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Stability of the trapped nonconservative Gross-Pitaevskii equation with attractive
two-body interaction
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The dynamics of a nonconservative Gross-Pitaevskii equation for trapped atomic systems with attractive
two-body interaction is numerically investigated, considering wide variations of the nonconservative param-
eters, related to atomic feeding and dissipation. We study the possible limitations of the mean-field description
for an atomic condensate with attractive two-body interaction, by defining the parameter regions, where stable
or unstable formation can be found. The present study is useful and timely considering the possibility of large
variations of attractive two-body scattering lengths, which may be feasible in recent experiments.
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I. INTRODUCTION

The stability of the condensed state is governed by
nature of the effective atom-atom interaction, the two-bo
pseudopotential is repulsive for a positives-wave atom-atom
scattering length and it is attractive for a negative scatte
length @1#. The ultracold trapped atoms with repulsive tw
body interaction undergoes a phase transition to a stable
densed state, in several cases found experimentally, a
87Rb @2#, 23Na @3#, and 1H @4#. However, a condensed sta
of atoms with negatives-wave atom-atom scattering leng
@as in case of7Li @5## would be unstable, unless the numb
of atomsN is small enough such that the stabilizing for
provided by the zero-point motion and the harmonic tr
overcomes the attractive interaction, as found on theore
grounds@6,7#. Particularly, in the case of7Li gas @5#, for
which thes-wave scattering length isa5214.560.4 Å, it
was experimentally observed that the number of allowed
oms in the Bose condensed state was limited to a maxim
value between 650 and 1300, a result consistent with
mean-field prediction@6#, where the term proportional to th
two-body scattering length~negative! dominates the nonlin-
ear part of the interaction.

More recently, the maximum critical number of atoms f
Bose-Einstein condensates with two-body attractive inte
tions have been deeply investigated by the JILA group, c
sidering experiments with85Rb @8#. They have considered
wide tunning of the scattering lengtha from negative to posi-
tive, by means of Feshbach resonance@9,10#, and observed
that the system collapses for a number of atoms smaller
the theoretically predicted number. Their experimental
sults, when compared with theoretical predictions for sph
cal traps, show a deviation of up to 20% in the critical nu
ber. More precisely, it was shown in Ref.@11# that part of this
discrepancy is due to the nonspherical symmetry that
considered in Ref.@8#. Such a deviation can also be an ind
cation of higher order nonlinear effects that one should t
into account in the mean-field description. In Ref.@12#, it
was considered the possibility of a real and positive quin
term, due to three-body effects, in the Gross-Pitaevskii
1063-651X/2002/66~3!/036225~6!/$20.00 66 0362
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malism. A negative quintic term would favor the collapse
the system for a smaller critical number of atoms, as verifi
in the JILA’s experiments. However, the real significance
a quintic term in the formalism is still an open question.

Our main motivation in the present work is to analyze t
dynamics represented by an extension of the mean-fiel
Gross-Pitaevskii approximation, with nonconservati
imaginary terms that are added to the real part of the ef
tive interaction, the two-body nonlinear term with a sphe
cally symmetric harmonic trap. For the imaginary part, t
interaction is a combination of a linear term, related
atomic feeding, and a quintic term, due to three-body reco
bination, that is responsible for the atomic dissipation. T
is an approximation that is commonly used to study the pr
erties of Bose-Einstein condensed systems. We consid
wide variation of the nonconservative parameters, in parti
lar motivated by the actual realistic scenario, that alrea
exists, of altering experimentally the two-body scatteri
length @10#. As it will be clear in the following, this possi-
bility will lead effectively to a modification of the dissipatio
parameter. By changing the absolute value of the scatte
length, from zero to very large absolute values, one
change in an essential way the behavior of the mean-fi
description. As it will be shown from the present numeric
approach, the results for the dynamical observables of
system can be very stable~solitonic type! or very unstable
~chaotic type!; the characteristic of the results will depen
essentially on the ratio between the nonconservative par
eters related to the atomic feeding and dissipation.

In the following section, we review the formalism. Th
main results are presented in Sec. III, followed by our co
clusions in Sec. IV.

II. MEAN-FIELD APPROXIMATION

The mean-field approximation has shown to be appro
ate to describe atomic Bose-Einstein condensation of a d
gas of atoms confined by a magnetic trap@13#. In the case of
positive scattering length, we have a very good agreem
with experimental data, as the thermal cloud is practica
absent~removed by cooling evaporation! and almost all the
©2002 The American Physical Society25-1
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particles are in the condensed state. In this case, the m
field approximation results in a nonlinear Schro¨dinger equa-
tion known as Gross-Pitaevskii equation~GPE!. If we have
N particles trapped in a spherical harmonic potential, t
equation is given by

i\
]C

]t
5S 2

\2

2m
¹W 21

1

2
mv2r 21

4p\2a

m
uCu2DC, ~1!

whereC[C(rW,t), the wave function of the condensate,
normalized to the numberN, m is the mass of a single atom
v is the angular frequency of the trap, anda is the two-body
scattering length.

In this work, we have concentrated our study on the
teresting dynamics that occurs when the scattering leng
negative (a52uau). In this case, it is well known that th
system is unstable without the harmonic trap, and the trap
system has a critical limitNc in the number of condense
atoms. The mean-field approximation has also shown to
reliable in determining the critical number of particles a
even collapse cycles in the condensate@5,14,15#. Actually,
systems with attractive two-body interaction are being int
sively investigated experimentally@8#, by using the so-called
Feshbach resonance@9,10#. The scattering length can b
tuned over a large range by adjusting an external magn
field @for more details, see Ref.@16##. Here, we are intereste
in the dynamics of a realistic system, where we add t
nonconservative terms: one~linear! related to the atomic
feeding from the nonequilibrium thermal cloud; and anoth
dissipative due to three-body recombination processes~quin-
tic!. It is true that other dissipative terms can also be relev
for an arbitrary trapped atomic system, as a cubic one,
can be related with dipolar relaxation or with an imagina
part of the two-body scattering length. However, in order
simplify the study and better analyze the results, we res
our considerations to the case that we have just one pa
eter related with the feeding and another related with di
pation. We have considered only the three-body recomb
tion parameter for dissipation also motivated by t
observation that, for higher densities, this term dominates
two-body loss@17#. So, for the generalization of Eq.~1!, we
add the imaginary terms in the interaction, such that

i\
]C

]t
52

\2

2m
¹W 2C1

1

2
mv2r 2C1

4p\2a

m
uCu2C1 iGgC

2 iGjuCu4C, ~2!

whereGj is the dissipation parameter, due to three-body c
lisions, andGg is a parameter related to the feeding of t
condensate from the thermal cloud. The Eq.~2! was first
suggested in Ref.@14# to simulate the condensation of7Li.

In order to recognize easily the physical scales in Eqs.~1!
and ~2!, it is convenient to work with dimensionless unit
By making the transformations

rW[A \

2mv
xW , t[

t

v
, ~3!
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2
\v, Gj[2jS 4puau\

mv D 2

\v, ~4!

and

F[F~x,t![A8puauurWuC~rW,t !, ~5!

we obtain the radial dimensionlesss-wave equation:

i
]F

]t
5F2

d2

dx2
1

x2

4
2

uFu2

x2
22ij

uFu4

x4
1 i

g

2GF. ~6!

As C(rW,t) is normalized to the number of atomsN(t) in Eq.
~2!, the corresponding time-dependent normalization
F(x,t) is given by the reduced numbern(t):

E
0

`

dxuF~x,t!u25n~t![2N~ t !uauA2mv

\
. ~7!

The nonconservative GPE~6! is valid in the mean-field ap-
proximation of the quantum many-body problem of a dilu
gas, when the average interparticle distances are much la
than the absolute value of the scattering length; and a
when the wavelengths are much larger than the average
terparticle distance. The nonconservative terms are impor
when the condensate oscillates, fed by the thermal clo
while losing atoms due to three-body inelastic collision
which happen mainly in the high density regions.

In order to verify the stability and the time evolution o
the condensate, as observed in Refs.@18#, two possible rel-
evant observables are the number of particles normalized
the critical number of atoms of the static case@N(t)/Nc# and
the mean square radius,

^r 2~ t !&5S \

2mv D 1

n~t!
E

0

`

dx x2uF~x,t!u2[S \

2mv D ^x2~t!&

[S \

2mv DX2, ~8!

whereX[A^x2(t)& is the dimensionless root mean-squa
radius. In our analysis of stability, we calculate the time ev
lution of these quantities. We explore several combinatio
of the dimensionless nonconservative parametersj and g.
We first consider the case in which the atomic feeding
absent or when its parameter is smaller than the atomic
sipation parameter. Next, we explore variations of both
rameters of about five orders of magnitude, from 1025 to
1021. This wide spectrum includes the parameters cons
ered by Kaganet al. @14#, as well as other combinations tha
can be considered more realistic due to recent experime
results@19#.

Actually, the relevance of a wider relative variation of th
nonconservative parametersg and j, presented in Eq.~6!,
can be better appreciated in face of the experimental po
bilities that exist to alter the two-body scattering length@10#.
As one should note from Eq.~4!, any variation of the scat-
tering length will also affect the effective dissipation para
eterj and, consequently, its relation with the feeding para
5-2
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STABILITY OF THE TRAPPED NONCONSERVATIVE . . . PHYSICAL REVIEW E 66, 036225 ~2002!
eter g. This implies that, by changing the value of th
scattering length, from positive to negative, and from zero
very large absolute values, one can change in an esse
way the behavior of the mean-field description. In t
present work, we are concerned with negative two-body s
tering length, where the collapsing behavior of the Eq.~6!
shows a very interesting dynamical structure. Even consi
ing the possible limitations on the validity of the mean-fie
approach after the first collapse~in cases of parametrizatio
where it can occur!, it is worthwhile to verify experimentally
the behavior of a system in such a situation, by varyinguau.
At least, one can verify how far the theoretical descripti
can be qualitatively acceptable.

As already verified for systems with attractive interactio
as the7Li, it has been possible, via the mean-field approa
to describe properties such as the critical number of atom
the condensate and growth and collapse cycles@5,14,15#;
besides, in the long time evolution, for certain sets of para
eters, the calculations have also shown the presence of s
instabilities of the condensate, with signals of spatiotempo
chaotic behavior.

In order to characterize a chaotic behavior, it is necess
to show that the largest Lyapunov exponent related with
solutions of the equation is positive. We follow the criterio
used by Deissler and Kaneko@20# to characterize spatiotem
poral chaos. This criterion prescribes that the larg
Lyapunov exponent for the system, in an arbitrary time
terval, is obtained by plotting the logarithm of a functionz,
which is defined by

z~t![S E
0

`

udF~x,t!u2dxD 1/2

. ~9!

dF(x,t) will give us the separation between two near
trajectories; it is obtained in the following form, we nume
cally evolve in time an initialF0(x), obtainingF(x,t). In-
dependently, we evolveF0(x)1e(x), and get F8(x,t),
wheree(x) is a very small random perturbation.dF(x,t) is
given byF8(x,t)2F(x,t). The chaotic behavior is charac
terized by a positive slope of lnz(t), which gives the larges
Lyapunov exponent@20#.

III. NUMERICAL RESULTS

In the following, we present the most significant resu
that characterize the time evolution of the normalized nu
ber of particles@N(t)/Nc#, the dimensionless mean-squa
radius^x2&, and, in order to characterize the stability of t
system, the function related to the largest Lyapunov ex
nent. Further, we present a representative case of the p
space for the root mean-square radius. We have studi
wide region of parametersg and j, covering about five or-
ders of magnitude, from 1025 to 1021, including the case
with no feeding (g50).

In order to have a clear and useful map of the regio
where one should expect stable results, as well as reg
with instabilities or chaos, we summarize the present num
cal results in a diagrammatic picture that relates these
nonconservative parameters. In general, it is expected
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the system is more stable when the parameter related to
feeding of atomsg from the thermal cloud is significantly
smaller than the parameter related to the dissipationj. How-
ever, it is interesting to find out the region of paramete
where this transition~from stable to unstable results! occurs.
Analysis of experimental results can provide a test to
present mean-field description in case of negative two-b
interaction. As previously observed, we are considering
mensionless observables and parameters. For any rea
comparison with experimental parameters, one should c
vert g andj to the parametersGg andGj , as given in Eq.
~4!.

The numerical solutions of Eq.~6! were obtained by ap-
plying the semiimplicit Crank-Nicolson algorithm for non
linear problems, as implemented in Ref.@18#. This method is
stable and, therefore, very convenient and reliable to t
time-dependent nonlinear partial differential equations. T
initial condition for the number of atomsN in the condensate
was such thatN(0)/Nc5n(0)/nc50.75. The evolution of
the observables have been extended uptot5vt5500.

In general, as expected, the smaller is the dissipation
rameter, the longer is the life of the condensate. The m
square radius presents an oscillatory behavior while one
creasesj. One observes that, in the regime of small feed
(g<1024), the extended Lyapunov presents no posit
slope. For larger values ofg, from ;1023 and 1022, we
have studied a few cases where the interplay between
nonconservative behaviors are significant.

In Fig. 1, we show the dynamical behavior of the numb
of atoms forg51022 and several values ofj; and, in the
Fig. 2, the corresponding time evolution of^x(t)2&. We re-
alize an interesting behavior, that occurs when the dissipa
is larger than the feeding process: there are solutions of
bility or dynamical equilibrium between both nonconserv
tive processes. This phenomenon was already discusse

FIG. 1. Time evolution of the number of condensed atomsN,
relative to the critical numberNc , for a set of values of the dissi
pative parameterj ~as shown inside the frame!, with the feeding
parameterg51022. All the quantities are in dimensionless units,
given in Eqs.~3! and ~4!.
5-3
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FILHO, FREDERICO, GAMMAL, AND TOMIO PHYSICAL REVIEW E66, 036225 ~2002!
Ref. @21#, for a few values of the dissipation and feedin
parameters, using the time-dependent variational appro
and also the Crank-Nicolson method. In the present work,
observe a wide region of parameters where it is possible
formation of autosolitons@21#. However, when the feeding
process is much larger than the dissipation, of about on
more orders of magnitude, we can also observe chaotic
haviors. See, for example, the case withj51023.

The time evolution of the number of particles, represen
in Fig. 1, shows a collapse fort'30, followed by several
other collapses, with the number of particles going above
critical limit Nc . So, after a sequence of collapses, the cr
cal limit for the number of particles is no more followed,
already shown in Ref.@18#.

The corresponding time evolution of^x(t)2& is shown in
the upper frame of Fig. 2. We observe that, following ea
collapse, after the shrinking of the system, the radius is m
tiplied by a large factor, with indication of being populate
by radial excited states. In the lower frame of Fig. 2, we c
observe the corresponding transition from the stable reg
~where the system finds the equilibrium at a fixed value
the radius, corresponding to autosoliton formation! to the
unstable region. As shown, the instability starts to oc
when j5231023, and it can be developed to a spatiote
poral chaos. The chaotic behavior can be verified through
Deissler-Kaneko criterion@20#.

In Fig. 3 we illustrate the application of the Deissle
Kaneko criterion to the system given by Eq.~6!, for a fixed
value of the feeding parameterg50.01, and a set of value
of the dissipation parameterj. The time evolution of the
function ln(z) was plotted, wherez is given by Eq.~9!, fol-
lowing the prescription given in Ref.@20# to obtain the larg-
est Lyapunov exponents for the system. Within this presc
tion, the system becomes chaotic when ln(z) has a positive

FIG. 2. Time evolution of the dimensionless mean-square ra
^x(t)2& for the feeding parameterg51022. The results are given
for a set of values of the dissipative parameterj, in the lower frame
~shown inside!. A specific case, forj51023 ~much smaller thang),
is isolated in the upper frame, where one can observe the beh
of ^x(t)2& after the collapse. All the quantities are in dimensionle
units, as given in Eqs.~3! and ~4!.
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slope. As shown in Fig. 3, this clearly occurs, for examp
when j51024. In case ofj51025 we note a much faste
increasing in ln(z), with an observed saturation that happe
due to the fact that such function has reached the maxim
separation between the trajectories. The saturation prope
is also verified when studying chaotic behaviors in ordina
differential equations@22#. The plot of ln(z) corresponds to
the same value ofg (51022) used in Figs. 1 and 2. As
shown, a clear characterization of chaotic behaviors start
occur only for values of the dissipation parameterj much
smaller thang. In the cases presented in Fig. 3, forj
<1023.

In Fig. 4, we present another significant illustration

s

ior
s

FIG. 3. Time evolution of ln(z), related to the separation be
tween two nearby trajectories@See Eq.~9!#, for g51022 and a set
of values ofj indicated inside the figure. All the quantities are
dimensionless units, as given in Eqs.~3! and ~4!.

FIG. 4. Phase space for the root-mean-square radius, in dim
sionless units@dX(t)/dt versusX(t)], considering a collapsing
case that leads to chaos. The dimensionless nonconservative p
eters arej51024 andg51022, and the time evolution was take
up to t5t/v5500/v.
5-4
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STABILITY OF THE TRAPPED NONCONSERVATIVE . . . PHYSICAL REVIEW E 66, 036225 ~2002!
chaotic behavior, through the phase-space behavior of
mean-square-radius, considering one case that was char
ized as chaotic by using the Deissler-Kaneko criterion.
have plotted in this figure the root mean-square-radius ph
space for the case withg50.01 andj51024. The irregular
behavior of the trajectories, observed in Fig. 4, with the cl
sical strange attractors being observed, clearly resem
chaos. This behavior is similar to the chaotic behavior
served in ordinary cases@22#.

As a general remark that one can make from the prese
results, we should note that, in order to observe unsta
chaotic behaviors, the dissipation must be much smaller t
the feeding parameter.

In a diagrammatic picture, given in Fig. 5, we resume o
results. We show the relation between the two nonconse
tive parameters,j and g, in order to characterize the para
metric regions, where one should expect stability or insta
ity in the solutions for the Eq.~6!. The stable results of the
Eq. ~6! are represented by bullets; the nonstable results
clearly present positive slope for lnz(t) ~chaotic behavior!
are represented by empty squares; with3, we show other
intermediate nonstable results, in which the characteriza
of chaotic behavior was not so clear, through the Deiss
Kaneko criterion. In this figure, in order to observe the a

FIG. 5. Diagram for stability, according to the criterion of Re
@20# given by Eq.~9!, with results for the Eq.~6!, considering the
dimensionless nonconservative parametersg and j. Between the
unstable results, represented with3 and squares, the chaotic one
are identified with squares. The stable results are represente
bullets. Two dotted guidelines are splitting the regions. The das
line splits the graph into two regions according to a variatio
approach@see Ref.@22##; in the upper part the results are stable;
the lower, unstable.
an

n,
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proximate consistency of the numerical results, we also
clude the variational analysis presented in Fig. 1 of Ref.@21#,
represented by the dashed line. It is separating the st
region ~upper part! from the unstable one~lower part!.

We should note that, in Sec. V of Ref.@23#, it was also
considered the dynamics of growth and collapse, with n
conservative terms related to feedingg0 and dissipationg1
and g2 in a specific example. For the dissipation they ha
also considered a term related to dipolar relaxation, given
g2. Here, in our systematic study of the regions of instabili
we took into account the previous experimental@8# observa-
tions that the dominant process for the dissipation is
three-body recombination. By comparing the parameters
Ref. @23# with the parameters that we have used, and obs
ing that our parameterj should be related to both dissipatio
parameters used in Ref.@23# (g5g052.631023, j
;1025) one can verify from the results given in Fig. 5 th
the model of Ref.@23# is inside the intermediate region
where the system is unstable, without a clear signature
chaos.

IV. CONCLUSIONS

In summary, we have studied the dynamics associa
with the extended nonconservative Gross-Pitaevskii equa
for a wide region of the dimensionless nonconservative
rameters,j and g, that, respectively, are related to atom
dissipation and feeding in a trapped atomic condensed
tem. We consider systems with attractive two-body inter
tion in a spherically symmetric harmonic trap. In Fig. 5, w
resume our results, by mapping the space ofg versusj,
showing the regions of equilibrium and the regions of ins
bility, as well as the regions where we are able to charac
ize chaotic behaviors, using a criterion given in Ref.@20#. It
was also confirmed that chaotic behaviors occur mai
wheng is big enough andg/j is large~at least, wheng is
one or two orders of magnitude larger thanj). A wide varia-
tion of the nonconservative parameters was analyzed, in
ticular motivated by the actual realistic scenario, that alrea
exists, of altering experimentally the two-body scatteri
length@10#. By changing the absolute value of the scatteri
length, one can change in an essential way the behavio
the mean-field description.
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