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Two-dimensional supersonic nonlinear Schrodinger flow past an extended obstacle
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Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework
of the two-dimensional (2D) defocusing nonlinear Schrodinger (NLS) equation. This problem is of fundamen-
tal importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the
oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a
steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstation-
ary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve
is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading
from the pointed ends of the body are generated in both half planes. These are described analytically by
constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using
a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose
an extension of the traditional modulation description of DSWs to include the linear “ship-wave” pattern
forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct
2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely

expanding past obstacles.
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I. INTRODUCTION

In compressible fluid dynamics there are two canonical
situations in which shock waves can be generated. In the first
case the formation of a shock occurs as a result of breaking
of an evolving smooth or discontinuous profile of the density
(velocity) and is described by the generalized solutions of the
initial-value problems for the ideal fluid dynamics equations.
The second type of shock waves occurs in a supersonic fluid
flow past a body or as a result of the motion of a piston
within a tube filled with a liquid or a gas (see, e.g., [1-3])
and is associated with the boundary-value problems. In a
viscous fluid, the shock wave can be represented as a narrow
region within which strong dissipation processes take place
and the thermodynamic and hydrodynamic parameters of the
flow undergo a sharp change. However, if viscosity is negli-
gibly small compared with dispersion effects, the shock sin-
gularity is resolved by a nonlinear wave train called a dis-
persive shock wave (DSW). A remarkable feature of the
DSW is the generation of solitons at one of its boundaries so
that the whole structure can often be asymptotically de-
scribed as a “soliton train.”

An analytical theory of one-dimensional (1D) DSWs pio-
neered by Gurevich and Pitaevskii [4] is based on the as-
sumption that the oscillatory structure of a DSW can be as-
ymptotically described by a modulated periodic (or, more
generally, quasiperiodic) solution of the governing dispersive
equation. The slow variations (modulations) of the traveling
periodic wave parameters such as amplitude, wave number,
etc. are governed by the so-called Whitham equations ob-
tained by averaging of dispersive conservation laws over the
period of the traveling wave. Analyzing the numerically ob-
served structure of the dispersive shock wave, Gurevich and
Pitaevskii proposed a special system of nonlinear free-
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boundary conditions for the Korteweg—de Vries (KdV)-
Whitham system and obtained a global self-similar modula-
tion solution for the problem of the decay of an initial
discontinuity for the KdV equation. An analogous problem
for the defocusing nonlinear Schrodinger (NLS) equation
was formulated and solved in [5,6] (see also a detailed analy-
sis in [7,8] where a different approach to the formulation of
the step problem for the Whitham equations was used). The
modulation solutions describing more general cases of break-
ing of monotone and nonmonotone initial profiles were ob-
tained in [9-11] (KdV equation) and in [12,13] (defocusing
NLS equation) using Tsarev’s generalized hodograph trans-
form method [14].

The modulation theory of one-dimensional unsteady ex-
panding DSWs proved to be very effective in different physi-
cal contexts ranging from shallow-water waves [15] to fiber
optics [7] to Bose-Einstein condensates (BECs) [16,17]. In
particular, it was successfully used in [18] for the analytical
description of the generation of dark solitons in quasi-1D
transcritical BEC flows through wide penetrable potential
barriers observed recently in the experiment [19].

The study of two-dimensional (2D) steady DSWs occur-
ring in the supersonic dispersive flows past bodies was initi-
ated in [20] where the stationary 2D system of the governing
collisionless plasma equations was asymptotically reduced to
the 1D KdV equation along the linear characteristics (Mach
lines) with the stretched transverse coordinate playing the
role of time (see also [21]) and then appropriate modulation
solutions were constructed and interpreted in terms of the
original steady 2D problem.

While an asymptotic description of supersonic dispersive
flow past body in the framework of the weakly nonlinear
KdV dynamics captures a number of essential features of the
wave patterns arising in the flow, it may fail to provide an
adequate description of the waves of sufficiently large am-
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plitude. A different approximation not involving small-
amplitude expansions, but instead, using the expansions in
inverse Mach number, was proposed in [22] in the context of
collisionless plasma dynamics. In [22] the problem of the
supersonic dispersive flow past slender body was reduced to
the so-called piston problem (this “hypersonic” transforma-
tion is known very well in classical gas dynamics—see, for
instance, [2,23]). In the letter [24] this transformation was
applied to the problem of the supersonic 2D NLS flow past
slender obstacle, which was translated into the piston prob-
lem for the 1D defocusing NLS equation. It was also shown
how the dispersive piston problem for the defocusing NLS
equation can be asymptotically reduced to a much better un-
derstood initial-value problem.

The present paper is devoted to a systematic study of the
DSWs generated in the supersonic flow past extended bodies
in the framework of two-dimensional defocusing NLS equa-
tion. The most relevant physical context of this problem is
the description of the flows of BECs past obstacles, which is
currently a subject of intensive experimental and theoretical
studies (see, for instance, [19,25,26] for recent experimental
work and [18,27-35] and references therein for some of the
theoretical advances). It should be noted that the literature on
this subject is growing too rapidly to reflect all recent ad-
vances. We also note that most of the existing theoretical
work on the BEC flows past obstacles is concerned with the
flows past small localized “impurities” with the dimensions
of order of the healing length. In this paper, we consider an
opposite situation, when the obstacle has the size much
greater than the internal coherence length of the medium.
This “slender body” problem is fundamentally important as a
dispersive counterpart of the classical gas-dynamics problem
about the supersonic flow past a “wing” (see, for instance,
[1,2]) and has an advantage of the possibility of full analyti-
cal treatment. In addition, the solution of this problem eluci-
dates the macroscopic mechanisms of the generation of dark
solitons and “ship waves” in BECs observed in the numerical
and physical experiments [25,26,29,31-33,35]. Foreseeable
direct physical applications could be connected with the
BEC flows in atom-chip systems (see, e.g., [36,37], and ref-
erences therein).

The possibility of full analytical description of the 2D
supersonic NLS flow past body problem is based on the al-
ready mentioned “dispersive piston” approximation [24]. In
the recent paper [38], the dispersive piston problem for 1D
unsteady NLS flows was studied for the particular case of the
piston moving with constant velocity (this corresponds to the
flow past an infinite straight concave corner in the context of
the present paper—see Sec. VI A). In the present paper, full
analytical modulation solutions will be constructed for this
and other, more general, cases when the piston curve is a
reasonably arbitrary unimodal function, which is necessary
for the description of the supersonic NLS flow past a finite-
length body.

One of the unusual features of the NLS piston problem
solution, not captured by the single-wave KdV approxima-
tion, is the generation of a nonmodulated nonlinear periodic
wave in the region between the piston (body surface) and the
trailing edge of the DSW for sufficiently large piston speeds.
We show that this “transition wave” observed in the numeri-
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cal solution in [38] actually occurs due to the reflection of a
large-amplitude DSW from the piston surface—so that the
interaction of the oncoming and reflected modulated waves
necessarily leads to the formation of a region filled with
purely periodic nonlinear oscillations. The occurrence of a
nonmodulated nonlinear wave region in the similarity solu-
tions of the defocusing NLS equation was first predicted in
[6] as one of the particular cases in the general classification
of the decay of an initial discontinuity.

In the recent studies [29,31-33] of the supersonic BEC
flow past localized obstacles two main distinct ingredients of
the generated wave pattern have been identified and studied
analytically and numerically: the so-called ship waves corre-
sponding to the spatial Bogoliubov modes and generated out-
side the Mach cone and oblique dark solitons generated in-
side the Mach cone and stretching behind the obstacle. An
unexpected feature of these oblique dark solitons, established
first numerically in [29], is their apparent stability, in striking
contrast with the well established notion of the absolute
“snake” instability of two-dimensional dark NLS solitons
leading to their decay into vortex-antivortex pairs [39-42].
This apparent paradox was resolved in [30] where it was
shown that the presence of the background BEC flow with
the velocity greater than certain “threshold” velocity stabi-
lizes the dark soliton, so that it becomes only convectively
unstable, i.e., practically stable in the reference frame at-
tached to the obstacle.

We note that in [29,31-33] the ship waves and oblique
dark solitons were studied as separate independent wave
structures generated by an idealized obstacle of small size
placed in the BEC flow. At the same time, the process of the
generation of these wave structures as well as the connection
of their parameters with the geometry and size of the physi-
cal obstacle remained beyond the scope of the cited studies.
In this paper, by considering an analytically tractable case of
the supersonic NLS flow past a two-dimensional slender ob-
stacle of finite size, we show that the ship waves and oblique
dark solitons can be described as asymptotic far-field out-
comes of the spatial “evolution” of two separate DSWs
spreading from the front and rear pointed ends of the body.
In spite of their common origin, the front and rear DSWs
evolve in drastically different ways: the front wave asymp-
totically transforms into a dispersing wave packet (effec-
tively a ship wave) while the rear one converts into a fan of
dark solitons. This qualitative difference occurs owing to the
fact that the front wave is developed from the compression
“hump” forming due to the slowing of the oncoming flow
near the increasing profile of the front part of the body while
the rear wave evolves from the density dip forming behind
the body. So in terms of the one-dimensional NLS equation,
the front wave corresponds to the continuous spectrum of the
associated Zakharov-Shabat linear spectral problem and the
rear one—to the discrete spectrum. This is in striking con-
trast with classical dissipative gas dynamics where both
shock waves spreading from the end points of the wing have
essentially the same structure (see, for instance, [1,2]).

We first develop the theory of the supersonic flow past a
straight wedge by applying the similarity modulation solu-
tions [5,6] to the associated 1D dispersive piston problem
(see [38]). The comparison with full 2D numerical solution
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of the NLS equation with impenetrability boundary condi-
tions at the body surface shows that the 1D piston approxi-
mation describes the arising wave distribution remarkably
well.

Next we analyze the flow past a slender wing by con-
structing asymptotic 1D analytical solutions for the front and
rear DSWs and comparing them with the full 2D numerical
solutions. We describe the front DSW behavior by construct-
ing an appropriate modulation solution of the dispersive pis-
ton problem with the piston curve corresponding to the body
profile and then “translating” this solution in terms of the
original 2D problem.

The numerically observed wave distributions of the 2D
NLS flow around the corner or the front edge of the wing,
however, extend beyond the DSW region confined to certain
boundaries, [y~(x),y*(x)]. To describe the distribution of the
wave crests outside the DSW region we extend the tradi-
tional Gurevich-Pitaevskii-type formulation of the problem
by complementing it by the modulation solution describing
the distribution in the linear wave “packet” located outside
the external DSW boundary y*(x). The lines of constant
phase in this linear modulation solution determine the loca-
tion of the small-amplitude wave crests visible in numerical
and physical experiments. Together with the DSW, they form
a structure which eventually transforms into the universal
Kelvin-Bogoliubov “ship-wave” pattern [31,32]. The far-
field asymptotic behavior of our nonlinear modulation solu-
tion describes the distributions of the wave amplitude in this
ship wave as a function of the wing profile.

Finally, we consider the rear DSW, which asymptotically
decomposes into a fan of oblique dark solitons [29]. Instead
of constructing the full modulation solution, we describe the
asymptotic distribution of solitons in this fan using the gen-
eralized Bohr-Sommerfeld semiclassical quantization rule
for the spectral eigenvalues obtained for the defocusing NLS
equation in [13,43] using the inverse scattering transform
(IST) formalism. Our analytical solutions are compared with
the full numerical simulations of the 2D unsteady NLS flow
past extended obstacles.

II. FORMULATION OF THE PROBLEM

We consider the supersonic NLS flow past an extended
two-dimensional body with pointed ends (a wing). For sim-
plicity we shall assume zero attack angle.

We describe the flow dynamics by the multidimensional
defocusing NLS equation in the canonical form

1
ity == S Ap+ |l ()

Since we shall be interested in the potential (vortex-free)
flows it is convenient to transform Eq. (1) to a hydrodynamic
form by means of the substitutions

(r,1) = \n(r,0)exp(iO(r,1)), u=VO, (2)

where n(r,7) is the density of the “fluid” and u(r,f) denotes
its potential velocity field, r=(x,y). We introduce normal-
ized dependent variables 7=n/n,, @=u/c,, and c,=\n,,
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u=(M,0) Fo

FIG. 1. Flow past a wing.

where n is the value of the density at infinity and c, is the
corresponding sound speed. As a result, we obtain the system
(we omit tildes for convenience of the notation)

n,+V-(nu)=0,

)

(V) An ]
8n>  4n

u,+(u-V)u+Vn+V{

VXu=0 (3)

[here V=(4,,d,)].

We assume the uniform oncoming flow with constant den-
sity n=1 and the velocity u=(M,0) directed parallel to x
axis. Here M >1 is the Mach number of the oncoming su-
personic flow. System (3) then should be solved with the
boundary conditions at infinity,

n—1, u—(M,0) as |r| — o, (4)

and the impenetrability condition at the body surface S,
u-N[g=0, (5)

where N denotes a unit vector of outer normal to the body
surface. Similar to classical gas-dynamics theory of super-
sonic flows (see [2] for instance) we shall be interested in an
established steady wave pattern. Hence, we confine ourselves
to stationary solutions of the problem [Egs. (3)—(5)] and re-
place Eq. (3) by their time-independent versions for n(x,y),
u=[u(x,y),v(x,y)]:

(nu), + (nv), =0,

ni + n\2 Ry + Ny
Uy, + vty +n, + 5= =0,
: 8n 4n /.
2, .2
n+ny ng+n,
uv, +vv,+ny+ 7~ =0,
’ 8n 4n y
uy,—v,=0. (6)

Let the shape of the body in the upper half plane be given by
a unimodal (one-hump) function: y=F(x) >0 for x e (0,L),
F(0)=F(L)=0 and F(x)=0 for x & [0,L], L being the body
length in dimensionless units (see Fig. 1). Thus, we have
No[F'(x),—1] and boundary conditions (4) and (5) are
transformed to

v=0 at x>+y>—x, (7)

n=1, u=M,
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v=uF'(x) at y=F(x). (8)

The flow in the lower half plane can be considered indepen-
dently in a completely analogous way.

II1. PISTON PROBLEM APPROXIMATION AND
QUALITATIVE DESCRIPTION OF THE WAVE PATTERN

The system [Egs. (6)—(8)] is still too complicated for a
direct analytical treatment. However, when the flow can be
considered as highly supersonic the steady problem of the
two-dimensional flow past slender body can be asymptoti-
cally transformed to a much simpler problem of 1D “un-
steady” flow along the y axis with the scaled x coordinate
playing the role of “time” [22]. To this end, we substitute
into Eq. (6) the new variables

u=M+u; +O0(1/M), T=xIM, Y=y 9)

assuming M~'< 1. Then to leading order we obtain

ny+ (nv)y =0,

2
ny Nyy
+ +ny+| —-—| =0, 10
Ur+vvy+ny <8n2 4"))' (10)
u;=0. (11)

System (10) represents the hydrodynamic form of the 1D
defocusing NLS equation

1
for a complex field variable

Y
ql=\y/;exp|:if U(Y',T)dY’:|, (13)

and we can apply the well-developed analytical methods to
its study. It is remarkable that in the case of a slender body,
for which Ma=0(1), where a=max|F’(x)|, boundary condi-
tion (8) reduces (to leading order in M) to the classical
piston conditions (see [2] for instance)

v=v,=dfldT at Y=f(T), (14)

where the piston motion is described by the function f(7T)
=F(MT). Condition (4) at infinity transforms into

n=1, v=0 as Y—oo, (15)

Thus, we have reduced the problem of the flow past slen-
der body to the piston problem for 1D flow along a tube with
a piston moving inside it according to law (14) (see Fig. 2 for
the illustration of the correspondence between the 2D flow
past obstacle and the 1D piston problems). In contrast to the
classical gas dynamics, the piston problem is now posed for
dispersive equations (10).

The piston reduction for 2D hypersonic dispersive dissi-
pationless flows was first introduced in [22] in a rather gen-
eral form and in [24] it was formulated in the present NLS
context. In [38] the dispersive piston problem for 1D defo-
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1D “unsteady”
dispersive shock H 2D steady
T dispersive shock
y o
“piston”
Fx)
=
M>>1 M
M= —>

x

FIG. 2. Piston analogy in the problem of supersonic flow of
dispersive fluid past body.

cusing NLS equation was studied for the simplest case of the
piston moving with constant velocity (this corresponds to the
flow past an infinite straight concave corner in the context of
the present paper—see Sec. VI). In the subsequent sections,
analytical modulation solutions will be constructed for this
and other, more general, cases when the piston curve is a
nonmonotone function, which is necessary for the descrip-
tion of the supersonic NLS flow past a finite-length body (a
wing). In classical viscous gas dynamics, the supersonic flow
past a wing leads to the generation of two spatial shock
waves (oblique jumps of compression) spreading from the
front and the rear edges of the wing (see [2] for instance). In
terms of the piston problem this corresponds to the formation
of two shocks during two different phases of the piston mo-
tion: forward and reverse.

Before we proceed with the quantitative analysis of this
problem we briefly outline the qualitative structure of the
dispersive flow past finite-length body using the theoretical
results of [20,21,24]. We assume that the length of the body
is much greater than typical dispersive (coherence) length of
the medium. Then in dispersive hydrodynamics, both shocks
spreading from the body edges resolve into expanding non-
linear oscillatory zones, the oblique spatial dispersive shock
waves. At finite distances from the body surface these two
spatial DSWs have similar structure (see [4]): each repre-
sents a modulated nonlinear wave acquiring a form close to a
chain of oblique solitons at one edge of the oscillatory zone
and degenerating into a linear wave at the opposite edge.
However, as was indicated above, at large distances from the
body the two DSWs demonstrate drastically different behav-
ior: in the present case of the NLS hydrodynamics the dis-
persive shock spreading from the rear edge of the body trans-
forms into the oblique soliton train while the DSW forming
at the front end of the body completely degenerates into a
vanishing amplitude dispersing linear wave packet.

IV. MODULATION THEORY FOR THE DEFOCUSING
NLS EQUATION: ACCOUNT OF RESULTS

The theory of DSWs is based on the study of a certain
nonlinear free-boundary problem for the modulation
(Whitham) equations—the so-called Gurevich-Pitaevskii
problem. In this section we make a brief review of the rel-
evant results of the modulation theory for the defocusing
NLS equation which are necessary for the analysis of spatial
DSWs generated in the steady supersonic NLS flow past
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slender body. A detailed derivation of the single-phase NLS
modulation system can be found in [44].

A. Traveling wave solution and modulation equations

The periodic traveling wave solution of the defocusing
NLS Eg. (10) can be expressed in terms of the Jacobi elliptic
function “sn” and is characterized by four constant param-
eters N =N =N3=0MAy,

1
n= 2(7\4— A= N+ )\1)2"' Ny =N3)(\,

— A2 (Vg = A (A3 = \y) 6,m), (16)
v=U- E (17)
n

where  C= (=N =Ny+ A3+ A (=N + Ny = A3+ A ) (N =N = A3
+Ay),

4
1

6=Y-UT- 6,, U=EE)\[, (18)
i=1

U being the phase velocity of the nonlinear wave and 6,
initial phase. The modulus 0=m =1 is defined as

=N —N)

= (19)
MAg=N)(N5=\y)
and the wave amplitude is
a=MNg=N3)(Ny=N\y). (20)
The wavelength is equal to
M d\
e[
A3 \’()\ - )\1)(7\ - )\2)()\ - )\3)()\4 -\)
2K
(m) (1)

BTV WIS W

K(m) being the complete elliptic integral of the first kind.

In the limit as m— 1 (i.e., as A\;—\,) the traveling wave
solution (16) transforms into a dark soliton riding on a “ped-
estal” ng:

a.Y
o coshz(\"Z(Y— UT-6))

(22)

where the background density n, the soliton amplitude a,,
and the soliton velocity U, are expressed in terms of A, \,,
and A4 as

1
ng= 1(7\4 =M% a= (=)= Ny,

1
Us= E()\l +2)\2+)\4).

Allowing the parameters A; to be slowly varying functions of
Y and T, one arrives at a modulated nonlinear periodic wave
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in which the evolution of A;’s is governed by the Whitham
modulation equations in the diagonal Riemann form [45,46]

I\ I\ ,
—rv(N—=0, i=1,2,3.4, (24)
aT ay

which could be obtained via the averaging of the NLS con-
servation laws over the period of the traveling wave solution
(16) (see [3,44] for the detailed description of the Whitham

method). The characteristic velocities can be calculated using
the formula [9,44]

£
Vl()\) = (l - Eéﬁ) U, i= 1,2,3,4, where (?i = (?/6’)\,
(25)

Substitution of Eq. (21) into Eq. (25) gives the explicit ex-
pressions

OIS vy
e S e
Vs= % 2N- ()\(3)\:‘ ;2))\;2(—)\(3; ):ZBS)E
IV (xi)\j ;l))\;;(—k& iI)AII{)E -

where E=E(m) is the complete elliptic integral of the second
kind. The characteristic velocities (26) are real for all values
of the Riemann invariants; therefore, system (21) is hyper-
bolic. Moreover, it is not difficult to show using Eq. (25) that
d;V;>0 for all i so the NLS-Whitham system [Egs. (24) and
(26)] is genuinely nonlinear [43].

An asymptotic modulated wave solution is obtained by
substituting the solution of modulation equations (24) back
into traveling wave (16). We stress that initial phase 6, in Eq.
(18) is “erased” in the averaging procedure so the resulting
modulated wave is defined with the accuracy to an arbitrary
shift within the wave spatial period. For the DSW analysis in
the subsequent sections we shall need the reductions of for-
mulas (26) for the limiting cases when m=0 and m=1.

The harmonic limit m=0 can be achieved in one of two
possible ways: one sets either A;=A; or N\3=\4. Then:

N+Ng 2= AN )Ny —=N\
When )\2=)\1: V2=V1=)\1+ 3 4+ ( 3 1)( 4 1)

E}

2 2N = Ny— Ay
Vim Iht oh Vim ohg (27)
=N+ — =N+ ~\;.
3 2 3 2 45 4 2 4 2 3

A+ + 20 =N) (A= N\y)
2 AVED D

When )\3 = )\4: V3 = V4= )\4+

)
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3 1
V2= _)\2+ _)\1. (28)

3 1
Vl =_)\1 +_)\2, 2 2

2 2

In the soliton limit we have m=1. This can happen only if
N>=A\3, so we obtain the following:

1
When )\22 )\3: V2= V3 = 5()\1 + 2)\24‘ )\4),

% 3)\ 1)\ V. 3)\ 1)\ (29)
==\ + T\ =—Ng+ TN\
1=5M M 4= Mt oM

Thus, in both harmonic (m — 0) and soliton (m — 1) limits
the fourth-order modulation system [Egs. (24) and (26)] re-
duces to the system of three equations, two of which are
decoupled. Moreover, one can see that in all considered lim-
iting cases the decoupled equations agree with the disper-
sionless limit of the NLS Eq. (10). Indeed, the dispersionless

limit of the NLS equation is the ideal shallow-water system
nT+(nU)Y:0, UT+va+nY=O, (30)

which can be represented in the diagonal form by introduc-
ing Riemann invariants

1 —
Ao :EU * Vn, (31)
O\ + ON
=+ V. (AN, N)—=0, 32
T (N )W (32)
where
V 3)\ 1)\ \% 3)\ 1)\ (33)
==N,+ -\, =—N_+ A\,
T2t 2T 2 27

B. Hodograph transform and reduction
to the Euler-Darboux-Poisson equation

We fix two Riemann invariants,
N =\jp=constant, X\, =\, =constant, (34)

to reduce Eq. (24) to the system of two equations

I3 I3 N, N,
A Va0GA) =0, — + V(A ) — =0,
aT 3( 3 4) Y 4( 3 4) oY

aT
(35)

where V3,4()\3 , )\4) = V3’4()\1(), )\20, )\3 s )\4) Applymg the
hodograph transform to system (35) one arrives at a linear
system for Y(A3,N\4), T(\3,\4),

> V4(7\3,)\4)(9_T =0, e V3()\3,)\4)3—T =0.
IN3 IN3 Iy INy
(36)
Now we make in Eq. (36) the change of variables
Y-VT=W, j=34, (37)

which reduces it to a symmetric system for Ws(A3,\4),
Wa(N3,\y):
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—L o L =34, i# ] d,=dldN,.
Wi=W, V-V,
(38)

The symmetry between V; and W; in Eq. (38) and the “po-
tential” structure (25) of the functions V; implies the possi-
bility of introducing a single scalar function g(\3,\,) instead

of the vector (W5, W,):

W, (1 £¢9) [ =3.,4 (39)
i = - .0 ) 1=5,4,
1 als 1 g
or, which is the same,
dg
Wi=g+2(V,-U)—. 40
i=g+2(V; )m\i (40)

Then substituting Egs. (25) and (40) into Eq. (38) we arrive,
taking into account Eq. (21), at the Euler-Darboux-Poisson
(EDP) equation for g(\3,\,) first obtained in the present
NLS context in [9] (see also [12])

Fg _dg

== (41)
INs Ny ON, O\,

PIOVED V)

The general solution of the EDP Eq. (41) can be represented
in the form (see, for instance, [47])

ng”ﬁL&JJ”M
o VA=A)0u-N) Jo V=r)u-n)
(42)

where ¢ ,(N\) are arbitrary (generally, complex-valued)
functions.

As a matter of fact, the same construction can be realized
for any pair of the Riemann invariants while the remaining
two invariants are fixed. Moreover, Egs. (37)-(41) turn out to
be valid even when all four Riemann invariants vary [9,12].
This becomes possible for two reasons. First, the NLS modu-
lation system [Egs. (11) and (14)] is integrable via the gen-
eralized hodograph transform [14] which converts it into
overdetermined consistent system (38) where i,j=1,2,3,4,
i#j. Second, the potential structure of the characteristic
speeds [Eq. (25)] makes it possible to use the same substitu-
tion (39) for all i=1,2,3,4 which results in the consistent
system of six EDP equations (41) involving all pairs \;, \;,
i#].

Thus, the problem of integration of the nonlinear
Whitham system (24) with complicated coefficients (26) is
essentially reduced to solving the classical linear EDP Eq.
(41) so practically one needs to express the functions ¢; »(\)
in the general solution (42) in terms of the initial or boundary
conditions for the NLS Eq. (1).

One should note that classical hodograph solutions do not
include the special family of the simple-wave solutions as
the latter correspond to the vanishing of the Jacobian of the
hodograph transform (\;,\;)— (Y, T) (see, for instance, [3]).
However, the similarity solution can be formally included in
the hodograph solutions in the generalized form (37). Indeed,
putting one of W;=0 and setting constant all the Riemann
invariants \ ; with j# k one arrives at the similarity solution,
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limit equations for
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Y

FIG. 3. Splitting of the Y7 plane in the Gurevich-Pitaevskii
problem for the defocusing NLS equation.

in which N\,=N(Y/T) is implicitly specified by the equation
V,=Y/T.

C. Free-boundary matching conditions
for the modulation equations

In the description of the DSW, Whitham equations (24)
must be equipped with certain boundary conditions for the
Riemann invariants \; [5]. These conditions are the NLS
analogs of the Gurevich-Pitaevskii conditions [4] formulated
for the KdV dispersive shock waves. To be specific, we for-
mulate boundary conditions for the right-propagating DSW,
which corresponds to the spatial DSW generated in the
upper-half plane in the problem of the supersonic NLS flow
past body. Without loss of generality we assume that the
formation of the DSW starts at the origin of the (Y, 7) plane.
In the Gurevich-Pitaevskii setting the upper (Y, T)-half plane
is split into three regions (see Fig. 3): [—o, Y (T)],
[Y~(D),Y*(D)], and [Y*(T),+°].

In the “outer” regions [—o, Y (T)] and [Y*(T),+o] the
flow is governed by the dispersionless limit of the NLS equa-
tion, i.e., by the shallow-water system [Eqgs. (32) and (33)]
for the Riemann invariants A.. In the DSW region
[Y~(T),Y*(T)] the averaged oscillatory flow is described by
four Whitham equations (24) for the Riemann invariants \ j
with the following matching conditions at the trailing Y~ (7)
and leading Y*(T) edges of the DSW (see [5,12] for details):

at Y= Y_(T) )\3=)\2, )\4= )\+, )\1=)\_,

at Y= Y+(T) )\3 = )\4, )\2 = )\+, )\1 =N\_. (43)

Here \..(Y,T) are the Riemann invariants of the dispersion-
less limit of the NLS equation in the hydrodynamic form
[Egs. (32) and (33)]. The free boundaries Y*(7T) are defined
by the kinematic conditions

dy~

E = V2()\1,)\2,)\2,)\4) = V3()\1,7\2v)\27)\4)’ (44)
ay*

T V3N A2 AN g) = Va(N A NN y)

and so are the multiple characteristics of the Whitham sys-
tem. The multiple characteristic velocities V,=V; and V;
=V, in Eq. (44) are explicitly given by Egs. (29) and (28),
respectively. Determination of Y*(7T) is an inherent part of

PHYSICAL REVIEW E 80, 046317 (2009)

the construction of the full modulation solution. We also
emphasize that matching conditions (43) are consistent with
the limiting structure of Whitham system (24) at m=0 and
m=1 [see Egs. (28) and (29)] and reflect the spatial oscilla-
tory structure of the DSW in the defocusing NLS hydrody-
namics (as is known very well, such a DSW has a dark
soliton (m=1) at the trailing edge and degenerates into the
vanishing amplitude harmonic wave (m=0) at the leading
edge—see [5,6,16,17]).

One should mention that if one is interested only in the
class of Y/T similarity modulation solutions arising in the
decay of an initial discontinuity problem one can use, instead
of Eq. (43), a reformulation of the modulation problem as an
initial-value problem for \ i where three of the invariants are
constant at 7=0 and for the fourth one the so-called “regu-
larized” initial condition is used (see [7,8,17,48]). The result-
ing initial-value problem has the global expansion fan solu-
tion. This type of the problem formulation, however, seems
to be less natural when one is interested in a more general
(not self-similar) class of solutions when the integration of
the modulation equations involves the hodograph transform
[Egs. (37) and (38)] [the poor compatibility of the initial-
value problems with the hodograph method is known very
well in classical hydrodynamics (see, for instance, [3])]. The
free-boundary Gurevich-Pitaevskii-type formulation (43), on
the contrary, is ideally compatible with the generalized
hodograph transform as in any of the hodograph space coor-
dinate planes (\;,\;) it transforms into the classical Goursat-
type characteristic boundary problem for the EDP equation
[9,12].

V. ASYMPTOTIC REFORMULATION OF THE NLS
PISTON PROBLEM AS AN INITIAL-VALUE PROBLEM

The general dispersive piston problem [Egs. (14) and
(15)] for the defocusing NLS Eq. (10) is difficult to tackle
directly. It is, therefore, desirable to reformulate it in terms of
a much better explored initial-value problem. The key in this
reformulation is the possibility to use the semiclassical
Whitham description which is applicable when the character-
istic piston displacements are much greater than unity while
the piston speed is O(1) (this formally corresponds to the
supersonic flow past a slender body with the length L> M in
our original setting formulated in Sec. II; however, one can
expect that the results will be relevant to moderate body
lengths as well). We now assume the qualitative picture of
the flow described in the end of Sec. III and divide the upper
part of the (¥,T) plane in the piston problem into five dis-
tinct regions (see Fig. 4). In the regions I and V the flow is
undisturbed so we have n=1, v=0 there. The corresponding
“dispersionless” Riemann invariants (31) are A= = 1. In the
region III for Y>> f(T), the “gas” is put into “motion” by the
“piston” moving according to Eq. (14) (we shall omit the
quotation marks for the terms related to unsteady gas flows
henceforth) and near the piston the gas motion can be de-
scribed by the dispersionless limit of the defocusing NLS
equations (32) and (33). However, the formal solution of the
nonlinear hydrodynamic-type equations (32) and (33) cannot
be extended to the whole (Y, T) plane because the Y deriva-
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FIG. 4. (Y,T) plane of the NLS piston problem. Dashed line: the
piston trajectory Y=£(T). The lines Yfi(T) and Yf(T) are the edges
of the front and rear dispersive shocks, respectively.

tives blow up along certain lines in this plane so the region
III, where the flow is smooth, is separated from the constant
flow regions I and V by two DSW regions II and IV which
spread from the points (0,0) and (0,L/M), corresponding to
the end points of the wing [strictly speaking, one should
impose a certain restriction on the behavior of f(T) near T
=0 to have the front DSW emanating strictly from the point
(0,0)—this restriction will be explained in the end of this
subsection]. The qualitative structure of these DSWs was
described in Sec. IV C. We denote the leading (outer, i.e.,
facing the oncoming flow) and trailing (inner, i.e., facing the
body surface) edges of the front DSW (region II) as Y}L.(T)
and Y;(T), respectively, and, similarly, for the rear DSW
(region TV) edges, we use the notations Y (7).

Now, the plan is to determine the flow parameters n, and
v, at the piston surface and then to trace them back to 7=0
using the solution of the dispersionless Egs. (32) and (33).
The kinematic condition (14) defines v,=df/dT so we just
need to find the flow density at the piston. This can be done
by considering the data transfer along the characteristics in
the Gurevich-Pitaevskii setting of the problem where the en-
tire wave pattern is asymptotically described by hyperbolic
equations of hydrodynamic type [the NLS-Whitham system
(24) in the regions II and IV and the dispersionless limit of
the NLS Eq. (32) in the regions I, III, and V].

We formulate the matching conditions for both DSWs us-
ing the general rule (43). For the front DSW we have the
following:

at Y=Y (T):A3=N;, N=N,, A=)\,

at Y= Y;(T) )\32)\4, )\2:1, )\12—1. (45)

Similarly, for the rear DSW:
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at Y=Y (T): \3=N\y, N=1, N =-1,

at Y= Y:—(T) )\3=)\4, )\2=)\+, )\1 =\_. (46)

It then follows that to satisfy the governing equations (24)
and (32) and the matching conditions (45) and (46) one has
to put

A=A=-1 (47)

within the respective domains of definitions of \; (regions II
and IV) and A_ (regions I, III, and V). This condition (47) of
transfer of the Riemann invariant of the dispersionless sys-
tem across the DSW replaces the traditional shock jump con-
ditions for classical viscous shocks (see [49] for a detailed
discussion of transition conditions across DSWs).

Hence, we have at the “piston” v,/2- v’nj,:—l which
yields the gas density

n,=(v,+2)%4 (48)

in the region between the piston and DSW. Then using Eq.
(14) we get

A=-1,

N,=dfldT+1 at Y=£T).  (49)

We are now able to translate these boundary conditions at the
“piston” into the equivalent initial conditions at 7=0. This
problem for system (30) can be easily solved using charac-
teristics. Indeed, we have AN_=-1; hence, N, obeys the
simple-wave equation following from Eq. (32) (see, e.g.,

[13]),

N, 1 N,
+—-(BN,—1)—=0. 50
pre 2( =1 P (50)
Solution of Eq. (50) with boundary condition (49) is readily
found using characteristics,

=@+, Y=f<§>+Bf’<§)+1]<T—§>, (51

where £ is a parameter along the piston curve Y=f(T). Then,
setting in Eq. (51) T=0 we arrive at a parametric form of the
equivalent initial distribution of the Riemann invariant \,:

MOIN =/ @41, Y=10)- Bf%g) : 1}5.
(52)
Distribution (52) together with the initial condition
A(Y,0)=-1 (53)

define, via Eq. (31), initial conditions for the NLS equation
in the hydrodynamic form (10). It is important to emphasize
that initial conditions (52) and (53) and piston boundary con-
ditions (14) and (15) are equivalent only asymptotically, as
our reformulation is made within the conditions of applica-
bility of the Whitham modulation approach. One should also
stress that in the context of the flow past body problem, the
solution to the initial-value problem [Egs. (10), (52), (53),
and (31)] is defined only in the region Y= f(7), i.e., outside
the body (piston).
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FIG. 5. Sketch of asymptotically equivalent initial conditions for
A\ in the problem of supersonic NLS flow past slender profile with

J10)=f()=0.

Now one can make some qualitative predictions about the
asymptotic structure of the flow in the problem of the 2D
NLS flow past slender body. First we assume that f(0)
=f()=f"(0)=f"(I)=0, where I=L/M. Also to avoid unnec-
essary complications at this stage we assume that A, (Y,0),
specified parametrically by Eq. (52), is a single-valued func-
tion (this restriction is not essential but it makes our analysis
more transparent). Then it is not difficult to see from Eq. (52)
that the “translated” initial profile for the hydrodynamic Rie-
mann invariant A, corresponding to the flow past a wing has
the shape of a large-scale “bipolar” pulse (see Fig. 5) while
the invariant A_ is constant. Note that the pulse is supported
on the interval [-/,0]. Then, the semiclassical approach to
the inverse scattering transform for the defocusing NLS
equation developed in [13,43] enables one to associate the
“well” part of the initial profile of A, with certain distribution
of dark solitons in the rear far-field asymptotic in the region
IV (see Fig. 4) while the front “barrier” part is responsible
for the linear dispersing radiation in the region II as 7— .
The asymptotic formula for the amplitude distribution in the
dark soliton fan generated out of the rear DSW will be pre-
sented in Sec. VII B. The modulation solution for the front
wave gradually transforming, via the nonlinear DSW stage,
into the Kelvin-Bogoliubov ship-wave pattern (see [31,32])
will be constructed in Sec. VII A.

For a more “realistic” wing shape (as in Fig. 1) we have
JO)=f()=f"(=0)=f"(1+0)=0 but f'(+0)#0, f'(I-0)#0,
where f'(a+0) and f'(a—0) denote the right and left deriva-
tives of f(x) at x=a, respectively. The qualitative behavior of
the solution remains the same but the quantitative description
undergoes some technical modification. Indeed, one can see
from Eq. (52) that the discontinuity of the derivative f'(§) at
&=1 implies that the rear end point of the wing maps back to
an interval [Y,,Y,], where

Y2=—l, Y1=—|:%f,(l—0)+l:|l. (54)

At these points the function A, (Y,0) assumes the values
N(Y5,0)=1, A(Y,0)=1+f(I-0). (55)

On the interval [Y,,Y,] the function \,(Y,0) is linear:

PHYSICAL REVIEW E 80, 046317 (2009)

FIG. 6. Sketch of an asymptotically equivalent initial condition
for N, in the problem of supersonic NLS flow past slender wing
with f'(+0) #0 and f'(I-0) #0.

2
M(Y,0)=1=2(1+Y/I) for Y, <Y<Y, (56)

and A,(Y,,0)=1 for Y<Y,. One can readily see that the
function A, (Y,0) is continuous everywhere except for the
point Y=0 where the profile \,(Y,0) has a discontinuity:

N (0,0)=1+f"(+0)>1, and A, (Y,0)=1 for Y > 0.
(57)

We also note that one can see from Eq. (52) that the point x,
of the maximum of the body profile F(x) maps to the point
Yo=f(xo/M)—xo/M on the Y axis so that \,(¥,,0)=1. A
typical profile of the function \,(Y,0) is shown in Fig. 6.

For convenience of the presentation we shall assume that
A (Y,0) is a single-valued function on the interval [Y;,0].
This implies a restriction

dN,(Y,0)
dy

0=

<o for ¥, <Y <O0. (58)

Then from Eq. (52) we obtain the corresponding condition
for the function f(€) [i.e., for the body profile F(x)]:

0= = /19 <o for 0<&E<I.  (59)

1/ % i
L+2f (§)+2§f’(§)

One should stress that actually there is no need for the func-
tion \,(Y,0) to be one valued as it is a formal projection,
along the characteristics of the Riemann-Hopf Eq. (50), of
the given physical distribution (49) of A\, specified on the
piston curve. So our resulting formulas will not be restricted
exclusively to the profiles satisfying inequality (59).

We also formulate the condition necessary for the front
DSW be generated exactly from the edge of the body at
(0,0). This is obtained from the condition that the profile
N, (Y,T) breaks exactly at the initial moment 7=0 as in Fig.
6. This is clearly the case if f'(+0) # 0. However, if f'(+0)
=0 then A, can tend to unity at ¥'=0 according to the square
root law, A, (Y)xy-Y as Y—-0. This means that
dY/d\,|7—o=0 at €&=0 and this condition can be satisfied if
f'(&§)— o but f'(§)é— const, where const can be equal to
zero. In particular, such a behavior takes place for f’(§)
x &P, 0<B=1.1If dY/d\,|;_y#0 then the wave breaking
occurs at a later moment 7=7, at the point Y=Y, which are
determined by the equations
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Simple calculation with the use of Eq. (51) yields the equa-
tion for &;:

[f' (&) +217"(&,) = 4Lf" ().

When &, is found, then T}, and Y, are calculated according to
the formulas

41"(&) 20317 (&) +21/"(&)
3"(&) 31"(&)

In spatial x, y terms this means that the point of generation of
the DSW is detached from the obstacle.

Ty=§+ Y, =f(&) +

Example: parabolic profile—a “wing”

We illustrate the described mapping of the body profile
onto the initial profile of the Riemann invariant N\, by con-
sidering a parabolic wing with an opening angle « above the
x axis and the length L so that the function F(x) in Eq. (8) is
given by

F(x)=ax(l-=x/L), 0=x=<L. (60)

Then the piston function is f(T)=F(MT)=aMT(1-T/1),
where [=L/M. Now, the corresponding initial distributions
of the “dispersionless” Riemann invariants A. are given by
Egs. (52), (53), and (56), that is, we have the following
specification for A, (Y,0):

N (Y,0): N, =1+ aM(1 =28,

Y=—§{1+%(1—4§/l)} for Y, <Y<0, (61)

2
M(Y.0)=1=2(1+ YD) for V<Y<Y  (62)

N(Y,00=1 for —-o<Y<Y,and Y>0. (63)
Here [see Egs. (55) and (54)]

3
Y,:—l(l—EaM), Yy=-1, (64)

so that the minimal value of \, is A, (¥;,0)=1—-aM. Also we
have

Yo=fW2)-12==102(1 - aM/2), N\, (Y,,0)=1

(65)
and \,(0,0)=1+aM. We note that condition (59) is satisfied
if the denominator in it is negative as £é— [ which implies a
simple inequality aM <2/7.

VI. FLOW PAST STRAIGHT CORNER
A. Analytical theory

We first consider a model problem of the flow past an
infinite straight corner specified by the function

PHYSICAL REVIEW E 80, 046317 (2009)

Dispersive shock

y Loy
=l A n=n,> 1
u=(M,0) ux(M,v,)
M >>1 /
1y
a<<l1 .

X

FIG. 7. Supersonic dispersive flow past concave corner. The
flow speed and density in the region between the corner and DSW
are v,=aM and n,=(v,+2)*/4.

F(x)=0, for x<0; F(x)=ax for x=0, (66)

where @>0 is some constant (see Fig. 7). To apply the pis-
ton approximation we need to assume that a~M~'<1 so
the piston curve in Eq. (49) is f(T)=aMT; i.e., the piston
speed is

=—=aM. (67)

= ar

Using Eq. (48) we obtain that in the piston approximation the
flow parameters in the region between the body surface and
the DSW are simply

u=M, v=v,=aM, n:npz(Ma+2)2/4. (68)

Now, using Egs. (52) and (53) we obtain the asymptotically
equivalent initial conditions for the NLS Eq. (10) in terms of
N [see Eq. (31)],

A,=AT=1 for Y=0, and \,=1, for Y>0. (69)
Here
At=1+aM. (70)

Of course, in the context of the flow past body problem, the
solution is defined only for Y=Y ,=aMT. Thus, the problem
essentially reduces to the much studied problem of the decay
of an initial discontinuity for the defocusing NLS equation
(see [5,6]) with some restrictions for the domain of the solu-
tion.

The relevant modulation solution has the form of a cen-
tered characteristic fan

M=-1, N=1, N\=AT, (71)

Y
;., = V3(_ 15 la)\37A+) (72)

or explicitly [see Eq. (26)]
(1 +aM —N\3)(\5—1)K(m)
(N3 = 1)K(m) — aME(m) ’
(73)

Z—1()\ + 1+ aM)
T 277 «

where
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FIG. 8. Behavior of the Riemann invariants in the similarity DSW at some 7> 0. The vertical double line at Y=Y, marks the “piston”
(local body surface) position. Left: subcritical piston speed, v »<2; Right: critical piston speed v,=2—formation of a “black” soliton at the

trailing edge Y™=Y,,.

_2(1+aM =)y

aM(\;+1) 74)

The DSW is confined to an expanding region 7 7T=Y
= 7T, where the “speeds” 7 of the edges are calculated
from Eq. (73) as the boundary values of the similarity vari-
able 7=Y/T:

M
T-=7(m=1)=1+a7, (75)
_2(aM)’+4(aM) +1
B 1+aM '

F=mm=0) (76)
We note that the trailing edge speed 7~ is translated into the
slope of the oblique dark soliton forming at the DSW edge
facing the body surface

sT=7/M=1/M+ a/2. (77)
The amplitude of this soliton is
a_=()\4—)\3)()\2—)\|)=2(A+—l)=2aM. (78)

The density profile in the soliton is defined by formula (22)
in which one substitutes the pedestal n0=np=(2+aM)2/4,
the amplitude a=2aM, and the “velocity” U,=7". We note
that it follows from Eq. (77) that in the flow past corner
problem the oblique dark soliton is formed outside the “con-
ventional” Mach cone defined by the slope 1/VM?*-1
~1/M. This is in an apparent contrast with the wave pattern
described in [29,50] where the oblique dark solitons were
shown to be necessarily formed inside the Mach cone. How-
ever, in [29,50] the oblique dark solitons were considered to
be generated by the pointlike obstacle. In that case the back-
ground flow density and, correspondingly, the sound speed
were equal to unity so that the Mach number in the back-
ground flow was everywhere equal M. In the present case of
the flow past corner, the oblique dark soliton is generated on
a nonunity background which results in a different value of
the local sound speed and, therefore, in the changed defini-
tion of the Mach cone which is now specified by the local
Mach number M,=M/ \e"np. As a result, the adjusted Mach
angle becomes 1/\s’M,2—1 ~1/M+ «/2 which coincides with
the oblique soliton slope (77). Thus, in the supersonic NLS
flow past a corner an oblique dark soliton is formed along the

actual Mach line. This agrees with the result in [5] where it
was shown that the trailing dark soliton in the DSW moves
with the sound speed. Since s*=7"/M > s~ the implication of
this fact is that the DSW is located entirely outside the Mach
cone.

The schematic behavior of the Riemann invariants in the
modulation solution [Egs. (71) and (73)] is shown in Fig. 8.
As was already mentioned, in the context of the supersonic
flow past body (or the piston) problem, solution (73) is de-
fined only for Y=v,T=aMT. Then from the condition 7~
=aM we obtain the critical value v,=aM=2 for which the
greatest dark soliton in the DSW is generated right at the
body surface (see Fig. 8, right panel). Incidentally, this value
of v, also implies that the density at the minimum of this
greatest soliton turns zero which constitutes the appearance
of a vacuum point at the trailing edge of the DSW [6]. In-
deed, from Eq. (16), the minimum of the density in the trav-
eling wave solution is 71,;,= 3 (As=A3=A,+X\;)% Substituting
Eq. (71) we obtain the distribution for the local minima of n
in the DSW,

) = e =\ (m) ~ 1T (79)

where the dependence \;(m) is given by Eq. (74). Then the
requirement that n,,;,(1)=0 immediately yields aM=2. Gen-
erally, setting in Eq. (79) aM >?2 one gets from n;,(m)=0

m*=m<l, (80)

i.e., the vacuum point occurs inside the DSW. Since at the
vacuum point we have \j=—1, \y=1, A3=aM -1, and A\,
=1+aM, phase velocity (18) at the vacuum point is U*
=aM, i.e., is equal to the piston velocity. This seems to im-
ply that the DSW gets attached to the piston and is realized
only partially with the modulus ranging from 0 to m*. How-
ever, it turns out that one cannot attach the partial DSW
directly to the piston, instead, one should introduce an addi-
tional periodic “transition wave” with m=m"™ between the
DSW and the piston [38]. As a matter of fact, the vacuum
point is present at each period of this transition wave. The
generation of a nonmodulated periodic nonlinear wave in the
piston problem can be explained in the following way. The
vacuum point phase velocity U* coincides with the nonlinear
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v,>2 >

FIG. 9. Riemann invariants for the supercritical “piston veloc-
ity,” v,>2. The periodic transition wave occupies the region
[Y?,Y*] where Y*=7°T [see Eq. (81)].

group velocity only when m*=1, i.e., for the dark soliton,
when the multiple characteristic velocity V,=V3=U is noth-
ing but the soliton speed. Generally, for m*# 1 one has V,
#V3#uv, and, therefore, one should introduce a reflected
wave. As a result of the DSW reflection from the piston
(body surface) one generally would get a two-phase wave
region characterized by six Riemann invariants (see, for in-
stance [8,48] for the corresponding Whitham equations),
with two of them changing. However, the requirement of
self-similarity of the modulation solution in the problem of
the supersonic flow past straight corner imposes the restric-
tion that only one Riemann invariant can change. This im-
plies that the two varying Riemann invariants in the general
two-phase modulated solution must coincide with each other
with the consequence that there is only one oscillating phase
described by four distinct constant Riemann invariants (the
varying multiple Riemann invariant can be ignored as it es-
sentially describes the propagation of the vanishing ampli-
tude linear wave packet against the cnoidal wave back-
ground). So, as a result of nonlinear wave interaction one
effectively gets a nonmodulated finite-amplitude periodic
wave, which in the present context can be viewed as a non-
linear standing wave. The behavior of the Riemann invari-
ants in the described “supercritical” modulation solution is
schematically shown in Fig. 9. The region of the intermedi-
ate periodic wave expands with the speed

F=Vi=1,1,aM - 1,1+ aM)
2(aM - 2)K(m™)

=M oK) —aEm) D)

where m*=4/(aM)? [see Eq. (80)]. The transition wave am-
plitude is [see Eq. (20)]

a*=(7\4—)\3)()\2—)\1)=4, (82)

and it does not depend on the value of @M >2. The latter
only affects the transition wave width 7*7 (and the local
wave shape via m*). This is in striking contrast with the
classical dissipative piston problem, where the density jump
across the shock increases without limitations as the piston
velocity grows. We also note that in the physical xy plane the
transition wave is located between the body surface and the
centered line with the slope s*=7"/M. An explicit expression
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for the oscillating density profile in the transition wave in
physical xy plane is

n=4sn*(aM(y — ax),m"), (83)

and the wavelength of transition wave (83) in any x section is
calculated as £ [see Eq. (21)] and is given by

£= iK(m*). (84)

In conclusion we note that the described transition wave so-
lution actually represents part of the special similarity solu-
tion obtained in [6] as a particular case in the decay of an
initial discontinuity problem (see the case 6 in the full clas-
sification of [6]). The transition wave was also very recently
observed in [38] in the numerical simulations of the disper-
sive piston problem.

B. Comparison with numerical solutions

We have performed two series of numerical simulations.
First, we constructed the full unsteady numerical solutions
for the 2D NLS flow past corner for M =10 and different
values of the corner angle a. Second, we performed parallel
numerical simulations of the associated 1D piston problem
[Egs. (12)—(15)] for the corresponding values of the piston
velocity v,=Ma. In both cases we have used finite-
difference codes with the impenetrability condition =0 at
the body (piston) surface. The results of the numerical simu-
lations have been then compared with the analytical modu-
lated solution obtained in the previous subsection. We note
that from the numerical point of view it is more convenient
to perform simulations for a symmetric wedge with the open-
ing angle « above the x axis and to use the wave pattern in
the upper half plane for the comparison.

First, we have made a comparison for the DSW transition
condition, which in our case is expressed by formula (68)
specifying the parameters of the constant flow between the
DSW and the corner surface provided the oncoming flow

FIG. 10. Dependence of the flow density n, near the corner
surface on the vertical velocity component v, for the flow with M
=10. Dashed line: dependence (68) obtained in the dispersive piston
approximation. Circles: data obtained from the full 2D numerical
solution. Solid line: n,(v,) dependence for the classical dissipative
piston problem.

046317-12



TWO-DIMENSIONAL SUPERSONIC NONLINEAR...

20

25

/ s
-
—— 4

10

y 0

-10

'291 0 0 10 20 30 40 50

(a)

PHYSICAL REVIEW E 80, 046317 (2009)

DSWwW
3 } . }
n?rl ! | _piston 1
1L } (1D analytical)
\ \
0 } }
2+ } } piston
n | (1D numerical
1r \
\ \
0 } }
| |
2r | 4
n ! (2D numerical)
1r |
l l
0
(b) 0 5 y' 10 15 y 20 25 y

FIG. 11. (Color online) Left: 2D density plot for of the supersonic (M =10) NLS flow past a wedge with the opening angle above the x
axis a=0.1. Right: density profile n(y) at x=50. Top: analytical modulated solution; middle: numerical solution of the associated 1D piston
problem; bottom: 1D cut of the full 2D solution at £=15. Points y~ and y* mark the boundaries of the DSW predicted by the modulation

solution. The body surface (piston) is located at about y=5.

parameters are u=M, v=0, and n=1. The comparison of the
dependence n,,(v ») for M=10 with the numerical data for the
density in the 2D flow past a wedge is shown in Fig. 10. This
is also compared with the dependence n,,(v p) for the classical
piston problem following from the dispersionless NLS con-
servation laws for the mass and momentum. The correspond-
ing classical piston jump condition is specified by the equa-
tion v,=(n,- DV +n,)/(2n,,). The comparison is made for
M=10. One can see excellent agreement between the ana-
lytical dispersive piston curve and the numerical data ob-
tained from the full 2D simulations of the flow past corner
problem. At the same time one can see noticeable departure
of the dispersive piston curve from the classical piston curve.
The numerical simulations data and the dispersive piston
curve split at v,=2 (i.e., at a=v,/ M=0.2), which also agrees
with our solution as for Ma>2 the theory predicts the for-
mation of a transition wave so that the region of a constant
flow between the corner and DSW disappears.

In Figs. 11-13 the 2D density plots (left) and 1D cross-
section density profiles (right) are presented for the flows
with M =10 past corners with @=0.1, 0.2, and 0.3, respec-

—
3
25

10 0 10 20 30 40 50

tively. The analytical solutions (top panel) are compared with
the numerical solution of the asymptotically equivalent 1D
dispersive piston problem (middle panel) and with the x sec-
tion of full 2D solution (bottom panel). One can see that 1D
numerical dispersive piston solutions agree remarkably well
with the results of the full 2D simulations. The agreement
between the analytical solutions and numerical simulations is
also very good in the DSW region [we note that the exact
position of the wave in the analytical solution is determined
up to a characteristic coherence length (soliton half-width)
as the initial phase 6, in Eq. (16) is not defined by the mo-
dulation theory]. The predicted occurrence of the vacuum
point at the body surface at aM =2 and the generation of
the nonmodulated transition wave for M >2 are seen very
well in Figs. 12 and 13. The predicted position y*=7"x/M
of the right boundary of the transition wave [see Eq. (81)]
also agrees very well with the numerical simulations—see
Fig. 13.

Next, in Fig. 14 the comparisons for amplitude (78) and
slope (77) of the first dark soliton in the DSW as functions of
the corner angle are presented. One can see that the agree-
ment is excellent for the soliton amplitude and quite good for

DSwW
5
4 L 4
ndr piston 1
2 (1D analytical)
1 L
0
4r .
3l piston
n o[ (1D numerical)]
1 L
0
4 +
n3r
2 L
1+
0 - +
(b) 0 5y 10 15 y 20 25 y

FIG. 12. (Color online) Left: 2D density plot for the supersonic (M =10) NLS flow past a wedge with the opening angle above the x axis
a=0.2. Right: density profile n(y) at x=30; top: analytical modulated solution; middle: numerical solution of the associated 1D piston
problem; bottom: 1D cut of the full 2D solution at r=15. Points y~ and y* mark the boundaries of the DSW predicted by the modulation

solution. The body surface (piston) is located at about y=6.
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FIG. 13. (Color online) Left: 2D density plot for the supersonic M =10 NLS flow past a wedge with the opening angle above the x axis
a=0.3. The dashed line marks the end of the transition wave predicted by the theory. Right: density profile n(y) at x=30; top: analytical
modulated solution; middle: numerical solution of the associated 1D piston problem; bottom: 1D cut of the full 2D solution at z=15. Points
y~ and y* mark the boundaries of the DSW specified by the modulation solution. The body surface (piston) is located at about y=9.

the slope. One should emphasize that the accuracy inherent
in the hypersonic approximation (10) implies that the ampli-
tude formula (78) is defined with the accuracy O(1/M) while
for the slope s~ given by Eq. (77) the accuracy is O(1/M?).
Since the slope formula is s™=1/M+ «/2 one can expect that
a noticeable discrepancy between analytical and numerical
values for of s~ may be the case for small angles, say, for
a=<0.1. Of course, this will contribute, on level of
O(x*/M?), to the error in the analytical determination the
spatial y location of the oblique dark soliton at some x cross
section made at x=x* (as in Figs. 11-13). We note that the
analytically predicted soliton location is also subject to an
arbitrary, up to a typical wavelength, shift inherent in the
modulation theory.

One should also note some important feature of the wave
pattern that is not captured by the modulated solutions as
seen in the right upper panels of Figs. 11-13. Indeed, one can
see noticeable small-amplitude oscillations beyond the outer
harmonic edge y* of the DSW (as defined by the modulation
theory). In the theory of one-dimensional DSWs these linear
oscillations are usually ignored. However, in the considered
here 2D problem these linear oscillations represent an essen-

0 0.05 0.1 0.15

(a) o

0.2

tial part of the observable wave pattern (see the left panels in
Figs. 11-13) and should be taken into account. A similar
wave distribution was considered recently in [31-33] in con-
nection with the Bogoliubov-Kelvin ship waves generated by
a pointlike obstacle placed in the supersonic BEC flow (see
also in [26] the discussion of the experimentally observed
patterns). An extended modulation solution describing the
combined wave pattern including both the DSW and the lin-
ear ship-wave distribution will be constructed in the next
section.

It is worth noting that in the strongly nonlinear region
near the wedge boundary at large x one can see the oscilla-
tions of the dark soliton crest lines [see the density plot in
Fig. 13 (left panel)]. This is the manifestation of the so-called
“snake” instability of dark solitons with respect to bending
disturbances [39-41]. However, for large enough oncoming
flow velocity these unstable disturbances are convected by
the flow along solitons and, hence, they become just convec-
tively unstable in the reference frame related with the ob-
stacle [30]. Therefore, for the considered here large Mach
numbers, the DSW structure can be regarded as effectively

0.25

0.2

0.15
.
0.1
0.05 |
0 ‘ ‘ ‘
0 0.05 0.1 0.15 02
(b) o

FIG. 14. Parameters of the first dark soliton in the DSW as functions of the corner angle. Left: the soliton amplitude a~; right: the soliton

slope s~. The numerical values are taken at x=50.
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FIG. 15. (Color online) Supersonic NLS flow past a wing: den-
sity plot. The oncoming (from the left) flow speed is M=10. The
dashed line shows the wing profile specified by Eq. (60).

stable and thus can be treated as a modulated stationary so-
lution of the 2D NLS equation.

VII. FLOW PAST WING

Now we consider supersonic flow past an extended slen-
der finite body—a wing. From the very beginning we assume
zero attack angle so without loss of generality we shall con-
sider the wave pattern only in the upper half plane. The
density plot for supersonic (M =10) flow past the wing hav-
ing a symmetric parabolic form specified by function (60)
with @=0.15 and L=100 is shown in Fig. 15. One can see
that the wave pattern agrees with the qualitative predictions
made in Sec. V using the inverse scattering transform rea-
soning applied to the asymptotically equivalent initial data of
the type shown in Fig. 5. Indeed, one can see the front DSW,
similar to that in the straight wedge case described in Sec. VI
and the fan of oblique dark solitons spreading from the rear
edge of the wing. Unlike the straight wedge case, though, the
front DSW is not characterized by a constant jump of density
n and velocity v across it, so the depth of the oscillations
decreases as the distance from the generation point at (0.0)
increases. As a result, the front wave degenerates into a
small-amplitude dispersing wave with the distribution of
wave crest wave having the form similar to the ship-wave
pattern described in [31,32]. The length of the wing used in
the simulations is not sufficiently large to identify the details
of the intermediate front and rear DSWs. However, we shall
construct full modulation solution for the front DSW and, by
considering its asymptotic behavior for large x, y will derive
the amplitude and wavelength distributions applicable to the
ship-wave pattern. For the rear DSW, instead of constructing
full modulation solution, we shall take advantage of the
semiclassical Bohr-Sommerfeld-type distribution [13,43] for
the distribution of eigenvalues in the Zakharov-Shabat scat-
tering problem.

The crucial difference between our consideration in this
paper and the results obtained in earlier papers [29,31,32] on
dark solitons and ship waves is that here we asymptotically
solve the boundary-value problem for the 2D NLS equation
and express the parameters of the resulting wave distribu-
tions in terms of the initial profile, while the previous papers

PHYSICAL REVIEW E 80, 046317 (2009)
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FIG. 16. Left: front edge of a wing in an upper half plane. Right:
asymptotically equivalent initial condition for \,.

were concerned with the study of certain particular solutions
of the 2D NLS equation.

A. Flow past front edge of a wing

1. Formulation of the problem

To model the flow of a superfluid past the front edge of a
wing we consider the function F(x) of the type shown in Fig.
16 (left) so that F=0 for x<0; F'(+0)=a<<1, F'(x) >0 for
0<x=ux, and F'(x)=0 for x=x,. Then one can readily see
from Eq. (52) that for highly supersonic flows the asymptoti-
cally equivalent initial condition for )\+:%v+ yn has the
shape shown in Fig. 16 (right). The other Riemann invariant
N_=-1 [see Eq. (53)]. Also Yy=f(&)) — & where &=x,/M. In
terms of the piston problem this corresponds to the forward
motion of the piston. The initial piston velocity is v,=Ma
(as in the problem of the flow past straight corner with the
angle «) but then the motion of the piston slows down until
it eventually stops at T=§;,. To avoid unnecessary complica-
tions connected with the formation of the transition wave we
shall assume that aM <2.

As was explained in Sec. V, it is clear from the IST-based
reasoning that the disturbance caused by the front edge of the
wing in the supersonic NLS flow will eventually (for 7> 1)
transform into a linear dispersive wave radiation. However,
for intermediate values of T the spatial “evolution” of this
disturbance leads to the formation of a DSW having the
structure similar to that generated in the flow past straight
corner described in the previous section. Thus, remarkably,
even in this “solitonless” configuration, the DSW and dark
solitons still form, albeit as an intermediate wave pattern.
While in the evolutionary problems this wave pattern is tran-
sient, in our 2D stationary problem the intermediate front
DSW exists for all times and transforms into linear waves
only at large distances from the body. The essential differ-
ence is that, due to the presence of the spatial scale x, the
corresponding modulation dynamics is no longer self-similar
resulting in the wave parameter variations along the wave
crest lines which now have curved geometry. In particular,
one can expect that the oblique dark soliton forming at the
trailing edge of the DSW will initially (i.e., at x=0 and y
=0) have in the Whitham approximation the slope s™=a/2
+1/M and the amplitude a”=2aM as in the corresponding
straight corner case, but as the distance from the body in-
creases, its amplitude and slope will both decrease and as-
ymptotically one can expect that a—0 and s~— 1/M as
X— 0,
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FIG. 17. Schematic behavior of Riemann invariants in the
modulation solution for the front DSW.

2. Modulation solution

We use Egs. (45) and (47) to formulate matching condi-
tions for the Riemann invariants in the front DSW (we shall
omit the subscript in ¥7):

at Y= Y_(T) )\3 = )\2,

)\4=)\+, )\1=—1,

at Y= Y+(T) )\3=)\4, )\2=1, )\1=—1, (85)
where N\, (Y,T) is the solution of simple-wave equation (50)
with the initial condition \,(Y,0) defined by Eq. (52). Thus,

we have for N\, an implicit representation
1
Y_5(3)\+_ 1)T=W()\+)’ (86)

where w(\,) is the inverse function to A,(Y,0) [note that for
general nonmonotone initial profile A,(¥,0) one would need
to consider two monotone branches of w(\,) separately, but
in our case of the profile shown in Fig. 16, right, there is only
one branch specified by Eq. (52)]. Schematic behavior of the
Riemann invariants corresponding to the matching condi-
tions (85) is shown in Fig. 17.

Importantly, the modulation problem [Egs. (24) and (85)]
is no longer self-similar so one should use the hodograph
transform to solve it (see Sec. IV B). First, since \;=-1 and
N\,=1 satisfy both modulation equations (24) and matching
conditions (85) we have N\;=—1 and \,=1 everywhere;
hence, there are only two modulation equations for A3 and A4
left to solve. These transform via the substitution [see Eq.

(371

Y- V3(_ 1’ 1»)\3’)\4)T= W3()\37)\4)7

Y = Vy(= LA, N)T = Wy(N3,\y) (87)

into a system of two linear partial differential equations for
W3.4(N\3.Ny),

PHYSICAL REVIEW E 80, 046317 (2009)

L oWy 1 9V L oW, 1 v,
Wy—Ws dNg  Vi=ViaNg Wi=Wy 0Ny V3—Vi0oN;
(88)

The boundary conditions for Eq. (88) are obtained by con-
sidering hodograph solution (87) at the free boundaries Y=
and applying to it the matching conditions (85). At the trail-
ing edge Y=Y (T) we have N\;=1 and V,(-1,1,1,\,)
=%(3)\4—1) [see Eq. (29)] so that the second Eq. (87) be-
comes

Y—%(3)\4— 1)T= W4(1,)\4). (89)

Comparing Eq. (89) with simple-wave solution (86) at Y
=Y, where \,=\, [see Eq. (85)] we obtain the boundary
condition for Eq. (88),

Wa(1,84) =w(Ny). (90)
At the leading edge Y=Y* we have \;=\, and [see Eq. (28)]

V3(— 1,1,)\4,)\4) = V4(— 1, 1,)\4,)\4) = 2)\4 - 1/)\4 = VA()\4)
1)

The multiple characteristic velocity V*(\4) determines the
speed of the leading edge [see Eq. (44)]. Note that since A4
>1 we always have d,V*>0 and for the initial data of the
type shown in Fig. 16 (right) the speed of the leading edge at
T=0 is V*(A*) which is the greatest characteristic speed in
the system. Therefore, the characteristic dY/dT=V*(A*) is
not intersected by other characteristics of the family dY/dT
=V, so the equation of the leading (harmonic, m=0) edge of
the DSW is simply

Y- (2A* - 1/AYT=0. (92)

Substituting A*=1+aM we obtain the slope of the outer
(facing the oncoming flow) edge of the DSW in the physical
x,y plane as

2(aM)? +4(aM) + 1

+_ Y _
STy M(+aM) (93)

Thus, the outer edge of the spatial DSW is determined by the
opening angle « alone and does not depend on the specific
body contour (indeed, Eq. (93) coincides with the expression
for the slope of the outer edge of the DSW generated by the
flow past straight infinite corner with the angle « [see Eq.
(76)]).

The obtained leading edge Eq. (92) should be consistent
with hodograph solution (87) considered at m=0. Then com-
paring Eq. (87) for A;=N\,=A" with Eq. (92) we get

Wi(A*,A%) = W,(A*,A") = 0. (94)

Equations (90) and (94) provide boundary conditions for lin-
ear system (88). Using transformation (40), which in our
case is explicitly represented as

98
N,

l

1
Wih3,Ng) =g+ 2| V(= 1,1,A3,\y) — 5()\3 +\y)
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i=3,4, (95)

system (88) is further reduced to the EDP Eq. (41) for the
potential function g(\3,\4) (see Sec. IV B for details). Now
we need to translate boundary conditions (90) and (94) for
hodograph equations (88) into the boundary conditions for
the EDP equation.

Substituting Eq. (95) into Eq. (90) we obtain

ag(la)\4)

g(L,Ay) +2(Ny = 1) =w(h\y). (96)

PV
Ordinary differential equation (96) is readily integrated to
give
1 A" w(z)
sing=——[" M o)
2N = 1J), Vz=1

where we have chosen the constant of integration such that
g(1,A")=0 (this requirement is not essential). Now, without
loss of generality we take the general solution (42) of the
EDP Eq. (41) in an equivalent form

g(“”“‘)zﬁ%ﬁﬂ%,
1 V=N =N) e VOV= AN =N3)

(98)

where ¢ ,(\) are arbitrary (generally, complex-valued)
functions. From Eq. (94) we obtain ¢;(\)=0. Next, apply-
ing boundary condition (97) we arrive at the integral Abel
equation (see, for instance, [51]) for ¢,(\),

ff** ep(Nax 1 F* w(z)
w VO=A)=1) 20— 1

] dz. (99)
N Vz—1
The solution to Eq. (99) [obtained via the inverse Abel trans-
form for ¢,(\)/yA—1]is

1 AT —w(z)
¢2()\) = [ f [ dZ'
2aVN—=1J)\ Vz—=A\

Substituting ¢;=0 and ¢,(\) given by Eq. (100) into the
general solution (98) and changing the order of integration
we obtain a compact representation for the solution to the
EDP equation for the problem of the flow past front part of
the wing

(100)

B AT —w(z) ((Z— AN (N5 - 1)>
803 ha) = m"M—lJM Vz=A; \(@=X)(\g—1) &
(101)

where K(z) is the complete elliptic integral of the first kind.
Now, formulas (87), (95), and (101) provide the exact im-
plicit modulation solution to the NLS initial-value problem
with the initial profile of the type shown in Fig. 16 (right).
Strictly speaking, one should now show that the obtained
solution is global; i.e., the mapping (\5,\s)—(Y,T) speci-
fied by Egs. (87), (95), and (101) is invertible for all T.
However, instead of giving full mathematical proof of the
invertibility of hodograph transform (87) for our solution, it
seems to be more instructive just to show that the obtained

PHYSICAL REVIEW E 80, 046317 (2009)

modulation solution has a physically meaningful asymptotic
behavior for 7> 1, which, apart from providing us with the
useful information about distributions of physical parameters
at large distances from the body, will be a convincing enough
indication that the solution is valid for all 7.

To study the long-time behavior of the obtained solution
we express T from hodograph formulas (87) and (95) as

Wy -W,
723" "4
V-V,
1 dg 1 g
Vim =g+ M) [ == — | Vo= (A + \y) [ ==
_2[3 S0 n](m {4 S0 “]m
B V-V, ’
(102)
where we have denoted VjEVj(—l,l,)\3,)\4), w;

=W,(\3,\,) for brevity. Next, substituting solution (101)
into Eq. (102) we obtain an explicit expression for T in terms
of N3 and A\4. Analysis of this expression shows that 7—
implies \;— \4. Since the wave amplitude a=2(\,—\) and
the modulus m=2a/[(\,—1)(\5+1)] [see Eq. (19)] we ob-
tain that a—0, m—0 as T—o everywhere except for a
small vicinity of the trailing edge point where A3 — 1, so one
has a— 0 but m — 1. That means that the front DSW asymp-
totically transforms into a vanishing amplitude linear wave
packet (the asymptotic behavior of the trailing soliton will be
considered separately).

Indeed, a straightforward analysis shows that for the ob-
tained solution W3 4(\3,N;)/T—0 as A\z— Ny (i.e., T—).
Then we have from hodograph solution (87) to leading order
in1/T

T>1‘Y~V( 11N \y) = 20 !
T_ 3 s Ly N4 ) = 4 )\4'

(103)

Next, expanding Eq. (102) for small \;,—\;<<1 we obtain,
after some algebra, the leading order asymptotic behavior
(provided A, is not too close to 1)

1
a = AN, (104)
where
NN+ 1) A* - w(2) 1
ANy =4\ ————(\g— D" —=dz| .
4 7T(2)\i+1) 4 N Vz— Ny

(105)

Asymptotic behavior [Egs. (103) and (104)] is consistent
with the modulation theory for linear waves (see, for in-
stance, [3]). Indeed, using the definitions of the phase veloc-
ity U [Eq. (17)] and the wave number k=27/£ where £ is
wavelength (21) one can see that in the linear limit A3— N\,
one has

2 —_—
- _o\N-,
(= 11,000y

so U=N\,=V1+k%/4,

)\3 = )\4:k

(106)
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FIG. 18. Comparisons for the asymptotic [(x/M)> 1] amplitude a (left) and wavelength 27/k (right) distributions in the front DSW
generated by the wing with a parabolic profile [Eq. (60)] (L=100,a=0.15) placed in the supersonic NLS flow with the Mach number M
=10. The comparisons between the asymptotic modulation solution (107) (solid line) and numerical solution (circles) are made for a fixed

x=50.

the latter being the linear dispersion relation of the NLS Eq.
(12), wy(k)=kU=k\1+k*/4. Then the right-hand side of Eq.
(103), 2hs—1/Ng=(1+k*/2)/\1+k*/4, is nothing but the
linear group velocity w((k) so Eq. (103) is simply the simi-
larity solution of the kinematic modulation equation ki
+wy(k)ky=0 for the linear wave packet.

Asymptotic behavior (104) of the amplitude is also con-
sistent with the linear wave energy conservation law dra’
+dy[ w((k)a?]=0. However, the function A(\,) defining the
relation of the asymptotic wave amplitude distribution with
the body profile cannot be determined within the linear
theory and requires the full nonlinear analysis presented
here. One should mention that the eventual transformation of
the front DSW into a linear radiation also agrees with the
general reasoning of the inverse scattering transform method
as the initial conditions of the type described in the begin-
ning of this section (see also Fig. 10) represent a “solitonless
potential” having only a continuous spectral component. In-
deed, formulas (103)—(105) could also be obtained via the
inverse scattering transform formalism but the employed
here method via the solution of the Whitham equations ap-
pears to be more direct and efficient for the purpose.

Finally, using Egs. (103)-(106) we represent the
asymptotic amplitude and wave-number distributions explic-
itly in terms of the original spatial variables x and y to per-
form later a comparison with the numerical simulations of
the 2D NLS flow past slender obstacle:

M\'"? [P +8
x,y>la=\—| Al—|,
X 4

k= %\/(T+ V7 +8)* =16, where Tsz. (107)
One can see that k—0 as 7— 1, the latter being the Mach
line in the hypersonic approximation. This will also emerge
in the next section where the trailing (soliton) edge of the
front DSW will be shown to asymptotically approach the
Mach line as x— . A remarkable feature of the asymptotic
wave number k distribution in Eq. (107) is that it does not
depend on the shape and size of the body (provided the con-

ditions of applicability of the piston approximation are satis-
fied). This will allow us to construct an analytic description
of the universal ship-wave pattern generated in the super-
sonic NLS flow past slender bodies.

The amplitude distribution a(x,y) in Eq. (107), on the
contrary, depends, via the function A(\,), on the wing pro-
file. We stress that in spite of the fact that the asymptotic
distribution a(x,y) satisfies the amplitude equation of the
linear modulation theory (see [3]), the determination of the
amplitude dependence on the boundary conditions [i.e., the
determination of the function A(\4)] has required full non-
linear modulation analysis. To explicitly evaluate the func-
tion A(\4) for parabolic profile (60) we just need to know the
function w(z) entering the integral in Eq. (105). Since w(z) is
the inverse of A\, (Y,0) on the interval [Y,,0] it is readily
obtained as

/ aM
=——(aM+1- -—. 108
w(z) 2aM(a z)(z 5 ) (108)
We recall that /=L/M, where L is the length of the wing.
Then the integral in Eq. (105) is evaluated explicitly to give

LI 1/4[ !
Ay =4 w(2x3+1)()\4 D7 P51+ oM

12
—)\4)3/2(8)\4—3aM+2)} . (109)
The comparisons of asymptotic distributions (107) and (109)
with the distributions of a and k obtained from the 2D nu-
merical solution are shown in Fig. 18. One can see a very
good agreement for both distributions.

3. Trailing edge

The leading (outer) edge y*(x) of the DSW is determined
by formula (93). To complete the modulation solution we
need to determine the trailing (inner) edge y~(x) defined by
the soliton condition m=1. As in the straight corner case, we
shall mainly be concerned with the amplitude of the trailing
soliton and its slope as its actual position might differ sig-
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nificantly from the curve y~(x) obtained from the modulation
theory due to the loss of the initial phase (see the relevant
discussion and comparisons with the numerical solution in
Sec. VI B).

In the piston problem terms, we are going to find the
curve Y=Y"(T), where \;=\,=1. Remarkably, the equation
for Y=Y(T) and, as a result, the parameters of the trailing
soliton can be found directly, without using the full modula-
tion solution obtained in the previous subsection. We use the
fact that in the front DSW one has \,=1 (see the previous
subsection) so the matching condition (85) at the trailing
edge assumes the following form:

at Y=Y_(T): )\32)\221, )\42)\+, )\1:—1’

(110)

where \,.(Y,T) obeys simple-wave equation (86). On the
other hand, the curve Y=Y(T) is specified by kinematic con-
dition (44) in which we set the values of \;’s from Eq. (110).
As a result we get a closed system

1 Yy 1
Y—5(3)\+—1)T=w(7\+), E"ZE(I-'_)\J) (111)
along the trailing edge. We introduce in Eq. (111) Y
=Y, (\%), T=T,(\*), and \,=\", where \" is the parameter
along the trailing edge curve so that Y (A*)=0, T,(A*)=0
(since N*(0,0)=A*—see Fig. 16). Next, eliminating Y, we

obtain a single ordinary differential equation for T,(\*),

3
(W= DT 4+ ST+ w () =0, T4 =0, (112)
which is readily integrated to give
! fA+ 12
Ti=—"="35 -1 "(z)dz. 113

Next, substituting Eq. (113) into the first Eq. (111) we obtain
the function Y,(\*) in the form
1

5=£(3)\*— DTN + w(N). (114)
Thus, Egs. (113) and (114) specify the DSW trailing edge
{Y=Y(T):Y=Y,\"), T=T,(\")}. Correspondingly, the geo-
metric location y~(x) of this edge in the physical x,y plane is
given by

y=y (0):y=Y,\), x=MT,\). (115)

Within the NLS modulation theory the position of the trailing
edge determines, up to an inherent phase shift, the location
of the trailing dark soliton. Thus, Egs. (113)—(115) define the
geometric shape of this spatial trailing dark soliton. We note
that, unlike recently found oblique dark solitons generated in
the 2D supersonic NLS flow past small obstacles [29,30],
and stretching along straight lines, the trailing dark soliton in
the front DSW has a curved contour in the xy plane. In fact,
the “bending” of this 2D soliton has the same nature as the
speed variations in a 1D soliton propagating through a non-
uniform medium. Here the nonuniformity is due to the large-
scale density variations in the flow past extended obstacle.

PHYSICAL REVIEW E 80, 046317 (2009)

Using Eq. (113) we obtain an implicit expression for the
variations in the trailing dark soliton amplitude a =2(\"
—1) along the wave crest line y~(x),

23/2M I+aM

Y (z—- D"/ (z)dz.
(a )3/2 1+a™/2

(116)

X =

The relationship between the local slope s~ of the trailing
dark soliton and its amplitude is given by [see Eq. (111)]

_oay

=— 1+a/4).
s i (1+a/4)

(117)

1
M

Since close to the origin, (x,y)—(0,0), we have \;—\,
=1, \y—A*=1+aM we get for the soliton amplitude
a=(0,0)=2(Ns,—N\3)=2aM, so the initial slope of the trailing
edge is s7(0)=1/M+a/2; i.e., it coincides with the slope of
the dark soliton in the DSW generated in the flow past
straight corner [see Eq. (77)] as one can expect (note that this
result does not have much practical significance as the modu-
lation theory performs rather poorly for small x and y).

Next, since the integral in Eq. (116) is O(1) we conclude
that a~~x~?*—0 as x—; i.e., the trailing dark soliton am-
plitude vanishes along the line y~(x) while its slope asymp-
totically approaches the Mach line of the highly supersonic
undisturbed flow: y~"—x/M as x— 1.

There still remains an issue of the transition from the
amplitude decay a~x~"? [Eq. (107)] for the major part of
the DSW to the decay a~x"%3 [Eq. (116)] for the trailing
dark soliton at trailing edge. This matching requires a de-
tailed analysis of the asymptotic behavior of hodograph so-
lution (87) in the small vicinity of the singular point \;
=MN4=1. Such an analysis, while being relatively straightfor-
ward, is beyond the scope of the present paper.

For the parabolic wing profile (60) the function y~(x) de-
fining the location of the trailing dark soliton is given by Eq.
(115), where for T,(\*) we obtain from Eq. (113) by using
formula (108) for the inverse function w(z):

aM
AN=1

32
) - 12\ + 15aM +2 |,

[
T,= —{(10— 3aM)(
30aM

(118)

and for Y,(\*) we have Eq. (114).

And, finally, for the trailing soliton amplitude a™(x) at x
>1 we obtain from Eq. (116) [or directly from Eq. (118)] a
simple implicit formula

l a 3/2
xX=—— (10—3a/M)<—_) —6a +15aM - 10 .
30« a

(119)

One can see that at x=0 one has a”=2aM and a™—0 as x
— 0 as predicted by the general theory. In particular for x
>1 we have the asymptotic behavior of the amplitude along
the soliton wave crest,
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FIG. 19. Comparison for the amplitude decay along the trailing
dark soliton. Solid line: asymptotic modulation solution (119);
circles: the amplitude values from the direct numerical simulation.
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The comparison of amplitude behavior (119) along the DSW
trailing edge with the numerical simulation data is shown in
Fig. 19. One can see a good agreement between the analyti-
cal curve and numerical solutions for large enough [as ex-
pected from the range of validity of Eq. (119)] values of x.

We note that dependencies (116) and (117) have been de-
rived under an implicit assumption that the “time” x/M of
the establishment of the trailing dark soliton in the DSW is
much less than the typical modulation time scale ~L/M, i.e.,
under the assumption that the DSW is fully established. This
assumption works quite well for the straight-wedge-type pro-
files studied in Sec. VI but it may fail for the wing-type
profiles with sufficiently rapidly decaying derivative so that
condition [f"(§)| <1 is not satisfied for a significant part of
the profile [or, in terms of asymptotically equivalent initial
conditions (52) the inequality being |d\,(Y,0)/dY|<1]. In
that case, the trailing soliton establishes itself very slowly
and realizes only asymptotically for x> L (see [52] for the
analysis of a similar issue in the context of the KdV equa-
tion). Taking into account that the amplitude of this “slowly
developing soliton” decreases with x on the scale ~L, its
behavior for finite x/L could actually be rather well approxi-
mated by the linear theory (see the next section). At the same
time, one should stress that dependence (116) of the values
of the trailing soliton amplitude on the obstacle size and
shape cannot be found within the linear theory. Determina-
tion of this dependence requires full nonlinear analysis (ei-
ther modulation or IST-based)—see the discussion in Sec.
VII A 2.

4. Extension of the modulation solution: the ship-wave pattern

The modulation solution obtained in Sec. VI A 2 is de-
fined within the domain y~(x) =y =y*(x) and implies that the
wave amplitude vanishes at the outer (leading) DSW edge
y*(x) and outside of the DSW region flow is assumed to be
constant. At the same time, the boundary y=y*(x), associated
with the linear group velocity, is not a wave crest line so it is
clear that one should be able to extend the wave crests be-
yond the DSW boundary. Indeed, it is clearly seen from the
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results of numerical simulations (see the density plots in
Figs. 11-13) that the wave crests do not stop at the external
boundary of the modulation solution and the small (but quite
noticeable) oscillations are present outside the DSW. To re-
solve this apparent contradiction one can notice that the van-
ishing of the amplitude at y=y*(x) for the DSW modulation
solution does not necessarily imply that the actual wave am-
plitude turns into zero; this simply means that the oscillations
are linear. To capture these linear oscillations occurring for
y>y*(x) we introduce a small-amplitude wave packet as a
natural extension of the DSW and will use the linear modu-
lation theory for its description.

In linear modulation theory the equation for the wave am-
plitude is decoupled from the equation for the wave number
(see [3]) so one can put a=0 and consider the “wave conser-
vation” law separately. We note that such an extension, while
being automatically consistent with the DSW modulation so-
lution at y=y*(x), is not quite trivial as the linear modulation
theory is not valid inside the DSW region, even in a small
neighborhood of the zero-amplitude leading edge y*(x)—see
[53]. We note that the modulation solution for the wave num-
ber in the linear wave packet has already been obtained, this
is Eq. (103) [see the explanation after formula (105)], so we
simply postulate that this solution describes the wave distri-
bution for y>y*(x).

In effect, modulation solution (103) enables one to derive
the two-dimensional ship-wave pattern generated by the
front edge of the obstacle. To this end, we notice that, up to
an arbitrary initial phase ®,e[0,27], the local angular
phase of the two-dimensional “traveling” wave is given by
[see Eq. (18)]

X k, K
®=ky0=ky<y— UM) =kyy—5/1L 1 +—4lx, (121)

hence, the wave vector of the modulated linear wave is equal

to
k, | K
k:(——‘ 1+—‘—,ky).
M 4

As in the 2D theory of ship waves produced by a pointlike
obstacle in the supersonic NLS flow [31,32], we introduce
the angle y between the radius vector r and the x axis, i.e.,
the flow direction, and the angle 7 between the wave vector
k and —x axis (see Fig. 20, left):

(122)

k = (- [k|cos 7,

k|sin 7).
(123)

r=(r cos x,r sin x),

Then Eq. (122) leads to the following expression for the
wave-vector length:

2 o2 1
k| = 2VM f:ot n—1 (124)
sin 7
in the hypersonic approximation. One should emphasize that
the wave number k defined by Eq. (106) and occurring in
zero-amplitude limit (103) of the one-dimensional piston ap-
proximation of the DSW modulation solution is consistent
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(a) (b)

FIG. 20. (Color online) Left: the wave crest geometry in the
NLS ship-wave pattern. The wave vector k is normal to the wave
crest line which is shown schematically by a curve. Right: the the-
oretical wave crest lines in the ship-wave pattern (solid lines); the
DSW boundaries determined by the modulation solution are shown
by the dashed line.

with the y component &, of the full two-dimensional vector k
[Eq. (122)]. Hence, the substitution of

Na=1+K4=1+[k]sin> 94 =M cot (125
into Eq. (102) yields the relationship between y and 7,
(126)

Now we notice that Egs. (124) and (126) are nothing but the
highly supersonic approximation of the ship-wave theory de-
veloped earlier [31,32] for the case of a localized pointlike
obstacle. Indeed, in this theory the length of the wave vector
is given by the expression

—_——
k| =2VM? cos® -1,

tan y =2 cot z—tan 7/M>.

(127)

which in our hypersonic approximation can be easily trans-
formed to

N

k| =2 sin VM cot? n—1. (128)

This expression is approximately equal to Eq. (124) if
sin =1, that is,

tan 7> 1, or |k/k|> 1. (129)
In a similar way, the relation
1 + [k|*/2)tan
tan = Ltk /2)an 7 (130

M?* - (1 +|k[*/2)
between the angles y and # for the pointlike obstacle case in

the hypersonic limit can be cast into the form

tan’ 7
t = - s 131
anx 2p-1 M?(tan*> n-1) (131)

and again this formula is reduced to Eq. (126) under condi-
tion (129) which means that the flow parameters change
much slower in the x direction than in the y direction what is
assumed in our approach. Thus, we have arrived at a remark-
able result: the solution of the Whitham equations describing
the DSW region turns out to coincide for x, y>1 with the
corresponding approximation of the linear ship-wave theory
describing the waves outside the DSW. Thus, the far-field
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asymptotic solution (107) is not restricted to the DSW region
and can be used for the description of the whole flow at the
distances sufficiently far from the front edge of the wing.

This observation permits us to extend the wave crest lines
to the whole region outside the Mach cone. It remains only
to show that the ship-wave pattern produced by a slender
body can be approximated by the pattern produced by a
pointlike obstacle. To this end we turn to the formula for
oscillations of density in the ship-wave theory (see Eq. (20)
in [32]),

5o j V(k)|k|>e®T dk (132)
"7 ) U - KP(L+ [KPr) 2
where U=(M,0) and
V(K) = f V(r)e ®Tdr (133)

is the Fourier image of the potential V(r) created by the
obstacle. The integral over wave-vector length |k| can be
estimated as contribution of the poles in Eq. (132) which
depends on the dispersion relation only. Moreover, for ob-
stacles with a sharp form their Fourier images must include
wide range of harmonics and, hence, they are smooth func-
tions of k. Therefore, in the integration over directions of k
performed for |k-r|>1 by the stationary phase method (see
[32]) the main contribution is given by a stationary point of
the phase k-r which, again, does not depend on the function
V(k). This yields relation (130) and, subsequently, the para-
metric formulas for the wave crest lines,

40 5
x= @cos (1 =M~ cos 27),

40
y=—=sin p(2M? cos®> 7—1), (134)

"I
where @ =27,41,67,..., the wave vector |Kk| is given by Eq.
(127) and 7 changes formally in the range

—arccos(1/M) = n =< arccos(1/M). (135)

In the limit cos 7> 1/M the crest lines take a parabolic
form

M 2 (136)

My)=-—+ oY

This limit corresponds to the region located not too far from
the front edge of the obstacle.

In the opposite limit, when cos n— 1/M the crest lines
converge asymptotically to the straight lines parallel to the
Mach cone lines:

Y= (137)

It is important to note that the obtained expressions for the
geometry of the wave crest lines do not depend on the open-
ing angle « of the obstacle and, hence, on the slope of the
outer edge y*(x) of the DSW. Indeed, as we have shown,
although in the Whitham approximation the amplitude of the
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FIG. 21. (Color online) Comparison of the universal ship-wave
pattern (134) for a slender body (dashed lines) with the wave crest
lines in the supersonic NLS flow past the front edge of the parabolic
wing profile (60) with @=0.15 and L=100. The oncoming flow
speed is M=10.

wave vanishes at y*(x), the curves of the wave crest lines can
be continued outside this DSW boundary where they repre-
sent the spatial distribution of the small-amplitude linear
waves. For this reason the linear ship-wave pattern can be
viewed as a natural continuation of the wave crest distribu-
tion in the oblique spatial DSW. However, when we go in-
side the DSW region along the wave crest line, the amplitude
of the DSW gradually increases and the linear approximation
loses its applicability. In an established (strongly nonlinear)
DSW, the shape of the wave crests is determined by the
shape of the obstacle (see Sec. VII A 3). But for the profiles
with sufficiently rapidly decaying derivative the DSW estab-
lishment “time” x/L is rather large (see the discussion in the
end of Sec. VII A 3) so the linear approximation works quite
well in a wide region around the front tip of the obstacle
including the neighborhood of the outer boundary of the
DSW. This is illustrated in Fig. 21 by the comparison of the
analytical predictions given by Eq. (134) with the results of
full 2D numerical simulations.

B. Flow past rear edge of a wing

Now we consider the DSW generated by the flow past the
rear edge of the wing [see Fig. 22 (left)]. The corresponding
initial profile of the Riemann invariant A, is given by Eq.
(52) for Y, <Y<Y, and by Eq. (56) for ¥,<Y<Y,. We
recall that Yo=f(xo)—xo, Yi=—[3f'(1-0)+1]l, Y,=—1, and
N.(Y1,0)=1+f'(I-0) [see Egs. (54) and (55)]. The second
invariant is constant, \_=—1. A typical form of the function
N\.(Y,0) is schematically shown in Fig. 22 (right). The evo-

F(x)

(a) Xy l X

PHYSICAL REVIEW E 80, 046317 (2009)

lution of the “potential well” N, (Y,T) leads to the wave
breaking at

B Y, - Y,
V+(1,_ 1) - V+()\+(Y1’O)’_ 1)
Yb= Y2+ V+(1,— I)Tb=0,

Tb = l,

(138)

which simply means that the rear DSW spreads directly from
the rear end point of the wing (see Fig. 4). A typical profile
of \,(Y,T},) is shown in Fig. 23 (left).

Thus, for 7> T, one has a DSW forming behind the body
(see region IV in Fig. 4). This DSW can be described by the
modulated traveling wave solution analogous to that con-
structed in the previous section for the front DSW. The main
difference is that now one has the Riemann invariants A3 and
N\, varying within the modulation solution while A;=—1 and
Ns=1 [see Fig. 23 (right)]. As a result, the modulation solu-
tion yields that as T— o0 one has A\, —\; (i.e., m— 1) every-
where except some small vicinity of the leading edge where
N3;=1 and m—0. That means that the rear DSW for x> 1,
y>1 asymptotically transforms into a soliton train (a fan of
oblique dark solitons). Of course, such a behavior is to be
expected as the initial profile of A, [see Fig. 22 (right)] cor-
responds to a large-scale “potential well” in the associated
scattering problem in the Zakharov-Shabat IST formalism
for the 1D NLS equation, and, therefore, leads to a semiclas-
sical distribution of the bound states, each linked to a dark
soliton in the NLS equation solution [13,43].

Thus, if one is interested in the asymptotic structure of the
flow in the region far enough from the body where the rear
DSW transforms into a “fan” of spatial solitons well sepa-
rated from each other, there is no need to derive the full
modulation solution. As was shown in Refs. [13,43], each
soliton in the soliton train evolving from the initial “well” is
parametrized by the eigenvalue A=\, found from the gener-
alized Bohr-Sommerfeld quantization rule, consistent with
the Whitham approximation used before,

— 1
3@ VN =N\ - )\_)dY:27-r(k+ 5), k=0,1,....K,

(139)

where in our case A\,=\,(Y,0) is given by Egs. (52) and
(56), \_=-1, and the integration is taken over the cycle
around two turning points defined by N\=\,(Y,0). The kth
soliton amplitude g, is related with the eigenvalue \; by

FIG. 22. Left: profile of the rear edge of a wing in the upper half plane. Right: asymptotically equivalent initial condition for A,.
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(b)

FIG. 23. Left: profile of the Riemann invariants N, at the point of wave breaking, T=T,. Right: schematic behavior of the Riemann

invariants in the modulation solution for rear DSW, 7> T},

ap=1-\}. (140)

Returning to spatial coordinates (9), we find the profile of the
N, soliton in the train as (see [13])

1-\}
cosh{\V'1 = N[y = (\/M)x]}

mlx,y) =1 41)

that is, the fan of spatial dark solitons is made of soliton
“feathers” lying asymptotically along the lines

y=(\/M)x, k=0,1,... K, (142)

in the upper half plane and symmetric fan of solitons is gen-
erated in the lower half plane.

Remarkably, distribution (139) is invariant with respect to
the evolution, up to a breaking point at 7=T,, of the Rie-
mann invariant \,, described by simple-wave equation (50)
[which is consistent with the dispersionless limit of the NLS
Eq. (12)]. Indeed, it is not difficult to show that Eq. (50)
implies that

[N=A)(N+ 1)dY =0. (143)

f

o)
Property (143) can be viewed as a semiclassical analog of
isospectrality of the 1D NLS evolution (see [43]). Thus, the
initial profile of A, is defined up to deformation (50) and,
thus, should not necessarily be a single-valued function as in
Fig. 23 (see also the discussion in Sec. V).

For parabolic profile (60), the function A,(Y,0) corre-
sponding to the rear part of the wing is specified by formulas
(61) and (62) in the interval ¥, <Y <Y, and \,=1 outside of
this interval. It has its minimum at ¥;:\,(Y,,0)=1—aM.

Now the integral in Eq. (139) is evaluated in a closed
form giving the equation for the bound states N=N\;:

INN+1

1
(N=1+aM)*BaM + 8\ +2) = 277(k + —),
15aM 2

k=0,1,...,N. (144)

The physically meaningful roots A, lie in the interval 1
—aM <\, <1. It immediately follows from the requirement
A, >A_=-1 that one must also impose a restriction that
aM <2 (for aM >2 the description should be modified as
the vacuum point appears at y=0). The greatest root Ay has
the value close to unity so that the number of solitons in the
fan can be estimated by putting \,=1, k=N in Eq. (144), i.e.,

121
N~ —-Z(ab) (10 + 3aM).

145
27 15 (145)

Semiclassical formula (144), strictly speaking, is asymptoti-
cally valid as long as N> 1, which, by Eq. (145) presumes
rough general criterion /(aM)'>> 1. However, as is often the
case with the Bohr-Sommerfeld-type distributions, formula
(144) works reasonably well for a much broader range of
parameters. Say, for /=10, @=0.15, M=10 one has just three
physical roots of Eq. (144), which agrees with three dark
solitons observed in numerical solution (see Fig. 15). The
comparisons between the predictions of Eq. (144) and the
numerical simulations data for the amplitudes a; and slopes
s, of the oblique dark solitons are presented in Table 1. One
can see that, taking into account the inherent in the hyper-
sonic approximation error O(1/M) for the soliton amplitude
and O(1/M?) for the slope, the comparison should be viewed
as quite favorable.

TABLE 1. Comparisons between the predictions of Eq. (144) and the numerical simulations data for the
amplitudes @; and slopes s; of the oblique dark solitons forming in the flow with M =10 past a parabolic wing

with /=10 and a=0.15.

k )\k le=1—)\i ay (num) Sk=}\k/M Sk (num)

0 0.2915 0.9150 0.9170 0.0291 0.02
0.7101 0.4957 0.5689 0.0710 0.06

2 0.9649 0.0688 0.1903 0.0964 0.09
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VIII. DISCUSSION

In this paper, we have constructed an asymptotic theory of
the supersonic flow of a superfluid past slender bodies. The
theory is constructed in the framework of the 2D defocusing
NLS equation with the impenetrability condition at the body
surface and the condition of an equilibrium steady flow with
Mach number M at infinity. The description is made under
the following assumptions: M>1, a<<l, and Ma=0(1),
where « is the body slenderness parameter (e.g., the opening
angle of a wing or a wedge). Under these assumptions we
have asymptotically (with respect to the small parameter
1/M) reduced the original two-dimensional stationary
boundary-value problem for the time-independent 2D NLS
equation in the x,y plane with the oncoming flow along the x
axis to the dispersive piston problem for 1D defocusing NLS
equation, in which the role of time is played by the stretched
x coordinate, T=x/M, and the spatial variable is the trans-
verse coordinate y. The flow is globally described using the
semiclassical approximation of the NLS equation, when the
solution is governed by the dispersionless limit equations
(the shallow-water system) in the regions of nonoscillating
flow and by the Whitham modulation equations in the re-
gions of dispersive shock waves, representing rapidly oscil-
lating expanding nonlinear wave structures. We use the so-
called Gurevich-Pitaevskii formulation of the problem to
match the solutions of the Whitham equations with the solu-
tions of the shallow-water equations at free boundaries. The
full modulation solutions are constructed and analyzed for
two canonical cases of the supersonic flow past bodies: the
flow past infinite straight corner (a wedge) and the flow past
a wing. Our analytical solutions are supported by direct 2D
unsteady numerical simulations.

We now summarize the main results of the paper as fol-
lows:

(i) We have shown that the highly supersonic NLS flow
past 2D slender bodies is accompanied by the generation of
two DSWs with contrasting asymptotic properties.

(ii) By making the comparisons of the numerical solutions
for the 2D problem of supersonic flow past infinite wedge
with the 1D numerical and analytical modulation solutions of
the associated dispersive piston problem we have shown that
the piston problem describes the arising 2D wave patterns
remarkably well for sufficiently large Mach numbers.
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(iii) Using the dispersive piston approximation, we have
constructed exact modulation solutions for the problems of
the supersonic NLS flow past a straight infinite wedge and a
slender wing.

(iv) By analyzing the asymptotic behavior of the obtained
modulation solution for the front DSW in the flow past a
wing we have derived the distributions of the amplitude a
and the wave number k far enough from the front edge of the
wing [Eq. (107)]:

M\'"? [+ \J'T—i—S
x,y=>la=|—| Al ——|,
X 4

l /
kEE\/(T+ V7 +8)% =16, where TZMX, (146)
X

where the function A(§) is given by Eq. (107). These distri-
butions describe the Kelvin-Bogoliubov ship-wave pattern
and relate it, via the function A(¢), with the geometric pa-
rameters of the wing

(v) The distribution of oblique dark solitons in the rear
DSW is obtained using the generalized semiclassical Bohr-
Sommerfeld quantization rule.

The theory developed in this paper could find the appli-
cations to the description of Bose-Einstein condensates be-
havior in current experiments on loading of ultracold quan-
tum gases in traps, their coherent manipulation, and
transport. Such processes are now under intense investiga-
tions in atom chips—microfabricated, integrated devices in
which electric, magnetic, and optical fields can confine, con-
trol, and manipulate cold atoms. An understanding of the
interplay of dispersive and nonlinear properties in Bose-
Einstein condensate dynamics is of crucial importance for
the effective use of these devices which have very promising
technological applications.
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