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The dynamics of a nonconservative Gross-Pitaevskii equation for trapped atomic systems with attractive
two-body interaction is numerically investigated, considering wide variations of the nonconservative param-
eters, related to atomic feeding and dissipation. We study the possible limitations of the mean-field description
for an atomic condensate with attractive two-body interaction, by defining the parameter regions, where stable
or unstable formation can be found. The present study is useful and timely considering the possibility of large
variations of attractive two-body scattering lengths, which may be feasible in recent experiments.
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I. INTRODUCTION malism. A negative quintic term would favor the collapse of
the system for a smaller critical number of atoms, as verified
The stability of the condensed state is governed by thén the JILA's experiments. However, the real significance of
nature of the effective atom-atom interaction, the two-bodya quintic term in the formalism is still an open question.
pseudopotentia| is repu|sive for a positbcwave atom-atom Our main motivation in the present work is to analyze the
scattering length and it is attractive for a negative scatteringlynamics represented by an extension of the mean-field or
length[1]. The ultracold trapped atoms with repulsive two- Gross-Pitaevskii approximation, with nonconservative
body interaction undergoes a phase transition to a stable coft@ginary terms that are added to the real part of the effec-

densed state, in several cases found experimentally, as fdY€ interaction, the two-body nonlinear term with a spheri-
8Rb [2], 2Na[3], and 'H [4]. However, a condensed state cally symmetric harmonic trap. For the imaginary part, the

of atoms with negative-wave atom-atom scattering length interaction is a combination of a linear term, related to

: . atomic feeding, and a quintic term, due to three-body recom-
E)a;saltr;r%a;s’\e; izﬁs_,lm[asl]l]g\%tlghbgulir;]sttizlteihuenIsisast)iﬁ?zeinréug?(:ee: bination, that is responsible for the atomic dissipation. This

. ) ; _ is an approximation that is commonly used to study the prop-
provided by the zerojp0|_nt mot|(_)n and the harmonic ”?‘p rties of Bose-Einstein condensed systems. We consider a
overcomes the attractive interaction, as found on theoreticg);je yariation of the nonconservative parameters, in particu-
grounds[6,7]. Particularly, in the case ofLi gas 5], for jar motivated by the actual realistic scenario, that already
which thes-wave scattering length ia=—14.5£0.4 A, it eyists, of altering experimentally the two-body scattering
was experimentally observed that the number of allowed attength[10]. As it will be clear in the following, this possi-
oms in the Bose condensed state was limited to a maximumility will lead effectively to a modification of the dissipation
value between 650 and 1300, a result consistent with thparameter. By changing the absolute value of the scattering
mean-field predictiofi6], where the term proportional to the length, from zero to very large absolute values, one can
two-body scattering lengttnegativg dominates the nonlin- change in an essential way the behavior of the mean-field
ear part of the interaction. description. As it will be shown from the present numerical
More recently, the maximum critical number of atoms for approach, the results for the dynamical observables of the
Bose-Einstein condensates with two-body attractive interacsystem can be very stablsolitonic type or very unstable
tions have been deeply investigated by the JILA group, con¢chaotic type; the characteristic of the results will depend
sidering experiments witf°Rb [8]. They have considered a essentially on the ratio between the nonconservative param-
wide tunning of the scattering lengéfrom negative to posi- eters related to the atomic feeding and dissipation.
tive, by means of Feshbach resonah@d.0], and observed In the following section, we review the formalism. The
that the system collapses for a number of atoms smaller thamain results are presented in Sec. lll, followed by our con-
the theoretically predicted number. Their experimental reclusions in Sec. IV.
sults, when compared with theoretical predictions for spheri-
cal traps, show a deviation of up to 20% in the critical num- Il. MEAN-FIELD APPROXIMATION
ber. More precisely, it was shown in Rgt1] that part of this '
discrepancy is due to the nonspherical symmetry that was The mean-field approximation has shown to be appropri-
considered in Ref.8]. Such a deviation can also be an indi- ate to describe atomic Bose-Einstein condensation of a dilute
cation of higher order nonlinear effects that one should takgas of atoms confined by a magnetic tfag]. In the case of
into account in the mean-field description. In REE2], it  positive scattering length, we have a very good agreement
was considered the possibility of a real and positive quintiovith experimental data, as the thermal cloud is practically
term, due to three-body effects, in the Gross-Pitaevskii forabsent(removed by cooling evaporatipand almost all the
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particles are in the condensed state. In this case, the mean- ¥ 4rla|h)?
field approximation results in a nonlinear Sattirmer equa- G,= Eﬁw, Gz=2 ho, (4)
tion known as Gross-Pitaevskii equati@@PE). If we have
N particles trapped in a spherical harmonic potential, thisgnd
equation is given by
d=d(x,7)=+8x|a||[r|¥(r,t), (5)
A pr., 1, Awhfa
Ih—==| — 5 Vi oMo — |W[?|¥, (1)  we obtain the radial dimensionlessvave equation:
3 | | R IO S GO 1 R
where =¥ (r,t), the wave function of the condensate, is == PRIV I§7 i>|®. (6)

normalized to the numbe\, mis the mass of a single atom,

is the angular frequency of the trap, amds the two-bod - . . .
(sucattering Igngth. g y P y As V¥ (r,t) is normalized to the number of atorigt) in Eq.

In this work, we have concentrated our study on the in-(2); the corresponding time-dependent normalization of

teresting dynamics that occurs when the scattering length € (X:7) 1S given by the reduced numbe(r):

negative &= —|al). In this case, it is well known that the . T

system is unstable without the harmonic trap, and the trapped J dx|®(x,7)|?=n(7)=2N(t)|a| [ (7)
system has a critical limiN. in the number of condensed 0 h

atoms. The mean-field approximation has also shown to b_(le_h Ve GP®) | id in th field
reliable in determining the critical number of particles and '€ nonconservative GP) is valid in the mean-field ap-

even collapse cycles in the condensfiel4,15. Actually, proximation of the quantum mapy-bo_dy problem of a dilute
systems with attractive two-body interaction are being inten93S: when the average interparticle dlsta_mces are much larger
sively investigated experimentallg], by using the so-called than the absolute value of the scattering length; and algo
Feshbach resonand®,10. The scattering length can be When the wavelengths are much larger than the average in-
tuned over a large range by adjusting an external magneti‘i:,erpart'de distance. The nonconservative terms are important
field [for more details, see RefL6]]. Here, we are interested WNen the condensate oscillates, fed by the thermal cloud,
in the dynamics of a realistic system, where we add twoWh!Ie losing atoms dge to three-body mela_lstlc collisions,
nonconservative terms: onginean related to the atomic which happen meynly in the h!gh density regions.
feeding from the nonequilibrium thermal cloud; and another, ' order to verify the stability and the time evolution of

fecinati - ; the condensate, as observed in REfS], two possible rel-
dissipative due to three-body recombination proce&seais- ' Y i
P Y P vant observables are the number of particles normalized by

tic). It is true that other dissipative terms can also be relevan - X
for an arbitrary trapped atomic system, as a cubic one, th4f'€ critical number of atoms of the static cas&t)/N.] and
the mean square radius,

can be related with dipolar relaxation or with an imaginary
part of the two-body scattering length. However, in order to 2 1 [ 2
simplify the study and better analyze the results, we restrict(rz(t)>:<—)—f dx x2|<b(x,r)|25<—)(x2(r)>
our considerations to the case that we have just one param- 2me/n(7) Jo 2mw

eter related with the feeding and another related with dissi- A
pation. We have considered only the three-body recombina- E<_) X2, (8)
tion parameter for dissipation also motivated by the 2mao

observation that, for higher densities, this term dominates the . . . .
two-body los§17]. So, for the generalization of El), we where X=\/(x?(7)) is the dimensionless root mean-square

add the imaginary terms in the interaction, such that radius. In our analysis of stability, we calculate the time evo-
' lution of these quantities. We explore several combinations

of the dimensionless nonconservative paramefeend vy.

A 4 h? 1 4mh%a , . : : : ; o
i = — — V2 + —mw2r2W¥ + V|20 +iG W We first consider the case in which the atomic feeding is
at 2m 2 m 7 absent or when its parameter is smaller than the atomic dis-
—iG§|\If|4\If, @) sipation parameter. Next, we explore variations of both pa-

rameters of about five orders of magnitude, from 1Qo

hereG., is the dissinati ter. due to th bod I10*1. This wide spectrum includes the parameters consid-
wheret, 1S the dissipation parameter, due 1o thre€-body Coly o py kagaret al.[14], as well as other combinations that
lisions, andG,, is a parameter related to the feeding of the

: can be considered more realistic due to recent experimental
condensate from the thermal cloud. The EB) was first results[19] P

suggested in Refl14] to simulate the condensation 6ki.

In order to recognize easily the physical scales in Efjs.
and (2), it is convenient to work with dimensionless units.
By making the transformations

Actually, the relevance of a wider relative variation of the
nonconservative parametefsand &, presented in Eq(6),
can be better appreciated in face of the experimental possi-
bilities that exist to alter the two-body scattering lenpth].
As one should note from Ed4), any variation of the scat-
- /Le 7 tering length will also affect the effective dissipation param-
2Mw

X 1= P ©® eter¢ and, consequently, its relation with the feeding param-
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eter y. This implies that, by changing the value of the 25 T - - -

scattering length, from positive to negative, and from zero to nggﬁ; =107
very large absolute values, one can change in an essentii o E=5X10"

way the behavior of the mean-field description. In the 2 e ]
present work, we are concerned with negative two-body scat — &=10"

tering length, where the collapsing behavior of the Hj.
shows a very interesting dynamical structure. Even consider. 1.5 | .
ing the possible limitations on the validity of the mean-field =’
approach after the first collapg cases of parametrization =z
where it can occyr it is worthwhile to verify experimentally 1T .
the behavior of a system in such a situation, by varyag e e bese tttrstts A

At least, one can verify how far the theoretical description T;?ni’ 1
can be qualitatively acceptable. 05 \\;MA i

As already verified for systems with attractive interaction,
as the’Li, it has been possible, via the mean-field approach,
to describe properties such as the critical number of atomsir 0
the condensate and growth and collapse cyft&4,13;
besides, in the long time evolution, for certain sets of param-
eters, the calculations have also shown the presence of strong FIG. 1. Time evolution of the number of condensed atdws
instabilities of the condensate, with signals of spatiotemporafelative to the critical numbeN,, for a set of values of the dissi-
chaotic behavior. pative parametet (as shown inside the framewith the feeding

In order to characterize a chaotic behavior, it is necessarjarametery=10-2. All the quantities are in dimensionless units, as
to show that the largest Lyapunov exponent related with th&iven in Eqs.(3) and(4).
solutions of the equation is positive. We follow the criterion
used by Deissler and Kanek®0] to characterize spatiotem- the system is more stable when the parameter related to the
poral chaos. This criterion prescribes that the largesteeding of atomsy from the thermal cloud is significantly
Lyapunov exponent for the system, in an arbitrary time in-smaller than the parameter related to the dissipatiddow-
terval, is obtained by plotting the logarithm of a function  ever, it is interesting to find out the region of parameters

0 100 200 300 400 500
T

which is defined by where this transitiorifrom stable to unstable resultsccurs.
1 Analysis of experimental results can provide a test to the
N 2 present mean-field description in case of negative two-body
&n (fo |60(x,7)] dx) ' © interaction. As previously observed, we are considering di-

mensionless observables and parameters. For any realistic
S®(x,7) will give us the separation between two nearbycomparison with experimental parameters, one should con-
trajectories; it is obtained in the following form, we numeri- vert y and ¢ to the parameter&, andG,, as given in Eq.
cally evolve in time an initiakb(x), obtaining®(x,7). In-  (4).
dependently, we evolveby(x)+e(x), and getd’(x,7), The numerical solutions of E{6) were obtained by ap-
wheree(x) is a very small random perturbatiod® (x, 7) is plying the semiimplicit Crank-Nicolson algorithm for non-
given by®’(x,7) — ®(x,7). The chaotic behavior is charac- linear problems, as implemented in REif8]. This method is

terized by a positive slope of iffr), which gives the largest stable and, therefore, very convenient and reliable to treat
Lyapunov exponeni20]. time-dependent nonlinear partial differential equations. The

initial condition for the number of atonis in the condensate
was such thatN(0)/N.=n(0)/n.=0.75. The evolution of
the observables have been extended uptawt=500.

In the following, we present the most significant results In general, as expected, the smaller is the dissipation pa-
that characterize the time evolution of the normalized num+ameter, the longer is the life of the condensate. The mean
ber of particles N(t)/N.], the dimensionless mean-square square radius presents an oscillatory behavior while one in-
radius(x?), and, in order to characterize the stability of the creasest. One observes that, in the regime of small feeding
system, the function related to the largest Lyapunov expofy<10"%), the extended Lyapunov presents no positive
nent. Further, we present a representative case of the phaslepe. For larger values of, from ~10 2 and 102, we
space for the root mean-square radius. We have studied lmave studied a few cases where the interplay between the
wide region of parameterg and &, covering about five or- nonconservative behaviors are significant.
ders of magnitude, from 10 to 10 !, including the case In Fig. 1, we show the dynamical behavior of the number
with no feeding ¢/=0). of atoms fory=10"2 and several values af; and, in the

In order to have a clear and useful map of the regionsFig. 2, the corresponding time evolution f(7)2). We re-
where one should expect stable results, as well as regioradize an interesting behavior, that occurs when the dissipation
with instabilities or chaos, we summarize the present numeriis larger than the feeding process: there are solutions of sta-
cal results in a diagrammatic picture that relates these twbility or dynamical equilibrium between both nonconserva-
nonconservative parameters. In general, it is expected th#éive processes. This phenomenon was already discussed in

Ill. NUMERICAL RESULTS
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FIG. 2. Time evolution of the dimensionless mean-square radius FIG. 3. Time evolution of Ing), related to the separation be-
(x(7)?) for the feeding parametey=10"2. The results are given tween two nearby trajectori¢See Eq/(9)], for y=10"% and a set
for a set of values of the dissipative parameiein the lower frame  of values ofé¢ indicated inside the figure. All the quantities are in
(shown insid& A specific case, fot=10"2 (much smaller thany),  dimensionless units, as given in E¢3) and (4).
is isolated in the upper frame, where one can observe the behavior
of (x(7)?) after the collapse. All the quantities are in dimensionlesss|ope. As shown in Fig. 3, this clearly occurs, for example,
units, as given in Eqe3) and(4). when é¢=10"%. In case of¢=10"° we note a much faster
increasing in In{), with an observed saturation that happens

Rerf. r[nth] rfor a.;ewﬂ\]/a“tj.?s O(I thenglsr;ci[lpatlrc.)nt. a:dl feedr'ng%l;e to the fact that such function has reached the maximum
parameters, using the time-dependent variational approa paration between the trajectories. The saturation properties

and also the_Crank-_Nonson method. In the present quk’ W& also verified when studying chaotic behaviors in ordinary
observe a wide region of parameters where it is possible th&ifferential equation§22]. The plot of In¢) corresponds to
formation of autosoliton$21]. However, when the feeding the same value ofy (=1072) used in Figs. 1 and 2. As

process is much larger than the dissipation, of about one 0srhown a clear characterization of chaotic behaviors starts to
more orders of magnitude, we can also observe chaotic be Sceur only for values of the dissipation paramegemuch

haviors. See, for example, the case wjth 103,
The time evolution of the number of particles, representecfrq%!er thany. In the cases presented in Fig. 3, for

in Fig. 1, shows a collapse far~30, fOI.IOWEd by several In Fig. 4, we present another significant illustration of
other collapses, with the number of particles going above the
critical limit N.. So, after a sequence of collapses, the criti-
cal limit for the number of particles is no more followed, as 1500 ' ' '
already shown in Ref.18]. - E=107
The corresponding time evolution ¢%(7)?) is shown in © y=1072
the upper frame of Fig. 2. We observe that, following each  ygq0
collapse, after the shrinking of the system, the radius is mul-
tiplied by a large factor, with indication of being populated
by radial excited states. In the lower frame of Fig. 2, we can><E
observe the corresponding transition from the stable regiorg 500 . 7
(where the system finds the equilibrium at a fixed value of 3 o o
the radius, corresponding to autosoliton formatidéa the e
unstable region. As shown, the instability starts to occur © e
when ¢=2x10"3, and it can be developed to a spatiotem- e » oy
poral chaos. The chaotic behavior can be verified through the ° i
Deissler-Kaneko criterioh20].
In Fig. 3 we illustrate the application of the Deissler- 500 : . .
Kaneko criterion to the system given by H§), for a fixed 0 5 10 15 20
value of the feeding parameter=0.01, and a set of values

of the dissipation parametef. The time evolution of the FIG. 4. Phase space for the root-mean-square radius, in dimen-
function In() was plotted, wheré is given by Eq.(9), fol-  sionless unit§dX(7)/dt versusX(7)], considering a collapsing
lowing the prescription given in Ref20] to obtain the larg-  case that leads to chaos. The dimensionless nonconservative param-
est Lyapunov exponents for the system. Within this prescripeters are£=10"*% and y=10"2, and the time evolution was taken
tion, the system becomes chaotic wheri)ri{as a positive up tot=7/w=500/k.
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proximate consistency of the numerical results, we also in-
clude the variational analysis presented in Fig. 1 of R&f],
represented by the dashed line. It is separating the stable
region (upper part from the unstable ondower parj.

We should note that, in Sec. V of R4R3], it was also
considered the dynamics of growth and collapse, with non-
conservative terms related to feediyg and dissipationy;
P and vy, in a specific example. For the dissipation they have
107 - Poob et % ﬁ T also considered a term related to dipolar relaxation, given by

: s A cHHE v,. Here, in our systematic study of the regions of instability,
10" - - 2T x b oo - we took into account the previous experimertdlobserva-
g tions that the dominant process for the dissipation is the
10° L. P /,./;""X IO N three-body recombination. By comparing the parameters of
v’ ) - ! Ref.[23] with the parameters that we have used, and observ-
107 ing that our parametef should be related to both dissipation
v parameters used in Ref[23] (y=7y,=2.6xX10 3, ¢
~10 ®) one can verify from the results given in Fig. 5 that
the model of Ref[23] is inside the intermediate region,
where the system is unstable, without a clear signature of
chaos.

FIG. 5. Diagram for stability, according to the criterion of Ref.
[20] given by Eq.(9), with results for the Eq(6), considering the
dimensionless nonconservative parametgrand ¢£. Between the
unstable results, represented withand squares, the chaotic ones
are identified with squares. The stable results are represented by
bullets. Two dotted guidelines are splitting the regions. The dashed IV. CONCLUSIONS
line splits the graph into two regions according to a variational
approacHsee Ref[22]]; in the upper part the results are stable; in I[N summary, we have studied the dynamics associated
the lower, unstable. with the extended nonconservative Gross-Pitaevskii equation

for a wide region of the dimensionless nonconservative pa-
chaotic behavior, through the phase-space behavior of th@meters¢ and vy, that, respectively, are related to atomic
mean-square-radius, considering one case that was charactgissipation and feeding in a trapped atomic condensed sys-
ized as chaotic by using the Deissler-Kaneko criterion. Wéem. We consider systems with attractive two-body interac-
have plotted in this figure the root mean-square-radius phagén in a spherically symmetric harmonic trap. In Fig. 5, we
space for the case with=0.01 andé=10"%. The irregular resume our results, by mapping the spaceyofersusé,
behavior of the trajectories, observed in Fig. 4, with the classhowing the regions of equilibrium and the regions of insta-
sical strange attractors being observed, clearly resembldslity, as well as the regions where we are able to character-
chaos. This behavior is similar to the chaotic behavior obize chaotic behaviors, using a criterion given in ReD]. It
served in ordinary casgg2]. was also confirmed that chaotic behaviors occur mainly

As a general remark that one can make from the presentesihen vy is big enough andy/¢ is large(at least, wheny is
results, we should note that, in order to observe unstablene or two orders of magnitude larger thén A wide varia-
chaotic behaviors, the dissipation must be much smaller thation of the nonconservative parameters was analyzed, in par-
the feeding parameter. ticular motivated by the actual realistic scenario, that already

In a diagrammatic picture, given in Fig. 5, we resume ourexists, of altering experimentally the two-body scattering
results. We show the relation between the two nonconservdength[10]. By changing the absolute value of the scattering
tive parameters¢ and v, in order to characterize the para- length, one can change in an essential way the behavior of
metric regions, where one should expect stability or instabilthe mean-field description.
ity in the solutions for the Eq(6). The stable results of the
Eq. (6) are represented by bullets; the nonstable results that
clearly present positive slope for {r) (chaotic behavior
are represented by empty squares; with we show other We thank Fundgm de Amparo aPesquisa do Estado de
intermediate nonstable results, in which the characterizatioB2o Paulo(FAPESB for partial support. L.T. and T.F. also
of chaotic behavior was not so clear, through the Deisslerthank Conselho Nacional de Desenvolvimento Cfatie
Kaneko criterion. In this figure, in order to observe the ap-Tecnolaico (CNPq for partial support.
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