the chirp parameter c
responds to an energy greater than the difference betwee
right minimum and the maximum that is in between.

III. ANALYSIS OF THE OSCILLATIONS OF THE BEC
IN THREE DIMENSIONS

The different dynamical regimes in the condensate os
lations can be described by the cross sections of the curv
U(a) with the levels of the effective total energy. Followin
our mechanical analogy, we have

H~PR ,R!5
PR

2

2m
1UP~R!, ~25!

FIG. 1. For a stable BEC withl2,0, l3.0, andD53, we
show a variational plot of the potential energyU(a) ~upper frame!,
in units of (\v)/2, as a function of the widtha, and the correspond
ing phase plane defined by (at ,a). The parameters are dimensio
less, withP520.5495 andQ50.0099.a is related to the mean
square radius aŝr 2&53a2/2.
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where PR is the momentum conjugate toR, given in Eq.
~14!. In our dimensionless variables, the corresponding
tial Hamiltonian is given by

H05
3

2
~at!

2u01U~a0!5S 3

2Da0
2b0

21U~a0!, ~26!

where Eq.~9! was used. Thus, by varying the initial cond
tions a0 andb0, we alterH0.

This case was recently analyzed using the moments m
ods in Refs.@1,8,15#, under some specific assumptions. T
assumptionatu050 was considered in Refs.@1,15#, and
atu0Þ0 in Ref. @8#. In Ref. @15#, a generalization of the
Weinstein criterion for the collapse@14# was obtained, in the
case of three dimensions, and when there is only cubic t
in the NLSE.

It will be interesting to derive criteria for stability mor
generally applied, using a variational approach and by co
parison with results obtained with numerical simulations. F
this purpose, we should first obtain expressions for the me
square root that extremizes the total energy. In the va
tional approach, forD dimensions, the equations for the tot
energy and chemical potential are given by Eqs.~20! and
~21!. So, whereD53, the equations corresponding to Eq
~22!, ~23!, and~24! are

as
82as

42Pas
32Q50, ~27!

U~as!52as
21

1

as
2

1
P

2as
3

5
5as

2

2
1

1

2as
2

2
Q

2as
6

, ~28!

m~as!53as
21

P

2as
3

5
7as

2

2
2

1

2as
2

2
Q

2as
6

. ~29!

Here we should note that an exact expression for
Hamiltonian, corresponding to the VA given by Eqs.~20!,
can be derived for the general case. This will be useful
the exact numerical calculations that we are going to perfo
in three dimensions. We consider the following scaling in t
wave functionc of the system@24#:

c5a23/2x~jW ! with jW[
rW

a
. ~30!

Then, for the total Hamiltonian, we obtain

H~a!5
Xs

a2
1a2^j2&1

l2

2

Ys

a3
1

l3

3

Zs

a6
, ~31!

where

Xs[2E x†Dxd3j, ^j2&5E j2uxu2d3j, ~32!

Ys[E uxu4d3j, Zs[E uxu6d3j. ~33!
4-5
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By taking dH(a)/daua5150, we obtain the characteristi
equation

Xs2^r 2&1
3

4
l2Ys1l3Zs50. ~34!

With the above equation for the energy, we have

H5
2Xs

3
1

4

3
^r 2&2

l2

4
Ys . ~35!

Correspondingly, for the chemical potential, we obtain

m52^r 2&1
l2

4
Ys . ~36!

It is interesting to observe that when the two-body inter
tion is zero, the exact result for the chemical potential
twice the mean-square radius, as shown above@in agreement
with the variational result of Eq.~29!, whereas

252/3̂ r 2&#.
As specific cases will be considered in the next subsecti
we will discuss this point in more detail. For now, we c
use the specific example ofQ50, represented in Fig. 2, in
order to illustrate the validity of the general criterion~also
valid for QÞ0) that we consider. In this case, we have ju
one minimum and a maximum ofU(a).

A given chirp b(t) in the wave function corresponds t
the square root of the kinetic energy, given by the Ham
tonian in Eq.~26!. With a small initial chirp, we should hav
oscillations around the minimum ofU(a). The square of the
chirp must be larger than the difference between the m
mum and maximum of the effective potential energyU(a)
for the system to become unstable. So, from Eq.~26!, and
given thatH0 is conserved, we can derive a minimum crit
rion for stability. The given kinetic energy~related to the

FIG. 2. For l2,0 ~with n50.6, or P520.1692) andl3

50 (Q50), as in Fig. 1, we show a variational plot ofU(a)
~upper frame!, as a function of the widtha, and the corresponding
phase plane defined by (at ,a).
04360
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chirp! must be smaller than the corresponding variation
the potential energy, in order to maintain stable oscillatio
around the minimum~where a5as1). The initial chirp b0
must satisfy the condition

b0
2as1

2 <2
2

3
DU~a!,

b0
2<

2

3

U~as2!2U~as1!

as1
2

, ~37!

whereas2 is the value ofa corresponding to the maximum o
U(a), and as1 corresponds to the minimum ofU(a). The
maximum initial chirp is given by

b0,m5A2

3

AU~as2!2U~as1!

as1
. ~38!

From the above equation, we should also note that the c
cal values for the number of atoms, related to the parame
P and Q, can be obtained by the condition thatU(as2)
→U(as1). We should also observe that the chirp parame
is introduced in the exact wave function by an exponen
factor, as in the VA@see Eq.~4!#.

The frequency of the linear collective oscillations,vL , is
another relevant quantity with which to analyze the stabi
of the condensate. When the system becomes unstab
reaches the value zero. From the radial variation of the fo
around a minimumas1, obtained from Eqs.~27! and ~28!,
vL , in units of the trap frequencyv, is given by

vL5A1

3

d2U

da2 U
a5as1

5A52
1

as1
4

1
3Q

as1
8

5A82
4

as1
4

2
3P

as1
5

. ~39!

One of the requirements for the instability of the BEC is th
vL is zero, when the minimum and maximum ofU disap-
pear. So it is convenient to analyze the critical points wh
the system becomes unstable; at such points, the system
lapses~if we have only one minimum! or one of the phases
~characterized by a minimum! disappears. From Eq.~28!,

1

3

d2U

da2 U
a5as

5
5as

82as
413Q

as
8

5
8as

524as23P

as
5

. ~40!

We can only have two minima~given by as1 and as3) and
one maximum~at as2) for negativeP and positiveQ. In this
case, two critical limits are possible, corresponding to
situations in which the position of one of the minima,as1 or
as3, is equal to the position of the maximum~one of the
phases disappears!. Note that in the critical limit we have
4-6
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amin5amax5ac . In the next two subsections, we will con
sider particular cases in which we have only one nonlin
term present in the NLSE: a cubic term or a quintic ter
The discussion of more general cases, where both terms
present in the NLSE, we leave for Sec. IV.

A. Case ofQÄ0, with attractive two-body term

The roots for the maximum (as2) and the minimum (as1)
of U can be obtained from Eq.~27!:

as
52as1uPu50. ~41!

Combining this equation with Eq.~40!, we have

1

3

d2U

da2 U
a5as

552
1

as
4

. ~42!

In the critical limit @31,5#,

ac5S 1

5D 1/4

, Pc52
4

5 S 1

5D 1/4

520.53499,

nc52ApuPcu51.8965. ~43!

where Eqs.~41! and~13! were used. With the above root o
Eq. ~41!, the other roots can also be easily found numerica
for any value ofP. GivenP, once we obtain the positions o
the minimum (as1) and maximum (as2) of U, we can calcu-
late the value of the maximum initial chirp for the collaps
using Eq.~38!:

b0,m5Aas1
2 2as2

2

3as1
4 as2

2 ~125as1
2 as2

2 !. ~44!

Our results, when we have only the cubic term in the n
linear effective potential (Q50), are shown in Figs. 2 and 3
In Fig. 2, for P520.1693~corresponding ton50.6), in the
lower frame we show the phase space given byat versusa.
In the upper frame, we have the total energy, in units
N(3/2)\v, as a function ofa.

In Fig. 3, in the lower frame we show our results for t
maximum initial chirpb0,m , as a function ofn, for stable
solutions.n is the reduced number of atoms, given by E
~13!. In this figure, we also represent the total energy~upper
frame! and the average of the square radius,^r 2&, as a func-
tion of n.

The static variational expression for the maximum init
chirp was derived from Eq.~9! and energy conservation re
quirements given by Eq.~37!. The circles correspond to re
sults obtained by the time-dependent VA, by increasing
initial conditions for the chirp until the system collapses. W
also obtain results for the maximum initial chirp using t
same Eq.~37!, considering exact PDE results for the obse
ables presented in the equation. The results for the static
are represented by a solid line, and those for the tim
dependent case by squares. We observed small differenc
the absolute values ofb0,m when considering the trailb0 as
positive or negative. This fact can be qualitatively und
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stood by a small dephasing of the wave that occurs near
wall of the oscillator, when it is bouncing back.

For the mean-square radius, we observe that the VA
sults approaches the exact PDE results in the unstable br
in the limit n→0. These results are consistent with resu
obtained in Ref.@24#, where it was shown that, for a trappe
NLSE with a cubic term, the unstable branch of the chemi
potential diverges in the limitn→0, with ^r 2& collapsing to
zero ~this limit is the nontrapped solution of the NLSE!.

B. Case ofPÄ0 with attractive three-body term

As in Sec. III A, for a stable condensate the maximu
initial chirp is given by Eq.~38!, where the roots are given
by Eq. ~27!. The real and positive roots correspond to sta
solutions, such that only one is meaningful whenQ.0.
When Q,0, we obtain two real and positive roots ofa,
where 0.Q>21/4. These roots are

as1/s2[a1/25F1

2
6A1

4
1QG1/4

, ~45!

where the minimum ofU is given by a1([as1), and the
maximum by a2([as2). The critical limit occurs atac

4

51/2 or Qc52uQcu521/4. From Eqs.~45! and ~40!,

1

3

d2U

da2 U
a5as

56
2A124uQu

uQu ~17A124uQu!, ~46!

and the frequency of the linear collective oscillations,vL ,
near the minimum is given by

FIG. 3. Results forQ50, as functions ofn, the reduced numbe
of atoms defined in the text. In the upper frame we haveE5nU,
the total energy in units of (N/n)(\v/2); in the middle frame, the
mean-square radiuŝr 2&, in units of \/(mv); and, in the lower
frame, the maximum initial chirp. In the critical limit,nc51.8965
and Pc520.53499, the total energy is given byE5nU5ncA5
54.2407, corresponding toET5A5Nc(\v/2).
4-7
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vL5A2A124uQu
uQu

~12A124uQu!. ~47!

In Fig. 4, we present the main results of this subsect
with P50. As noted in Eqs.~29! and ~36! ~the variational
and exact expressions, respectively!, the chemical potentia
is exactly twice the mean-square radius. In the plots, the
results are shown by dashed lines and the exact PDE by
lines. The variational critical limitQ5Qc521/4(ac

451/2)
corresponds ton3,c51.2371 wheren3 is the reduced numbe
of atoms, that is given by the normalization of the wa
function. In this case, Eq.~12! will give us the relations
betweenuQu, ul3u, andn3:

n35
Aul3uN

2p
and uQu5

8n3
2

9pA3
. ~48!

Given l3, we can obtain the corresponding critical numb
of atoms,

Nc5
3p3/231/4

2A2Aul3u
5

7.7729

Aul3u
, ~49!

a result consistent with no limit in the number of atoms
l3→0.

In Fig. 4, we also observe that]m/]n3,0 ~branch of
minima! and]m/]n3.0 ~branch of maxima! correspond, re-
spectively, to stable and unstable solutions. We note th
localized stable structure can only exist for positivem. The

FIG. 4. Results forP50, as functions of the reduced number
atomsn3. The total energy is given in the upper frame, in units
(N/n3)(\v/2); in the middle frame we have the chemical potent
in units of (\v)/2; and, in the lower frame, the frequencies of t
collective breathing mode. In the VA, the critical limit for stability
Q5Qc521/4, corresponds ton3,c51.2371, whereE5n3Uc

52A2n3,c53.499@corresponding toET52A2Nc(\v/2)#.
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results in this case, that the effective interaction conta
only a trap and a quintic term, are in agreement with the V
criterion @22#. The observed exact relation between t
chemical potential and the mean-square radius (m52^r 2&),
in the present case,l250, was proved in Eq.~36!.

In the branch with unstable solutions, we observe num
cally that in the limitn3→0 the wave function approache
the formc}exp(2r2/2)/r , with m→1 and^r 2&→1/2. This
solution is proved analytically to be an irregular solution
the oscillator@Recall that, whenl250 and l350, in Eq.
~2!, the regular oscillator solution givesm53; for the irregu-
lar solution in the origin we havem51 in our energy unit
(\v/2)#. Thus for unstable solutions, with smalluQu, the
Gaussian ansatz~started by considering the exact regular s
lution of the oscillator in the limitn350) fails. By keeping
~artificially! the Gaussian shape for the unstable solutio
the radius is forced to be zero. This explains the discrepa
between the present VA and PDE results in the unsta
region. A more appropriate ansatz for the trapped NL
~whenl2 and/orl3 is nonzero! could be built by considering
the two~regular and irregular! solutions of the harmonic os
cillator.

Even considering the discrepancy between VA and P
results for unstable~maxima! solutions, there is a reasonab
agreement for the results obtained for the maximum ini
chirp b0,m , as shown in Fig. 5. In Fig. 6, we have a vari
tional result for the potential energy as a function ofa, and
the corresponding phase space, as in Figs. 1 and 2. S
predictions on the PDE are also in good agreement for
maximum initial chirp. In PDE calculations we have nume
cally verified small differences between negative and po
tive b0,m , as in the case analyzed and explained in Sec. I
~related to Fig. 3!. Using Eq.~38! with P50, the maximum
initial chirp is given by

b0,m5A 1

3uQu ~122AuQu!@A124uQu2112AuQu#

'A 2

3AuQu
S 12

3AuQu
2 D for uQu!1. ~50!

f
l

FIG. 5. Results for the maximum initial chirpb0,m , considering
l3,0 andl250, using the VA and exact PDE results.
4-8
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STABILITY OF TRAPPED BOSE-EINSTEIN CONDENSATES PHYSICAL REVIEW A63 043604
The above result shows that, when the three-body param
is negative and small, the maximum initial chirp is}uQu21/4,
or }(1/An3), as shown in Fig. 5.

IV. DYNAMICS OF BEC WITH TWO- AND THREE-BODY
INTERACTIONS

In this section, we analyze the cases where we have n
zero cubic (l2) and quintic (l3) interaction terms in the
NLSE. The different possibilities relative to the signs of t
two and three-body interactions are studied in the next th
subsections, where we exclude one of the cases in which
signs are the same. WhenQ has the same sign asP, the basic
physical picture is not essentially altered in comparison
the cases already discussed, where one of these quantit
zero. However, it is worthwhile to examine the changes
the collective excitations whenl2 and l3 are positive, as
such observables can be useful to obtain information ab
possible manifestations of three-body interactions.

A. Case of repulsive cubic and quintic interactions
„l2Ì0 and l3Ì0…

From Eq.~39!, one should observe that the frequency
the collective oscillations will decrease as we increaseP, or
if the position of the minimum,as1, decreases. As all quan
tities present in Eq.~39! are positive, this frequency in th
VA has an upper limit at the value 2A2, such that a reason
able frequency of oscillations around the minimum will
smaller than that~also see Ref.@32#!.

The effects of the unharmonicity of the oscillations can
taken into account by the expansion of the effective poten
near the bottomac on the power of deviationsy5a2as1.
The equation fory(t) is

ytt52B1y2B2y22B3y3, ~51!

FIG. 6. For l3,0 and l250 (Q,0 and P50), with n3

50.5, as in Figs. 1 and 2, we present results of the VA for the t
potential energyU as a function ofa, and a plot of the phase spac
of at vs a.
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B1511
3

as1
4

1
4P

as1
5

1
7Q

as1
8

,

B252
6

as1
5

2
10P

as1
6

2
28Q

as1
9

, ~52!

B35
10

as1
6

1
20P

as1
7

1
84Q

as1
10

.

Then, applying the perturbation techniques to the theory
nonlinear oscillations@25#, we find the frequency of weakly
nonlinear collective excitations,

vNL5AB1F11S 3B3

8B1
2

5B2
2

12B1
2D s2G , ~53!

wheres is the amplitude of the oscillations. The correctio
to the linear frequency is proportional to the square of
amplitude of oscillations of the condensate.

The above estimate of the nonlinear oscillations in BE
when both the two- and three-body terms are positive, can
a relevant piece of information to determine a possible ma
festation of three-body interaction in the condensates, an
magnitude. We should observe that recently, in Ref.@26#, an
observation was reported of nonlinear oscillations in BEC
of a gas with rubidium atoms.

Let us estimate the amplitude of oscillations of the wid
of the atomic cloud. The points of maximum and minimu
width are defined by the section points of the lineH0
5const with the potential curveU(a). For large width,a
@1, we can obtain the estimate

s65AH0

3
6AS H0

3 D 2

21, ~54!

where s1(2)[smax(min) . It is natural to assume that th
asymptotic value of the width is the averaged value betw
smax andsmin .

B. Case of attractive cubic and repulsive quintic interactions
„l2Ë0 and l3Ì0…

In this case, there is no collapse, but the condensate
have up to two distinct phases whenul2u is smaller than a
critical value. From the beginning, whenl350, U has one
minimum ata5as1 and a maximum ata5as2. By consid-
ering a fixed positive~and small! l3, a second minimum of
U (as3) appears, corresponding to a denser phase in the
densate. As we increase the value ofuPu, we can reach a
critical value where the minimum of the normal phase d
appears@3#.

When H0/3,DU5uU(as2)2U(as)u, with as5as1 or
as3, we have small-amplitude oscillations near the fix
point as . With H0/3.DU, the character of the oscillation
changes, and we have large-amplitude oscillations, due to

l

4-9
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ABDULLAEV, GAMMAL, TOMIO, AND FREDERICO PHYSICAL REVIEW A 63 043604
motion of the effective particle between the wall given
the repulsive three-body interaction and the other cu
given by the quadratic potential. Withas close toas3 and
H0/3,DU25uU(as2)2U(as3)u, the condensate oscillate
with an amplitude restricted from below byas2.

The position of the minimumas1 of U(a) is defined by
the equilibrium between two- and three-body interactio
the positions of the other extrema ofU, the fixed pointsas2

andas3, are mainly defined by the contributions of the tw
and three-body terms. These considerations allow us to
tain analytical expressions for such fixed points, that
given by the real and positive roots of the equation given
the first derivative ofU(a).

In order to analyze the frequencies of the linear osci
tions @given by Eq.~39!#, we return to Eq~40!, where P
52uPu and Q5uQu. The physically relevant situations oc
cur when uPu is a fraction of 1 andQ!1. Of particular
interest are the cases where two phases~corresponding to
two minima! are possible, ata5as1 anda5as3.

Let us consider, for example, the particular case exami
in Table I, that we have a one-point solution given byas1

5uPu and Q5as1
8 5uPu8. This example is chosen not onl

for convenience but because it is not far from a more reali
situation. Usually we scale the normalization of the wa
function with a value ofn that is directly proportional touPu.
Thus the three-body parameterl3 is related to the particula
point we are considering. The critical limit in this case
given by uPc1u45(1/8) (uPc1u50.5946) andQc151/64, as
shown in Table 1, corresponding tonc152.1078 andg3
50.021 @see Eq.~13!#,respectively. At such a critical limi
the frequency of the linear oscillations around the minim
as1 goes to zero@In a practical situation, before the syste
reaches this critical limit in the normal phase, it tunnels t
denser phase, when both energies are equal#. With uPu larger
thanuPcu, there is only one phase~minimum! corresponding
to a denser phase. As we reduce the value ofuPu, we reach a
second critical point atas25as35uPc3u, where as3 is the
position of the minimum of the denser phase. A given va
of uPu should be between the limitsuPc3u,uPu,uPc1u for the
existence of two phases.

Thus, for the normal phase, we note that the correspo
ing frequencies of the oscillations are approximately giv
by the harmonic oscillator, withvL1;2 ~twice the trap fre-
quency!. This can be seen in previous cases, where on
the nonlinear terms is zero and the other is small.

Consider the case exemplified in Fig. 1, whereP
'20.55 (n'1.95) andQ'0.01 (g350.016), and the cor-
responding roots for the minima areas3'0.386 andas1
'0.726. Using Eq.~39!, we can observe that the frequen
of the oscillations in the denser phase,vL254.493, is much
larger than the frequency of the normal phase,vL151.339.
If we take more realistic parameters like for example,g3
50.001 andn51.5, using Eqs.~13! and ~27!, we obtain
as150.840 ~minimum of the ‘‘gas’’ phase!, as250.434
~maximum!, and as350.105 ~minimum of the ‘‘liquid’’
phase!. The corresponding frequencies of the linear osci
tions of the two phases arevL151.73 andvL25258. So, in
general, we observe that it should be expected that
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vL2@vL1 . ~55!

This unequality for the frequencies was also confirmed
numerical PDE calculations done in Ref.@3#.

The amplitude of the nonlinear oscillations in the den
phase can be found from the observation thatas3!1. Then
terms witha26 anda23 are dominant in the effective poten
tial energy, and an approximate solution can be found:

smax,min5S uPu
2uH0u

6A P2

4H0
2

2
Q

2uH0u D 1/3

. ~56!

An interesting phenomenon occurs when the initialatu0
5a0b0 is large. Then the character of the cloud oscillatio
will change, from oscillations nearas1 and as3 to large-
amplitude oscillations defined mainly by the quadratic pot
tial ~see Fig. 1!. Let us estimate the criterion for the bifurca
tion phenomenon in the oscillations. Taking into account
expression for the energyH0, the bifurcation point is given
by

b0,m>A2DU

3

1

as1
. ~57!

The result is shown in Fig. 7, using our Gaussian VA, whi
gives us a qualitative picture of the exact results that w
already presented in Ref.@3#.

In Fig. 8 we show a full numerical PDE calculation for
system beginning in the gas phase, which corresponds to
right minimum of the Fig. 1. Our results show that for
small chirp (b0<0.10), the mean-square radius oscillat
with small amplitude, according to its collective frequenc
Applying a stronger chirp, nearb0>0.11, we observe tran
sitions back and forth between two phases, characterize
different amplitudes of the oscillations. Asb0 is large
enough we observe that the oscillation pattern remain alm

FIG. 7. VA results for the total energy and for the correspond
maximum initial chirp, as functions of the reduced number of ato
n, when we have an attractive two-body interactions and a fi
repulsive three-body interaction withg350.016.
4-10
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STABILITY OF TRAPPED BOSE-EINSTEIN CONDENSATES PHYSICAL REVIEW A63 043604
fixed for large amplitude. A similar picture can be seen if w
begin in the denser phase, with different initial conditio
given by the chirp. These results were obtained by using
exact PDE calculation, and they are in qualitative agreem
with the VA approach. The quantitative agreement betw
the VA and the exact PDE deviates considerably in the ph
transition region. This should be expected, as we are far f
the harmonic-oscillator behavior, in a region where an i
provement in the ansatz is necessary.

C. Case of repulsive cubic and attractive quintic interactions
„l2Ì0 and l3Ë0…

As both two- and three-body nonlinear terms are nonz
and have opposite signs~with attractive three-body and re
pulsive two-body interactions!, one could expect a behavio
similar to the case that was analyzed in Sec. IV B, and a
represented in Fig. 1~where the two-body interaction is a
tractive and the three-body interaction is repulsive!. But con-
trary to such expectation, this case shows a different beh
ior for a small radius, and no phase transition is possible.
observe that in this case the system can collapse, as th
havior for a small radius is dominated by the three-bo
term, which is negative. This is represented in Fig. 9, in
variational plot of U(a) versusa, together with a corre-
sponding plot for the phase space.

In Fig. 10, we present the breathing-mode collective
citations for a few values ofg3 calculated in the variationa
approximation. The collective excitations show that even
small negativeg3 a limited number of atoms is allowed i
the condensate. Now only a region of stationa
condensate—the denser phase—exists. Two points exist
extremize the energy: one,as1, is stable; and the other,as2,
is unstable. Here the situation is similar to the cases wh
we have a single attractive nonlinear term~cubic or quintic!;
the condition for collapse, in terms of the initial chirpb0, is
such that it must be larger thanb0,m given in Eq.~38!.

FIG. 8. Time evolution of the square radius with the full PDE
the case of a phase transition forn51.754 andg350.016 (l2

,0, l3.0), beginning in the gas~less dense! phase solution. The
initial conditions~chirp! considered areb050.05 ~dotted line!, b0

50.10 ~dot-dashed line!, b050.11 ~solid line!, andb050.15 ~long
dashed line!.
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One should note that this particular case (l2.0 andl3
,0) can be relevant in an analysis of experiments w
BEC’s performed with atomic systems that have repuls
two-body interactions. No collapse is expected if a real thr
body effect is not manifested, or if the possible three-bo
effect is also repulsive. However, an attractive three-bo
effect will change this scenario, as the system must colla
for a certain critical maximum number of atoms. In this pe
spective, the present analysis shows that experiments
BEC’s may be useful in detecting negative three-bo
forces. The corresponding maximum critical number of
oms for the stability of the condensate can also be obtai

FIG. 9. As in Figs. 1, 2 and 5, in the upper frame we have
potential energyU(a), and, in the lower frame, a plot of the cor
responding phase space ofat vs a. We have nonzero values for bot
two- and three-body parameters, withl2.0 and l3,0 (g3

520.5).

FIG. 10. Collective excitations for the breathing mode of t
condensate for a positive two-body interaction (l2.0), and for a
set of negative three-body interactions (l3,0), as shown inside the
figure.
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from the present approach, by taking the limitb0,m→0 ~or
as2→as1). For instance, wheng3520.5, the critical num-
ber n can be obtained from the right-hand side~positivel2)
of Fig. 11.

In Fig. 11 we present, for a fixed attractive three-bo
interaction with g3520.5, the total energyE, the mean-
square-radiuŝr 2&, and the chemical potential, as functio
of the reduced number of atomsn multiplied by the sign of
the two-body interaction. We consider both negative (l2
,0) and positive (l2.0) two-body interactions, and th
value of g3520.5 was chosen for numerical convenienc
The variational approach~dashed line! gives a good descrip
tion of the minima for smallunu, but fails for the maxima
solutions, as one can see in the figure when comparing
the exact results~solid lines!. In agreement with the varia
tional results of collective excitations, the number of ato
allowed is limited to a critical numbernc;3.5 ~the corre-
sponding exact result is;2.93). For a more realistic valu
of the three-body parameter, withg3520.01, the exact criti-
cal number isnc;4200.

In the upper frame of Fig. 11 we show a similar patte
for the minimum and the maximum of the energy, as alrea
described withl3>0 when l2,0 and with l3.0 when
l250. Such results also indicate that an initial wave fun
tion with a larger enough chirp can make the condens
unstable, and that the corresponding magnitude ofb0,m can
be inferred from the absolute difference between the m

FIG. 11. Total energyE, mean-square radius^r 2&, and chemical
potential m, for negativel3 ~with g3520.5). The dashed line
corresponds to the variational approach, and the solid line to e
numerical calculations. Departing fromm53, to the right or left,
we have solutions corresponding to the minima of the total ene
until critical valuesnc ~in both sides! are reached. After the critica
numbers, the curves follow lower branches, corresponding
maxima.
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mum and minimum of the energy. This implies that, wh
we have a positive two-body interaction (l2.0), the pres-
ence of a negative three-body term (l3,0) can be detected
in principle even if a number of atoms has not achieve
critical number. The initial maximum chirp plays a releva
role in this case.

V. VK CRITERION

In the context of stability analysis of NLSE bound state
the orbital stability, or stability with respect to the form, wa
first settled by the so-called Vakhitov-Kolokolov criterio
@22#, that was detailed in a recent review in Ref.@12#. A
solitary wave is orbitally stable if the initial orbit, chose
near the ground-state orbit, implies that the orbit of the
lution at any t.0 remains close to the ground state. T
criterion was first demonstrated in Ref.@33#, by minimizing
the deviations between the orbital states and the ground
with respect to the initial position parameters. In our no
tion, the VK criterion for stability can be written as1

]N

]m
,0. ~58!

However, the original VK criterion and the above-cite
demonstration only considered cases without trap, with n
linearities expressed byf (ucu2). More recently, a genera
condition that guarantees the orbital stability of stationa
trapped condensates, described by the NLSE with a cu
term, was formally demonstrated by Berge´ et al. @24#, in
agreement with results analyzed in Ref.@7# for the case when
the cubic term is negative.

The validity of the VK criterion appears to be solidl
consolidated by the above-described formal demonstrati
and by the specific cases that have been considered. T
results appear to support an extended range of applicab
of the VK criterion to the NLSE. In the several cases that
considered in the present paper~by an exact numerical pro
cedure and also by a Gaussian variational approach!, the ap-
plicability of the VK criterion is out of the question in th
cases that have been examined by other authors. We
also confirmed the applicability of the criterion in the ca
when we have only a trap and a quintic term in the effect
interaction, as shown in Fig. 4.

The validity of the VK criterion cannot be extended to
trapped NLSE with two- and three-body terms, when t
two-body term is negative, as one can observe from the
sults obtained in Ref.@3#. This is an unexpected result, con
sidering that the criterion is applicable for nontrapped s
tems ~with cubic and/or quintic terms!, and also for the
trapped cases when we have only the cubic or the qui
terms ~and also in the cases that both terms have the s
sign!. The VK criterion is also not applicable whenl2.0,
as observed in Fig. 11, on the right side of the plot. T
criterion fails particularly in the region near the oscillat
solution ~wherem53), where we can observe that]m/]n

1We should note thatm corresponds to2l of Ref. @12#.
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.0 in a stable branch~upper! and also in the unstable branc
~lower!. ~We recognize the stable branch as the one that
responds to minima of the energy.! Therefore, in the presen
work, we confirm the conclusion about the limitation of th
VK criterion: The nonvalidity of the VK criterion is verified
numerically when we have a positive harmonic trap, w
two- and three-body nonlinear terms with opposite signs

VI. CONCLUSIONS

The stability of a trapped condensate, with two- and thr
body nonlinear terms, was studied in the present work, c
sidering several aspects, as the initial conditions in the w
function and the validity of the Vakhitov-Kolokolov crite
rion. For the initial conditions we considered a chirp para
eter, which is related to the initial focusing~defocusing! of
the cloud. A nonzero initial chirpb0 introduces oscillations
in the condensate near the minimum of the energy, such
it can lead a previously stable system to collapse, whenb0
reaches a maximum limitb0,m that corresponds to the energ
difference between a minimum and a maximum of the to
potential energy. So, in the presence of a fixed value of
chirp, the number of atoms of a stable condensate with
attractive interaction is smaller than the corresponding va
when the chirp is zero. When the potential has two mini
~when cubic and quintic terms are present in the NLS!,
related to two phases of the condensate, a bifurcation p
nomenon is predicted depending on the value of the in
chirp. A maximum initial chirp can affect the system in su
a way that the oscillations can switch from a gas phase
liquid phase, and vice versa.

The present study was performed by using exact num
cal solutions of the partial differential equation, as well as
a corresponding variational approach. Analytical predictio
based on the time-dependent VA, using a Gaussian an
were qualitatively confirmed by the exact time-depend
numerical simulations. We would like to point out the adva
tages of the Gaussian VA when comparing with the mome
method, which encounters some difficulties in deriving c
lapse conditions even in the pure attractive two-body ca
for some classes of the initial data~the sign of the time-
dependent function in the equation for the mean-square
dius, ^r 2&, is not defined@8#!.
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The VA starts to deviate from the exact results when
system is close to collapse conditions, and particularly
unstable solutions~maxima! of the total energy. For thes
regions, where the Gaussian VA fails, one should impro
the ansatz or take the results as a qualitative picture to g
the exact numerical calculations. In this respect, one sho
note that, for a NLSE without a trap potential, it is we
known that the time-dependent variational approach fails
describe the region near the collapse@12,13#.

Considering that in this work we have shown the r
evance of an initial chirp parameter to study the stability
the condensate, we should observe that a good estimat
such a parameter relies on a good approach to determ
both minimum ~stable! and maximum~unstable! solutions
for the total energy. The Gaussian VA is in good agreem
~quantitatively! with exact results for the minima, but ca
only give a qualitative description for the maxima. Still w
can observe that the VA calculations of the chirp parame
when compared with exact numerical calculations, are in r
sonable agreement. We also would like to point out that
present approach can be extended to study the stabilit
chirped laser beams in inhomogeneous three dimensi
media with Kerr nonlinearity.

Finally, the main results of the present work are as f
lows: ~i! A chirp parameter in the wave function was show
to be useful to study the initial conditions for a stable co
densate to remain stable.~ii ! We showed that the VK crite-
rion cannot be extended to cases of a harmonic trapped B
when the nonlinear two- and three-body terms have oppo
signs. ~iii ! If an atomic system has a repulsive two-bo
interaction, collapse is possible if the effective three-bo
interaction is negative. By this perspective, one can use
observed critical number of atoms in order to determine
corresponding three-body parameter.
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