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Effect of anharmonicities in the critical number of trapped condensed atoms
with an attractive two-body interaction
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We determine the quantitative effect, in the maximum number of particles and other static observables, due
to small anharmonic terms added to the confining potential of an atomic condensed system with negative
two-body interaction. As an example of how a cubic or quartic anharmonic term can affect the maximum
number of particles, we consider the trap parameters and the results given by Rolrf®hys. Rev. Lett.

86, 4211(2001)]. However, this study can be easily transferred to other trap geometries to estimate anharmonic
effects.
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[. INTRODUCTION the JILA's experiment, where the frequencies corresponding
to the directions andr , = Jx?+y? are, respectively, given
The experimental realization of Bose-Einstein condensaby w,=27X6.8 Hz andw, =27 X17.35 Hz. So, the pa-
tion (BEC) in magnetically trapped weakly interacting atoms rameter of anisotropy is given by=w,/w, =0.3919. The
[1-4] brought a lot of interest in theoretical studies of thetheoretical prediction, obtained in R¢f], with the correct
properties of condensed atomic systems. For systems wittylindrical symmetry given in Ref[5], is k=0.55. In this
negative two-body scattering length, recently it was reporte¢ase, the experimental result is smaller than the predicted
in Ref. [5] a discrepancy between experimental results andalue by about 16.5%. Such a result is still not enough to
theoretical prediction§6], in the maximum critical number include the theoretical result within the error bars of the ex-
N, of trapped atoms. In Ref7], it was shown that part of perimental result.
the discrepancy can be explained by taking into consider- As explained in Ref[10], in the JILA's experiments with
ation the axially deformed shape of the trap. The theoreticaf*Rb, the trap is practically harmonic in the central region,
prediction of the critical number of atoms, for the cylindrical for very low temperatures and for small-size condensates.
symmetry considered in Ref5], has to be adjusted to a However, one should check how a deviation of the harmonic
number that is lower than the number given by the corretrap, outside the central region, can affect the number of
sponding spherically symmetric trap. Still, this correction iscondensed atoms. In this case, we are considering the pos-
not enough to obtain a result that is totally compatible withsible existence of imprecisions in the form of the confining
experimental values. So, it is relevant to look for other posjpotential, generated by the modified loffe-Pritchard design
sible sources of the observed discrepancy, in this specifiased (known as baseball trap The modification of the
case; as for example, higher-order nonlinearities in the mearground-state solution of the condensed state can alter, corre-
field approximatiorn[8], or possible experimental deviations spondingly, the observables associated with it.

not already taken into account. In our present investigation we consider a deviation in the
The parameter associated with the critical numblgr,  harmonic trap potential that is effective only outside the cen-
given in Ref.[5], is defined by tral part of the potential, with the addition of a term that is
proportional to a cubic or quartic power of the distance. This
N,|al work was first motivated by looking for a possible source of
kK= ———, (1)  the observed discrepancy between theory and the JILA's ex-
Vil (mw) periment. However, we realize that, if any deviation exists

from the harmonic trap in the experiments reported in Ref.
wherew=(w,wyw,)"" is the geometrical mean value of the [5], it should be of a very small factor considering the kind
trap frequenciesmn the mass of the atomic species, amts  of trap design used by thefi0]. But, one should be aware
the two-body scattering length of the particles in the condenalso of other kind of trap arrangements in the experimental
sate. With the assumption of a spherical symmetrical trapstudies of BEC, where an investigation of possible effects in
k=0.575[6]. The critical number of atoms for Bose-Einstein the observables due to anharmonic terms in the interaction
condensates wita<<0 have been investigated by the JILA can be useful. In this perspective, our present study of the
group, taking into account experiments witPRb [5], con-  effect of anharmonic terms added to a harmonic trap interac-
sidering a wide tuning of the scattering lengthfrom posi-  tion, is not restricted to the example that we are going to
tive to negative values, by means of Feshbach resorf@fice consider. We consider the trap parameters of the JILAS ex-
The experimental result for the numbéy ke,,~=0.459  perimentd5] as an example, estimating deviationdNpdue
+0.012 (statistical +0.054 (systematig, corresponds to a to anharmonicities, which can easily be extended to other
deviation of about 20% lower than the predicted sphericageometrical trap configurations, with the help of previous
symmetrical result. Part of this discrepancy was shown to bstudies[7]. Presently, we are reporting on the numerical re-
related to the cylindrical cigar-shaped symmetry employed irsults obtained folN. when the trap deviates from the har-
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monic shape. We should also note that there exists a previoasd the trap potentidl,,=%wV(p,{), Eg. (2) can be re-
study considering the occurrence of anharmonic terms in aritten as
time orbiting potentiakrap[11].

As shown by our results, a steeper confinement will result ~ 9®
in a lowerk, against the naive expectation. At first sight, a T
steeper confinement should increase the kinetic and potential
energies, with stabilization for a largeand not smaller \ynere the normalization ob is given by
value ofk. However, a steeper confinement also means that
the relative distance between the atoms is less than in the * 2 la
case of the harmonic potential. Therefore, with the atoms J' diJ dp p|®[2=4.2 T =2n (8)
experiencing more attraction from the interaction term, this o 0 0

will result in collapse for smallek. _ In the critical limit, we haven=n,=2/2k.
Neﬁt’ fWIF re\gegv tr\e formallsml useddm thel present ap- - g equation, corresponding to E®), for the chemical
proach, followed by the main results and conclusions. potential 8 in dimensionless unitsy(=% wp) is given by

19

p dp

a) 92 X
p% _0_§2+V(p!§)_|q)| D, (7)

Il. MEAN-FIELD APPROXIMATION 1 9 J 92 )
. ) . . = —|p—| -5 +V(p.O)—|P]?|0=BD. (9)
The Gross-Pitaevskii equation that describes the wave pdp\"dp| ¢
function of the condensat® in the mean-field approxima- ) ) o i )
tion has the form As is known[12], Eq. (9) is valid in the mean-field approxi-
mation of the quantum many-body problem of a dilute gas,
oV %2 477h2|a| where the average interparticle distances are much larger

iﬁyz —ﬁ€2+utrap——|‘l’|2 ¥, (2) than the absolute value of the scattering length, and the
wavelengths are much larger than the average interparticle
distance.

where the potentialla,=Uyap(F; wx, 0y ;) is given by a The total energy of the system is given by

modified harmonic oscillator trap, and the wave functibn

=W(r,t) is normalized to the number of atomsl, For NAiw (= ° a 12 [a 1?
the stationary solution of Eq.(2), with W(r,t) E:Wfo pdpf_mdg[ %q) *52®
=exp(—th/ﬁ)\If(F,0), whereu is the chemical potential, ot
we obtain +V(p,0)|®|?— %] . (10
A4
IﬁW=,u‘I’. ©) In order to analyze the effect of a deviation of the trap

potential from the harmonic behavior, we consider two ex-

Considering the symmetry used in the JILA's experiment,pressions foV(p,{), labeled byr=1,2, as follows:

where the trap frequencies are given by=w,= oy # 0,, 1
it is adequate to work in cylindrical coordinates: V(V)(p,é'):Z[wrz)pz(l-i- 8,p") F+wiA(1+5,4)].

11)

r,= \/x2+yz and 6= arctar{% . (4)

The distortion added to the harmonic potential is cubic when
v=1 and quartic when=2. In both cases, the magnitudes
For the ground state of the condensate, we have of the distortions in the directions and{ are given by the
=W(r.,zt). By using the trapping geometrical average fre-parameterss, and S

quency w=(wywyw,)*® and the oscillator lengthl, With Eq. (11), in both cases one can observe that the
= JA/(mw), we obtain the following dimensionless coordi- interaction is approximately harmonic near the center of the
nates and parameters: trap (at p=0 and/or{=0). Whenp<1, the quartic term
keeps approximately the harmonic shape of the potential in a
. . 2 z ‘ more effective way than the cubic term. In Fig. 1, we can see
P= Iy’ (= I’ = how the shape of the harmonic trap,&0) changes in the

radial direction, at the positiofi=0, when one adds a cubic

W, w, (v=1) or a quartic ¢=2) term in the potential.

w,=—, w=—. (5)
w w
IIl. RESULTS
With the above dimensionless units, redefinifig In this section, we report on our main results considering
the solutions for the chemical potential, obtained for £).
D(p.7)= 47Tﬁ|a|q,(r» ) ©6) with the anharmonic interaction given by Ed.1), for sev-
pre: Mo Y eral combinations of the parameteisandd,, for v=1 and
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V(p,C) TA.BLE I. Values of the maximum critical numbdr for several
combinations of the paramete and &, related to the anhar-
5 ' T / ' monic factors introduced in the interaction, as given in @d), for
I .26 =0 // v=1 (cubig anq V:.Z (quartig. The cylindrical symmetry is the
P P same as that given in Rgb].
4 |l——- 5§=8p=0.2 (v=1) / / -
R §=8,=02(v=2) /[ / v 5, 5 k
g | 1 0.0 0.0 0.550
1 0.1 0.1 0.529
1 0.1 0.0 0.532
i 1 0.2 0.2 0.512
1 0.5 0.5 0.476
2 0.1 0.1 0.520
i 2 0.1 0.0 0.525
2 0.2 0.2 0.497
2 0.5 0.5 0.456

casesv=1 (cubic andv=2 (quartig.

FIG. 1. The anharmonic potentials, as given in Etf), with In Fig. 2, we show some results for the case with2,
8,=0.2 and{=0, for the cubic ¢=1, dashed lineand quartic where we have a quartic anharmonic term added to the origi-
(v=2, dotted ling cases, are compared with the harmonic potentiainal interaction, in both directiong and ¢, such thats,
(6,=0, solid ling. All the units are dimensionless, such that = ;. In this example, we are also considering the cigarlike
Uyrap=(fiw)V andr, =pl,/\2. The values of the frequencies cor- Symmetry of the trap used in Ref5], with o, /o,
respond to the ones given in R¢b]: w,=27X6.8 Hz andw, =17.35/6.8. We present two frames: for the total endggy
=2mX17.35 Hz. (lower frame, given in units of NAw)/(2n) and for the
corresponding chemical potential (upper framg in units

v=2. We have also considered the solutions for the totaPf ﬁ“’.’ vgrsusN|a|/I0. .
energy, which is given by Eq10). For the numerical solu- This picture does not change too much when we switch
tion of Eq. (9), which is given in cylindrical symmetry, we
have employed the Crank-Nicolson algorithm in two dimen-
sions, employing the relaxation method propagating in the 2
imaginary time, as earlier described in REf]. The spatial
discretization used was 14140, with cutoffp,,,=7 and B
{max= 7. The time discretization wad r=0.005, and the 1
relaxation time used for obtaining the solutions of stationary
ground state was=16. The results are more sensitive to the
spatial grid spacing, but a lack of precision occurs in the 0
third decimal figure of the values obtained in the numerical 25
simulations. With these grids, we obtain precise results up tc
the second decimal figure, confirmed by the convergence ob
tained with a refined spatial grid (180L60). We obtain our g 15
results for the total energy and the chemical potential of the
condensate, as functions of the number of particles, by con
sidering the geometry of the trap given in JILA's experiment 95 i
reported in Ref[5], where w,=27X6.8 Hz andw, =27 o L s s s s s
X 17.35 Hz. We consider a range of values for the param-  ° 01 02 (MZT)/I 04 1 03 06
etersg, and 6,, which represents the corresponding anhar- ¢ Kot
monicity. As shown, only positive anharmonic terms added
to the original harmonic trap can make the theoretical pre
diction for the maximum critical nL_Jm_bek k_)ecome closerto i, units of e [n=B(fiw)], versusN|a|/l,, for different values of
the JILAs experimental result. This implies that One.ShOUId(Sp:(S{, as given inside the upper frame. The deviations from the
check for possible deviation of the harmonic potential, out-harmonic trap are given by quartic terms in both directiprd .
side the central region, which makes the trap more confining4ere, we are also using the trap considered in R&f. with the

In Table I, we present our results for the maximum critical asymmetry given byw, /w,=2.5515. The corresponding critical
numberk, which is related to the critical numbét; of at-  numbers are at the end of each curve, with the position of the
oms, as given by Eq(l), considering several possible experimental valude,, pointed out with vertical arrows\ corre-
choices for the anharmonic parametéfsand 5,, for both  sponds to the sum of the experimental errors.

2.5 T T T T T

ke‘pt+A-

2

FIG. 2. Total energiek (lower frame, in units of Nz w)/(2n)
Eiotai=E(NZw)/(2n)], and chemical potentialg (upper framg,
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0.56 T T T T T IV. CONCLUSIONS
054 | In summary, we have solved numerically the stationary
’ Gross-Pitaevskii equation in cylindrical symmetry, for con-
densed systems with attractive two-body interaction, with
0.52 | anharmonic trapping potentials, either with cubic and quartic
deviation from the harmonic oscillator. We did the present
0.5 . study in the perspective to observe the real effeciNgrof
k anharmonicities that can occur in the usual confining traps
0.48 - that have been extensively employed in the experiments with
atomic BEC. We took the harmonic trap parameters consid-
0.46 Koxpt ered in Ref.[5], to exemplify how much should be the
s—e §, =5, (cubic) \ _strength of cubic or quartic anharmoni_c terms.i.n the trap
oaal — 8;=0 (cubic) 1 interaction to present a sizable ch_ange in the_cr|t|cal param-
- = § =3, (quartic) eterk; in the perspective of a partial explanation of the ob-
&= 8;=0 (quartic) served experimental deviations from the previous theoretical
0.42 0 o1 02 03 0a 05 0s  estimates. The present results show that only with a deviation
S of about 10% from the harmonic potential, at distances of the

order of the oscillator length, it becomes possible to explain

FIG. 3. Variations of the critical number of atomk)( in the ~ theoretically the experimental results reported in Réf,
condensate as functions 6f . The corresponding deviations in the Within the error bars. However, this is a quite large strength
¢ direction, 5,, are given inside the figure. The position of the for the anharmonic term that is not supported by the detailed
experimentak and the corresponding positive error bar (are also <[':m3|y3|3 and description of the experiments given in Ref.

indicated. 10]. o . _
In a more realistic perspective, our present work is pre-

dicting the quantitative effect in the critical number of atoms
due to anharmonicities that can occur in a trap. For the non-

. . . harmonic terms, we have considered the cubic or quartic
=1, where we consider cubic anharmonic terms added o thg,e5 | cases of other shapes for the anharmonic terms, one
original interaction, our results show that for both=35,  can also make qualitative predictions based on the present
and 5,=0 there are no significant qualitative differences inresyits. We should point out that our study is not restricted to
the observables plotted, and the values are approximatefpe exampleftrap frequencies and symmetrhat we have
equal to the quartic case. The behavior is similar for all thQJsed; it can be eas"y extended to other trap arrangements,
cases considered, with the collapse of the condensate occéind can be useful in experimental analysis of condensates
ring for smaller critical number as we add larger positivewith attractive two-body interactions. In this respect, we
deviation in the harmonic trap. In this respect, the addition okhould note that it has been studied and reported the possible
a quartic term {=2) in the potential is more effective in occurrence of anharmonicities in time orbiting potential traps
keeping the harmonic shape near the center of the trap. [11]. Our work is considering realistic situations that are

All the above results can be globally analyzed by exam<lose to the actual experiments. So our aim in the present
ining Fig. 3, in which we have the behavior of the maximumWwork was to report on the effect of a deviation in the har-
critical number of atoms in the condensate state, paramMonic trap, which increases as we go to regions outside the
etrized byk, as a function of the magnitude of the trapping center of the system.
anharmonic potential, parametrized By. We display the
effect of both cubic and quartic anharmonicities in confine-
ment, with or without including the deviation in tteedirec- We would like to thank Professor Rajat K. Bhaduri for
tion. As we can see, the higher the anharmonic parameter, theseful discussions and suggestions, and Dr. Elizabeth Donley
smaller the critical number of condensed atoms. As one cafor pointing us to Ref[10]. This work was partially sup-
observe, in order to obtain the theoretical resultskforside  ported by Fundg@o de Amparo @esquisa do Estado dedSa
the region covered by the experimental error bars, one need®ulo(FAPESB. L.T. also thanks the Conselho Nacional de
deviations of abou{10-20% from the harmonic trap, at Desenvolvimento Cieffico e Tecnolgico (CNPg of Brazil
distances of the order of the oscillator length. for support.

off the deviation in the{ direction, with 5,=0 (the trap
remains harmonic in the direction. For the case withv
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