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The nuclear sigma term is calculated including the nuclear matrix element of the derivative Nthe
interaction with respect to the quark masg,dVyy/dm,. The NN potential is evaluated in the Skyrmion-
Skyrmion picture within the quantized product ansatz. The contribution ofNtRepotential to the nuclear
sigma term provides repulsion to the pion-nucleus interaction. The strength &fithee pion-nucleus optical
potential is estimated including such a contribution. The results are consistent with the analysis of the experi-
mental data]S0556-28138)05805-1]

PACS numbegps): 13.75.Cs, 13.75.Gx, 21.30.Ch, 25.80.Dj

[. INTRODUCTION theory, the up-down quark masses originate the pion mass,
since the pion is considered the Goldstone boson arising
Nowadays quantum chromodynamics is accepted as thgom the spontaneous breaking of & XSU(2)y chiral
theory for strongly interacting particles. It was probed with symmetry[3].
success at high energies where perturbative expansion can beThe Skyrme model allows one to study the effect of the
used. Unfortunately in the low-energy regime the perturba€xplicitly chiral symmetry breaking in a chiral invariant had-
tive expansion is not valid and nonperturbative schemes sudi®hic model. The quark mass comes through the pion mass
as lattice QCD have been implemented, but still with enorierm in the Skyrme Lagrangian. Such a connection is made
mous computational efforts. The energy region in whichusing the Gell-Mann—Oakes—Renr&OR) relation[3]
qguarks and gluons build the effective hadronic degrees of m2f2=—2m <|EQ|> (1)
freedom is of interest for nuclear physics applications. Effec- —r d vee:
tive theories have been constructed considering only hadyhere my=(m,+my)/2, andm, and my are the up and
ronic degrees of freedom and designed to work at low enerdown current quark masses, respectively. The nmagss
gies. In such models the main guides are the symmetries @fuite small in the hadronic scale and the local value of the
the fundamental theory. A bridge can be made between the

acuum condensate {$qq|)yac: = (|uu+dd|)yad2.
two descriptions when considering the QCD vacuum Struc- 6 skyrme moéltﬂﬂ?g]“ de<s|cribes de{itatively the

ture. The presence of hadronic matter affects the vacuum,cieon[6] and the nucleon-nucleon interactiéh—9]. The

structure, which is reflected by the modification of the quark, iy jar feature of the model is that the pion mass term in

and gluon condensat¢s]. The hadronic matter digs a hole yhe | agrangian contributes not only for the nucleon proper-

in the local value of the condensate as exprEssed by the efas put also to thauN potential. We are supposing that the

pectation value of the local composite operaigy whereq  dependences of the pion weak decay constép) and the

is the quark operator. _ Skyrme parametere) on the up-down quark masses are
The difference between the volume integral of the quarksmall and they are not considered here.

condensate in the presence of hadronic matter and itS The derivative of any hadronic quantit, with the up-

vacuum value is proportional to the nuclear sigma term. ligown average quark mass in the Skyrme model is translated

can be obtained by the application of the Hellmann-Feynmaihto a derivative inm? using the GOR relation, Eq1), such
theorem, which allows one to express the nuclear sigma tergp 5t

asmqydM o /dmg with M 5 being the nuclear masgs]. We are

limiting our discussion to the S@) flavor sector. The m £:m2 £ )
nucleon-nucleon interaction is responsible for the nuclear qc?mq ”amfr'

binding, and so it is natural to question how thél potential

will be affected by variations of the quark masses, if a reli- In this work, we obtain the derivative of tHéN interac-
able calculation of the nuclear sigma term is des|2d tion with respect to the current quark mass by calculating the

However, to predict how the potential depends on thepotential with the product ansatz approximation in the
current quark masses of the fundamental theory, the conne&kyrme model. We discuss how the derivatagiVyy/dmg
tion of the effective hadronic model with QCD is necessary.enters in the evaluation of the nuclear sigma term in the
The quark mass terms break explicitly the chiral symmetry incontext of nonrelativistic quantum mechanics and its contri-
the QCD Lagrangian. In the SP) flavor sector of the bution to the quark condensate. The expectation value of
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mqdVnn/dmg in the nuclear state contributes to the repulsive JEg

strength of the low-energy isoscalar pion-nuclewsave op- Za=AZN Mo, (6)

tical potential. These calculations can be tested through the a

comparison with the results of the pion-nucleus scatteringvhere the neutron and proton sigma terms were considered
and pionic atom data analygis0—12. For completeness, we equal.

also calculate the nucleon sigma term and the derivatives of The effect of the nuclear binding on the sigma term can
the pion-nucleon coupling constarg yy) and axial charge be calculated, for example, from the Sdtlimger equation in
(9a)- the center-of-mass system. If the quark masses contribute

In Sec. Il, we discuss the nuclear sigma term in the coneffectively toVyy, they also influence the binding energies
text of nonrelativistic quantum mechanics, defining the parin the Schrdinger equation, written as

of the sigma term associated with tRé\ interaction. In Sec. 22 1
Ill, we discuss the quark condensate at finite nuclear density H|W¥,)= 2 ~ oM VZi+ EZ Vij || ¥ a)=Eg|¥ ).
with the inclusion of the new term. In Sec. IV, the Skyrme I=1A N 1#]

model is briefly discussed. In Sec. V, the results for the de- @)

rivative of theNN potential, with respect to the quark mass, Using the Hellman-Feynman theorem and considering

are presented together with the derivatives of the one-bod%at My andV;; depend omm,, the nuclear sigma term is
observables. In Sec. VI, part of the main results of this wor N ! qa’

is presented, that corresponding to the calculations of th K <V
nuclear sigma term for several nuclei. In Sec. VII, the con- IA=ASNFTEIATE, ®)
tribution of the derivative of theNN potential to the pion

. o where
s-wave optical potential is calculated and compared to the
results of the analysis of experimental data. In Sec. VIII, we EV=(\I' |EE m Vij W) 9)
summarize our conclusions. ATATALE T om, ' T A

iven by

is the contribution of theNN potential to the nuclear sigma
term and

The sigma term is a measure of the isoscalar content of SN—
the nuclear state¥ »), with A nucleons, and thus it gives the 2a=— E (10
strength of chiral symmetry breaking due to theand d

qguark masses. It can be directly defined as the expectatioI the term coming from the kinetic eneréw . which is th
value of the commutators of the axial charg@®} with the S the term co g ro e kinetic energy, chis ihe

Hamiltonian[13,14), gi b expectation value of the sum of the nucleon kinetic energies
amiftonian{ 12,14, given by in the center-of-mass frame of the nucleus. H¥ term in
Eg. (8) has been discussed in the context of nuclear matter in
_ 515
SA=(VAllQ%[Q7HIW A). 3 Refs.[1,2]. The last term in Eq(8) can be rewritten using
Eqg. (2) as

II. NUCLEAR SIGMA TERM

In the QCD framework it can be expressed 24|
1 aVi; 1 5 Vi
— N — N 52 mq—=§2 mw—z. (11)
EA=2mqf d*X[(W ala(x)q(x)| ¥ a) = (0]a(x)q(x)[0)] 7 Mg 2iF T om

FIVI The above equality permits one to calculate the derivative
:mqa_mq; (4) mMqdVyn/dmg in the Skyrme model.
o . Ill. QUARK CONDENSATE
it is proportional to the nonstrange quark condensate. The Q
last equality in Eq(4) follows from the Hellmann-Feynman The nuclear sigma term is responsible for the change in
theorem[1] at the level of the fundamental QCD theory, the quark condensate at finite dengity2]. The sigma term

where the quark masses contribute to the Hamiltonian afor nuclear matter at a finite densitp) in a given volume

8H ocp=myuu+ mydd. (vol) is given by
The nucleon sigma term is — . — -
M 3 ,=2mgvol[{pla(x)a(x)|p) —(0la(x)q(x)[0)]
N
EN=qu%, 5) d(&vol) 12

:m —_—
q
am,,

where we used Eqi2) and My is the nucleon mass. The here £ is the nuclear matter energy density given &
experimental value extracted from pion-nucleon scattering i/ ay y 9 y

S\~ 45 MeV [15]. =Mp+[(Ey+Ey)/Alp, in the limit of A—o, andE,, is
The nuclear sigma term has a contribution from the dethe potential energy. Singe=A/vol, we get from Eq(12)

rivative of the nuclear binding energyeg) with respect to 5

the quark mass. Using thal,=ZM,+(A—-Z)M,+Eg, —\ = _

whereZ is the proton number, anld, andM , are the proton 2mg((ad), = {A)vac) = Mg amg P Mg amg

and neutron masses, respectively, we have (13

My IEy/A+Eg/A)
p
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Using Eq. (8), the definitionsEX(g) and 2&(10) and the _ TABLE _I. Nucleon observablesd) and the corresponding de-
GOR relation 2nq<qq>vac: _ miffw we have rivatives with respect to the quark mass.

(qq), St (SR+SRIA 14 f =54 MeV e=4.84 f,=93 MeV e=4.0

— =1- p+---. 14

<qq>vac mfrfi' ) 00 @) d0

Mom, Mo%m,

If we neglect & X+ 3), the expression above reduces to the ™ ™
leading order term found in Ref2]. Recent works by Liand M, 938 MeV  52.2MeV 1818 MeV  59.6 MeV
Ko [16], Delfino et al. [17], and Brockman and Weidd8] ¢, 0.65 —0.064 1.01 —0.069
calculated the quark condensate in relativistic nuclear mattey 11.88 —0.022 20.35 ~0.33

theories following the work of Cohen and collaboratf2$
They included in the evaluation of the nuclear sigma term

the derivatives of the meson masses with respect to the quaifthere V. is the isoscalar central potential/ss is the
mass, and in their context the quark condensate did not depin-spin potential, and/; is the tensor potentialS;,=
viate strongly from the leading order calculation at normal
density. Brown and Rhfil9] have studied the quark conden-
sate in a nuclear medium without the contribution of ke

3(oq-1)(0,-T)— 04+ 0y o are the Pauli spin matrices.

Exact numerical solutions for the Skyrmion-Skyrmion in-
potential to the nuclear sigma term. The values of the Con'geractlon were obtained in the work of Walhout and
densate at normal density, in all casés are around the Ieadiwamb-aCh[g]' n t_hat work [9], they compared the exact

u - ’ "Wimerical calculations to the product ansatz result and to the
order result{qq),, /(dq)yac~0.70. Paris potential. Although the gross feature of the central

In the following section we will calculatEX+ Eﬁ andX, component is given by the product ansatz, it misses the at-
using the Skyrme model and the GOR relation. Subsequentliyaction which is present in the exact calculation and Paris
we will calculate the contribution aE ¥ to the pion-nucleus potential. The product ansatz is roughly reliable fer1.5
optical potential. In the summary, we will present an esti-fm in the tensor and spin-spin channels.
mate to the quark condensate using Ef), with EX ob- Although the product ansatz in tiNN central potential is
tained from the Skyrme model. only approximated when compared to exact numerical calcu-
lations [9], we believe that it is possible to use it in the
calculation of the derivative. According to Jacksatral. [7],

IV. SKYRME MODEL e ; . :
the difficulties in reproducing th& N interaction from the

The Skyrme Lagrangiaf¥] can be expressed as product ansatz come from the fact that the potential is the
£2 1 d!fference of two Iarge_qu.antities of magnitudes two Qrdgrs
L=—Tr(d,U*uh+—Tr[uts,U,ut9,U)? higher than the potential itself, and so little deformation in
4 a 32¢? a the Skyrmions can originate drastic effects. This shall not

1 occur in the derivative of the potential with respect to the
T2 2 _ quark mass, since the final result is of the same order of

* 2 fama(TrU=2), (19 magnitude of the individual nucleon contributions. So defor-

. mations that could occur in the Skyrmions, as they are close,
whereU=¢€'""; 7 are the Pauli isospin matrices. Assuming would be in this case only corrections that could not change
the hedgehog ansatz (r)=rF(r) and minimizing the en- the magnitude of the result.
ergy we arrive at a differential equation for the profile func-

tion (F): V. DERIVATIVES OF THE NUCLEON OBSERVABLES
T 1 , 1 233¢ AND NN POTENTIAL
—+2s°|F"+ ;uF' +F'“2sc— 5;sCc— —— _ _ o
4 2 2 u? We begin by showing the results of the derivatives of the
5o one-body observables with respect to the quark mass. We
—p7u”sinF=0, (160 can calculate several nucleon observatigls such as the

nucleon mass, the pion-nucleon coupling,.(y), and the

axial coupling @), from the Skyrme model in the semiclas-
sical quantization approach. Thus, by changing the pion
mass we can easily calculate m2gMy/om?2,
{giangN/ami, andm2dg,/om? . These calculations pro-
vide the determination of the sigma term,dg ,nn/Jdmg and
mqdga/dmg, respectively. The results of the derivatives of
fthe observables are presented in Table I, and for complete-
giving baryon numbeB=2 for any separation distance and "€ the value of the observables themselves are also shown.

gives the one-pion exchange potential for large distances. It The calculations were performed with two sets of param-

. . : : eters,f ,=54 MeV, e=4.84[6] and f,=93 MeV, e=4.0
Forﬁmdes anNN potential which can be decomposed in the[zo] with m_—138 MeV. In Table I, the values of the

o R nucleon sigma term were included. It has been calculated
Vun=Ve+ 71 [ Vsd 01.05) +V1S5], (170 previously in Ref[6]. They obtained 38 MeV and 49 MeV,

whereu=2ef_r, B=m_/(2ef,), s=sinF, and c=cosF.
The solution with baryon numbé&=1 can be achieved by
imposingF(0)= = andF(«)=0.

We make use of the quantized vers|ar8] of the product
ansatz to get a qualitative idea of the consequences of fini
guark masses in thBN potential. The product ansatz was
originally introduced by Skyrmg5] as an attempted solution
for the Skyrmion-Skyrmion interaction. It has the virtue o
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i FIG. 1. Derivative of the cgntral component of té interac-_ FIG. 2. Derivative of the tensor component of tR&\l interac-

g(_)n, mqﬁ\_/c/ri]mq,sss a funct(;orlw c_>|fhthe r]gdcleon-nucleon rela(tjlve tion, mydVr/dmg, as a function of the nucleon-nucleon relative
Istance in the {rme Modet. _e solid curve Corresponds 1Qgiance in the Skyrme model. The solid curve corresponds to

mqdVe/dmg with f,=93 MeV ande=4.0. The dotted curve rep- mqdVr/dmg with f_ =93 MeV ande=4.0. The dashed curve cor-

(=138 _ | (m,=0)

resentsv e —Ve - responds to the OPEP results. The dotted curve represents
i . (m,=138 _ \,(m,=0)

for the setf .= 54 MeV ande= 4.84, using different meth- Vi Vi :

ods without referring to the Hellmann-Feynman theorem.

These values are comparable to our result of 52.2 MeV. Th@ye, The shapes of the curves for the differer\élé”“:lsg)
experimental value of about 45 Me\L5] is somewhat con-
sistent with our value of 59.6 MeV fdr,= 93 MeV ande

= 4.0 (see Table)l. We will restrict our evaluation of the
nuclear sigma term to this set of parameters, sihges
taken from the experimental value.

The coupling constarg.yn has very different derivatives
for the two sets of parameters, while the derivativeg pére
similar, as shown in Table I. However, in the case of the
g.nns the derivativesmydgnn/dmg, the nucleon sigma
term, andmgydga/dm, are consistent with the Goldberger-
Treiman relatior{ 14].

The derivativem,dVyn/dmy is evaluated numerically in
the Skyrme model using the quantized product ansatz wit
the parameter sdt,= 93 MeV ande= 4.0. We calculated

—V(Tm”:O) and mydVr/dmg are qualitatively similar, al-
though the tail presents a noticeable difference. We have
checked that at distances above 3 fm, the difference in the
potentials with finite and zero pion masses is given by the
results from the OPEP, since the tail is dominatedniy
being zero or finite.

The derivative of the spin-spin component of the
Skyrmion-Skyrmion interactionngdVss/dmg, is shown in
Fig. 3. The derivative of the OPEP spin-spin component for
distances above 3 fm agrees with the present calculation. As
expected for distances below 2 fm, the derivatives of the
I§kyrmion—Skyrmion potential and OPEP become quite dif-

the NN interaction in the Skyrmion-Skyrmion picture and 25 7 ' ' ' '
recalculated it for a small change in the pion mass. Thus, we ‘\
obtained numerically the quantities mydVc/dmy, 20 ! i

mgdVr/dmg, andmydVss/dm, . They are shown in Figs. 1,

2, and 3, respectively. The spin-spin and tensor potential
derivatives are compared to those extracted from the ones
pion exchange potenti@DPEB, presented in the Appendix,
whereg, andmgdga/dm, were taken from Table I.

The results fomydVc/dmg as a function of the relative
distance of the Skyrmion centers are shown in Fig. 1. The%v
calculations show a minimum around 1 fm, with values of €
about— 20 MeV, while at short distances they present repul-
sion. The differencev""=~ **¥—v{"==% is comparable to
mgdVc/dmy, as shown in the figure.

In Fig. 2, the results fomydVy/dm, are shown. The 05 : : :
derivativem,dV"=7am, is compared with the correspond- 0.0 10 2.0 R?’f'f; 4.0 5.0 6.0
ing one for the Skyrmion-Skyrmion interaction. They agree (fm)
for separations of the nucleons above 3 fm. This is expected FIG. 3. Derivative of the spin-spin component of tRé&\ inter-
since the OPEP ftail is present in the Skyrmion-Skyrmionaction,m,dVss/dmg, as a function of the nucleon-nucleon relative
interaction. The derivative found with the OPEP is negativedistance in the Skyrme model. The labels of the curves are the same
at short distances, while the product ansatz results are posis in Fig. 2.

ss/dm, (Me
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TABLE II. Contributions of the derivative of thBIN potential and average kinetic energy to the nuclear
sigma term. Calculations performed for the Skyrme model Witk-93 MeV ande=4.0. The upper label
(PF, PG, h.0.in the nucleus symbol denotes the parametrization of the densities according to de Jager, de
Vries, and de Vrie$21].

Ex (MeV) 3K (MeV) Y (MeV) YK (MeV) SYTKIA (MeV)

’H 17.8 -0.86 -3.60 -4.46 -2.23
3H 46.1 -2.3 ~-14 ~-16 ~-5.4
%He 46.1 -2.3 ~-14 ~-16 ~-5.4
4He(®PP 106 -5.09 -345 -39.6 9.9
10g(h-0) 228 -10.9 -107 -118 -11.8
12c(3eR) 274 -13.1 -157 -170 -14.2
14N (ho) 319 -15.3 -188 -203 -14.5
160 (3PP 365 -17.5 -220 -238 -14.9
20Ne(2PR) 456 -21.8 -268 -290 -14.5
24mg GeP 547 -26.2 -388 -414 -17.2
325(3pR) 730 -35.0 -557 -592 -18.5
40C 43P0 912 -43.8 727 771 -19.3
56Fe(3r9) 1273 -61.1 -1144 -1205 -21.5
11857(3r0) 2690 -129 -2763 -2892 -24.5
1485 m(2pF) 3374 -162 -3556 -3718 -25.1
197py (2P 4492 -216 -5187 -5403 274
208p(3pQ) 4742 -227 -5274 -5501 -26.4
p(0.17 fm 3) 22.8A -1.0A -38.0A -39.1A -39.1

ferent. The shape of the differenad™*¥— v~ js  [23]. The normalized wave function is such thgjdr(u?
similar to that ofm,3Vss/am, . However, at distances above +W2)T=1- The spin componeng;y =[1M) is such that
3 fm, the difference in the potentials with finite and zero pionximxiv=1 andr=|r;—r,| is the relative distance between
masses is essentially dominated by the results from ththe nucleons.

OPEP, which explains the origin in the differences found. = The Skyrme model offers naturally forces of two, three,
and more bodies. Nevertheless, it is still a good approxima-
VI]. RESULTS FOR THE NUCLEAR SIGMA TERM tion to neglect them all in the nuclear Sigma term except the

contributions from the two-body potential. Assuming a
One way to extract the nuclear sigma term is from themodified Hartree approximation such that it has the correct
low-energy pion-nucleus scattering analysis. In fact, in a renumber of pairs, we have
cent work of Brown and Rhfil9] the possibility of obtaining

information about the quark condensate from pionic atoms is A(A-1) NV([ri—ra))
suggested. EX:T d®rip(ry) dgfzp(rz)qu,
The NN potential extracted from the product ansatz is not a (20

realistic in the sense that it does not reproduce the central
attraction in the midrange. This cannot be ignored since iwvhere[d® p(r)=1 andA is the mass number.
means that there is no wave function for the bound state in For isoscalar nuclei heavier than the deuteron we ne-
this potential. Then we decided to give up consistency an@lected the spin-spin and tensor components of the derivative
from the derivative of the calculated potential, we can esti-Of the potential, considering that they are more than one
mate its contribution to the nuclear sigma term using charg@rder of magnitude smaller than the central part and the isos-
densities from the electron elastic scatterj@dj. pin is averaged in the matrix elemefwhich yields zero in

In the particular case of the deuteron, we calculated ~ the Hartree approximationThen only the derivative of the

central potential enters in the estimateXf.
We present in Table Il the results & using Eq.(20)

vV_
EZH_<¢,2H| Ma amqw’zH> (18 and the densities obtained from elastic electron scattering
[21]. In this first approach, we assumed the same proton and
using the normalized wave functid@?2] neutron density distributions. The deuteron results were in-

cluded in Table Il. In the case of the deuteron the contribu-
u(r) w(r) 1 - tion from the NN interaction is—3.60 MeV. We expected
T + o ﬁslz(r) X1M » that we could roughly count the numberMN pairs for light
(19 nuclei in3 Y . For instance, ifHe we can count 6 pairs; then
we should have 8 (—3.60) MeV=-21 MeV, which is a
whereu andw are thes wave ¢S;) andd wave ¢D;) from  lower value(in modulus than the calculated- 34.5 MeV. A
the deuteron wave function obtained with the Reid potentiapossible explanation is that the deuteron is *big” andNts|

Yop=Yy—1m=(4m) "2
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interaction is on an average weaker tharfte. Triton has 3 V+K

pairs and we estimate the contribution of the potential to the '=%(r)=—4m(1+m,/My)| b+ A—2
nuclear sigma term as being betweeNB\Z’Hzlo.S MeV o AmfiA

and 3x3 ), /6=17.2 MeV. Averaging we find a value of m_\ -1

14 MeV for triton. The same should work fdHe. For larger x| 1+ == p(r). (24
values ofA, S¥ remains always smaller than the number of M

pairs<33, or the number of pairsxS},, /6, because the We have separatedl " and b[®® contributions in the
NN interaction has a range around 1 fm. Also we observe -0 A Ot i
thatEX/A is always growing withA except for **’Au and self-energyll _(r), Eq. (24). Th'S last one shoulq contain
208, This can be explained by considering that lead has 31” the r_nec\tﬂusms of the pion-nucleus interaction not in-
lower density distribution at midrange than gold, as Wecfiged in%,"". The normal!zat|on was chosgn such that
checked. bOeff has the same normalization as thil scattering length.

In Table II, we also included the kinetic energy contribu-  Introducing the self-energll' =°(r) in the Klein-Gordon
tion to the sigma term. The kinetic energies from the deuequation for the piofi22,25, usingw?=k?+ mf,, and divid-
teron, 3He, and*He were extracted from the work of Schia- ing by 2m_, we get
villa et al. [24]. In the heavier nuclei we took the average

kinetic energy of nonrelativistic nucleons in nuclear matter, V2 2chOu|_ Véou'+ 1'=%r) ()= k2 i
given by Ex/A=3(2)e;. At p=0.17 fm3, K 2m,  2m, 2m,  2m, |¥a"7 2m ¢/
=1.36 fm !, and ¢,=38 MeV, and we arrive aEy/A (25

=22.8 MeV. The values oBX**=3Y+3X are also pre-
sented and they will be used in the evaluation of the pion
nucleus optical potential.

We noticed that the calculation of the sigma term from the
NN potential using the GOR relation and taking the deriva- u'=o(n= >
tive with respect to the pion mass produced very different
results from those calculated considering only the symmetry- The part of thes-wave optical potential from the term
breaking term(according to Adkins and Napg6]). This s YK is given by
occurs because there is an enormous contribution from the

In this way we have obtained the pion Sctlirger equation,
where we identify the potential

;WH'O(r). (26)

fourth-order term. We also observed that it is in the midrange EX+K
(1-2 fm} that the potentiaNN gives the biggest contribution U';v(ik(r) =———-p(), (27)
to the sigma term. A 2m, A
V+K ;
VII. NUCLEAR SIGMA TERM IN THE PION-NUCLEUS where Eqs(24) and(26) were used. Then, i, " is posi-
S-WAVE POTENTIAL tive, it will produce an attractive contribution to the optical

potential and repulsive otherwise.
Considering that in the last section we got an estimate of The scattering amplitude in the long-wavelength limit and
the contribution of theNN potential to the nuclear sigma in the Born approximation is given by
term, we can also use it in the calculation of thevave
pion-nucleus potential. The interaction Lagrangian between
the pion and the nucleus which is originated by the nuclear
sigma term £ ,) is given by

f(k)=—%f dérelk Ty =0(r). 28)

The nucleus recoil is considered in E&8) by the reduced
s Mg — _ ) mass factoru,=m_M,/(m_+M,), which corresponds to
L= F('m 1400 A(X): [ ¢ha) 7°. (21)  the addition of the nonrelativistic kinetic energy of the target
” in the pion Schrdinger equation(25). The pion-nucleus
We can approximate sc?(tte)ring length in Born approximation is given lay
=f(0).
_ Sa Although we have discussed the Born approximation in
Mg Pal:A0)G(X): | ha) = 2 P, (22)  general, it only will be used for the deuterdtie, and*He,
when discussing experimental data. For heavier nuclei we
with fd3rp(r)=A. The nuclear sigma term is separated intoWill compare the calculations to the Seki-Masutani parameter
its contributions of individual nucleons, potential, and kinetic bs™ [11] extracted from experimental data analysis and de-
energy;2A=A§N+2X+ 2§ [see Eq(8)]. fined as the coefficient of the(r) term in the optical poten-
The component of the interaction Lagrangian which origi-tial,

nates thes-wave potentia[ U'=°(r)] can be written as —o SM
2m, U'"°(r)=—4xw(1+m_ /My)bg p(r). (29

R )
int 2

w2, (23)  Comparing Eqs(24), (26), and(29), we get

SM__ yfree V+K
where thes-wave self-energy is given by bg"=Dg_+ 0o ", (30)
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TABLE IIl. Results for the isoscalar parameter of the optical potential including the potential sigma term
contribution in Eq(30). The °C and %0 experimental values were estimated from the analysis described in
Ref.[10] and for “°Ca from the analysis of Ref11]. The value ofog:: was obtained from the experimental
value of therr-d scattering lengtti26] (bg::z —0.0099n_%).

by < by "<+ bgee bgx®
2H —0.0025 —-0.0123 —0.01233)
3H —0.0063 —-0.0162 -
*He —0.0063 —0.0162 ~—0.015
4He(®PP —0.0110 —0.0209 —0.02125)
10g(h-9 —0.0131 —0.0230 -
12¢(3eR) —0.0157 —-0.0256 —0.0260
14N (ho0) —0.0160 —0.0259 -
160 (e —0.0165 —0.0264 -0.026™"" .0.027°""
20Ne(2PR) —0.0160 —0.0259 -
24mg GeP —0.0190 —0.0289 -
325(3pR) —-0.0204 —-0.0303 -
40ca(®rh -0.0213 -0.0312 —0.033%"Y
pe=0.17 fm 32 —0.0216 —0.0315 —0.0304

where

2V+K mw —1
yrk= 2 ( , (31)

4nf2Al” My

which is the contribution of the nuclear sigma term from theprocesses not included &

NN potential plus the kinetic energy ti3".
The isoscalar scattering Iengl:ig:f‘fe was obtained using

the experimental value of therd scattering length
[Rea,q=—0.0264(11jn_*] [26],
m,\ ! m,\Rea,qy 34
free__ _7m _7 md _“<d
bgee=| 1+ M (1+ V.| 2 eyl (32)

with m_ =138 MeV, My=938 MeV, My is the deuteron
mass, and ,=93 MeV. We usedS;/JKz —4.46 MeV, ex-
tracted from Table Il, forf ,=93 MeV ande=4.0. These

parameters adjust theN p-wave scattering20]. Substitut-
ing these values in Eq32) we get
bger=—0.0099n_*. (33

This value is consistent with-0.0077(11)n_* obtained

ergy contribution. The value of the isoscalaN scattering
length parametds, is controversial and it is not our purpose
to calculate it here. Then, we obtained the effective isoscalar

bgg: originating from the experimental pion-deuteron scatter-

ing length that contains the single- and double-scattering
V+K

2y

We constructed Table IIl using the results of the potential
and kinetic energy contributions to the sigma term in Eq.
(30). The experimental results were extracted from pionic
atoms and pion-nucleus scattering analy4i3,11].

In the particular case ofHe, b{*® was evaluated by

subtracting the isovector contribution, i.e., considering only
single scattering,

1 m,_\ 1 m
(exp) _ — ™ kil _
O AT A (1+ M (1+AMN) Rea,-a
—(N—Z)bl}, (34)

and using the experimental values Rg-s,.=0.056(6)
[22] andb;=—0.09627) extracted from[27] we obtained
bé:;p‘)(3He)~—0.015. The experimental result f6fC was

from Sigget al.[27] in the isospin symmetry hypothesis and Obtained by the Seki-Masutani analysis and also'f@ ex-

also with the value-0.0083(38jn_* from Koch[28].

trapolated fronwr™~ scattering data at 29 MeV and 50 MeV

It has been noted that the scattering length for bound nu-L0J- The experimental result fof®Ca was found in the
clei is shifted from the scattering length predicted by theMasutani-Seki analysisl1] extrapolated fromr™ scattering
theory for free nucleons.This suggests that the cause for data at 25 MeV to zero energy. In the cited wild], it is
this shift is precisely the nuclear sigma term and kinetic en2lso found that the pion interacts with the nucleus at an ef-

fective density p.=pn/2. The empirical value of
—0.0304m_ ! was obtained by Salceds al.[12] averaging

'From Kluge[30]: “The conclusion is that this repulsion cannot Values obtained from the analysis of pionic atom and pion-
be obtained by an iteration ofN interaction, but rather represents Nucleus scattering data.

an independent feature of the interaction of pions with bulk nuclear

Our evaluation of the nuclear sigma term from tRé&\

matter. An attempt to explain this as a binding effect of the nuc:le-PO'[e_ntial generates a repulsign if_’ the Pij&ﬁ?' Optica\lﬁpgten-
ons has been undertaken in the framework of relativistic mean fieldial in the central region which is approximatelys ""(r)

theory of the nucleus’[31].

=(—3x"%2m_f2A)p(r)~8 MeV, which is roughly of the
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related it tom29Vyy/dm> using the Gell-Mann—Oakes—
Renner relation, which made the calculation possible. We APPENDIX
compared it to the OPEP calculation, and they agreed for
distances above 3 fm. The matrix element of above deriva].—m
tive of Vyy in the nuclear state is part of the nuclear sigma

The nonrelativistic reduction of the one-pion exchange
eraction is given by29]

term. The magnitudes of the quark mass contribution to the 2 2

: ; ga/ M O I 1
nuclear potential were found to be appreciable. We calcu-\OPEP_Z2| T | (2 . 2| Z (5 . g,)+ | —— + —
lated the contribution to the nuclear sigma term arising from 4w\ 2f, 3 (m,r)2 mgr
the nuclear interaction, assuming that the nuclear density in -
finite nuclei is equal to the experimental charge density con- N E S e M
veniently normalized. 3712

The contribution from thé&N potential to the sigma term
was incorporated in the effective isoscalar scattering length :(;1. ;2)[VggEP(51.52)+V$PEP51ﬂ_ (A1)
of the pion-nucleus optical potential. There was a remarkable
agreement with the empirical values extracted from the The derivatives of the potentials with respect to the square
analysis of pionic atoms and scattering experimental datef the pion mass can be simply stated as
We showed that it is possible to explain the repulsion in the

isoscalar channel of the pion-nucleus optical potential, if we ) IVIEEP 1 [m,\2 A 5, m,r
take into account in the nuclear sigma term the contribution Mz ——5—== 15— 5 9a—— Mzt 1- >
of the NN potential. amz T\ el amz,
In nuclear matter, we should include the contribution of e~ Mat
the NN potential (ZX) in the nuclear sigma term in the form X (A2)

SA=A3S+3X+3K. This correction alters the value of the '

condensatéqq),/(qq),ac—1—pSa/Am2f2, and asSx is  and

negative there is a tendency to a drastic reductiort f
Then the condensate at normal nuclear density is about 2(9V$PEP 1(m,\2 I 1 1
(aay,, /{aa)vac~ 0.95, and by this way it does not decrease Mz oF 29Aam2 m; (m.r)2 +m r
as much as was calculated before. More definitive conclu- i i

sions about the quark mass dependence of\tNepotential

should be pursued in exact evaluations of the Skyrmion- +§
Skyrmion interaction, which is beyond the present work.

—2: —
o’imﬂ_ 41

2 —m_r
e T
—%(1+mwr)] —. (A3)
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