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Critical number of atoms for attractive Bose-Einstein condensates
with cylindrically symmetrical traps
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We calculated, within the Gross-Pitaevskii formalism, the critical number of atoms for Bose-Einstein con-
densates with two-body attractive interactions in cylindrical traps with different frequency ratios. In particular,
by using the trap geometries considered by Robertset al. @Phys. Rev. Lett.86, 4211~2001!#, we show that the
theoretical maximum critical numbers are given approximately byNc50.55(l 0 /uau). Our results also show
that, by exchanging the frequenciesvz andvr , the geometry withvr,vz favors the condensation of larger
number of particles. We also simulate the time evolution of the condensate when changing the ground state
from a50 to a,0 using a 200 ms ramp. A conjecture on higher-order nonlinear effects is also added in our
analysis with an experimental proposal to determine its signal and strength.
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Bose-Einstein condensates~BECs! with attractive interac-
tions have been realized with7Li since 1995 by Bradley
et al. @1# culminating with experiments that have direct o
servation of the growth and collapse of this condensate@2#.
Measurements of the maximum critical number of atomsNc
in the condensate, in a trap almost spherical, were in g
agreement with the theoretical predicted numbers, within
experimental uncertainties.

Recently Bose-Einstein condensation has been achie
with 85Rb @3# by means of Feshbach resonance, which
lowed wide tunning of the scattering lengtha from negative
to positive. The ability to control the scattering length is us
to control and measure the stability condition with the cor
sponding critical number of atoms.

In Ref. @4#, it was first shown numerically that for attrac
tive interactions~negative scattering lengtha) the system
becomes unstable if a maximum critical number of atomsNc
is achieved. This limit can be stated in a convenient exp
sion by

Ncuau

A~\/mv!
5k, ~1!

wherem is the mass of the particle confined in a trap w
frequencyv and k is a dimensionless constant, directly a
sociated with the critical number of atomsNc . So, by using
the above assumption of aspherically symmetrical trap, sev-
eral authors@5,6#, including us@7#, have calculatedk with a
variety of methods. With the precision given in Ref.@7#, k
50.5746. In Ref.@8#, the critical number was calculated fo
a nonsymmetrical geometry, but in a case that the freque
ratio is not too far from the unity (vz /vr50.72), giving a
result for the number of atoms almost equal to the spher
one.

One may also infer from the variational treatment used
Ref. @9# that the constantk depends on the symmetry of th
trap. Variational estimates were also considered in Ref.@10#.
So, in cases of nonspherical symmetry, the numberk will be
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dependent on the ratios of the trap frequencies, with
equation being scaled by some averaged frequency. A
most of the cases considered experimentally, the spatial s
metry is almost cylindrical, with the trap frequencies giv
by vx'vy andvz , we assumevr5vx5vy and a geometri-
cal averaged frequency given byv̄5(vzvr

2)1/3.
We define

l[
vz

vr
, ~2!

such that the trap will have a ‘‘pancake-shape’’ ifl.1; and
a ‘‘cigar-shape’’ if l,1. The spherical symmetry is recov
ered with l51. It is convenient to redefine the numberk
given in Eq.~1!, showing explicitly its dependence onl. In
this case, the critical number of atomsNc is given by

Nc~vr ,vz!5
k~l!

uau
l 05l21/6

k~l!

uau
l r5l1/3

k~l!

uau
l z , ~3!

wherel 0[A\/mv̄, l r[A\/mvr and l z[A\/mvz.
Here, in Eq.~3!, we observe explicitly the dependence

Nc in relation tol. By exchanging the frequenciesvr and
vz in the trap, we observe thatl r→ l z , l z→ l r andl→1/l.
The exchange ratio in this case is given by

R~l![
Nc~vr ,vz!

Nc~vz ,vr!
5l1/6

k~l!

k~1/l!
. ~4!

R(l) is the relevant factor that affects the number of p
ticles in the condensate, when exchanging the frequencie
a cylindrical configuration. In the case thatk(l);k(1/l),
we may conclude thatvz.vr results in a larger number o
particles inside the trap in the critical limit.

The above considerations and the numerical calculati
of k(l) that we are communicating are relevant to be tak
into account in experiments with BEC in cylindrical trap
with negativea, such as the experiments that have been p
©2001 The American Physical Society02-1
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formed in JILA with 85Rb. Robertset al. ~JILA! have used a
‘‘cigar-shape’’ symmetry in their experiment@3,11#. They
have determined, recently, thatk50.45960.012 ~statistical!
60.054~systematic!, for a nonspherical trap, where the fr
quencies were 17.24317.4736.80 Hz. Using the above no
tation, we may takevr5Avxvy52p317.35 Hz. So, the
corresponding value ofl used in Ref.@11# was vz /vr

56.80/17.3550.3919.
Since the JILA trap is nonspherical, it is worthwhile

determine numerically the values ofk, for different l. Our
main goal in the present report is to systematically calcu
k(l) in cylindrical symmetry, either in pancake (l.1) or
cigar shape (l,1), in order to verify the favorable geometr
of the trap to condensate a larger number of atoms, when
two-body scattering length is negative. As we are going
show, the slight discrepancy found by the JILA group, wh
comparing their experimental value ofk with the theoretical
results, may partially be explained by the present report.

For an atomic system with negative scattering length
trapped by an external harmonic oscillator~nonsymmetric, in
general!, the Bose-Einstein condensate may be described
the Gross-Pitaevskii equation

i\
]

]t
C~rW,t !5F2

\2

2m
“

21
m

2
~vx

2x21vy
2y21vz

2z2!

2
4p\2uau

m
uC~rW,t !u2GC~rW,t !. ~5!

The conditions for the validity of this formalism to describ
atomic systems with negative scattering lengths are give
Ref. @12#. Deviations due to quantum fluctuations and tu
neling, that occur near the collapsing region, were studie
Refs.@6,13#. As it appears from such studies, the decay pr
ability due to quantum tunneling~that will effectively reduce
Nc) is negligible, unlessN'Nc .

The wave function, given by

C~rW,t !5exp~2 imt/\!C~rW,0!, ~6!

wherem is the chemical potential, is normalized to the nu
ber of atoms:

E d3r uC~rW,t !u25N. ~7!

Using cylindrical symmetry (vx5vy5vr) and consider-
ing dimensionless units@t[v̄t,r2[(2mv̄/\)(x21y2),z2

5(2mv̄/\)z2#, followed by a scaling of the wave function

F[F~r,z;t![A4p\uau

mv̄
C~rW,t !, ~8!

we have

i
]F

]t
5F2“

21S vr

v̄
D 2

r2

4
1S vz

v̄
D 2

z2

4
2uFu2GF,
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where ¹2[
1

r

]

]r S r
]

]r D1
]2

]z2
. ~9!

Given the Eqs.~7! and~8!, we obtain the normalization o
F to a defined reduced number of atomsn

E
2`

`

dzE
0

`

drruFu254A2
Nuau

l 0
[2n, ~10!

where, in the critical limit,n5nc52A2k. Equation~9! de-
pends only on the ratiol5(vz /vr):

bF5F2“

21l2(2/3)
r2

4
1l (4/3)

z2

4
2uFu2GF, ~11!

whereb[m/(\v̄). So, the normalization constantn, given
by Eq. ~10!, as well ask, will depend only onl.

In our calculation of Eq.~9!, we employed the relaxation
method propagating in the imaginary time and renormaliz
F to 2n at every step@8,14#. We searched for stable solu
tions by varying the numbern till a critical limit nc . No
ground-state solutions are possible forn.nc . In Fig. 1, we
have the corresponding results for the chemical potential
function of Nuau/ l 05n/(2A2). To obtain the results show
in Fig. 1, we first tested our code by running the symmetri
casel51 (vz5vr) and comparing the results with ver
precise ones that we have previously calculated with
shooting-Runge-Kutta algorithm@7#. The plot with3 marks
corresponds to the imaginary time propagation method w
the dashed-line plot refers to the shooting-Runge-Ku
method~in both, spherical symmetry was used!. One should
note that the unstable solutions~back bending branch! are
not accessible by the time-dependent method. The plot w
solid line shows our results for a cylindrical symmetry, wi
the JILA parameters given in@11#, i.e., vz52p36.80 Hz

FIG. 1. The chemical potentialm is given in units of\v̄, as a
function of Nuau/ l 0. Results with spherical symmetry (l51), in
dashed line and with3, are compared with results usingl
56.80/17.35~solid line!. Dashed line was obtained using shootin
Runge-Kutta method, while the3 and the solid line were obtaine
by propagation in imaginary time.
2-2
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BRIEF REPORTS PHYSICAL REVIEW A 64 055602
vr52p317.35 Hz. In this case,k50.550 is approximately
4% lower than the spherical case.

For the propagation, we have used the Peacem
Rachford alternating-direction implicit method@15#. The
time evolution for cylindrical symmetry was performed wi
a code used in@16#. Our discretization was up to 2003200 in
r and z space directions, and up to 50 in the variablet

(5v̄t), with steps of 0.001. We also consideredrmax and
zmax ranging from 2 to 10 depending on the symmetry. In t
extreme nonsymmetric cases (l or 1/l@1), the results are
more sensible to the grid spacing and to these maxim
values. In these cases, a lack of precision may occur in
third decimal digit of the results shown in Table I.

In Table I, we present the numerical results for the criti
constantk as a function of the parameterl5vz /vr , which
may be useful to analyze experiments with different cylind
cal shapes. Clearly, the optimal value fork occurs for spheri-
cally symmetric traps (l51), as one could also infer from
the variational calculations given in@9#. In particular, we
determined the values ofk for the ratios considered in th
JILA experiment@3,11#: The theoretical constant,k'0.55, is
about 4% lower than the corresponding number with sph
cal symmetry (ks50.5746). This may partially explain th
small disagreement observed in Ref.@11# when comparing
their result with theoretical ones.

By exchanging the frequenciesvr andvz in a cylindrical
symmetry, it is also shown that the ‘‘pancake-shape’’ sy
metry (vz.vr) is preferable~in order to obtain a largerNc)
when k(l)'k(1/l). Considering the exchange ratio pr
sented in Eq.~4! and the results shown in Table I fork(l),

TABLE I. Numerical solutions for the critical constantk, as a
function ofl5vz /vr . k5ks is for spherical symmetry. An asteris
indicates the symmetry considered by the JILA group; alternativ
a dagger the corresponding ‘‘pancake-shape’’ symmetry.

l k k/ks

0.01 0.314 0.547
0.02 0.352 0.613
0.05 0.411 0.716
0.1 0.460 0.801
0.2 0.509 0.886
0.3 0.535 0.931
(6.80/17.35)* 0.550 0.957
0.5 0.560 0.975
2/3 0.570 0.992
1.0 0.5746 1.000
1.5 0.570 0.992
2.0 0.561 0.976
(17.35/6.80)† 0.549 0.956
A8 0.544 0.946
3.0 0.541 0.941
4.0 0.518 0.902
5.0 0.498 0.867
10.0 0.441 0.767
20.0 0.376 0.655
50.0 0.294 0.511
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one may verify the optimal geometry to increase the criti
number of atomsNc trapped in a condensate. Analyzing th
‘‘pancake-shape symmetry,’’ related with the ‘‘cigar-sha
symmetry’’ considered by the JILA group in Ref.@11#, we
note thatl1517.35/6.8052.5517, andl251/l150.3919.
As shown in Table I, both cases will give us practically t
same constant numberk'0.55. So, the relevant factor tha
will decide the convenient symmetry to condensate a lar
number of atoms is given by Eq.~4!, in this case; and this
favors the ‘‘pancake-shape’’ geometry

R~l1517.35/6.80!'1.17. ~12!

The number of atoms in the condensate may be increase
a factor of;17%, just by exchanging the geometry of th
trap. The above factor may be verified experimentally,
well as other frequency ratios, with the help of Table I a
the present relations given fork(l) andR(l).

We should add that the other part of the observed disc
ancy in the experimental value ofk could be explained by an
early collapse of the condensate due to a dynamical chir
the wave function when moving the system froma.0 to a
,0. It means that when changing the scattering length fr
a positive to a negative value, the energy minimum witha
.0 is greater than the corresponding energy minimum w
a,0, such that the system will collapse at a lower critic
number@17#.

We simulated the realistic situation with the paramet
given in Ref.@11#. We depart from the ground state witha
50 and then ramp it toa,0 in 200 ms. In Fig. 2~a!, we

;

FIG. 2. Time evolution of the dimensionless mean-square rad
(r) of the condensate when changing the ground state froma50 to

a,0. We have considered a 200 ms (t5v̄t516) linear ramp in
~a!; and an instantaneously shift in~b!. In ~a!, the dashed, solid, and
dot-dashed lines correspond to the ramping untilNuau/ l 050.9ks ,
0.94ks , 0.95ks , respectively. In~b!, the dashed line corresponds
the ramping untilNuau/ l 050.9ks ; and the solid line corresponds t
the ramping untilNuau/ l 050.91ks . ks is the collapse constantk
5Nuau/ l 0 in spherical symmetry. Trap parameters werevr52p
317.35 Hz andvz52p36.80 Hz.
2-3
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show the time evolution of the mean-square radiusr for
different final negative scattering lengths. For a final value
Nuau/ l 0 lower or equal to 0.94ks , the system presents collec
tive excitations; for a larger value, the system collapses.
we conclude that the dynamical effects may only account
about 2% of the discrepancy observed between the exp
mental and theoretical values ofk. This result implies that
the total correction due to the nonspherical symmetrical t
and due to dynamical effects may only account for a dim
ishing of about 6% in the spherical predicted value ofk. For
comparison, we also present in Fig. 2~b! the corresponding
instantaneous shift froma50 to a,0.

A larger deviation ofk is expected in this case, as th
numerical simulation@shown in Fig. 2~b!# corresponds to a
larger chirp in the wave function than in the case thata is
‘‘ramping’’ slowly in time. We found that atNuau/ l 0
50.9ks , the system has complex higher mode nonlinear
cillations; for a larger value ofNuau/ l 0, it collapses. So, even
in this case, we may account to a maximum of 10% shift
the value ofk ~including dynamical and nonspherical e
fects!, when comparing with the spherical result.

As temperature dependence is being ruled out in the
perimental analysis, another interesting possibility, wh
could explain a larger deviation in the value of the const
k, may be attributed to higher-order nonlinear effects, wh
in this case, are contributing to increase the attractive pa
ys
d

ur

n

s,

.

l.
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the effective nonlinear potential. The relevant effect of a r
three-body effective interaction, given by a quintic ter
g3uFu4F in the right-hand side~r.h.s.! of Eq. ~11!, was al-
ready pointed out in@18#. If g3 is positive, there is a possi
bility of two phases in the condensate@18#. However, in the
case whereg3 has the same negative sign as the two-bo
interaction, one may also obtain a relevant contribution t
may explain a smaller value for the constantk, as it is occur-
ring in the present case. In order to obtain the missing par
deviation (;10215%), we estimated numerically that it i
enough to haveg3'20.03.

A way to obtain some definitive conclusion about t
above conjecture of a relevant role of higher-order nonline
ity, is open experimentally by examining particularly th
casea'0, when the cubic term in the r.h.s. of Eq.~11! is
replaced by a quintic term. A limit in the number of particle
at this particular value ofa is a good indication of negative
higher-order nonlinearity; and, givenNc , the corresponding
strength of the nonlinear interaction~which should mainly
come from three-body effects! can be estimated.
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