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Autosolitons in trapped Bose-Einstein condensates with two- and three-body inelastic processes
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In this paper, we consider the conditions for the existence of autosolitons, in trapped Bose-Einstein conden-
sates with attractive atomic interactions. First, the variational approach is employed to estimate the stationary
solutions for the three-dimensional Gross-Pitaevskii equation with trap potential, linear atomic feeding from
the thermal cloud, and two- and three-body inelastic processes. Next, by using exact numerical calculations, we
show that the variational approach gives reliable analytical results. We also discuss the possible observation of
autosolitons in experiments witfLi.
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I. INTRODUCTION BEC has been demonstratézke theory ir(8,9]). Dark soli-
tons have already been observed in BEC with repulsive in-
The existence of envek)pe autosolitons in the oneleraction between atomB].O]. For attractive interactions,
dimensional1D) case, in a homogeneous nonlinear mediumPright solitons exist in 1D BEC. It is well known that two-
with dissipation and amplification, was revealed by Pereirs2nd three-dimensional condensates with attractive interaction
and Stenfld1]. They found the exact solution for autosoli- betwt()een ]fit(:ms and tr?jpptlﬁg ppfter}tlall are Lénsl,tablalf the
tons with arbitrary growth and damping strengths in the per—num er or atoms exceeds the critical va be). Be owtnis—
turbed nonlinear Schidinger equatiofNLSE). Later, auto- value a stable ground state can exist, corresponding to soli-
solitons were discovered in nonlinear fiber optics, namely, irﬁlry rS]OIUt'O”nS[ll'lz' Wher;thle numdber Qf. atorrr:s gxcleeQS
fibers with amplifiers and distributed filte(the latter corre- c ttt € coflapse occurs. | t artge er:jsmas t et Inelastic-
sponds to the frequency-dependent damping in the nonlinegFat€rng Processes involving two an ree atoms come

Schralinger equation[2,3] and also for waves on the sur- into play, leading to the effective nonlinear damping of the
face of deep watef4] éorrespondingly in a 2D homoge- condensate. The process of feeding atoms from the thermal

neous medium with amplification and nonlinear damping cloud can be modeled as a linear amplification described in
the possibility of existence of a 2D analog of the Pereira-Ref' [13], where _the relevance of t.he. three-body |_nelast|c
Stenflo solitons was recently shown by a variational approce_sses was cys_cussed. The statlst_lcal data obtamed_ from
proach[5]. Autosolitons in a weakly dispersive nonlinear €XPeriments with'Li supports the growing and collapse pic-

dia, described by the Korteweg-deVri tion, havi're[14.19. ~ .
lraneeenlastuctiaisec(:jnineRefgﬁ 7f orieweg-aevies equation, hav Numerical simulations of the 3D Gross-PitaevsiKiP)

The autosolitons can be distinguished from ordinary soli-£quation are pgrfqrmed_ in .Re[SLS,la..The present paper
tons. The latter exist in a conservative media and are origi-ShOWS that periodic oscillations occur in the condensate and,

nated from the balance between the nonlinear and dispersif@/ Particular values of atomic feeding and three-body dissi-

effects of the wave propagation. The properties of these ger;:gation parameters, stable states of the cloud can exist. Thus,

: : oo s ; t the occurrence of analog autosolitons in 2D
erated solitons are defined by the initial conditiofiseir W€ €an expec . .
number, parameters such as amplitudes, widths) E6¢. and 3D BEC's. The problem is described by the complex

with the solutions characterized by their corresponding prop_szburg-_Lan_dau equation with trapping poten'FlaI n the
erties. As for to the autosolitons, they can be generated iN-SE limit with small nonconservative perturbations. This
nonconservative media when effects of amplification andauation is nonlnt_egrable and, _ther_efore, ana[yncal solutions
dissipation are present. For the existence of autosolitons, orj n only be obtained by considering approximate methods

should add to the equilibrium condition between nonlinearity' K€ the variational approacki7]. In the following, we first

and dispersion the requirement of a balance between ampﬁ’-Se the time-dependent variational approach to obtain the

fication, frequency-dependent damping, and nonlinear dissg!Utions. As shown previously, the time-dependent varia-

pation. In distinction from ordinary solitons, the properties oft'Onal app_roach IS quite effgctwe_ to study the_ dynamics of
the autosoliton, as a rule, are fixed by the coefficients of thé’.’D BEC in trapping pot_entlal W't.h conservative pgrturba-
perturbed NLSE and by any initial perturbation that is at.tions [18]. These autosoliton solutions can be can|dered as
tracted to this poin{attractor in the space of coefficiepts f[he nonlinear modes of such sysFems_Ilke ;olltons for the
Mathematically, the problem is described by the NLSE withintegrable NLSE19]. Exact numerical simulations are also
complex parameters. If the imaginary parts are large, th@€rformed in the present paper, which confirms that, in the
equation is equivalent to the so-called complex Ginzburgpr(?Sent case, _the yanatlonal approach is a convenient and
Landau equation. An interesting limit is represented by thd€!iable approximation.
NLSE with small complex coefficients.

The purpose of this paper is to show that the analog of the
autosoliton is possible in a trapped Bose-Einstein condensate Let us describe the dynamics of a trapped Bose-Einstein
(BEC). Recently the existence of bright and dark solitons incondensate in the framework of the Gross-Pitaevskii equa-

Il. THE MODEL AND THE VARIATIONAL APPROACH
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tion. The space-time dynamics of the condensate wave func- The corresponding variational principle is given by
tion can be analyzed by the GP equation in the mean-field

approximation: fL dt= 5[ (L+Lg)dt=0, (7)

iu+Au—(Q2r2)u+ N\, ul?u+nglul*u
i 2 4y % where, as in Eq(3), Lg=Jd® L. Taking into account that
i(y= plul* = gulHu=R(u.u), @ for a small shift5z of some variational parametey, we

where we use a standard simplified notation for the timehave

derivative through a lower indexQ?r? is the trap harmonic of

potential and\, andX\ 5 are, respectively, the two- and three- f(p+on)=f(n)+op—, (8)
body interaction parameters, whexg(=ay) is given by the an

s wave atomic scattering length:, u, and ¢ are positive
defined coefficients related, respectively, to feeding, dipola
relaxation and three-body inelastic recombination param-

}Nheref f(u,u*)=L or Ly, we obtain a system of equa-
tions for the variational parameters [20,21:

eters. We drop the explicit time and radial dependence of the oL d aL au* ou
functions, unless they are necessary for clarity. — = f d® +R* — 9)
In the present variational approach, fo=u(r,t), we use dmi dt dnmy a7 Ini)’

the Gaussian trial functiof20] where Eq.(6) and its conjugate were used.

The substitution of Eq€2) and(5) into Eq.(9), yields the

2 2
u=A(t)exp( ! +ib(t)r Fig(t) (2)  following system of ordinary differential equatiof®DE'’s):
2a4(t) 2 ’
. . : d(A%a®) 2.3 M na3 6,3
whereA, a, b, and ¢ are, respectively, the amplitude, width, g AT TA a’— —\/—§A a®, (109
chirp, and linear phase. We did not include the center-of- 2 3v3
mass coordinate into the ansatz, because the dissipative and H(A2a5)
amplifying terms have no influence on it. a — AA245 2.5 M 45 63
The variational approach is applied to the averaged La-  dt ana’bt2yAa 2\/§A a- 9\/_§A
grangian of the conservative system (10b)
_ 3 db 2 NoAZ ANgAY
L fﬁ(r,t)d r, (3 42 op2io02- 2 LT , (100
dt a4 2\2a? 9./3a?
where the Lagrangian densitg¢= L(r,t), is given by
[ A A dé 3 N A%+ 2 A3A%. (100)
[ — == —
£=E(utu*—u{‘u)—|Vu|2+72|u|4+ §|u|6—92r2|u|2. dt g2 sf 330
(4) Equation (109 can also be obtained from the modified

form of the conservation law for the number of atoids

Substituting the trial functiorf2) into Egs.(4) and (3), we t\é\/hereN is given by

find the averaged Lagrangian in terms of the condensa

wave-function parameters
= f |ul?d? (12)
T 6 N
L=— ——A%3| 3a%b,+4¢+ — (1+ah?) — —=A2 _ _
4 a2 J2 The other equations of the systgi0) can be obtained by
using higher moments, as shown in Appendix A. It is useful
g A 60287 © to rewrite the system using the notatigs a2,y =A%
9y3
_ it 2
We formally addZg to Eq. (4), with the property that X=4xbt 2\/§xy+ 9\/§§y X
SLg!5u* = —R(u,u*), whereRis on the right-hand side of
Eqg. (1). By applying the Euler-Lagrange equations £6
=L+ Ly, with respect tau*, we obtain y,=—6yb+2yy— —— —¢&yd, (12)
f 3[
aL' d aL’ L d dL R(UU)=0, (6)
————|=|——5—|—R(u,u 2
gur  dtgux | | gu*  dt gur b2 _op?_pa2_ Y _ HhaY
t 2 .
X 2\/§x 9\/§x
which leads to Eq(1). (The conjugate equation is obtained
in a similar way) This ODE system is the main result of this section.
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IIl. ANALYSIS OF THE FIXED POINTS

The autosoliton solution corresponds to the fixed points o
the system. Recall the main properties of the autowdie
sipative soliton. This solution has the form such as for the
standard soliton, defined by the balance between amplifica-
tion and nonlinear dissipative terms. As shown in the analy-
sis of the one-dimensional cag@he Pereira-Stenflo solitdn
the solution is fixed by the parameters related to the ampli-

PHYSICAL REVIEW A3 053603

Whenu=0(£#0), we recover Eq913) and(14). Alterna-
Fively, whené&—0 (u+0) we recover Eq(16).

We now investigate the stability of the fixed points, in
cases 1 and 2, by using the linear stability analysis:
(1) Caseu=0, ¢+0:
Let present the solutions of the systemxasxg; + X4, Yy
=Yq+VY1, andb=bg+b;. The linearized system for cor-
.rections is

fication and dissipation with chirped phase. It does not de-

pend on the initial conditions.

We restrict our analysis th;=0. From the system given
by Eqg.(12), we can obtain the fixed points. Next we distin-

guish three cases:
(1) Caseu=0, £#0:
In this case,

33 1
Ys1= T’yv bSl= - § Y, (13)

and the width is

xa=— 4\, (14
where
NoYs1 1
=, = (15
TR0z T ey

Let us consider thgb,>k;. Then the solution is

k, 4204

Xs1™~ =

P AYea

(2) Caseé=0, u+#0:
The fixed points are

2\2y

Y
yszva bszz_z- (16)

and the width is defined by the same expression as before

Eq. (14with yg,,bg,.
(3) Caseu#0, £#0.
The fixed points are

3\/§M+ /27M2+3\/§7
4.\2¢ 32e2 &

Ys3=—
17
I N S [
bS3_24\/§yS3 31 XSS_ 2 + 2 +k31
where
N 1
P3 253 3 (18

T 4\2(02+b%)" T 02+bZ

8
Xlt:ﬁgyslxslyl‘i‘ 4XS]_b]_E - C2y1+ C3bl ’

Y1t= —8yY1— 6y b1=—dyy; —dsby,
(19

4bg by

4 (xzysl 1
1t

A2
x4\ 82 Xs) PN
=ayX;—azy;—ash;.
With the solutionsx,, y,; andb, having the same exponen-
tial behavior in time, given by-e?, we obtain the charac-
teristic equation

q3+ alqz—azq—a3=o, (20)

where
20
a;=(dy+az)= 3

a;=(a;C3+a,d;—d,az)

(21)
_ 3—2y2+1—6< AoYsiXs1 ) N 37\2)’31’
3 x5\ 8y2 V2xg
64y [ N2Ys1Xs1
Q3Ea1(d302+ d2C3) :_< E——— 1 .
2l 82

The roots with Req)>0 correspond to the unstable solu-
tions.
Without loss of generality, in our dimensionless NLSE we
can scale the parameters)as=1 and()=1 [13]. The dia-
gram of stability, according to the solutions of HQO), is
presented in Fig. 1. The diagram clearly shows that, when
v>1.84¢, the system is unstable. = ¢, the system enters
the collapsing process, shown in REE6] to be chaotic. Ify
is decreasedor ¢ increased the system will eventually
achieve a stable region where the formation of an autosoliton
is possible.

(2) Caseé=0,u#0:

Analogously, as in case 1, we present the solutions of the
system asx=Xg+X,, Y=Yo+Y,, and b=bg+b,. The
linearized system for corrections is given by

MXsp
==Y+ 4Xb,,

X
2t 2\/5
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FIG. 1. Gaussian variational analysis of stability of the fixed

points for the Gross-Pitaevskii equation including feeding é&nd
three-body lossess].

7 12\2y
Y2t:—§7’Y2_—b2,
(22)
4 )\2’)/ ) )\2
=—| —Xo—1|Xo— ——Yy,—4b,b,.
2t X§2<4M s2 2 2\/§X52y2 s202

The system has the same form as in 8¢). Correspond-
ingly, the characteristic equation is given by

0*+ B19°— B2q— B3=0, (23
where
5 7 16 )\2’)/X52 6)\2’)/
— p— 2 — —_—— [
Bl 271 182 27 +X§2( 4,“/ 1 +X52/-l«,
(24

32y [ NoyXsp
32 |\ Tag 1)
x2, | Au

With the same scaling used in case X,€1 and Q)
=1), and with the above solutions of E@3), we obtain the
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FIG. 2. Gaussian variational analysis of stability of the fixed
points for the Gross-Pitaevskii equation including feediny énd
two-body losses ).

that lead to long-time stable autosolitons. We obtain results
with autosolitonic solutions for a class of parameters that are
near the realistic ones, as indicated Hyi experiments in
BEC.

In Fig. 3, for y=10"2 and £&=10"2, we show the time
evolution of the number of atoms, in terms of the maximum
critical number for stabilityN.. The formation of the auto-
soliton is demonstrated either by Gaussian variational ap-
proach or by exact numerical calculations. There is a remark-
able agreement between both approaches. Note that the
number of atoms does not depend on the initial conditions,
but is related to the equilibration of the feeding and dissipa-

1 T T T T

O
Z
=
z

diagram of stability, shown in Fig. 2. The diagram clearly
shows that, whery>0.53u, the system is unstable. In anal-
ogy with the previous case, i is decreasedor wu in-
creaseyl the system will eventually achieve a stable region
where the formation of the autosoliton is possible.

1000 1500 2000

t

0 500

2500

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

. . . . . FIG. 3. Evolution of the number of atomd in the Gross-
We did a series of time-dependent simulations of the sySpjtaeyskii equation with feeding parameter 102 and three-body

tem within the Gaussian variational approach, using(E8). gjssipation paramete=10"3 (x=0). The results are represented
and also by performing exact numerical calculations with Eqpy solid lines for the variational approach, and by dashed lines for
(1). In our numerical calculations, we have used the finitethe exact numerical calculations. Cases I, II, and Ill correspond,
difference Crank-Nicolson algorithm. The exact initial wave respectively, to the initial conditiors(t=0)/N.=0.1,0.2 and 0.75,
functions were used following the prescription given in Ref.whereN, is the maximum critical number for stabilityis given in
[22]. Next we present simulations in a range of parametersinits of 20, where(Q is the trap frequency.
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FIG. 4. Evolution of the mean-square radius, E2p), in the FIG. 6. Evolution of the mean-square radius in the Gross-

Gross-Pitaevskii equation. The same parameters and conventiopgtaevskii equation. The parameters and conventions are the same
Q;Vzlnzizgig- 3 were used. The mean-square radius is given in unitgs in Fig. 5. The mean-square radius is given in units/mQ).
[0} .

(2m) y=5x%x10"° andu=10 4. The formation of the autosoliton
tion. The variational approach results give a little higheris also demonstrated either by Gaussian variational approach
number of atoms than the exact calculations. or by exact numerical calculations. The remarkable agree-

Corresponding to the results in Fig. 3, we show in Fig. 4ment between both approaches, already observed in the case
the results for the time evolution of the mean-square radiug¥herex=0 (Figs. 3 and 4 also applies to this case where
where =0, as the number of atoms do not depend on the initial

conditions.
5 ol 123 ~In ’Li experiment the feeding parameter can be indirectly
(r >:f reful“dr. (25 inferred from measurements done by the Rice gid4fand
will correspond to an average rate of about 600 atofiZsk
In this case, the variational approach results are a bit loweFhe two- and three-body losses were also measi4jcand
than the ones obtained by exact calculations. estimated [25], giving atom loss rates of about 2

In analogy with the case that=0, represented in Figs. 3 x 10~ cm®/s and~10 2 cm®s. These rates were mea-
and 4, we also present results for the case where the thresured for noncondensed atoms. For condensed atoms they
body dissipation parameteg) is zero. The results obtained must be divided by factors of 2! and 3!, respectivghg].
for the time evolution of the number of atoms and the meanWith a scaled equation, such thaf=1 andQ)=1, we have
square radius are, respectively, shown in Figs. 5 and 6, fdor condensed atomg~10 3, u~104 and ¢~10°.

Considering this magnitudes, the autosoliton can possibly be
0.8 - - observed experimentally ifiLi, either by results with de-
creasingy due to losses, or by increasing the dissipation rate
due to other mechanism such as the Feshbach resonances
[27]. In the case of diminishing, the autosoliton formation
is more likely determined by dipolar relaxation rather than
three-body recombination losses.

V. CONCLUSION

N(t/N,

In this paper we studied the possibility of existence of
autosolitons in trapped 3D BEC in the presence of two- and
three-body inelastic processes: dipolar relaxation and three-
body recombination. Using the time-dependent variational
approach for the nonconservative 3D Gross-Pitaevskii equa-
tion, we derived expressions for the parameters of the auto-
soliton and checked their stability. The results obtained by
using the present time-dependent Gaussian variational ap-
proach, in the NLSE with atomic feeding and nonlinear dis-

FIG. 5. Evolution of the number of atoms in the Gross- Sipative terms, show a remarkable agreement with exact nu-
Pitaevskii equation with feeding=5x10"° and two-body dissi- ~merical calculations when the parameters were such that
pation parametep.=10"4(£=0). The initial conditions and con- stabilization was achieved. We should note that, stabilization
ventions are the same as in Fig. 3. can also be numerically observed in the model given in Ref.

0.0

0 25000 50000
t
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[13], when vy is decreased in time, but their parameters areTaking u; from Eqg. (1) and substituting in Eq(Al) we ob-
far from the realistic ones and dipolar relaxation was ne+tain the modified form of the conservation law for the num-
glected. Such stabilization verified in R¢L3] has not been ber of atomdq29]
recognized as a manifestation of the autosoliton, a character-
ization that we are pointing out in the present paper. dN 4.3 613

We have shown that the transition from unstafoellaps- EZZVN_ZMJ |ul*d r—2§f uPd®r. (A2)
ing) to stable point{autosoliton solely depends on the mag-
nitude of the parameters. Also the present paper includesypstituting into this equation the Gaussian trial functin
non-negligible two-body dissipative effects that model theyye optain the first equation of the system given in Ed).

dipolar relaxation losses, and that can be associated with e have derived the Eq&L0b) and(100) by the moments
values measured in ultracoldi [24]. In the case of decreas- method. Eq(10b) can be derived by calculating

ing v due to collapsing and losses, the autosoliton is more

likely to be formed first due to dipolar relaxation rather than d(r?)

by three-body recombination processes. These results can be T =J (urrlu+u*réu)dir. (A3)
relevant in current experiments with negative scattering

length and possibly display new phenomenon of Pereirag - . .
Ste?]flo typepautosoxlliton ?orr)rqation ilr31 Bose condensates. Wg ubstituting theu, from expression(1) and applying the

believe that such phenomenon is already occurring in thgommutatlon rules, we g¢2s]

long-time behavior in the actual experiments withi [14] d(r2)

(Q2~2m7X140 Hz), since for longer times~60 s) the :4|mf u*r- (Vu)d3r+2yf lu|?r2d3r
maximum number of atomd\;~1300 atoms) is consider- dt

ably reduced, as expected in our simulations. We hope that

experiments with direct observation of the evolution of the —Zﬂf |u|4r2d3r—2§f lul®r2d®.  (A4)

condensate can clarify this matter.

The substitution of the Gaussian ansfiEq. (2)] in both
sides of this expression results directly in Ef0b).
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+2Ref (Vu*)-V(V,ou)d®r, (A5)
APPENDIX

The first equation of the systefd0) can be obtained by where V;=—\,|ul?=\3u|* and V,=y— u|u|?—&lu|*.
calculating the rate of change of the number of atoms as Substituting the Gaussian ans@i&g. (2)] in both sides of
Eqg. (A5) and using result§10g and (10b), there is overall

dN _ d 3112 % . 3 cancellation of the feeding and dissipative terms and we fi-
E_af d°r|ul —f (ufu+u*uy)der. (A1) nally get Eq.(100).
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