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Autosolitons in trapped Bose-Einstein condensates with two- and three-body inelastic processe
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In this paper, we consider the conditions for the existence of autosolitons, in trapped Bose-Einstein conden-
sates with attractive atomic interactions. First, the variational approach is employed to estimate the stationary
solutions for the three-dimensional Gross-Pitaevskii equation with trap potential, linear atomic feeding from
the thermal cloud, and two- and three-body inelastic processes. Next, by using exact numerical calculations, we
show that the variational approach gives reliable analytical results. We also discuss the possible observation of
autosolitons in experiments with7Li.
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I. INTRODUCTION

The existence of envelope autosolitons in the o
dimensional~1D! case, in a homogeneous nonlinear medi
with dissipation and amplification, was revealed by Pere
and Stenflo@1#. They found the exact solution for autoso
tons with arbitrary growth and damping strengths in the p
turbed nonlinear Schro¨dinger equation~NLSE!. Later, auto-
solitons were discovered in nonlinear fiber optics, namely
fibers with amplifiers and distributed filters~the latter corre-
sponds to the frequency-dependent damping in the nonli
Schrödinger equation! @2,3# and also for waves on the su
face of deep water@4#. Correspondingly, in a 2D homoge
neous medium with amplification and nonlinear dampin
the possibility of existence of a 2D analog of the Perei
Stenflo solitons was recently shown by a variational
proach @5#. Autosolitons in a weakly dispersive nonline
media, described by the Korteweg-deVries equation, h
been studied in Refs.@6,7#.

The autosolitons can be distinguished from ordinary s
tons. The latter exist in a conservative media and are or
nated from the balance between the nonlinear and dispe
effects of the wave propagation. The properties of these g
erated solitons are defined by the initial conditions~their
number, parameters such as amplitudes, widths, etc.! @6#,
with the solutions characterized by their corresponding pr
erties. As for to the autosolitons, they can be generate
nonconservative media when effects of amplification a
dissipation are present. For the existence of autosolitons,
should add to the equilibrium condition between nonlinea
and dispersion the requirement of a balance between am
fication, frequency-dependent damping, and nonlinear d
pation. In distinction from ordinary solitons, the properties
the autosoliton, as a rule, are fixed by the coefficients of
perturbed NLSE and by any initial perturbation that is
tracted to this point~attractor in the space of coefficients!.
Mathematically, the problem is described by the NLSE w
complex parameters. If the imaginary parts are large,
equation is equivalent to the so-called complex Ginzbu
Landau equation. An interesting limit is represented by
NLSE with small complex coefficients.

The purpose of this paper is to show that the analog of
autosoliton is possible in a trapped Bose-Einstein conden
~BEC!. Recently the existence of bright and dark solitons
1050-2947/2001/63~5!/053603~7!/$20.00 63 0536
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BEC has been demonstrated~see theory in@8,9#!. Dark soli-
tons have already been observed in BEC with repulsive
teraction between atoms@10#. For attractive interactions
bright solitons exist in 1D BEC. It is well known that two
and three-dimensional condensates with attractive interac
between atoms and trapping potential are unstable if
number of atoms exceeds the critical value (Nc). Below this
value a stable ground state can exist, corresponding to
tary solutions@11,12#. When the number of atoms excee
Nc the collapse occurs. At large densities the inelas
scattering processes involving two and three atoms co
into play, leading to the effective nonlinear damping of t
condensate. The process of feeding atoms from the the
cloud can be modeled as a linear amplification described
Ref. @13#, where the relevance of the three-body inelas
processes was discussed. The statistical data obtained
experiments with7Li supports the growing and collapse pic
ture @14,15#.

Numerical simulations of the 3D Gross-Pitaevskii~GP!
equation are performed in Refs.@13,16#. The present pape
shows that periodic oscillations occur in the condensate a
for particular values of atomic feeding and three-body dis
pation parameters, stable states of the cloud can exist. T
we can expect the occurrence of analog autosolitons in
and 3D BEC’s. The problem is described by the comp
Ginzburg-Landau equation with trapping potential in t
NLSE limit with small nonconservative perturbations. Th
equation is nonintegrable and, therefore, analytical soluti
can only be obtained by considering approximate meth
like the variational approach@17#. In the following, we first
use the time-dependent variational approach to obtain
solutions. As shown previously, the time-dependent va
tional approach is quite effective to study the dynamics
3D BEC in trapping potential with conservative perturb
tions @18#. These autosoliton solutions can be considered
the nonlinear modes of such systems like solitons for
integrable NLSE@19#. Exact numerical simulations are als
performed in the present paper, which confirms that, in
present case, the variational approach is a convenient
reliable approximation.

II. THE MODEL AND THE VARIATIONAL APPROACH

Let us describe the dynamics of a trapped Bose-Eins
condensate in the framework of the Gross-Pitaevskii eq
©2001 The American Physical Society03-1
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tion. The space-time dynamics of the condensate wave fu
tion can be analyzed by the GP equation in the mean-fi
approximation:

iut1Du2~V2r 2!u1l2uuu2u1l3uuu4u

5 i~g2muuu22juuu4!u5R~u,u* !, ~1!

where we use a standard simplified notation for the ti
derivative through a lower indext. V2r 2 is the trap harmonic
potential andl2 andl3 are, respectively, the two- and thre
body interaction parameters, wherel2(5as) is given by the
s- wave atomic scattering length.g,m, and j are positive
defined coefficients related, respectively, to feeding, dipo
relaxation and three-body inelastic recombination para
eters. We drop the explicit time and radial dependence of
functions, unless they are necessary for clarity.

In the present variational approach, foru[u(r ,t), we use
the Gaussian trial function@20#

u5A~ t !expS 2
r 2

2a2~ t !
1 i

b~ t !r 2

2
1 if~ t !D , ~2!

whereA, a, b, andf are, respectively, the amplitude, widt
chirp, and linear phase. We did not include the center
mass coordinate into the ansatz, because the dissipative
amplifying terms have no influence on it.

The variational approach is applied to the averaged
grangian of the conservative system

L5E L~r ,t !d3r , ~3!

where the Lagrangian density,L[L(r ,t), is given by

L5
i

2
~utu* 2ut* u!2u“uu21

l2

2
uuu41

l3

3
uuu62V2r 2uuu2.

~4!

Substituting the trial function~2! into Eqs.~4! and ~3!, we
find the averaged Lagrangian in terms of the conden
wave-function parameters

L52
pAp

4
A2a3F3a2bt14f t1

6

a2
~11a4b2!2

l2

A2
A2

2
4l3

9A3
A416V2a2G . ~5!

We formally addLR to Eq. ~4!, with the property that
dLR /du* 52R(u,u* ), whereR is on the right-hand side o
Eq. ~1!. By applying the Euler-Lagrange equations toL8
[L1LR , with respect tou* , we obtain

F ]L 8

]u*
2

d

dt

]L 8

]ut*
G5F ]L

]u*
2

d

dt

]L
]ut*

G2R~u,u* !50, ~6!

which leads to Eq.~1!. ~The conjugate equation is obtaine
in a similar way.!
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The corresponding variational principle is given by

dE
0

t

L8dt5dE
0

t

~L1LR!dt50, ~7!

where, as in Eq.~3!, LR5*d3rLR . Taking into account that
for a small shiftdh of some variational parameterh, we
have

f ~h1dh!5 f ~h!1dh
] f

]h
, ~8!

where f [ f (u,u* )5L or LR , we obtain a system of equa
tions for the variational parametersh i @20,21#:

]L

]h i
2

d

dt

]L

]h i t
5E d3r FR

]u*

]h i
1R*

]u

]h i
G , ~9!

where Eq.~6! and its conjugate were used.
The substitution of Eqs.~2! and~5! into Eq.~9!, yields the

following system of ordinary differential equations~ODE’s!:

d~A2a3!

dt
52gA2a32

m

A2
A4a32

2

3A3
jA6a3, ~10a!

d~A2a5!

dt
54A2a5b12gA2a52

m

2A2
A4a52

2

9A3
jA6a5,

~10b!

db

dt
5

2

a4
22b222V22

l2A2

2A2a2
2

4l3A4

9A3a2
, ~10c!

df

dt
52

3

a2
1

7

8A2
l2A21

2

3A3
l3A4. ~10d!

Equation ~10a! can also be obtained from the modifie
form of the conservation law for the number of atomsN,
whereN is given by

N5E uuu2d3r . ~11!

The other equations of the system~10! can be obtained by
using higher moments, as shown in Appendix A. It is use
to rewrite the system using the notationx5a2,y5A2:

xt54xb1
m

2A2
xy1

4

9A3
jy2x,

yt526yb12gy2
7m

4A2
y22

4

3A3
jy3, ~12!

bt5
2

x2
22b222V22

l2y

2A2x
2

4l3y2

9A3x
.

This ODE system is the main result of this section.
3-2
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III. ANALYSIS OF THE FIXED POINTS

The autosoliton solution corresponds to the fixed points
the system. Recall the main properties of the autowave~dis-
sipative! soliton. This solution has the form such as for t
standard soliton, defined by the balance between amplifi
tion and nonlinear dissipative terms. As shown in the ana
sis of the one-dimensional case~the Pereira-Stenflo soliton!,
the solution is fixed by the parameters related to the am
fication and dissipation with chirped phase. It does not
pend on the initial conditions.

We restrict our analysis tol350. From the system given
by Eq. ~12!, we can obtain the fixed points. Next we disti
guish three cases:

~1! Casem50, jÞ0:
In this case,

ys15A3A3g

j
, bs152

1

3
g, ~13!

and the width is

xs152
p1

2
1Ap1

2

4
1k1, ~14!

where

p15
l2ys1

4A2~V21bs1
2 !

, k15
1

V21bs1
2

. ~15!

Let us consider thatp1@k1. Then the solution is

xs1'
k1

p1
'

4A2V4

l2ys1
.

~2! Casej50, mÞ0:
The fixed points are

ys25
2A2g

m
, bs252

g

4
. ~16!

and the width is defined by the same expression as be
Eq. ~14!with ys2 ,bs2.

~3! CasemÞ0, jÞ0.
The fixed points are

ys352
3A3m

4A2j
1A27m2

32j2
1

3A3g

j
,

~17!

bs35
m

24A2
ys32

g

3
, xs352

p3

2
1Ap3

2

2
1k3,

where

p35
l2ys3

4A2~V21bs3
2 !

, k35
1

V21bs3
2

. ~18!
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Whenm50(jÞ0), we recover Eqs.~13! and~14!. Alterna-
tively, whenj→0 (mÞ0) we recover Eq.~16!.

We now investigate the stability of the fixed points,
cases 1 and 2, by using the linear stability analysis:

~1! Casem50, jÞ0:
Let present the solutions of the system asx5xs11x1 , y

5ys11y1, andb5bs11b1. The linearized system for cor
rections is

x1t5
8

9A3
jys1xs1y114xs1b1[2c2y11c3b1 ,

y1t528gy126ys1b1[2d2y12d3b1 ,
~19!

b1t5
4

xs1
2 S l2ys1

8A2
2

1

xs
D x12

l2

2A2xs1

y124bs1b1

[a1x12a2y12a3b1 .

With the solutionsx1 , y1 andb1 having the same exponen
tial behavior in time, given by;eqt, we obtain the charac
teristic equation

q31a1q22a2q2a350, ~20!

where

a1[~d21a3!5
20

3
g,

a2[~a1c31a2d32d2a3!

~21!

5
32

3
g21

16

xs1
2 S l2ys1xs1

8A2
21D 1

3l2ys1

A2xs1

,

a3[a1~d3c21d2c3!5
64g

xs1
2 S l2ys1xs1

8A2
21D .

The roots with Re(q).0 correspond to the unstable sol
tions.

Without loss of generality, in our dimensionless NLSE w
can scale the parameters asl251 andV51 @13#. The dia-
gram of stability, according to the solutions of Eq.~20!, is
presented in Fig. 1. The diagram clearly shows that, wh
g.1.84j, the system is unstable. Ifg@j, the system enters
the collapsing process, shown in Ref.@16# to be chaotic. Ifg
is decreased~or j increased! the system will eventually
achieve a stable region where the formation of an autosol
is possible.

~2! Casej50,mÞ0:
Analogously, as in case 1, we present the solutions of

system asx5xs21x2 , y5ys21y2, and b5bs21b2. The
linearized system for corrections is given by

x2t5
mxs2

2A2
y214xs2b2 ,
3-3
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y2t52
7

2
gy22

12A2g

m
b2 ,

~22!

b2t5
4

xs2
3 S l2g

4m
xs221D x22

l2

2A2xs2

y224bs2b2 .

The system has the same form as in Eq.~19!. Correspond-
ingly, the characteristic equation is given by

q31b1q22b2q2b350, ~23!

where

b15
5

2
g, b25

7

2
g21

16

xs2
2 S l2gxs2

4m
21D1

6l2g

xs2m
,

~24!

b35
32g

xs2
2 S l2gxs2

4m
21D .

With the same scaling used in case 1 (l251 and V
51), and with the above solutions of Eq.~23!, we obtain the
diagram of stability, shown in Fig. 2. The diagram clea
shows that, wheng.0.53m, the system is unstable. In ana
ogy with the previous case, ifg is decreased~or m in-
creased!, the system will eventually achieve a stable regi
where the formation of the autosoliton is possible.

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

We did a series of time-dependent simulations of the s
tem within the Gaussian variational approach, using Eq.~12!,
and also by performing exact numerical calculations with E
~1!. In our numerical calculations, we have used the fin
difference Crank-Nicolson algorithm. The exact initial wa
functions were used following the prescription given in R
@22#. Next we present simulations in a range of parame

FIG. 1. Gaussian variational analysis of stability of the fix
points for the Gross-Pitaevskii equation including feeding (g) and
three-body losses (j).
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that lead to long-time stable autosolitons. We obtain res
with autosolitonic solutions for a class of parameters that
near the realistic ones, as indicated by7Li experiments in
BEC.

In Fig. 3, for g51023 and j51023, we show the time
evolution of the number of atoms, in terms of the maximu
critical number for stability,Nc . The formation of the auto-
soliton is demonstrated either by Gaussian variational
proach or by exact numerical calculations. There is a rema
able agreement between both approaches. Note that
number of atoms does not depend on the initial conditio
but is related to the equilibration of the feeding and dissi

FIG. 2. Gaussian variational analysis of stability of the fix
points for the Gross-Pitaevskii equation including feeding (g) and
two-body losses (m).

FIG. 3. Evolution of the number of atomsN in the Gross-
Pitaevskii equation with feeding parameterg51023 and three-body
dissipation parameterj51023 (m50). The results are represente
by solid lines for the variational approach, and by dashed lines
the exact numerical calculations. Cases I, II, and III correspo
respectively, to the initial conditionsN(t50)/Nc50.1,0.2 and 0.75,
whereNc is the maximum critical number for stability.t is given in
units of 2/V, whereV is the trap frequency.
3-4
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tion. The variational approach results give a little high
number of atoms than the exact calculations.

Corresponding to the results in Fig. 3, we show in Fig
the results for the time evolution of the mean-square rad
where

^r 2&5E r 2uuu2d3r . ~25!

In this case, the variational approach results are a bit lo
than the ones obtained by exact calculations.

In analogy with the case thatm50, represented in Figs.
and 4, we also present results for the case where the th
body dissipation parameter (j) is zero. The results obtaine
for the time evolution of the number of atoms and the me
square radius are, respectively, shown in Figs. 5 and 6,

FIG. 4. Evolution of the mean-square radius, Eq.~25!, in the
Gross-Pitaevskii equation. The same parameters and conven
given in Fig. 3 were used. The mean-square radius is given in u
of \/~2mV!.

FIG. 5. Evolution of the number of atoms in the Gros
Pitaevskii equation with feedingg5531025 and two-body dissi-
pation parameterm51024(j50). The initial conditions and con
ventions are the same as in Fig. 3.
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g5531025 andm51024. The formation of the autosoliton
is also demonstrated either by Gaussian variational appro
or by exact numerical calculations. The remarkable agr
ment between both approaches, already observed in the
wherem50 ~Figs. 3 and 4!, also applies to this case wher
j50, as the number of atoms do not depend on the ini
conditions.

In 7Li experiment the feeding parameter can be indirec
inferred from measurements done by the Rice group@14# and
will correspond to an average rate of about 600 atoms/s@23#.
The two- and three-body losses were also measured@24# and
estimated @25#, giving atom loss rates of about
310214 cm3/s and;10228 cm6/s. These rates were mea
sured for noncondensed atoms. For condensed atoms
must be divided by factors of 2! and 3!, respectively@26#.
With a scaled equation, such thatl251 andV51, we have
for condensed atomsg;1023, m;1024, and j;1026.
Considering this magnitudes, the autosoliton can possibly
observed experimentally in7Li, either by results with de-
creasingg due to losses, or by increasing the dissipation r
due to other mechanism such as the Feshbach resona
@27#. In the case of diminishingg, the autosoliton formation
is more likely determined by dipolar relaxation rather th
three-body recombination losses.

V. CONCLUSION

In this paper we studied the possibility of existence
autosolitons in trapped 3D BEC in the presence of two- a
three-body inelastic processes: dipolar relaxation and th
body recombination. Using the time-dependent variatio
approach for the nonconservative 3D Gross-Pitaevskii eq
tion, we derived expressions for the parameters of the a
soliton and checked their stability. The results obtained
using the present time-dependent Gaussian variational
proach, in the NLSE with atomic feeding and nonlinear d
sipative terms, show a remarkable agreement with exact
merical calculations when the parameters were such
stabilization was achieved. We should note that, stabiliza
can also be numerically observed in the model given in R

ns
its

FIG. 6. Evolution of the mean-square radius in the Gro
Pitaevskii equation. The parameters and conventions are the s
as in Fig. 5. The mean-square radius is given in units of\/~2mV!.
3-5
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@13#, wheng is decreased in time, but their parameters
far from the realistic ones and dipolar relaxation was
glected. Such stabilization verified in Ref.@13# has not been
recognized as a manifestation of the autosoliton, a chara
ization that we are pointing out in the present paper.

We have shown that the transition from unstable~collaps-
ing! to stable point~autosoliton! solely depends on the mag
nitude of the parameters. Also the present paper inclu
non-negligible two-body dissipative effects that model t
dipolar relaxation losses, and that can be associated
values measured in ultracold7Li @24#. In the case of decreas
ing g due to collapsing and losses, the autosoliton is m
likely to be formed first due to dipolar relaxation rather th
by three-body recombination processes. These results ca
relevant in current experiments with negative scatter
length and possibly display new phenomenon of Pere
Stenflo type autosoliton formation in Bose condensates.
believe that such phenomenon is already occurring in
long-time behavior in the actual experiments with7Li @14#
(V;2p3140 Hz), since for longer times (;60 s) the
maximum number of atoms (Nc;1300 atoms) is consider
ably reduced, as expected in our simulations. We hope
experiments with direct observation of the evolution of t
condensate can clarify this matter.
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APPENDIX

The first equation of the system~10! can be obtained by
calculating the rate of change of the number of atoms as

dN

dt
5

d

dtE d3r uuu25E ~ut* u1u* ut!d
3r . ~A1!
v,

ia

v,
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Taking ut from Eq. ~1! and substituting in Eq.~A1! we ob-
tain the modified form of the conservation law for the num
ber of atoms@29#

dN

dt
52gN22mE uuu4d3r 22jE uuu6d3r . ~A2!

Substituting into this equation the Gaussian trial function~2!
we obtain the first equation of the system given in Eq.~10!.

We have derived the Eqs.~10b! and~10c! by the moments
method. Eq.~10b! can be derived by calculating

d^r 2&
dt

5E ~ut* r 2u1u* r 2ut!d
3r . ~A3!

Substituting theut from expression~1! and applying the
commutation rules, we get@28#

d^r 2&
dt

54ImE u* rW• ~“u!d3r 12gE uuu2r 2d3r

22mE uuu4r 2d3r 22jE uuu6r 2d3r . ~A4!

The substitution of the Gaussian ansatz@Eq. ~2!# in both
sides of this expression results directly in Eq.~10b!.

Equation ~10c! can be derived analogously by showin
that

d^p2&
dt

524V2ImE u* rW•~“u!d3r

12ImE ~“u* !•“~V1u!d3r

12ReE ~“u* !•“~V2u!d3r , ~A5!

where V152l2uuu22l3uuu4 and V25g2muuu22juuu4.
Substituting the Gaussian ansatz@Eq. ~2!# in both sides of
Eq. ~A5! and using results~10a! and ~10b!, there is overall
cancellation of the feeding and dissipative terms and we
nally get Eq.~10c!.
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