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In the present work, we improve a numerical method, developed to solve the Gross-Pitaevkii nonlinear
Schralinger equation. A particular scaling is used in the equation, which permits us to evaluate the wave-
function normalization after the numerical solution. We have a two-point boundary value problem, where the
second point is taken at infinity. The differential equation is solved using the shooting method and Runge-
Kutta integration method, requiring that the asymptotic constants, for the function and its derivative, be equal
for large distances. In order to obtain fast convergence, the secant method igQ1€68-651X99)04608-3
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Precise and fast numerical solutions to nonlinear equatering length. In the present approach, as we are more con-
tions have become considerably important in computationaterned with numerical aspects; for convenience we treat only
physics. So the numerical procedures are relevant, also to lmases with negative scattering lengtles<(0). [For the nu-
described, when treating such problems, considering the facherical considerations, there are no restrictions about the
that the computation is time consuming. In the present worksign of the scattering length, as the solutions véth0 are
we pay attention especially to this problem, proposing arequally accessible using the same procedure and changing
alternative approach to a method recently described in Rethe sign of the nonlinear term in Eql).] Later we also
[1], which was used to solve the Gross-PitaevEkjinonlin-  consider the inclusion of a three-body interaction term.
ear Schrdinger equatior{NLSE) for trapped neutral atoms, The chemical potentiak is fixed by the numbeN of
with positive two-body scattering lengths. In R¢8], the  atoms in the condensed state, which is given by the normal-
NLSE treated in Ref[1] was extended to a time-dependentization condition
one, for both positive and negative two-body scattering
lengths, where the Crank-Nicolson algorithf@ppropriate
for time evolution) was considered. This approach, however, .
has the disadvantage that it can only reach stable solutions. f dr[W(r)[?=N. 2
In case one needs to add other nonlinear tetafishigher
ordey in the original equatiof4], it is not feasible to reach
another region of stable solutions if in between there is ann Refs.[1] and[3] the NLSE for Bose-Einstein condensates,
unstable region. This implies that it should be appropriate tas given in Eq(1), was solved numerically. In Ref1], the
combine a static methogsuch as the one used in RéL])  shooting and the Runge-Kutta methd#ss] were combined.
with the method used in Reff3] when we are interested in For a given normalization parameter the corresponding di-
obtain all the stable and unstable solutions and also the comensionless equation was solved. The asymptotic form of
responding time evolution. So, in this perspective, any im+the wave function was renormalized to be equal to the nu-
provement of the method considered in Rl would be  merical wave function for a sufficiently large distance. The
relevant. wave-function normalization parameter was increased until

In the following, we briefly describe the physics related tothe Wronskian of the asymptotic behavior of the numerical
the NLSE considered ifl] and the numerical procedure and the analytic function change sign.
used to solve it. Then we present an alternative approach, Next, we present in detail the numerical approach we
which can considerably reduce the time needed to search f¢rave used, in order to show the similarities and subtle differ-
the solutions and the normalizations. ences between this approach and the one of R&fAs we

The nonlinear Schdinger equation, which describes the suggest from our experience, such subtle differences in the
condensed wave function in the mean-field approximationnumerical procedures will reduce considerably the time
can be written a$l] needed to search for the solutions. We first rewrite (Egin
dimensionless units, in order to makes apparent the physical
scales contained in Eql). By rescaling Eq.(1) for the

2 2
- ;—mVZJr ngrZ— %l‘ﬂm,(mz V(r)=p¥(r), swave solution, we obtaif¢]
)
i i a2 1 |®(x)|?
wherem is the mass of a single atorm the angular fre- 4 Iye— ®(x)=BD(X), 3)
qguency of the trapy the chemical potential, analthe scat- dx> 4 x2
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The inverse happens when we underestindaté0). Sothis
condition is valuable to tuné’(0). It corresponds tolv-
ing the equation

where x=\2mw/% r, ®(x)=8xla] r¥(r), and B
=ulhw=<3/2. The normalization fod(x), obtained from
Eq. (2), defines a real number (given as|C3P| in Ref.[1])
related to the number of atonh

® 2Mw
f dx|®(x)|?2=n, where n=2N|a| \/T. (4)
0
having®’(0) as the unknown variabl&ubstituting Eqs(6)

We would like to emphasize that, by using this scaling@nd (8 into Eq. (9) we recover the expression for the
procedure, the numerical solutions for the equation are fred/ronskian W(® nm(Xmax, Pasyr(Xmax))=0 stated in[1].
of any normalization constraint or other parameter depenEduation(9) can be solved by secant methfél. So we
dence. The parametd, related to the number of particles, P€gin with an approximate solution fdr'(0), as arinput to
was removed from the differential equation and it is not necfhe secant method, whet, andCy, are evaluated by the
essary to check Eq2) or (4) at all steps of the calculation. Runge-Kutta method. We should emphasize that, to succeed

Cq;_C(pf:Oy (9)

The normalization is found posteriorj using Eq.(4).
The boundary conditions for E¢3) are given a$1]

®(0)=0 and ®(x)|x_—Pasyn(X),

X2

——+

. ®)

D osyn{X)=C ex;{ (ﬁ— ;>In(x)

whereC is a constant to be determined. By using the Runge-

Kutta method and starting with a givan(0), theproblem is

with such a method, the original guess fbf(0) should be
not far from the correct value; otherwise the method can lead
to the trivial solution®(x)=0 or to overflows. In our pro-
cedure, for a fixe@3, x,ax Was first estimated to be equal to
4.2 and®’(0) was used as an initial trial to extemng,, to

5.6 and subsequently to 7.0. Once we find a solution for
®’'(0), for agiven B, we decrease slightly by A8 using

the previous®’(0) to find the newd’(0). This process
allows us to “walk” along B8 values, obtaining the corre-
sponding solutions and results for

Although the secant method can become unstable under
certain conditions, in this case it will not occur, as we ex-

reduced to determining the value of the corresponding depjain in the following. We found that the secant method is

rivative @' (0), which satisfies the asymptotic condition at
infinity. So we are tempted to shof,6] many values for
@’ (0) until we obtain numerically a constant for large dis-
tances. At a certain,,,x We expect a constant, given by

solutions due to the problem of verifying, for some large
when Cg4 is constant, within the required numerical preci-
sion. The way to overcome these difficulties is to conside
the asymptotic derivative ob(x), that is,

1 x2 .
ex Z

2

1

;

X
-+

®fynfX)=C| — 5

1
)In(x)

A 2

B

’

()
and also determinéhumerically the expression
, X 1\ 1]t
Cq)rE(Dnum(X) —E‘l‘ ﬁ_i ;
X X 1)| 8
exp 4 | 8= 5| |, tS)

with X,ax Such that both Eq$8) and(6) are constants. When
we are using the correct value df’(0) we also should
obtainC4,=Cq/=C for a large enougix= X ax-

appropriate, as we can be as near as desired to the solution,
starting with a given analytical solution of the corresponding
linear Schrdinger equation. So we just need to implement
an automatic algorithm routine to make slow variationgof
and the corresponding slow shiftom the initially zerg of
®'(0), in order to satisfy the corresponding nonlinear equa-
tion. In this way, we are always near the solution, such that
the secant method can be applied. We think the same proce-
dure can be generally applied for solitonic equations. The

| ealgorithm of the slow variation gB (deformation algorithr

does not need an estimation for the derivative of the wave
rfunction atx=0 [as given in Eq(3.7) of Ref.[1]] for every
solution, except for the first one where we take it near the
harmonic oscillator solution. We understand that the analyti-
cal approximation given in Refl1] to estimate the derivative
atx=0 is not the most convenient in the present case. Con-
sidering that in general such equations are highly nonlinear,
the initial guess for the derivative @b at x=0 can easily
cause overflow when determining the asymptotic constants
(Wronskiarn at large distances. Our initial guess can be very
close to the harmonic oscillator solution, which corresponds
to ®’(0)=0, avoiding possible overflows for sufficiently
large distances. In our numerical approach, considering that
B=1.5is a trivial solution of the linear harmonic oscillator,
we started with3=1.4, trial®'(0)=0.6, andA 8= 0.02. For
each B four to six iterations were necessary in the secant
method[6], for eachX,, 4.

Our results, for several values gf are partially listed in
Table I. The solutions with3<0.4 are unstable and not
shown in Ref[3]. However, the solutions witg=0.4 agree
well with their results. As one can observe in Table I, the

A useful remark we can make is that when we overestimethod also can reach solutions with negative chemical po-

mate the value ofp’'(0), C4 increases an€, decreases.

tentials (3<<0). A numerical stability check, which can be
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TABLE I. Numerical solutions for the NLSE including two-

body interaction, when the two-body scatteriags negative. We
consider that ax,,,= 7.0 we have achieved the asymptotic limit.
B ¢'(0) C n
15 0 0 0 8
1.4 0.5448721 0.535 0.3310
1.2 0.9939222 0.929 0.8597
1.0 1.3567267 1.187 1.2282 .
0.8 1.7022822 1.374 1.4607
0.6 2.0495486 1.510 1.5839
0.4 2.4045809 1.608 1.6254
0.2 2.5851166 1.648 1.6237
0.0 3.1340461 1.741 1.5632 n
-1.0 4.8924036 2.110 1.2234

FIG. 2. We show the chemical potentjalas a function of, in

-20 6.3914678 2.995 0.9843 the case where we consider three-body effects. The three plots
shown correspond to the radial state solutionsgfp+ 0 (no quintic
term), g;=0.016, andg;=0.03. The plot labeled witlg;=0 cor-
done by evolving the static solutions, can easily be followedesponds to Table I.

by using a time-dependent method, such as the Crank-

Nicolson method3,6].

In Fig. 1 we also show three plots for the chemical potentody interaction. The physical consequences of the addition
tial B as a function of, in the case of zero angular momen- of sych a term in the NLSE is discussed in both references
tum. The three plots shown correspond to the lower radiayiyen in[4].
states (,=0,2,4) of Eq.(3). The plot labeled witn, =0 To finalize, we have presented in detail an improvement
corresponds to Table I. In the limit of the harmonic oscillators 5 numerical procedure used to solve a nonlinear differen-
solution, wheren=0 and the equation is linear, we obtain tj5| equation, which is commonly applied for Bose-
the usual known solutions. ~ condensed states. In our example, we solve the Gross-

In Fig. 2 we have another example of the application ofpjtaeyskii equation with an attractive two-body and a
the method described here. In this case, we consider the agkpylsive three-body interaction. We should note that, by us-
dition of another nonlinear term inside the square brackets ofq 5 simplified scaling procedufgiven in Egs(3) and(4)],

Eq. (3), given by the numerical solutions for the equation are free of any nor-
malization constraint or other parameter dependence. The

|D(x)|* parameteN, related to the number of particles, was removed

93— (10 from the differential equation and it is not necessary to ob-

X tain the normalization at each step of the calculation. Equa-

which can be directly related to the three-body effects, wheréIon (4) gives the normalization posteriori So, by using the

. ) ) : above scaling procedure, it emerges that the main differences
03 is the nondimensional strength of the corresponding threeﬁetween the present method and the one given in [R&.

when looking for solutions of the NLSE, are th@t in our
approach, we searched for the derivative of the wave func-
tion atx=0 until the asymptotic constants matgkhen the
Wronskian vanishgsand the normalization is given at the
end;(ii) in [1] the normalization parametéris incremented
until the sign of the Wronskian is changed. For the final
renormalization they also use other intermediate parameters,
such asAy, Ny, Aq, andN;.

As we are not restricted by the normalization, our ap-
proach is a clear improvement to the method given in Ref.
[7], particularly when considering the simplification and the
transparency in the normalization procedure. Such an advan-

6 T T T T T T

- . ! . ! . . tage can be further explored when more involved calcula-
0 5 10 15 20 tions are presented, as in RET] where collective excita-
n tions are evaluated. A different scaling removes the

FIG. 1. We show the chemical potentidlas a function o, ~ Normalization constraint and allows one to obtaia poste-
which is related to the number of particles by Ed). The three  iori, after numerical solutions are achieved for the eigenval-
plots shown correspond to the lower radial stateg (of Eq. (3) ues.

(with zero angular momentumsuch that in the limit of the har- In our numerical procedure, we employ the shooting
monic oscillator solution, whera=0, we have the usual known method on Runge-Kutta integration, matching the asymptotic
solutions. The plot labeled with,=0 corresponds to Table I. constants for the wave function and for the corresponding
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derivative. This procedure is shown to be equivalent to makf1] from the perspective of looking for solutions of differen-
ing the Wronskian vanish at such large distances. In order ttial equations with higher-order nonlinear terms and also
obtain a faster convergence to the solution, we also includeffom the perspective of combining such a metliagpropri-
the secant method. The numerical optimization of theate for static solutionswith a time-dependent one.

method employed in Ref1], described here, is not restricted

to the NLSE we have used. It can be used quite generically

for second-order solitonic differential equations whose solu- This work was partially supported by the Fundaale
tions asymptotically vanish at large distances. We consideAmparo aPesquisa do Estado dé SRaulo and Conselho
particularly relevant an optimization of the method of Ref.Nacional de Desenvolvimento Ciéfito e Tecnolgico.
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