FÍSICA FA 1 AUTO-INSTRUTIVO

- SISTEMA INTERNACIONAL DE UNIDADES
- FUNÇÕES E GRÁFICOS
- MOVIMENTO RETILÍNEO

FÍSICA FAI AUTO-INSTRUTIVO

GETEF - GRUPO DE ESTUDOS EM TECNOLOGIA DE ENSINO DE FÍSICA

Coordenadores:

Fuad Daher Saad Paulo Yamamura Kazuo Watanabe

Autores:

Fuad Daher Saad Instituto de Física — USP Prof. efetivo de Física do Col. Est. "Prof. Wolny Carvalho Ramos"

Paulo Yamamura Instituto de Física — USP Prof. efetivo de Física do Col. Est. "Idalina Macedo da Costa Sodré"

Kazuo Watanabe Instituto de Física — USP Faculdade de Tecnologia de São Paulo

Norberto Cardoso Ferreira Instituto de Física — USP Prof. efetivo de Física do Col. Est. "Assis Chateaubriand"

Denitiro Watanabe Instituto de Física — USP Prof. efetivo de Física do Col. Est. "Mário Casassanta"

Dononzor Sella Instituto de Física – USP Colégio "Santa Cruz"

Iuda Dawid G. Legbman Instituto de Física – USP

João André Guillaumon Filho Instituto de Física — USP

Yashiro Yamamoto Instituto de Física — USP

Wanderley de Lima Instituto de Física – USP

Yamato Miyao Instituto de Física — USP

Dr. Shozo Motoyama Instituto de História — USP Prof. efetivo de Física do Col. Est. "Antonio Raposo Tavares"

Maria Amélia M. Dantas Instituto de História – USP

Marcelo Tassara Faculdade de Comunicações e Artes — USP

Eda Tassara Instituto de Psicologia — USP

Wilson Carron Prof. efetivo de Física do Col. Est. "Profª Eugenia Vilhena de Moraes" — Ribeirão Preto

Cláudio Chagas Col. Est. Prof. "Wolny Carvalho Ramos"

José André P. Angotti

Oziel H.S. Leite

José F. M. Santos

AO ESTUDANTE

O trabalho que ora lhe apresentamos tem por objetivo dar a você condição de aprender uma parte substancial da Física Fundamental. São tratados assuntos que vão desde as primeiras leis elementares de movimento, passando pela análise dos conceitos de energia, movimentos complexos, etc., até noções básicas da Física Moderna. Quanto à importância prática da Física Fundamental, é desnecessário ressaltar. Entretanto, para sua compreensão e para seu uso eficaz, exigem-se conhecimentos razoavelmente detalhados.

Tendo em vista tal fato, este volume é constituído de textos programados, cujo conteúdo foi cuidadosamente analisado e apresentado em pequenos passos (itens). Em cada passo é fornecida uma certa informação e, logo em seguida, uma ou mais questões são apresentadas. Você deverá ler atentamente e escrever a resposta à questão formulada em espaço próprio ou desenvolver à parte. Tendo respondido, deverá verificar se sua resposta corresponde a um acerto, comparando-a com aquela correta apresentada logo a seguir.

Suas respostas servem de informação aos passos seguintes. Por isso, e por outros motivos, escrever a resposta é essencial. É essencial, também, que você escreva sua resposta antes de olhar a correta. Uma olhadela à resposta correta, ainda que bem intencionada, só poderá dificultar sua tarefa no futuro. Uma boa norma é fazer resumos de assuntos estudados, ressaltando pontos importantes.

As aparentes repetições que você poderá notar no texto foram incluídas porque há razão para tal. Não pule itens. Siga com o trabalho continuamente.

Se começar a notar que suas respostas não estão sendo correspondidas, é possível que você não tenha estudado o texto atentamente. Nesse caso, reestude o texto, antes de passar adiante. Se persistir a dificuldade, talvez você não esteja utilizando o texto adequadamente. Para sanar eventuais falhas peça auxílio a seu professor.

Este trabalho é um desafio: você é o responsável pelo seu aprendizado. Livre de esquemas tradicionalmente conhecidos, você irá trabalhar para criar dentro de si a satisfação de uma auto-realização, de ter enriquecido seu repertório e de sentir o sabor de um êxito constante cada vez maior.

Os autores

CAPÍTULO I

Introdução ao Sistema Internacional de Unidades.

OBJETIVOS: Ao final deste capítulo o estudante deve estar apto para:

- a. operar com as unidades padrões.
- b. operar com múltiplos e submúltiplos das unidades padrões.
- c. operar com unidades derivadas.
- d. escrever o resultado de operações e de medidas em notação científica.
- e. efetuar operações e medidas levando em consideração os algarismos significativos.

SEÇÃO 1 - NOTAÇÃO CIENTÍFICA OU NOTAÇÃO EM POTÊNCIA DE 10

e a distância média entre a Terra e o Sol é cerca de 149 000 000 000 metros. Para evitar, entre outros, o problema de escrever números com muitos algarismos, os cientistas introduziram a notação científica, utilizando-se para tal da potência de 10. Desta forma, a massa de um elétron é expressa da seguinte forma: 9,11 × 10⁻³¹ kg e a distância média entre a Terra e o Sol, 1,49 × 10¹¹ metros.

Nesta seção entraremos em contato com esta nova maneira de expressar os números provenientes de medidas físicas; para tal, vamos recordar algumas coisas sobre potências de base 10.

A - NOÇÕES BÁSICAS DE POTENCIAÇÃO - POTÊNCIA DE 10

- 1 = $10 \times 10 = 10^2$ $10 \times 10 \times 10 = \frac{10^3}{10^3}$ (potência de 10)
 - ****

 10^{3}

2 = 104 = 10 X 10 X 10 X 10

10; 10; 10; 10

3 = 10 000 000 = 10 (potência de 10)

107

4 ■ 10⁷. Esta é a representação em to la composição do número 10 000 000. A base da potência é o número lo composição en e o expoente é o número.

potência de 10; 10; 7

10° = 1 (Qualquer número elevado ao expoente zero é igual a 1.)

 10^{3}

$$6 = 10^2 \times 10^{-7} = 10^{-5}$$

$$8 = 10^4 : 10^2 = \frac{10^4}{10^2} = \frac{10^4 \times 10^2}{10^2}$$
 (transfira a potência do denominador para o numerador)

 $10^4 \times 10^{-2}$

$$9 = 10^4 : 10^2 = \frac{10^{4.7}}{10^2}$$
 (realize a operação)

 $10^{4-2} = 10^2$

10 ■ A divisão de potências (pode; não pode) ser transformada em multiplicação de potências. Para tal devemos transferir a potencio do de como - o (complete).

pode; a potência do denominador para o numerador

11 ■ Para dividir potências de mesma base podemos primeiro transformar a divisão numa multiplicação; para tal, devemos transferir a potência do de de para o numerador.

denominador

12 ■ Uma regra prática: no resultado da divisão de potências de mesma base, (conserva-se; não se conserva) a base e o expoente é o expoente da potência que está no numerador (mais; menos) o expoente da potência que está no denominador.

conserva-se; menos

10-5

$$10^{-12}$$

$$10^{-12}$$

$$16 = 10^2 : 10^{-2} = \frac{10^{-2}}{10^{-2}} = 10^{-2} = 1$$

$$10^4$$
, pois $10^{2-(-2)} = 10^{2+2} = 10^4$

EXERCÍCIOS DE REVISÃO

1 Realize as seguintes operações:

a)
$$10^3 \times 10^4 \times 10^2 =$$

d)
$$10^{-5}$$
 : 10^{4} =

b)
$$10^{-3} \times 10^{4} \times 10^{-2} =$$

e)
$$10^6 : 10^{-1} =$$

c)
$$10^{-4} \times 10^{-6} \times 10^{4} \times 10^{8} =$$

f)
$$10^4 : 10^4 =$$

2 Realize as seguintes operações, em potência de 10:

a)
$$0.01 \times 1000 =$$

d)
$$100:0,1=$$

b)
$$0,0001 \times 0,001 =$$

e)
$$1000:10 =$$

3 m Realize as seguintes operações:

a)
$$\frac{10^6 \times 10^{-2}}{10^{-6}}$$
 =

b)
$$\frac{10^6}{10^{-2} \times 10^4}$$
 =

c)
$$\frac{10^{-3} \times 10^{-2}}{10^{3} \times 10^{-8}} =$$

RESPOSTAS

c)
$$10^2$$

c)
$$10^2$$
 d) 10^{-9}

e)
$$10^7$$

c) 10^{-2} : $10^3 = 10^{-5}$

e)
$$10^7$$
 f) $10^0 = 1$

2. a)
$$10^{-2} \times 10^{3} = 10$$

d) $10^2 : 10^{-1} = 10^3$

b)
$$10^{-4} \times 10^{-3} = 10^{-7}$$

e) $10^3 : 10 = 10^2$
c) $10^0 = 1$

e)
$$10^3 \cdot 10 = 10^2$$

c)
$$10^{\circ} = 1$$

C - NOTAÇÃO CIENTÍFICA

 $1 = 24 = 2,4 \times 10^{1} = 2,4 \times 10$

2 No número 24 a vírgula que localiza a casa decimal encontra-se implicitamente logo (à esquerda; à direita) do algarismo 4.

à direita

3 ■ 24 = 2,4 × 10¹. Nesta transformação, a vírgula que localiza a casa decimal foi deslocada (uma casa; duas casas) para a _____. O deslocamento de uma casa para a esquerda corresponde a multiplicar pela potência ____, de modo que o número permanece inalterado.

uma casa; esquerda; 101

4 = 235 = 2,35 X (potência de 10)

 10^{2}

25	■ 68,9 × 10 ⁴ (está; não está) escrito em notação científica porque 68,9 não está compreendido entree

	não está; 1; 10
26	Escreva a massa de um elétron, 0,0000000000000000000000000000000000

	$9,11 \times 10^{-31} \text{ kg}$
27	Escreva 273,5 em notação científica.

	$2,735 \times 10^2$
28 1	Escreva 273,5 × 10 ⁻² em notação científica.

	$2,735 \times 10^{\circ}$; como $10^{\circ} = 1$ a resposta é $2,735$
29 =	Expresse 23,75 × 10 em notação científica.

	$2,375 \times 10^2$
30 =	Expresse 45,3 × 10 ⁻² em notação científica.

	$4,53 \times 10^{-1}$
31 🛚	Expresse 45,3 × 10 ² em notação científica.

	$4,53 \times 10^3$
32 ₪	Expresse 0,45 × 10 ⁻² em notação científica.

	$4,5 \times 10^{-3}$
33 ■	Expresse 0,00378 em notação científica.

	$3,78 \times 10^{-3}$
٠.	
34 ■	Expresse a distância média entre a Terra e a Lua, 380 000 km, em notação científica. Você poderá desprezar
	os zeros finais no resultado final. Mais tarde você aprenderá a razão deste procedimento.
	3.8×10^{5} km
	2,0 × 10 × Mil
35 ₪	O raio médio da Terra é cerca de 6 370 000 metros. Escreva esta distância em notação científica.

	$6,37 \times 10^6$ metros
36 ■	A população da cidade de São Paulo é cerca de 5 300 000 habitantes. Escreva este número em potência
	de 10

	5,3 × 10 ⁶ habitantes

N

- 37
 O país mais populoso do globo apresenta uma população com cerca de 800 milhões de habitantes. Expresse a população desse país em notação científica.
 - *****
 - 8 X 108 habitantes

EXERCICIOS DE REVISÃO

- 1 Expresse em notação científica:
 - a) 0,00991
 - b) 0,00054
 - c) 0,584
 - d) 0,000078
 - e) 0,059
 - f) 0,0000098

- g) 67,8
- h) 255,6
- i) 6789
- i) 72
- k) 584
- 1) 8 000 000 000
- 2 Expresse os números abaixo em notação científica:
 - a) 0.56×10^{-6}
 - b) 12.0×10^4
 - c) $24,2 \times 10^{-2}$
 - d) $242 \times 10^{\circ}$

- e) 0.56×10^6
 - f) $12,0 \times 10^{-4}$
 - g) $24,2 \times 10^2$
 - h) 10 × 10⁻³
- 3 = Identifique, nos exemplos abaixo, os números que não estão expressos em notação científica:
 - a) 5,6
 - b) 56×10^{2}
 - c) $2,0 \times 10^{-10}$
 - d) $242 \times 10^{\circ}$

- e) 4 X 10
- f) 2
- g) 10×10^{1}
- h) 10×10^{-3}

RESPOSTAS

- 1. a) 9.91×10^{-3}
- b) 5.4×10^{-4}
- c) $5,84 \times 10^{-1}$
- d) 7,8 × 10⁻⁵

- e) 5.9×10^{-2}
- f) 9,8 × 10⁻⁶
- g) 6,78 X 10
- h) $2,556 \times 10^2$

- i) $6,789 \times 10^3$
- j) 7,2 × 10
- k) $5,84 \times 10^2$
- 1) 8×10^9

- **2.** a) 5.6×10^{-7}
- b) $1,20 \times 10^5$
- d) $2,42 \times 10^2$

- e) 5.6×10^{5}
- f) $1,20 \times 10^{-3}$
- c) $2,42 \times 10^{-1}$

- 3. b) d)

g)

- h)
- g) $2,42 \times 10^3$
- h) 1,0 × 10⁻²
- D MULTIPLICAÇÃO E DIVISÃO DE NÚMEROS EXPRESSOS EM NOTAÇÃO CIENTÍFICA
- 1 = $(2 \times 10^2) \times (3 \times 10^1) = (2 \times 3) \times (10^2 \times 10^1) =$ _____
 - *****
 - 6×10^{3}
- **2** $(4 \times 10^{-2})(3 \times 10^{4}) = ___ \times ___ \cdot 10^{-2} \times 10^{4} = ____$
 - *****
 - 4; 3; $12 \times 10^2 = 1,2 \times 10^3$
- $3 = 2,4 \times 10^{-4}$ vezes $5 \times 10^{3} =$
 - *****
 - $1,2 \times 10^{\circ}$; como $10^{\circ} = 1$, a resposta é 1,2.

 $4 = 5,4 \times 10^{-4}$ vezes $2 \times 10^{-2} =$

 $1,08 \times 10^{-5}$

5 Para multiplicar números expressos em notação científica devemos multiplicar separadamente os números M

e as _____

potências de 10 respectivas (propriedade associativa)

 $6 = 4 \times 10^2 : 2 \times 10^1 =$

 $(4:2)(10^2:10^1) = 2 \times 10^{2-1} = 2 \times 10^1$

 $7 = 6 \times 10^5 : 2 \times 10^{-2} =$

 3×10^{7}

8 ■ Divida 3,0 × 10⁶ por 1,5 × 10⁻².

 $2,0 \times 10^{8}$

9 Divida 15 por 0,00075; antes, porém, expresse-os em notação científica.

 $1,5 \times 10 : 7,5 \times 10^{-4} = 0,2 \times 10^{5} = 2 \times 10^{4}$

EXERCÍCIOS DE REVISÃO

1 Multiplique e expresse o resultado em notação científica:

a) 2×10^4 por 2×10^{-7}

b) 5.4×10^{-2} por 2×10^{4}

2 Efetue a divisão:

a) $2 \times 10^4 : 2 \times 10^{-7}$

b) $5.4 \times 10^{-2} : 2 \times 10^{4}$

3 ■ Efetue as operações:

a) 0,04 : 0,005

b) 0.04×0.005

c) $\frac{0,072 \times 25640}{128 \times 36}$

RESPOSTAS

- 1. a) 4×10^{-3}
- b) $1,08 \times 10^3$
- 2. a) 1×10^{11}
- b) 2,7 × 10⁻⁶
- 3. a) $8 \times 10^0 = 8$
- b) 2 X 10⁴

c) 4 X 10⁻¹

SEÇÃO 2 — INTRODUÇÃO AO SISTEMA INTERNACIONAL DE UNIDADES

Os problemas referentes à metrologia, a ciência das medidas, sempre estiveram ligados ao desenvolvimento industrial. O marco mais importante dentro da História da Metrologia foi, sem dúvida, a Convenção do Metro, fruto da Revolução Francesa e do florescimento da era industrial.

Com o rápido desenvolvimento científico e industrial, foram surgindo unidades não abrangidas pelo sistema métrico, notadamente as elétricas. Surgiu então a necessidade de unificação, em virtude do crescimento do intercâmbio científico e industrial. Foram propostas diversas reuniões e congressos, que culminaram com a 11.ª Conferência Geral de Pesos e Medidas, realizada em Paris de 11 a 20 de outubro de 1960, com a adoção do Sistema Internacional (SI).

No Brasil, o SI foi implantado pelo Decreto n.º 52.423, de 30 de agosto de 1963 e tornou-se o nosso sistema legal de unidades. Entretanto, segundo este decreto, continuam a ser toleradas certas unidades não pertencentes ao SI (por exemplo, o cavalo-vapor, o quilogrâmetro, a atmosfera e outras).

As grandezas adotadas como fundamentais no SI são: comprimento; massa; tempo; intensidade de corrente elétrica; grau termométrico e intensidade luminosa.

Nesta seção desenvolveremos apenas as unidades de comprimento, massa e intervalo de tempo. Com o decorrer do curso, outras unidades fundamentais serão analisadas.

A - UNIDADE PADRÃO DE COMPRIMENTO - MÚLTIPLOS E SUBMÚLTIPLOS

O metro é a unidade padrão de comprimento. É definido como "o comprimento igual a 1 650 763,73 comprimentos de onda no vácuo da radiação correspondente à transição entre os níveis 2p₁₀ e 5d₅ do átomo do criptônio 36". (símbolo: m)

cripto	onio 36". (símbolo: m)
1 =	O metro (m) é a unidadededo SI.

	padrão; comprimento
2 =	O metro admite unidades múltiplas e submúltiplas. O comprimento correspondente a 1 m pode ser dividido em 100 partes iguais. Cada parte é denominada(símbolo:)

	1 centímetro; cm
3 =	1 m = centímetros (em potência de 10)

	10 ²
4 =	1 cm é uma unidade (múltipla; submúltipla) do padrão metro. O cm (é; não é) uma unidade padrão.

	submúltipla; não é
5 m	1 m = cm (potência de 10) 2 m = cm (potência de 10)

	10^2 ; 2×10^2
6 ■	$1 \text{ m} = 10^2 \text{ cm}$
	0,8 m =cm

	$0.8 \times 10^2 = 8 \times 10$
7 =	$0.75 \text{ m} = \underline{\hspace{1cm}} \text{cm}$

	$0.75 \times 10^2 = 7.5 \times 10$

8 =	Para converter metros em centímetros devemos (multiplicar; dividir; somar) a quantidade que representa a medida por 10 ² .

	multiplicar
9 ■	10 m = cm

	$10 \times 10^2 = 1 \times 10^3$
10	0,2 m =cm

	2 × 10
11 =	$1 \text{ m} = 10^2 \text{ cm}$
	m = 80 cm (aplique a regra de 3)

	0,8, pois $\frac{80}{10^2}$ = 80 × 10 ⁻² = 8,0 × 10 ⁻¹ m ou 0,8 m
12 =	8 cm =m

	8 × 10 ⁻²
13 =	765 cm = m

	$765 \times 10^{-2} = 7,65$
14 🗷	Para converter centímetros em metros devemos (multiplicar; dividir) a quantidade expressa em centímetro por 10 ⁻² .

	multiplicar
15 =	O comprimento de uma sala é de 720 cm. Converta essa medida em metros. Resposta:
	* * * * * * * * * * * * * * * * * * *
	$720 \times 10^{-2} = 7,20 \text{ m}$
16 =	0,46 cm = m

	$0.46 \times 10^{-2} = 4.6 \times 10^{-3}$ ou 0.0046
	0,10 × 10 = 4,0 × 10 = 00 0,0040
17 =	Um centímetro pode ser dividido em 10 partes iguais. A cada parte dá-se o nome de
	(símbolo:)

	1 milímetro; mm
	1 cm = 10 mm
	2 cm =mm

	2×10

19 = 26,9 cm =mm

$26.9 \times 10 = 2.69 \times 10^2$ ou 269
20 Para converter cm em mm devemos (multiplicar; dividir) a quantidade medida por 10.

multiplicar
21 © Converta 456 cm em mm

$456 \times 10 = 4,56 \times 10^3 \text{ mm}$
22 = 1 cm = 10 mm cm = 8 mm

$\frac{8}{10} = 8 \times 10^{-1} = 0.8$
23 m 25 mm = cm

$25 \times 10^{-1} = 2,5$
24 Para converter mm em cm devemos (multiplicar; dividir) a quantidade medida por 10 ⁻¹ .

multiplicar
25 Converta 456 mm em cm.

$456 \times 10^{-1} = 4,56 \times 10 \text{ cm}$
26 = 1 m = mm (potência de 10)

10^3 , pois 1 m = 10^2 cm e 10^2 cm = 10^3 mm
$27 = 1 \text{ m} = 10^3 \text{ mm}$
2 m = mm

2×10^{3}
28 m 0,8 m = mm

$0.8 \times 10^3 = 8 \times 10^2$
29 Para converter m em mm devemos a quantidade medida por 10 ³

multiplicar
30 Converta 0,08 m em mm.

 $0.08 \times 10^3 = 8 \times 10 \text{ mm}$

31	Converta 88 m em mm.

	$88 \times 10^3 = 8.8 \times 10^4 \text{ mm}$
32	$1 \text{ m} = 10^3 \text{ mm}.$
	$_{m} = 20 \text{ mm}$

	$\frac{20}{10^3} = 20 \times 10^{-3} = 2.0 \times 10^{-2}$
33 ι	Para converter mm em m devemos a quantidade medida por 10 ⁻³ .

	multiplicar
34 1	560 mm = m

	$560 \times 10^{-3} = 5,60 \times 10^{-1}$ ou $0,56$
35 #	A espectura do um codorno á do 15 C
-	A espessura de um caderno é de 15 mm. Converta essa medida em metros.
	$15 \times 10^{-3} \text{ m} = 1.5 \times 10^{-2} \text{ m}$
20 -	A 0 page 600
36 ■	Muitas vezes, comprimentos a serem medidos são bem maiores do que 1 metro. Por exemplo, a distância entre São Paulo e Rio Nestes casos podemos utilizar que esta la la compressión de la compres
	entre São Paulo e Rio. Nestes casos, podemos utilizar um múltiplo do metro: o quilômetro (símbolo: km). 1 km corresponde a metros.

	10^{3}
37 ■	$1 \text{ km} = 10^3 \text{ m}$
	2 km =m

	2×10^{3}
38 ■	56 km =m
s	******
	$56 \times 10^3 = 5.6 \times 10^4$
39 ■	Para transformar km em m devemos
	(complete)

	multiplicar a quantidade medida por 10 ³
40 ■	Converta 0,43 km em m

	$0.43 \times 10^3 = 4.3 \times 10^2 \text{ m}$ ou 430 m
FYE	RCÍCIOS DE REVISÃO
	A unidade padrão de comprimento no SI é o
2 111	O cm e o mm são unidades de medida .

Um dos múltiplos mais utilizados do padrão metro é o ___ 4 Converta em cm: e) 56 mm a) 25 mm f) 56 m b) 25 m g) 56 km c) 0,45 m h) 0,56 m d) 0,45 mm 5 Converta em m: e) 0,45 km a) 45 cm f) 0,18 cm b) 18 cm g) 0,78 mm c) 78 mm h) 89 km d) 0,87 cm 6 Converta em mm: e) 0,34 cm a) 34 cm f) 0,43 m b) 43 m g) 0,9 km c) 90 km h) 0,52 m d) 52 cm 7 Converta em km: a) 456 m b) 2 456 m c) $1,49 \times 10^{11}$ m d) 3.8×10^{10} m 8 Converta em m: f) 5.6×10^{-8} km a) 4.5×10^4 mm g) 9.0×10^{-2} cm b) 6.5×10^{-2} km h) $2,4 \times 10^{-1}$ mm c) 5.7×10^{-1} km i) 245 cm d) 6.0×10^6 cm i) 2 456 mm e) 6,78 × 109 mm

RESPOSTAS

1. metro 2.	submúltiplas do padrão	metro 3. km	
	b) 2.5×10^3 cm	c) 4,5 × 10 cm	d) 4.5×10^{-2} cm
	f) 5.6×10^3 cm		h) 5,6 × 10 cm
5. a) 4.5×10^{-1} m	b) 1,8 × 10 ⁻¹ m	c) 7,8 × 10 ⁻² m	d) 8.7×10^{-3} m
e) 4.5×10^2 m	f) 1.8×10^{-3} m	g) 7.8×10^{-4} m	h) 8.9×10^4 m
6. a) 3.4×10^2 mm	b) 4.3×10^4 mm		d) $5,2 \times 10^2$ mm
e) 3,4 mm	f) 4.3×10^2 mm		h) 5.2×10^2 mm
7. a) $4,56 \times 10^{-1}$ km		c) $1,49 \times 10^8$ km	d) $3.8 \times 10^7 \text{ km}$
8. a) 4,5 × 10 m	b) 6,5 × 10 m	c) 5.7×10^2 m	d) 6.0×10^4 m
e) 6.78×10^6 m	f) 5.6×10^{-5} m	g) 9.0×10^{-4} m	h) 2.4×10^{-4} m
i) 2,45 m	j) 2,456 m	octor made 11	
1000 Ed 600			

B - UNIDADE PADRÃO DE MASSA

O quilograma é a unidade padrão de massa. É definido como a massa de um cilindro de platina-irídio, conservado sob todos os cuidados no Museu de Pesos e Medidas de Paris. No Instituto de Pesos e Medidas do Estado de São Paulo existe uma cópia desse cilindro. (símbolo: kg)

1 =	A massa correspondente a 1 kg pode ser dividida em 1 000 partes iguais e a massa correspondente a cada parte é denominada	

	1 grama	
2 =	1 kg corresponde então a 1 000 ou 10 ³ (símbolo: g)	

	gramas	
3 =	1 kg = g	

	10 ³	
4 =	$1 \text{ kg} = 10^3 \text{ g}$	
	$0.2 \text{ kg} = \underline{\qquad} \text{g}$	
	*****	-
	$0.2 \times 10^3 = 200 = 2 \times 10^2$	ĺ
5 =	1,5 kg =g	-
	******	-
	1.5×10^3	-
6 m	$1 \text{ kg} = 10^3 \text{ g}$	-
	$0.06 \text{ kg} = \underline{\qquad} \text{g}$	-
	****	-
	$6,0 \times 10$	2000
7 =	Para transformar X kg em gramas devemos (multiplicar; dividir) o número X por	TO COLUMN
	*****	-
	multiplicar; 10 ³ ou 1 000	1000
_		- Contraction
	$10^3 g = 1 kg$ $1 g = \underline{\qquad} kg$	accurate and a
	*****	-
	<u></u>	
	$\frac{1}{10^3} = 10^{-3}$	
Оп	$1 g = 10^{-3} kg$	
	8 g = kg	

	8×10^{-3}	1
10 =	Converta 9,8 g em kg	1

	$9.8 \times 10^{-3} \text{ kg}$	-
	Para converter X g em kg podemos multiplicar o número X porou dividir o número X por	

	10^{-3} ; 10^{+3}	1

EXERCICIOS DE REVISÃO

- 1 A massa de um elétron é cerca de 9,11 × 10⁻³¹ kg. Converta em gramas.
- 2 A massa da Terra é cerca de 5,96 × 10²⁴ kg. Converta em gramas.
- 3 Converta em kg:
 - a) 10 g
 - b) 0,50 g
 - c) 7500 g

- d) 10×10^{3} g
- e) 2.5×10^{-2} g
- f) 4,6 × 10⁻⁶ g

RESPOSTAS

- 1. 9,11 × 10⁻²⁸ g
- 2. $5,96 \times 10^{27}$ g
- 3. a) 1.0×10^{-2} kg
- b) 5.0×10^{-4} kg
- c) 7,5 kg

- d) 1,0 × 10 kg
- e) 2.5×10^{-5} kg
- f) 4,6 X 10⁻⁹ kg

C - UNIDADE PADRÃO DE INTERVALO DE TEMPO

Um padrão natural de tempo é o período de rotação da Terra em torno de seu eixo. Em função disso, definia-se o segundo como 86 400 avos do dia solar médio (intervalo entre duas passagens consecutivas do Sol pelo plano meridiano do lugar). Entretanto, medidas cuidadosas evidenciaram que, em virtude da trajetória da Terra em torno do Sol ser elíptica e não circular, surge um erro de 10⁻⁷ segundos na determinação do dia solar médio. Isto não é mau, mas não satisfaz às exigências modernas de precisão.

Atualmente, existe um padrão natural de tempo baseado nas vibrações periódicas do átomo de Césio 133 (Z = 55). Baseado nisso, ficou oficialmente estabelecido na 13.ª Conferência Geral de Pesos e Medidas de 1967 que:

1 segundo = 9 192 631 770 vibrações do Césio 133 (símbolo: s)

Evidentemente, podemos escapar de todas essas preocupações visto que todos nós temos, direta ou indiretamente, um cronômetro ou um relógio, cujo segundo deve estar de acordo com a definição oficial.

1 =	O conjunto de 60 segundo	s constitui um inter-	valo de tempo que	denominamos
-----	--------------------------	-----------------------	-------------------	-------------

1 minuto (símbolo: min)

2 1 min = __s

60

3 m 1 min = 60 s

 $0.5 \text{ min} = ___s$

30

4 = 1,5 min = ____s

90

5 **a** 0,7 min = ______

 $0.7 \times 60 = 42$

6 ■	2,7 min =s

	$2,7 \times 60 = 162$
7 =	A conversão de minutos em segundos (obedece; não obedece) a um critério decimal. Tal transformação obedece a um critério (sexagesimal; centesimal). Para converter X minutos em segundos devemos multiplicar X por

	não obedece; sexagesimal; 60
8 =	O conjunto de 60 min constitui um intervalo de tempo que denominamos 1 hora (símbolo: h). Portanto, 1 h =s.

	3 600
9 .	1 h = 60 min 1,5 h =min

	$1,5 \times 60 = 90$
10 =	2,7 h =min

	162
11 =	1 h = 3 600 s
	1,5 h =s

	5 400
12 ■	1,7 h =s

	6 120
13 🛚	1,6 h significa (1 h e 6 min; 1 h e 6 décimos de min; 1 h e 6 décimos de h; 1 h e 36 min).

	1 h e 6 décimos de h; 1 h e 36 min
14 =	O minuto e a hora são unidades (padrões; múltiplas) de intervalo de tempo.

	múltiplas
	Para medir intervalos de tempo maiores do que 1 hora utilizamos, entre outros, o dia, a semana e o ano, que entretanto não são utilizados nos trabalhos científicos. 1 dia =horas.

	24
	Em geral, nos trabalhos científicos, aparecem intervalos de tempo menores que 1 segundo. Cada 1 segundo pode ser dividido em 10, 100, 1000, partes. Cada parte será denominada, respectivamente, 1 décimo de segundo, 1,

	centésimo de segundo; milésimo de segundo

	17 m	1 milésimo de segundo = (potência de 10)

		10^{-3} s
		fim geral, a menor divisão de um cronômetro comum é de 1 décimo de segundo, isto é,s. (potência de 10)

		10-1
	SEÇ	ÃO 3 — PRECISÃO DAS MEDIDAS E ALGARISMOS SIGNIFICATIVOS
•	medi acele	O enorme crescimento do conhecimento humano nos últimos séculos está relacionado com a habilidade homens em medir os fenômenos que ele observa. Medindo fenômenos observáveis, formulam leis. Newton, ndo as acelerações produzidas por várias forças sobre um objeto, descobriu uma relação simples existente entre ração e força. Para comprovar ou derrubar uma teoria científica deve-se construir dispositivos experimentais dizar medições.
	rem cada	O avanço da tecnologia auxilia cada vez mais as técnicas experimentais, permitindo aos cientistas verifica- com maior precisão as predições contidas em suas teorias. Entretanto, existe sempre uma margem de erro em medida obtida, por mais avançada que seja a técnica experimental.
	1 =	Sempre existirá alguma diferença entre o verdadeiro valor de uma grandeza que está sendo medida e o valor fornecido pelo aparelho medidor. Quanto menor for esta diferença, (mais precisa; menos precisa) será a medida obtida.

		mais precisa
	2 ■	O micrômetro é um aparelho para medir pequenos comprimentos. O diâmetro de uma barra cilíndrica medido com o micrômetro revelou ser de 1,101 cm. O mesmo diâmetro medido com uma régua comum revelou ser igual a 1,1 cm. A primeira medida (é; não é) mais precisa que a segunda.

		é
	3 ■	O micrômetro é um instrumento de (maior; menor) precisão que a régua comum.

		maior
	2	O micrômetro é um instrumento que permite medir distâncias de até 0,001 cm, isto é, até a milésima parte
	4 =	de 1 centímetro. A régua comum consegue medir até 0,1 cm, isto é, até a parte do cm. O micrômetro tem mais que a régua comum porque ele mede até 0,001 cm e a régua comum até

		décima; precisão; 0,1 cm
	5	O instrumento de maior precisão sempre medirá com (maior; menor) quantidade de casas decimais.

		maior

6 11	Voce tem em mãos duas réguas: uma comum, cuja menor divisão é 1 mm; outra, cuja menor divisão é 1 cm. A régua cuja menor divisão é é de maior precisão.

	1 mm
7 =	A precisão de uma medida (depende; não depende) do instrumento através do qual está sendo realizada a mensuração.

	depende
8 =	Durante a realização de uma medida experimental a pessoa que a realiza (nunca erra; pode errar).

	pode errar
9 =	Pessoas com maior habilidade em realizar medidas, em geral, têm (maior; menor) possibilidade de cometer enganos.
	* * * * * * * * * *
	menor
10 =	Em geral, a precisão de uma medida é determinada peloatravés do qual a medida é realizada e pela habilidade da pessoa que a realiza.

	instrumento
11 =	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
	A Acima é dado um segmento AB e uma régua centimetrada. O comprimento AB está compreendido entre
	cm ecm.

	11; 12
12 =	O comprimento AB está mais próximo de (11; 12) cm.

	11
13 =	Como a menor divisão de uma régua centimetrada é 1 cm, nós não podemos avaliar com exatidão os mi- límetros, e muito menos os décimos ou centésimos de milímetros. Entretanto, podemos estimar os milímetros:
	por exemplo, podemos dizer que o comprimento AB seja 11,3 cm. Nesta medida o algarismo 3 (foi; não foi) "chutado", e portanto ele não é exato.
	* * * * * * * * * * * *
	foi
14 =	O valor do comprimento AB (item 11) é um número (aproximado; exato).

	aproximado

15 ■ Você agora é solicitado a contar o número de carteiras existentes em sua sala de aula. Você registra 42 carteiras. Supondo que não existam enganos pessoais, o número que representa a quantidade de carteiras é (aproximado; exato).

exato

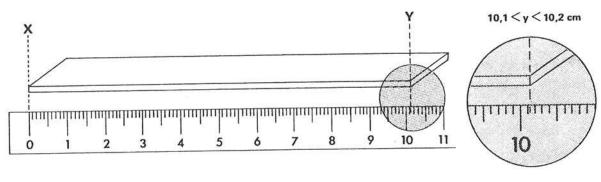
16 W Você mede a espessura de seu livro de Matemática e determina ser esta igual a 3,15 cm. Um outro amigo seu é solicitado a contar o número de livros de Matemática existentes na sala e determina ser este igual a 36. A medida da espessura do livro é um número _______ e a quantidade de livros contados é um número ______, se a contagem for correta.

aproximado; exato

17 " O número que surge de uma medição (representa; não representa) um valor exato.

não representa

18 • O número que surge por um processo de contagem (representa; não representa) um valor exato, salvo enganos pessoais.


representa

19 III Um estudante de Física mede o tempo que ele gasta para vir de sua casa até a escola e verifica ser 2 min e 37 s. Um outro, conta a quantidade de dias que o mês de abril contém. Em qual dos processos acima o resultado é um número aproximado? Justifique.

Na medida do tempo. Num processo de contagem resulta sempre um número exato, ao passo que num processo que envolve medida por um instrumento qualquer sempre um valor aproximado.

20 " Você tem uma régua milimetrada e deseja medir o comprimento de uma peça, conforme a figura abaixo.

O comprimento XY (da peça) está compreendido entre _____ cm e ____ cm.

10,1; 10,2

21 M A menor divisão de uma régua milimetrada é 1 mm. Nesta régua, o milímetro (é; não é) um algarismo exato. Nesta régua, os décimos de milímetros (são; não são) exatos.

é; não são

22	A medida XY acima está mais próxima de 10,1 cm do que de 10,2 cm. Podemos estimar então que o valor de XY seja 10,12 cm. Esta medida (é; não é) exata.

	não é
23	■ 10,12 cm
	Nesta medida, os algarismos 1, 0 e 1. contados a partir da esquerda (correspondem; não correspondem) a divisões reais da escala da régua.

	correspondem
24 1	10,12 cm
	Os algarismos 1, 0 e 1 (são; não são) exatos, porque eles correspondem a valores não estimados da escala da régua.

	são
25 =	10,12 cm
	Finalmente, o algarismo 2 (surgiu; não surgiu) de uma fração da menor divisão da escala, que nós estimamos. Portanto, o algarismo 2 desta medida (é; não é) exato; ele (é; não é) duvidoso.

	surgiu; não é; é
26 ⋅ ■	A medida realizada no item 20, isto é, o comprimento XY igual a 10,12 cm, nos informa que tal comprimento está compreendido entre 10,1 cm e cm e que o valor mais aproximado é

	10,2; 10,12 cm
27 ■	A medida do comprimento XY (item 20) (apresenta; não apresenta) um elemento ou algarismo duvidoso. Tal algarismo ée é o (primeiro; segundo; terceiro; último) algarismo contado a partir da esquerda, ou o primeiro contado a partir da

	apresenta; 2; último; direita
28 ■	10,12 cm
	Na medida acima constatamos quatro algarismos. Dizemos que tal medida apresenta quatro algarismos significativos. O algarismo duvidoso (é; não é) significativo.

	é
29 ■	A medida do comprimento XY (item 20) pode ser escrita utilizando-se como unidade de medida o metro. Escreva 10,12 cm em metros.

	0,1012 m
30 ■	0,1012 m. A medida apresentaalgarismos significativos. O primeiro zero surge apenas para loca- lizar a casa decimal. Ele (é; não é) algarismo significativo.
	* * * * * * * * * * * * * * * * * * *
	quatro; não é

31 =	O comprimento XY foi estimado ser igual am. Transforme esta medida em km:

	0,1012; 0,0001012 km
32 ■	0,0001012 km é a medida do comprimento XY. Ela apresentaalgarismos significativos. Os quatro zeros à esquerda do algarismo 1 (são; não são) significativos. Estes zeros apenas localizam a casa decimal quando da transformação de m em km.

	quatro; não são
33 ■	0,0001012 km. O algarismo 0 compreendido entre os algarismos 1 e 2 (é; não é) significativo.

	é
34 ■	Escreva a medida do comprimento XY (10,12 cm) em notação científica. 10,12 cm =

	$1,012 \times 10^1 = 1,012 \times 10 \text{ cm}$
35 ■	10,12 cm = 1,012 × 10 cm. A medida expressa em notação científica apresenta M =

	1,012
36 ■	O número M, na notação científica, (exprime; não exprime) claramente a quantidade de algarismos

	exprime; significativos
37 ■	0,0001012 km = (em notação científica)

	1,012 × 10 ⁻⁴ km
38 =	1,012 × 10 ⁻⁴ km. O número M é constituído dealgarismos e a medida apresentasignificativos.

	quatro; quatro algarismos
39 ■	A medida expressa em notação científica (revela; não revela) a quantidade de algarismos significativos.

	revela
40 ■	Para evitarmos dúvidas quanto à quantidade de algarismos significativos de uma medida, devemos utilizar
	a científica.

	notação
41 =	Meça o comprimento AB abaixo com a régua milimetrada desenhada na figura.
	A B I I I I I I I I I I I I I I I I I I

	O comprimento AB está compreendido entre e	

	4,1 cm; 4,2 cm	
42	■ A medida do comprimento AB está mais próximo de que de 4,2 cm.	

	4,1 cm	
43	Pelo nosso julgamento, escreveremos que o comprimento AB é 4,10 cm. A nossa estimativa é de que o comprimento AB possui 4 cm, mm e zero décimos de	

	1; milímetro	
44	4,10 cm. A medida apresentaalgarismos significativos. O algarismo duvidoso é o	

	três; 0	
45	O algarismo zero na medida 4,10 cm é duvidoso, porém ele (é; não é) significativo. Este zero nos informa que a medida, por nossa estimativa, apresenta 0 décimos de milímetro.	

	é	
46 #	4,10 cm = m	

	0,0410	-
47 =	0,0410 m. Esta medida apresenta algarismos significativos. Os dois zeros à esquerda do algarismo 4 (são; não são) significativos, pois eles apenas localizam a casa decimal ao transformarmos a medida dada em cm para	- Company of the Comp

	três; não são; metros	
48 ■	Escreva a medida 0,0410 m em notação científica.	

	$4,10 \times 10^{-2} \text{ m}$	
49 ■	O número M (conserva; não conserva) a quantidade de algarismos significativos.	
	* * * * * * * * * * * * * * * * * * *	
	conserva	1
50 ■	O valor de uma medida foi anotado como sendo 0,977 6 m. A medida quer dizer que o comprimento está compreendido entre m.	
	0,977; 0,978	
51 ■	0,977 6. O algarismo 6 (é; não é) duvidoso. Ele é um valor estimado e diz que o comprimento está compreendido entre 0,977 m e m, porém nós "achamos" que está a 6 décimos da distância entre a menor divisão da escala, isto é, entre 0,007 m (7 mm) e (8 mm).	

	é; 0,978; 0,008 m	1

52 ■	$0.977.6 \text{ m} = \underline{\qquad} \text{(notação científica)}$

	$9,776 \times 10^{-1} \text{ m}$
53 =	0,977 6 m = 9,776 × 10 ⁻¹ m. Esta medida apresenta algarismos significativos.

	quatro
54 ■	9,776 × 10 ⁻¹ m. O último algarismo é e ele é oduvidoso.
•	*****
	6; algarismo
	É dada uma medida: 0,000 786 cm. Em notação científica: A medida apresenta
99 =	algarismos significativos e o duvidoso é o

	7,86 × 10 ⁻⁴ cm; três; 6
FC =	7,86 × 10 ⁻⁴ cm. Este valor indica que a medida se encontra entre 7,8 × 10 ⁻⁴ cm e cm.
ש טכ	**********
	7.9×10^{-4}
	7,5 × 10
SEÇ	ÃO 4 — OPERAÇÕES ENVOLVENDO QUANTIDADES MEDIDAS — ALGUMAS UNIDADES DERIVADAS
que os c	A maioria das experiências realizadas em Física envolvem medidas diretas cujos resultados são combinados ama série de operações, tais como adições, subtrações, multiplicações e divisões, etc. Muitas vezes, os números exprimem tais medidas são elevados ao quadrado, ao cubo, extraem-se raízes, etc. Torna-se importante que álculos sejam realizados de forma que o resultado final não contenha mais de um algarismo duvidoso e por o lado o resultado final não deve ser mais preciso do que o menos preciso das medidas diretas realizadas.
1 =	Suponha que vamos somar duas medidas diretas de comprimento realizadas por instrumentos diferentes: 0,52 m e 14,5 m. Na medida 0,52 m, o algarismo duvidoso é e, na medida 14,5 m, o algarismo duvidoso é

	2; 5
2 =	Efetue a adição de 0,52 m com 14,5 m.

	15,02 m
3 m	14, (5) m
	0, 5 ② m
	15, (1) (2) m
	Os algarismos circundados são os

	duvidosos

tá

ma

4	No resultado 15,02 m, o algarismo 2 é o resultado da adição do algarismo 2 da parcela 0,52 com o algarismo supostamente zero da parcela 14,5. Portanto, ele (é; não é) um algarismo duvidoso.

	é
5 1	Da adição de um algarismo exato com um outro duvidoso resulta um algarismo (duvidoso; exato). No resultado 15,02, o algarismo 0 é o resultado da adição do algarismo duvidoso 5 da parcela 14,5 m com o algarismo (exato; duvidoso) 5 da parcela 0,52 m. Portanto, o algarismo 0 (é; não é) duvidoso.
	duvidoso; exato; é
6 =	15,02 m. Tanto o algarismo 0 como o 2 (são; não são) duvidosos. ************* são
7 =	Uma medida deve apresentar (somente um; dois; diversos) algarismo(s) duvidoso(s). ***********************************
8 =	Portente um
0 -	Portanto, no resultado da adição de 14,5 m com 0,52 m, devemos desprezar o algarismo (0; 2).
	2
9 =	Logo, o resultado final pode ser arredondado para m.

	15,0
10 =	Devemos somar dois comprimentos medidos com aparelhos diferentes (réguas diferentes). Tais comprimentos são: 12,39 cm e 1,4 cm. Faça a adição destes dois comprimentos. Circunde os algarismos duvidosos nas parcelas e no resultado da adição.

	12, 3 (9) cm
	1, (4) cm
	13, (7)(9) cm
11 =	No resultado acima, 13,79 cm, devemos desprezar o algarismo (7; 9).

	9
12 ■	Quando o algarismo a ser desprezado for maior que 5, devemos acrescentar, para o arredondamento, uma unidade nó algarismo duvidoso restante. Logo, o resultado desta adição é:

	13,8 cm
	Na adição proposta no item 1, cujo resultado foi 15,02, desprezamos o algarismo duvidoso Ao algarismo duvidoso restante no resultado final, que é o algarismo, não foi acrescida nenhuma unidade porque o algarismo desprezado foi (maior; menor) que 5.

	2; 0; menor

1.

21 1

	14 =	No resultado de uma adição, 15,156, os algarismos 6 e 5, contados da direita para a esquerda, são duvido- sos. Faça o arredondamento para que a resposta seja correta.

		15,16
	15 🖷	Os lados de um triângulo foram medidos por instrumentos diferentes. Obteve-se os seguintes valores: 15,31 cm; 8,752 cm e 17,7 cm. Calcule o perímetro do referido triângulo (soma dos lados).

		15, 3 ① cm
		8, 7 5 ② cm
		17, ① cm
		41, 762 cm No resultado do cálculo do perímetro do triângulo citado acima, 41,762 cm, o algarismo 7 é duvidoso por-
	16 =	que ele é resultado da adição de dois algarismos exatos, e de um duvidoso,

		3; 7; 7
	17 =	Portanto, o perímetro é 41,8 cm = 4,18 × 10 cm. O resultado 41,762 cm foi arredondado para 41,8 cm porque (complete)

		o algarismo duvidoso desprezado (6) é maior que 5
	18 •	Os lados de um quadrado foram medidos por instrumentos diferentes e obteve-se os seguintes valores: 2,3 cm; 2,32 cm; 2,290 cm e 2,30 cm. Calcule o perímetro do quadrado considerado.

		2, ③ cm
		2, 3 ② cm
		2, 2 9 (0) cm
		2, 3 (0) cm 9, (2)(1)(0) cm Perímetro do quadrado: 9,2 cm
		9, 2(1)0 cm Perímetro do quadrado: 9,2 cm Calcule a diferença entre dois comprimentos: d ₁ = 10,23 cm e d ₂ = 8,5 cm.
	19 1	Calcule a differença entre dois comprimentos: $d_1 = 10,23$ cm $c = d_2 = 0,3$ cm: $d_1 = d_2 = \underline{\qquad}$

		- 10, 2 (3) cm - 8, (5) cm
		$\frac{1}{1, (7)(3)}$ cm $d_1 - d_2 = 1,7$ cm
	20	■ Faça a adição de 14,75 g com 6,489 g

		21,24 g
	21	Faça a adição de 6,85 × 10 ² km com 5,42 × 10 km. (Cuidado: Somente é possível a adição quando as potências de 10 possuem o mesmo expoente.)

		Primeiramente deve-se transformar os números em potências de mesmo expoente:
١		$5.42 \times 10 \text{ km} = (0.542 \times 10) \times 10 = 0.542 \times 10^2 \text{ km}$

Então faz-se a adição:

6,
$$8(5)$$
 $\times 10^2$ km

0, 5 4
$$(2)$$
 \times 10² km

7,
$$3 \ 9 \ 2 \times 10^2 \ km$$

Soma =
$$7,39 \times 10^{2} \text{ km}$$

22 Subtraia 46,7 g de 96 g.____

Resposta: 49 g

23 ■ Faça a adição de 1,39 × 10² kg com 6,31 × .10⁻² kg.

$$1,39 \times 10^{2} \text{ kg}$$

24 ■ A unidade de área no SI é 1 metro quadrado, cujo símbolo é m². 1 m² é a área de um quadrado de _____ de lado.

3

3

39

1 m

25 ■ Calcule a área (A) de um quadrado de 2 m de lado.

$$A = (2 \text{ m}) \times (2 \text{ m}) = 2 \times 2 \times \text{m} \times \text{m} = 4 \text{ m}^2$$

$$1 \text{ m}^2 = \underline{\qquad} \text{cm}^2$$

$$10^4$$
, pois 1 m² = (100 cm) (100 cm) = 10 000 cm² = 10^4 cm²

$$m^2 = 1 \text{ cm}^2$$

$$1 \text{ cm}^2 = \underline{\qquad} \text{mm}^2$$

$$1 \text{ m}^2 = \underline{\qquad} \text{mm}^2$$

 10^{6}

30 ■ Um quadrado tem uma área de 1,6 cm². A sua área é igual a ______m².

$$1 \text{ cm}^2 = 10^{-4} \text{ m}^2$$
, portanto 1,6 cm² = 1,6 × 10⁻⁴ m²

-3	1 =	A área de um pequeno círculo é de 3,14 × 10 ⁻⁶ m ² . Dê a área deste círculo em cm ² e em mm ² .

		$3.14 \times 10^{-2} \text{ cm}^2$; 3.14 mm^2
3	32 =	As dimensões de um pequeno retângulo foram medidas por um estudante, utilizando para tal uma régua milimetrada. Para o comprimento (C) ele determinou o valor 1,32 cm e para a largura (L), o valor 0,98 cm. O comprimento C é expresso com (dois; três) e a largura L, com algarismos significativos.

		três; dois
3	33 ■	1,32 cm. O algarismo duvidoso é Isto significa que a medida do comprimento C está entre 1,3 cm e cm, porém mais próximo de cm.

		2; 1,4; 1,3
;	34 ■	1, 3 2 cm. Coloque um círculo em torno do algarismo duvidoso.

		1, 3 ② cm
	35 ■	Ao multiplicarmos um número duvidoso por um outro, duvidoso ou não, obteremos como resultado (sempre; às vezes; nunca) um outro número duvidoso.

		sempre
	36 ■	Para se calcular a área de um retângulo de dimensões L e C, devemos (multiplicar; dividir) L por C. Simbolicamente: A =

		multiplicar; L · C
	37 ■	Calcule a área do retângulo cujas dimensões são: L = 1,32 cm e C = 0,98 cm. Leve em consideração o item 35 acima e coloque, dentro de um círculo, todos os algarismos resultantes da multiplicação com um outro duvidoso.

		1 , 3 ② cm
		0 , 9 <u>8</u> cm
		① ② ⑤ ⑥
		1 1 8 8
		1,29 36 cm ²
	38 ■	1, 2 9 3 6 cm ² . O resultado apresenta 5 algarismos dos quais pelo menossão duvidosos, pois resultaram da soma de algarismos provenientes da multiplicação de algarismos, um dos quais, pelo menos era duvidoso.

		quatro
	39 =	(Devemos; Não devemos) portanto, descartar os algarismos 9, 3 e 6.

		devemos

-70	- A area do pequeño retangulo deve então ser escrita, levando em consideração o arredondamento, como	
	A =	
	1,3 cm ²	
44		1
41	O resultado final apresenta então (dois, um) algarismo(s) significativo(s). O algarismo duvidoso é o *******************************	
	dois; 3	
12 1	2008	
42	1,3 cm² é proveniente da multiplicação de 1,32 cm por 0,98 cm. O fator que apresenta menor quantidade de algarismos significativos é Ele apresentaalgarismos significativos.	

	0,98; dois	
43 1	Multiplique 1,467 m por 0,748 m e apresente o resultado levando em consideração os algarismos significa- tivos.	

	1, 4 6 ⑦ m	
	0, 7 4 (8) m	
	11736	
	5 8 6 8	
	1 0 2 6 9	1
	1, 0 9 7 3 1 6 Resposta: 1,10 m ² (arredondado)	
44 m	1,10 m ² . O resultado final apresentaalgarismos significativos. O fator que apresenta menor quantidade de algarismos significativos é, que contémalgarismos significativos.	Ę
	três; 0,748 m; três	
45 ■	O resultado do produto da multiplicação de duas ou mais quantidades medidas pode ser escrito com a mesma quantidade de algarismos significativos que o fator que apresentar (menor; maior) quantidade de algarismos significativos.	5

	menor	
	O resultado do produto: 2,34 m × 0,34 m × 11,45 m deverá ser escrito comalgarismos significativos, pois o produto deve ser escrito com a mesma quantidade de algarismos significativos do fator que apresentar a menor quantidade de algarismos significativos e que no caso é o fator	5(

	dois; 0,34	
17 m	Dê o resultado do produto do item 46.	57

	9,2 m ³	
18 m	Determine a área de um retângulo cujas dimensões foram medidas como sendo 6,1 m e 9,26 m	58

	56 m ² . (Com dois algarismos significativos, porque o fator que apresenta menor quantidade deles é 6,1 m,	

49 ■	Quando dividimos quantidades provenientes de medições, devenios tomas o mesmo cultado que foi observado durante uma multiplicação: o quociente da divisão deve apresentar uma quantidade de algarismos significativos igual ao fator que contiver (maior; menor) quantidade de algarismos significativos.

50 ■	menor Duas quantidades foram medidas e apresentaram os seguintes valores: 26,34 e 7,3. Divida 26,34 por 7,3. A
	resposta deve ser escrita com algarismos significativos e deve ser apresentada como sendo
	dois; 3,6
51 ■	Quando multiplicamos ou dividimos uma quantidade medida por um número puro, o resultado deve ser escrito com a mesma quantidade de algarismos significativos que a medida apresentar. Divida 0,935 kg por 2 (número puro).

	0,468 kg
52 =	O raio de um círculo foi medido como sendo R = 1,34 × 10-2. Calcule o diâmetro do círculo.

	diâmetro = $2 R = 2 \times 1,34 \times 10^{-2} m = 2,68 \times 10^{-2} m$
53 =	A unidade de volume do SI é 1 metro cúbico. (símbolo: m³) 1 m³ é o volume correspondente a um cubo de de lado.

	1 m
54 ■	1 m = 100 cm
	$1 \text{ m}^3 = \underline{\qquad} \text{cm}^3$

	10 ⁶ ou 1 000 000
55 ■	$1 \text{ m}^3 = 10^6 \text{ cm}^3$ $0.56 \text{ m}^3 = \underline{\qquad} \text{ cm}^3$
	0,56 m° = cm
	$0.56 \times 10^6 = 5.6 \times 10^5$
F0 -	Para transformar X m ³ em cm ³ devemos
56 =	******
	multiplicar o número X por 10 ⁶ , pois cada 1 m ³ = 10 ⁶ cm ³
57	$10^6 \text{ cm}^3 = 1 \text{ m}^3$ $1 \text{ cm}^3 = \underline{\qquad} \text{ m}^3$

	10 ⁻⁶
58 1	$1 \text{ cm}^3 = 10^{-6} \text{ m}^3$ $98 \text{ cm}^3 = \underline{\qquad} \text{m}^3$

S

os or

m,

 $98 \times 10^{-6} = 9.8 \times 10^{-5}$

59	$= 2,34 \text{ cm}^3 = \underline{\qquad m}^3$

	$2,34 \times 10^{-6}$
60	■ Transforme 0,45 cm³ em m³.

	$4.5 \times 10^{-7} \text{ m}^3$
61	■ Transforme 3,4 × 10 ⁻⁵ cm ³ em m ³ .

	$3.4 \times 10^{-5} \times 10^{-6} - 3.4 \times 10^{-5-6} = 3.4 \times 10^{-11} \text{ m}^3$
62	Transforme $5,67 \times 10^{-4}$ m ³ em cm ³ .

	$5.67 \times 10^{-4} \times 10^{6} = 5.67 \times 10^{-4+6} = 5.67 \times 10^{2} \text{ cm}^{3}$
63 1	Para transformarmos Y cm ³ em m ³ devemos (multiplicar; dividir) Y por 10 ⁻⁶ .

	multiplicar
64	O volume de um cubo de lado L é dado pela expressão V = L³. Calcule o volume de um cubo cujo lado foi medido como 0,50 m. Dê a resposta levando em consideração os algarismos significativos.
	* * * * * * * * * * * * * * * * * * *
	$1.3 \times 10^{-1} \text{ m}^3$
65	O volume de uma esfera é dado pela expressão: $V = \frac{4}{3} \cdot \pi \cdot R^3$, onde R é o raio da esfera e $\pi = 3,14$. Calcule o volume de uma esfera cujo raio foi determinado como sendo 2,40 cm. Dê a resposta em m ³ .

	$V = \frac{4}{3} \cdot 3.14 \cdot (2.40)^3 = 57.9 \text{ cm}^3$; $V = 5.79 \times 10 \times 10^{-6} = 5.79 \times 10^{-5} \text{ m}^3$
66 ■	57,9 cm ³ . O volume foi determinado com algarismos significativos. O algarismo
	é o duvidoso.
	* * * * * * * * * * * *
	três; 9
67 ■	57,9 cm³ = 5,79 × 10⁻⁵ m³. Ao transformarmos cm³ em m³ (aumentamos; não aumentamos) a precisão da medida, isto é, (aumentamos; não aumentamos) a quantidade de algarismos significativos.

	não aumentamos; não aumentamos
68 ■	A densidade ou massa específica de um objeto é calculada dividindo-se a massa do objeto pelo seu volume. Simbolicamente: $\rho = \frac{n}{V}$. A unidade padrão de massa no SI é oe a unidade de volume é o

	kg; m ³
69 ■	$\rho = \frac{\mathrm{m}}{\mathrm{V}}$
	A unidade de massa específica é determinada dividindo-se a unidade padrão de massa pela unidade de
	* * * * * * * * * * * *
	volume

kg

71 $\equiv \rho = \frac{m}{V}$. O volume de um objeto foi determinado como sendo 2,5 \times 10⁻⁶ m³ e a sua massa medida numa balança foi determinada como sendo 7,5 × 10⁻³ kg. Calcule a massa específica deste objeto.

$$\rho = \frac{7.5 \times 10^{-3} \text{ kg}}{2.5 \times 10^{-6} \text{ m}^3} = \frac{7.5}{2.5} \times 10^{-3+6} \times \frac{\text{kg}}{\text{m}^3} = 3.0 \times 10^3 \text{ kg/m}^3$$

72 No SI a unidade de massa específica ou densidade é

kg/m3

73 E Se medirmos a massa em g e o volume em cm3, a unidade de massa específica ou densidade será dada por

g/cm3

74 • 1 kg =
$$10^3$$
 g

$$1 g = \underline{\hspace{1cm}} kg$$

10-3

75 **a**
$$1 \frac{\text{kg}}{\text{m}^3} = \frac{1 \text{ kg}}{1 \text{ m}^3}$$

$$1 \text{ kg} = 10^3 \text{ g}$$

$$1\frac{kg}{m^3} = \frac{10^3 \text{ g}}{10^6 \text{ cm}^3} = 10^{3-6} \text{ g/cm}^3 = 10^{-3} \text{ g/cm}^3$$

76 •
$$3.0 \times 10^3 \text{ kg/m}^3 = ____g/\text{cm}^3$$

$$3.0 \times 10^{3} \times 10^{-3} = 3.0 \times 10^{3-3} = 3.0 \times 10^{0} = 3.0 \text{ g/cm}^{3}$$

77 Transforme 4,5 kg/m³ em g/cm³.

$$4.5 \times 10^{-3} \text{ g/cm}^3$$

$$78 = 1 \text{ g} = 10^{-3} \text{ kg}$$

$$1 \text{ cm}^3 = 10^{-6} \text{ m}^3$$

$$1 \text{ g/cm}^3 = \frac{10^{-3} \text{ kg}}{10^{-6} \text{ m}^3} = 10^{-3+6} \text{ kg/m}^3 = 10^3 \text{ kg/m}^3$$

79
$$\equiv 1 \text{ g/cm}^3 = 10^3 \text{ kg/m}^3$$

$$7.9 \text{ g/cm}^3 = \frac{10^3 \text{ kg/m}^3}{10^3 \text{ kg/m}^3}$$

$$7.9 \times 10^{3}$$

80	■ Para se transformar X g/cm³ em kg/m³ devemos (multiplicar; dividir) X por 10³.

	multiplicar
81	A velocidade é uma grandeza física derivada de duas outras padrões. Ela é calculada dividindo-se um comprimento por um intervalo de tempo. A unidade de velocidade é então determinada dividindo-se unidade de comprimento por unidade

	de intervalo de tempo
82	Unidade de velocidade = unidade padrão de comprimento unidade

	padrão de intervalo de tempo
83	No Sistema Internacional, a unidade padrão de comprimento é oe a unidade padrão de intervalor de tempo é o Logo, a unidade de velocidade será

-	m; s; m/s
84 1	Em determinadas situações (que analisaremos em outro capítulo) a velocidade é calculada dividindo-se uma distância (comprimento) que um objeto percorre pelo intervalo de tempo que o objeto gasta para percorrer tal distância. Se chamarmos a velocidade de v, a distância de Δd e o intervalo de tempo de Δt, então a velocidade é, simbolicamente, dada por:
	v =

	$\frac{\Delta d}{\Delta t}$
85 ■	$v = \frac{\Delta d}{\Delta t}$. Se a distância percorrida por um objeto foi medida como sendo 98,6 × 10 ⁻² m e o intervalo de tempo gasto medido como sendo 2,0 s, a velocidade é igual a

	$v = \frac{98.6 \times 10^{-2} \text{ m}}{2.0 \text{ s}} = 4.9 \times 10^{-1} \text{ m/s}$
86 ■	Se medirmos a distância em cm ao invés de m, a velocidade será dada como

	cm/s
87 =	Uma formiga caminha em cada 8,2 s uma distância de 16,6 cm. Calcule a velocidade em cm/s

	$v = \frac{16.6 \text{ cm}}{8.2 \text{ s}} = 2.0 \text{ cm/s}$
88 m	No SI, a unidade de velocidade é (cm/s; m/s).

	m/s
89 ■	2,0 cm/s = m/s

-	$2.0 \text{ cm/s} = \frac{2.0 \text{ cm}}{1.0 \text{ s}} = \frac{2.0 \times 10^{-2} \text{ m}}{1.0 \text{ s}} = 2.0 \times 10^{-2} \text{ m/s}$

90 m T	ransforme 25,6 m/s em cm/s.	
*	****	
2	$56 \times 10^{3} \text{ cm/s}$	E .
91 m T	ransforme 45,7 cm/s em unidade de v	elocidade do SI.
*	*****	
4	,57 × 10 ⁻¹ m/s	
		0.7.0
	O 5 – EXERCÍCIOS DE REVI	
	xpresse os números abaixo em notaç	
) 4	j) 789k) 3 300 (quatro algarismos significativos)
) 32) 186 000 (três algarismos significativ	A STATE OF THE PARTY OF THE PAR
) 30 000 000 (um algarismo significa	The state of the s
) 0,70	n) 0,045 × 10 ²
	0,001 2	o) 0,000 096 8
	0,000 403	p) 0,001 3
~) 53 200 (três algarismos significativo	g) 0,000 000 000 28
	232	r) $0,000\ 045 \times 10^6$
2 . (Converta 4,2 × 10 ³ m em: a) km	
	b) cm	
	c) mn	
3 ■ (a) cm ³ ; b) mm ³ .
4 = (0011101111 0,0	a) cm ² ; b) mm ² .
5 =	O raio do planeta Júpiter é cerca de	7,2 × 10 ⁷ m. Converta tal distância em: a) cm; b) km.
0 =	II. masma comprimento foi medid	o por instrumentos diferentes e as duas medidas foram anotadas come
6	sendo 5,4 cm e 5,40 cm. Qual das d	uas medidas é mais precisa? Por quê?
	Calcule a soma de 15,61 g; 23,4 g e	
	Calcule a soma de 7,65 × 10 ² m e	
	Subtraia 46,7 g de 96 g.	
10 =	Calcule o produto de 4,67 × 106 cm	n por $4,6 \times 10^{-2}$ cm.
	Multiplique 7,32 kg por 520 g.	
12 =	Divida $8,83 \times 10^4$ m por $1,35 \times 10^{-3}$	m.
	Divida 32,5 cm por 0,32 m.	
14 =	O raio de um círculo mede cerca o significativos.	le 7,16 cm. Determine o valor de sua área. Use π com três algarismo
15 ■	Escreva sobre a diferença entre as de	uas medidas: 2,0 cm e 2,00 cm.
16 =	Um veículo percorre 0,627 km em	32,5 s. Determine o valor da velocidade do referido veículo em:
10 -	a) m/s;	5603
	b) cm/s.	
17 =	Uma pessoa caminha 32,5 m em 48	s. Determine sua velocidade em: a) m/s;
		b) cm/s.

le

RESPOSTAS

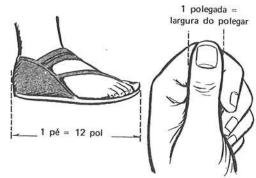
1. a) 4 b) 3,2	2 × 10 c) 1,86 ×	< 10 ⁵ d) 3 × 1	0 ⁷ e) 7,0 × 10 ⁻¹	f) 1.2×10^{-3}
g) $4,03 \times 10^{-4}$	h) $5,32 \times 10^4$	i) $2,32 \times 10^2$	j) $7,89 \times 10^2$	k) $3,300 \times 10^3$
1) $2,46 \times 10^7$	m) $3,4 \times 10^{-5}$	n) 4,5	o) 9,68 × 10 ⁻⁵	p) 1.3×10^{-3}
q) 2.8×10^{-13}	r) 4,5 × 10			
2. a) 4,2 km	b) 4.2×10^5 cm	c) 4,2 X	10 ⁶ mm	
3. a) 6.2×10^5 cm ³	b) 6,2	× 10 ⁸ mm ³		
4. a) 6.6×10^2 cm ²	b) 6,6	$\times 10^4 \text{ mm}^2$		
5. a) 7.2×10^9 cm	b) 7,2	\times 10 ⁴ km		
6. 5,40 cm. Porque	tem mais algarismos	significativos.		
7. 44,9 g		m 9. 49 g	10 . 21 × 10	04 cm ²
11. $3,81 \times 10^6 \text{ g}^2$	12. $6,54 \times 10^7$ 1	n 13. 1,0	14. 161 cm	1^2
15. A medida 2,00 é	mais precisa que 2,0	porque tem mais	algarismos significativo	os.
			6,8 × 10 cm/s	

SEÇÃO 6 - PESOS E MEDIDAS - HISTÓRICO

ANTIGUIDADE

Em nossa civilização atual, os processos de medição são bastante complexos, a fim de satisfazerem às necessidades da ciência e da tecnologia. Em épocas remotas, o homem utilizou processos simples, suficientes para a sua técnica primitiva.

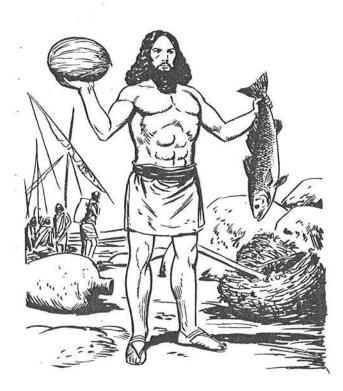
Mas, quando começou a medir? Começou provavelmente quando ainda nem falava, pois poderia medir ou comparar um peixe com outro e saber qual o maior ou o menor. Também seria do seu conhecimento que uma certa quantidade de alimento saciava sua fome. Obviamente, eram maneiras intuitivas de medir.


A partir do momento em que o homem passou a viver em grupos e à proporção que esses aglomerados cresciam, a necessidade de medir aumentava ainda mais. As maneiras como mediam as grandezas eram bastante simples: usavam partes do próprio corpo, como o comprimento do pé, a largura da mão ou a grossura do dedo, o palmo e a passada. Utilizavam ainda uma vara ou um bastão.

Com o surgimento das primeiras civilizações, tais processos não mais satisfaziam às necessidades dos homens, pois os mesmos sabiam constatar as diferenças daquelas partes para cada indivíduo. As construções de casas e navios, a divisão de terras e o comércio com outros povos exigiam medidas padrões, que fossem as mesmas em qualquer lugar. Assim, um mercador de tecidos da Babilônia poderia vender sua mercadoria em Jerusalém, usando uma vara padrão de tamanho aproximado ao da adotada lá.

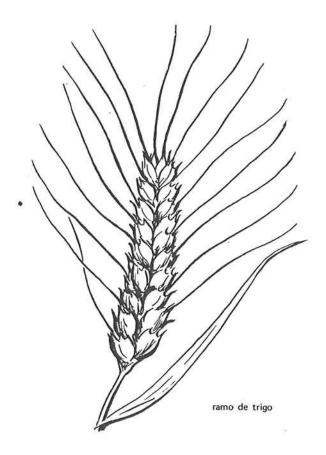
Os povos antigos — os egípcios, os babilônios, os assírios, os chineses, os persas e os gregos — possuíam padrões diferentes de comprimento. A unidade de com-

primento dos babilônios era o dedo (aproximadamente 16 milímetros). Usavam também o cúbito, que equivalia a 30 dedos. O pé e a polegada foram, em geral, para esses povos, as unidades padrões.



É interessante ressaltar que, segundo L.A. Sanches, os egípcios possuíam uma estranha medida denominada "polegada piramidal", encontrada na grande pirâmide de Quéops, junto ao Nilo, construída a 3 ou 4 mil a.C. Ao ser estudada, concluíram que o diâmetro da Terra mede um bilhão e meio destas polegadas. O cálculo do perímetro da base da pirâmide resulta 365 242 polegadas, resultado cujos algarismos exprimem exatamente o número de dias do ano solar (365,242 dias).

O homem também precisou pesar, ou melhor, comparar massas, pois peso e massa são duas grandezas diferentes, sendo o primeiro uma força resultante da atração gravitacional, como você verá mais adiante no seu curso de Física. Massa é a quantidade de matéria de um corpo, ou em termos mais físicos, é a resistência que ele oferece a uma força aplicada. O peso pode variar dependendo das condições e a massa é invariante no estado de repouso.


Nos primeiros tempos, o homem comparava a massa de dois corpos equilibrando-os um em cada mão. Até que surgiu a primeira máquina de comparação: uma vara suspensa no meio por uma corda. Os objetos eram pendurados nas suas extremidades e, se houvesse o equilíbrio, ou seja, se a vara ficasse na horizontal, eles possuíam a mesma massa.

Os povos antigos padronizaram centenas de diferentes pesos e medidas para atender às necessidades de suas civilizações.

O grão de trigo tirado do meio da espiga, provavelmente foi o primeiro elemento padrão de peso. Dos sistemas adotados, um deles propagou-se pela Europa toda e hoje ainda é usado pelos países de língua inglesa, após pequenas modificações: trata-se do sistema comercial chamado "avoirdupois", palavra francesa que significa "bens de peso". Suas unidades são:

grão	(gr.)
dracma	(dr.)
onça	(oz.)
libra	(lb.)
quintal	(cwt.)
tonelada	(t.)

Com relação ao tempo, apesar de não poder segurá-lo ou guardá-lo, o homem conseguia medi-lo registrando as repetições dos fenômenos periódicos. Qualquer evento familiar servia para marcar o tempo: o período entre um e outro nascer do Sol, a sucessão das luas cheias, ou a das primaveras.

Você deve saber que, assim como os antigos, os índios contavam os anos por invernos ou verões, os meses por luas e os dias por sóis. Tais cálculos não eram muito exatos. As horas de claridade entre o nascer e o pôr do sol variam muito durante o ano. Já o período que vai de uma lua cheia a outra permanecia constante. Logo os homens perceberam tal fato e concluíram que a maneira mais exata de medir o tempo era baseando-se na periodicidade de eventos em corpos celestes.

O nosso ano é o período de tempo em que a Terra faz o seu movimento de translação em torno do Sol. Ele é, às vezes, chamado de ano astronômico, equinocial, natural ou solar. Os cientistas chamam-no geralmente de ano trópico e tem 365 dias, 5 horas, 48 minutos, 45 segundos e 7 décimos. Como no calendário consideramos apenas 365 dias, a cada quatro anos, as horas e os minutos que sobram são reunidos, formando mais um dia, que aparece no ano bissexto.

O mês foi a primeira medida exata de tempo. Era calculado de uma lua cheia a outra e tinha exatamente 29 dias e meio. Entretanto, dividindo-se o ano em meses lunares, obtinha-se 12 meses e uma sobra de 11 dias. Não havia relação exata entre o ano calculado pela translação da Terra em torno do Sol e o mês lunar. Isto originava confusão ao iniciar um novo mês. Outras tentativas de divisões em relação a fenômenos naturais foram refutadas pela mesma razão. Júlio César, no ano 46 a.C., aboliu o ano lunar e adotou o ano solar de 365 dias, com um dia a mais a cada quatro anos. Os meses eram baseados aproximadamente nos meses lunares, porém com duração diferente. Os imperadores romanos costumavam subtrair dias de alguns meses para adicioná-los a outros, seus favoritos.

A semana de 7 dias não tem relação exata com os corpos celestes e seus movimentos, embora a divisão do mês em quatro semanas tenha origem nas divisões que representavam as quatro fases da Lua.

O dia é estabelecido pelo período de rotação da Terra em torno do seu eixo.

A hora é a vigésima quarta parte do dia, não existindo, porém, relação entre os fenômenos naturais e as repetições de duração de uma hora: a divisão foi feita arbitrariamente e por conveniência.

O relógio de Sol, que consistia em um bastão espetado no chão no centro de um círculo, foi o primeiro instrumento para medir o intervalo de tempo.

Uma hora possui 60 minutos e este, 60 segundos. Esta divisão foi feita pelos antigos babilônios (≃ 2000 a.C.), que adotavam um sistema de base sexagesimal, pois já haviam dividido o círculo na base 60, critério que até hoje conservamos.

IDADE MÉDIA E RENASCENÇA

Os pesos e medidas usados nas civilizações antigas eram levados a outras através do comércio ou da conquista. Assim, no início da Idade Média, as unidades adotadas eram as dos romanos, o último e maior império da Antiguidade, que levaram-nas por toda a Europa, oeste da Ásia e África. Sem dúvida, os mais usados eram ainda aqueles das dimensões humanas. Obviamente eram necessárias medidas mais precisas para certas atividades, como no caso das construções bizantinas e árabes. Esses povos certamente possuíam seus padrões de pesos e medidas, embora fossem diferentes para cada região. Ao que tudo indica, nenhum padrão foi criado em termos nacionais, até que, na Inglaterra, Ricardo I (reinou de 1189 a 1199), já no século XII, determinou unidades

para comprimento e para capacidade. Estas eram de ferro e mantidas em várias regiões do país por autoridades regionais com o objetivo de comprovar a veracidade de uma medida. Datam desta época a jarda e o galão, até hoje usados pelos países de língua inglesa.

Várias versões existem para explicar o aparecimento da jarda: no norte da Europa, supõe-se que era o tamanho da cinta usada pelos anglo-saxões e no sul seria o dobro do comprimento do cúbito dos babilônios. Seu valor também pode ter sido determinado por Henrique I (reinou de 1100 a 1135), que teria fixado o seu comprimento como sendo a distância entre o seu nariz e a ponta de seu braço esticado. Informações como esta provavelmente não carecem de verdade, pois a maioria dos padrões da Idade Média era realmente criada pelos soberanos, primeiros interessados nas medidas dos valores de seus reinos.

٤

1

n

C

à

e

ra q

n

A fa

a

de

gι

a)

b)

c)

ara

pe:

vei

de

COL

Par

par

ces

par Leg

var

ace

med

real

Os pesos padrões eram aqueles dos povos antigos, conforme a região, em geral mantendo o grão como unidade fundamental. Em algumas regiões européias, continuava o uso do sistema "avoirdupois" nas transações comerciais. Para o comércio de jóias e pedras preciosas, que exigia processos de medidas mais delicados, era usado o sistema "troy", cujas unidades eram:

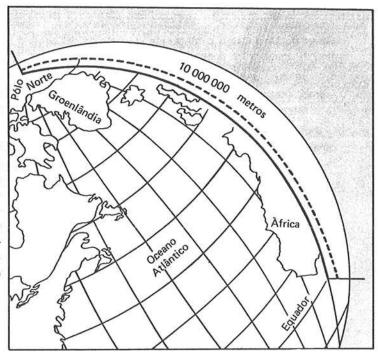
grão	(gr.)
pennyweight	(dw.t)
onça	(oz.t)
libra	(lb.t)

Para pedras preciosas, a unidade era o quilate, que equivale aproximadamente a 4 grãos.

De todos os padrões de pesos e medidas criados, nenhum conseguiu uma utilização internacional e homogênea, existindo ainda aqueles remanescentes da Antiguidade. A situação se tornava mais delicada e confusa, devido a reprodução inexata, erros de interpretação e desonestidade de alguns.

O mesmo não aconteceu com as medidas de tempo que já haviam sido padronizadas por Júlio César, sendo seu calendário adotado pelo menos em toda a Europa. Ainda devemos lembrar que nas invenções do fim da Idade Média e Renascença eram adotados padrões cautelosos, pois tratava-se de uma nova atividade e podia ser muito bem controlada. Como exemplo, a tipografia e a imprensa, cujos tipos móveis de padrões internacionais foram criados em fins do século XV e são até hoje mantidos.

SISTEMA MÉTRICO DECIMAL E SISTEMA INTERNACIONAL DE UNIDADES


Em fins do século XVIII, a diversificação de medidas era enorme, dificultando muito as transações comerciais. Na França, a situação estava pior e graças às novas idéias trazidas pela Revolução Francesa de 1789 e as imposições que fazia o florescimento da era industrial, foi criada uma comissão de homens de ciência para a determinação e construção de padrões, de tal modo que fossem universais.

Os padrões deveriam reproduzir os fenômenos naturais, para não dependerem de futuras mudanças. Após estudos e pesquisas, a comissão que incluía nomes famosos como Borda, Lagrange e Laplace concluiu que a unidade de comprimento deveria pertencer ao sistema decimal, de maior facilidade, e presa a um dos três seguintes fenômenos naturais:

- a) comprimento de um pêndulo de período (2 oscilações) igual a 1 segundo, latitude 45°
- b) comprimento de ¼ do círculo equatorial
- c) comprimento de ¼ de meridiano terrestre do equador a um dos pólos

Como na primeira a medida iria depender de grandezas alheias ao comprimento, como o tempo e o peso, e como medidas do equador eram quase impossíveis, foi aceita a proposição do meridiano, pois, além de não apresentar os defeitos das anteriores, já contava com uma boa comparação. O meridiano que passa por Paris já havia sido medido precisamente e podia ser comparado com a nova determinação.

Imediatamente foram tomadas as medidas necessárias para o trabalho e designadas cinco comissões para a execução, onde figuravam Lavoisier, Coulomb e Legendre. Devido à demora que o empreendimento levaria e à urgência da criação do sistema, foi proposto e aceito pela Assembléia o metro provisório, baseado na medida antiga. Mais tarde, verificou-se que a diferença realmente era mínima.

A distância do Pólo Norte ao Equador é de quase exatamente 10 000 000 metros.

As unidades padrões eram o metro, o quilograma e o segundo.

O metro foi definido como a décima milionésima parte do meridiano terrestre, medido de Dunkerke a Barcelona.

A unidade de massa era o quilograma, construído em platina iridiada, massa próxima de 1 litro de água destilada a 4°C.

O segundo era a unidade de tempo, de valor 86 400 avos do dia solar médio.

Por decreto-lei, as unidades tornaram-se oficiais na França e, passados alguns anos, vários países já as adotavam.

Os padrões foram feitos e cópias exatas foram enviadas aos países que legalizaram o sistema métrico, dentre eles o Brasil.

Anualmente, por volta de 1870, reuniam-se em Paris os membros da Confederação Internacional de Pesos e Medidas e, em 1875, determinou-se a criação do Bureau Internacional de Medidas. Participaram 30 países, dentre os quais o Brasil, através de seu representante, Visconde de Itajubá.

A Inglaterra resolveu não adotar o sistema decimal, mantendo até hoje suas unidades, juntamente com os Estados Unidos.

Com o desenvolvimento científico e tecnológico de nosso século, verificou-se, além de melhores maneiras de definir as unidades, a insuficiência destas, pois não havia um padrão para grandezas fundamentais como no caso da eletricidade.

Enfim, em 1960, na XI Conferência Internacional de Pesos e Medidas, foi adotado o Sistema Internacional de Unidades e o metro e o segundo foram redefinidos, como você encontrou neste capítulo.

As grandezas fundamentais do SI são: Comprimento, Massa, Tempo, Intensidade Elétrica, Temperatura e Intensidade Luminosa.

Devido a sérios prejuízos que sofre a Inglaterra pela não adoção do SI, já está determinado oficialmente que passará a implantá-lo a partir de 1974.

Como você deve ter observado, um modelo ou uma teoria científica nunca é eternamente exata, podendo vir a sofrer mudanças conforme a própria ciência e tecnologia exija, de acordo com o seu desenvolvimento.

QUESTÕES

- 1 Por que o homem precisou medir?
- 2 Por que na Idade Média e Renascença aumentou a necessidade de medir com mais sistematização?
- 3 Procure deduzir as razões que levaram às redefinições do metro e segundo.
- Você acha que as unidades atuais iriam satisfazer mais aos povos anteriores que as por eles usadas?
- Pelo desenvolvimento das maneiras de medir, você acha que as unidades atuais não mais necessitarão serem redefinidas?

CAPÍTULO II

Funções e gráficos.

OBJETIVOS: Ao final deste capítulo, o estudante deve estar apto para:

- a. construir e interpretar gráficos.
- b. equacionar funções representadas graficamente.
- c. verificar de que modo algumas leis físicas são formuladas: equações (funções), tabelas e gráficos.
- d. resolver problemas.

Uma das preocupações do cientista, ao focalizar um determinado fenômeno, é representá-lo de forma simples e racional, de tal modo que ele possa ser entendido e imediatamente analisado nos pontos considerados importantes. A representação deve ser, portanto, universal, suficientemente clara e tão completa quanto possível.

Ao descrever um evento físico, os primeiros elementos que o representam são as medidas das grandezas envolvidas. Uma descrição de vários eventos envolvem grandezas variáveis, obedecendo leis naturais, que estamos interessados em descrevê-las. Os dados obtidos experimentalmente poderão ser expressos, dinamicamente, por uma representação gráfica, fácil de ser visualizada.

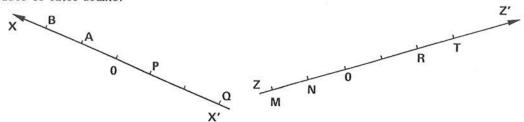
A partir de graficos pode-se obter analiticamente (outra maneira de representação de fenômenos) a função correspondente.

A representação gráfica é portanto um dos vínculos importantes e imprescindíveis na descrição e análise de fenômenos físicos.

A descrição de muitos fenômenos no plano cartesiano nos levará à obtenção de uma reta e a sua descrição matemática é feita através da função linear. Daí, portanto, a necessidade de conhecermos as características e propriedades da função linear, cuja representação no plano cartesiano é uma reta.

SEÇÃO 1 - ABSCISSA DE UM PONTO DE UMA RETA

dois; não


1 =	Dada a reta r abaixo, podemos percorrer os pontos desta reta de dois modos: da esquerda para a direita da direita para a

	esquerda
2 11	Uma reta admite (um; dois) sentidos de percurso. Podemos afirmar que os sentidos de percurso das reta abaixo são da direita para a esquerda e da esquerda para a direita. (sim; não)
	r

3 m	Já vimos que uma reta admite dois sentidos de percurso. Quando convencionamos que um deles, qualquer um, é o sentido chamado positivo, obtemos uma reta orientada. Portanto uma reta é qual-
	quer reta na qual se estabeleceu qual é o sentido positivo. Abaixo, indicamos uma reta orientada.
	r

12	orientada
4 =	Graficamente, o sentido positivo é indicado por uma seta. A presença da seta convenciona também se trata-
	mos ou não com retas orientadas. O sentido positivo da reta s é da direita para a esquerda e o negativo
	s

	da esquerda para a direita
5 m	Podemos utilizar 2 pontos distintos das retas orientadas para nos referirmos aos seus sentidos positivos e ne-
	gativos. Assim é que o sentido positivo da reta r abaixo é de A para B e o negativo de B para A. A reta orientada s possui sentido positivo de e o negativo de
	•
	S.
	B A P Q

	P; Q; Q para P
6 = 6	O sentido negativo da reta orientada t é de para
	1+
	C D
	A
(O sentido positivo da reta orientada z é de para
,	*****
I	B; A; C; D
7 = (Observe as retas abaixo. A reta r é, ao passo que a reta s
	s
4	*****
c	prientada; não é orientada
	Das retas abaixo, as orientadas são, e
	q
*	*******
4	. 7. 11

t; z; u

9 = F	ixado o sentido positivo, ta	mbém fica determinado	o sentido oposto, que é cha	mado de
			0 0	r
		Α	В	
C	móvel A desloca-se no sen	tido	, ao passo que o B no sent	ido

n	egativo; positivo; negativo			
10 =	As retas orientadas ou não		1 1.1. N. C.	
	reta ao passo que Z'Z repre		por duas letras. Nas figuras	abaixo X'X representa uma
			•	
	Χ'	X	Z' =	Z
			_	-

(orientada	9		
			origem), sobre uma reta orier	ntada, e adotarmos uma uni-
Ċ	lade de medida, obteremos			
	X' 0	, X	Z'	Z
	0	1 to		-
7	X'X representa um	ao passo que Z'Z i	representa uma	

e	eixo; reta orientada			
	erinde de la companya			8
12 = P	ortanto, um eixo consta ae	uma reta , ı	ıma origem e uma	
	*****		7.2	
O	rientada; unidade de medida			
	,			
13 = A	origem (O) divide o eixo	em duas regiões chamad	as de semi-eixos: um positivo	o e outro negativo. Ambos
C	ontêm a origem. Na figura a	abaixo, OX representa o	semi-eixo positivo, ao passo	que OX' representa o
_	negativo.			<u> </u>
	X'	0		X
*	*****			
96	emi-eixo			
	in tho			
14 m O	ponto M, na figura abaixo,	pertence ao	, ao pass	o que o ponto P nertence
ac	semi-eixo		, ,	Total Paris Paris Paris
	P		М	
	X'	0		X
*	****	-		^
	mi-eixo positivo negativo			

15 ■ Dados os eixos abaixo:

Os pontos neles indicados pertencentes aos semi-eixos positivos são:____,___, ___e___; e os pertencentes aos semi-eixos negativos são:____,___e___.

A; B; R; T; P; Q; M; N

16 ■ Existe uma correspondência biunívoca entre os pontos de um eixo X'X e os números reais. Ao zero corresponde a origem e reciprocamente. Ao ponto M ≠ 0 corresponde a medida do segmento OM, se M pertencer ao semi-eixo positivo, e o oposto dessa medida (portanto um número real negativo), se M pertencer ao semi-eixo negativo e reciprocamente.

A medida do segmento OM está associada ao número real 1. O comprimento ON' está associado ao número real _____. Ao número 5 corresponde o comprimento do segmento OR, enquanto que ao número real -4, corresponde o comprimento do segmento _____.

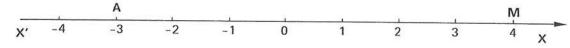
-2; OQ'

17 Ao ponto B está associado um número (positivo; negativo). Ao ponto A está associado um número (positivo; negativo).

positivo; negativo

18 • Os números são chamados de abscissas dos pontos e o eixo X'X é chamado de eixo das abscissas. No eixo indicado a seguir, o número 3 é a _____ do ponto C; já a abscissa de B é ____ e a de E', ____.

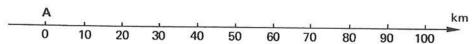
F'	E'	D'	Ç'	B'	A'		A	Ŗ	Ç	D	E	F
X'	-5	-4	-3	-2	-1	0	1	2	3	4	5	X


2

25

abscissa; 2; -5

19 M A abscissa de um ponto qualquer é o valor algébrico da medida do segmento OP. O valor algébrico da medida do segmento OA é ______ e do segmento OM é ______.



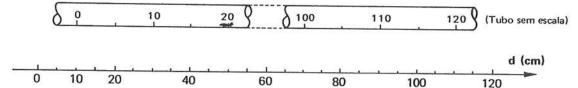
-3; 4

	7000 131		10 . 40	W 63		1 (0)	D/	2) Y		. (*)		
20 ■ É usual representar sa de A é 2 e a de		de um po	nto da s	eguinte	maneir	a: A(2)	ou B(-3). Is	to sign	ifica qu	ue a a	bscis-
		В	24			A					M	X
X' C	-5 -4	-3 -2	-1	0	1	2	3	4	5	6	7	
Da mesma forma p	odemos indic	ar C() e	(7).								
*****	***											
-6; M												
21 ■ X′	-5 -4	E F	-1	0	D C	B2	3	4	5	6 X		
Indique as abscissa	s dos pontos	assinalados	no eixo	:								
A(); B()		D();	E(); F(_)							

3; 2; 1,5; 1; -												
22 X ′	P -4	R	Ņ		K	L		M			×	
-6	-4	-2		U		2		4		6		
Indique as letras c												
(-4);(2);(4);	(-1)	(1);	_(-2)							
****				1								
P; L; M; N; K		ž.	122343 10	203 1951 1				16070000	•		~ 1	
23 ■ A abscissa da orige dos simétricos em												
luto e de sinais co												
respectivamente		е		•								
_X′	-5 -4	P					M			8	X	
3	-5 -4	-3	-2 -	1 0	1	2	3	4	5			
******	***											
simétricos; -3; 3												
24 Construindo um es												
tra-se 3 metros à origem. Já a distâi								de		à (esquer	da da
											~	
X' -7 -6	-5 -4	-3 -2	-1	0	1	2	3	4	5	6	7	
*****	***											
4 metros; 7 metro	r'S											
25 Com o auxílio de que se movem en correspondência co pode ser represent	n linha reta. F om os da trajo ada, numa fo	Para tanto, etória retil	basta co ínea (um	nstruir móvel	um eix numa	o de ta estrada	ol form	a que	seus p	ontos	esteja	m en
*****	* * *											

eixo

26 ■ O eixo abaixo representa um trecho de uma estrada retilínea. A cada 10 km, na estrada, existem placas indicativas da quilometragem, a partir de uma cidade A.


No eixo acima cada divisão representa _____ km. A escala do eixo é portanto dada por:

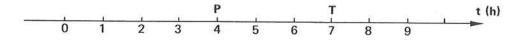
1 divisão = km

10; 10

27 Se colocarmos um tatuzinho de jardim (ou uma formiga) em um tubo cilíndrico de vidro, graduado de 5 em 5 cm, poderemos estudar a posição que ele ocupa no interior do tubo à medida que o tempo passa. O tubo de vidro pode ser representado por um semi-eixo; sua graduação, pelas abscissas dos pontos a ela associados.

A posição ocupada pela formiga pode ser representada no semi-eixo pela abscissa ______. A escala utilizada no semi-eixo acima é: 1 cm = _____ cm.

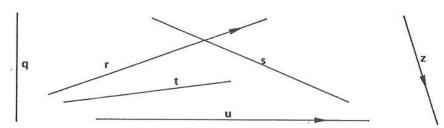
20 cm; 10

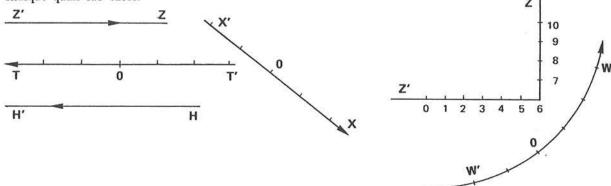

28 m Imaginemos um veículo percorrendo uma estrada retilínea. Podemos representar a referida estrada através de um ______. Logo, se soubermos o ponto (ou marco da estrada) onde se encontra o veículo num determinado instante, (podemos; não podemos) situá-lo inequivocamente em nosso eixo.

eixo; podemos

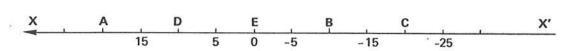
29 Se estivéssemos estudando o tempo em que um móvel percorre uma estrada, poderíamos associar à contagem dos tempos um semi-eixo positivo, onde a origem do semi-eixo (0) corresponde ao início da contagem dos tempos. A abscissa do ponto P é ______horas. Do ponto P(4) ao T(7) o móvel gastou horas.

Escala: 1 cm = 1 hora

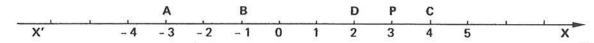

F

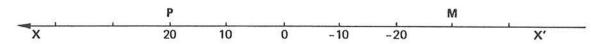

4; 3

EXERCÍCIOS DE REVISÃO


1 ■ Indique quais das retas são orientadas.

Indique quais são eixos.


3 ■


Indique as abscissas dos seguintes pontos:

Escala: 1 divisão = 5 unidades

- Um veículo encontra-se no quilômetro 25 de uma estrada retilínea. Construa um eixo para estudar as posições deste veículo na estrada. Faça com que a origem deste seu eixo corresponda à origem da estrada. Marque no eixo a posição inicial do veículo. Imagine que ele caminha para o início da estrada lá parando. Assinale no eixo sua posição final. (Sugestão: Adote a seguinte escala: 1 cm = 5 km.)
- Dado o eixo:

- a) o simétrico do ponto A é ______.
- b) a abscissa de C é_____.
- Dado o eixo:



- a) o semi-eixo positivo está a _____ de 0. b) a abscissa de P é _____ e a de M, ____
- 7 Uma formiga caminha no interior de um tubo de vidro que foi dividido de 10 em 10 cm. O tubo possui 2 metros de comprimento. Construa um eixo adotando a seguinte escala: cada 20 cm do tubo corresponde a 1 cm do eixo. Faça a origem do eixo corresponder a uma das extremidades do tubo. Supondo que a formiga se encontra inicialmente a 30 cm de uma das extremidades e caminha até parar a 40 cm da extremidade oposta, situe estes dois pontos no eixo. (Chame-os de P e Q, respectivamente.)

RESPOSTAS

1. r; u; z

3. A(20); B(-10); C(-20); D(10); E(0)

SEÇÃO 2 - GRÁFICOS CARTESIANOS

Nesta seção deveremos aprender como interpretar e construir gráficos. Uma das formas mais eficientes de se transmitir informações é através de gráficos. É muito mais fácil visualizar um fenômeno que está ocorrendo através da análise de um gráfico do que por meio de equações.

A - PLANO CARTESIANO

Na seção anterior verificamos que poderíamos representar os pontos de uma estrada ou trajeto retilíneos através de um _____chamado de _____.

eixo; eixo das abscissas

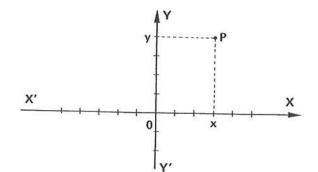
Para representarmos os pontos de um plano, utilizamos dois eixos perpendiculares entre si chamados de eixos coordenados. Sua representação é a da figura ao lado. O ponto de intersecção dos eixos é a origem, e, em conjunto, definem um sistema de coordenadas cartesianas (homenagem a René Descartes). Portanto, para representarmos os pontos de um plano, utilizamos dois ______ perpendiculares entre si, que definem um ______

X' X

7

8 .

9 =


eixos; sistema de coordenadas cartesianas

3 Estabelecido um sistema de coordenadas cartesianas, um ponto do plano é identificado não mais por um único número, mas por um par de ______.

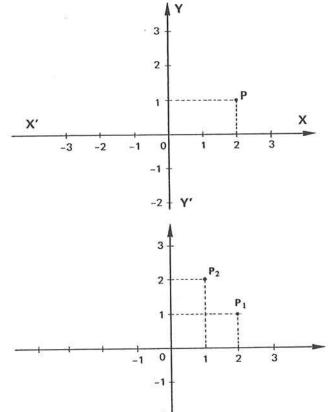
números

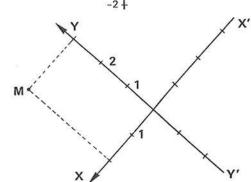
O ponto P do plano (figura ao lado) é identificado traçando-se, a partir de P, perpendiculares até os eixos. Os números representados por x e y são chamados de coordenadas do ponto P. Portanto, os pontos x e y são obtidos traçando-se

perpendiculares a partir de P até os eixos coordenados

O ponto obtido sobre o eixo X'X (x) é chamado de abscissa de P e o ponto obtido sobre o eixo Y'Y (y) é chamado de ordenada de P. Escreve-se P(x, y). No plano cartesiano representado a seguir, temos

P(2, ___)


1


As coordenadas de um ponto do plano são escritas de tal forma que o primeiro número indica sempre a abscissa do ponto e o segundo número, a ordenada. Assim, na figura ao lado, P₁(2, 1) e P₂(1, 2) representam (os mesmos; distintos) pontos do plano.

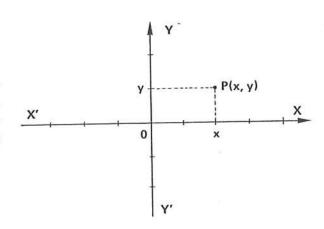
distintos

7 ■ As coordenadas do ponto M são (___,__)

2: 3

m

8 • Já verificamos que qualquer ponto do plano corresponde a um par ordenado de números reais. Da mesma forma que um par de números reais (x, y) corresponde a um ______ no plano cartesiano.



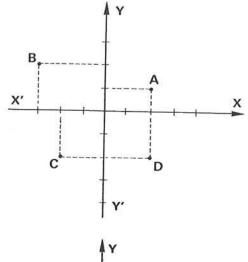
ponto

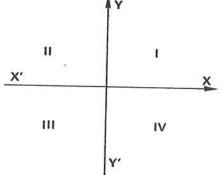
9 Temos uma correspondência biunívoca entre os pontos do plano e os pares ordenados de números reais. Um sistema de coordenadas fica determinado escolhendo-se um par de eixos X'X e Y'Y perpendiculares entre si. Desta forma, construindo-se um sistema de coordenadas bem determinado, cada ponto do plano está associado a um par de ______(x, y) e a cada par de números está associado um _____ do plano.

números; ponto

10
Identifique cada ponto indicado no plano cartesiano:

A(2, ___); B(___, 2); C(-2, ___); D(___, -2)


1; -3; -2; 2


11 • Uma reta divide o plano em duas partes chamadas de semiplanos, ao passo que dois eixos coordenados dividem o plano em quatro partes chamadas de quadrantes, que são identificados pelos números I, II, III e IV.

Os pontos pertencentes ao primeiro quadrante (I) possuem abscissas e ordenadas positivas. Os pontos pertencentes ao II quadrante possuem _____ negativas e _____ positivas.

abscissas; ordenadas

1(

11

12

13

R

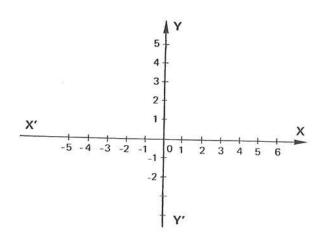
pagating.

negativas; positivas; negativas

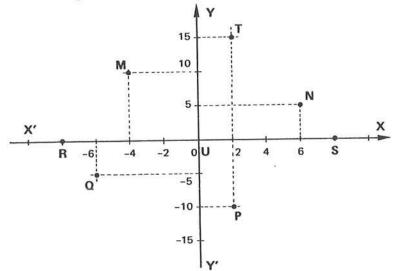
abscissas; ordenadas

14 A origem dos sistemas de coordenadas corresponde ao ponto de coordenadas (__,__). Os pontos situados sobre o eixo X'X possuem coordenadas (x,___) e os situados sobre o eixo Y'Y, (___, y).

0; 0; 0; 0;


EXERCÍCIOS DE REVISÃO

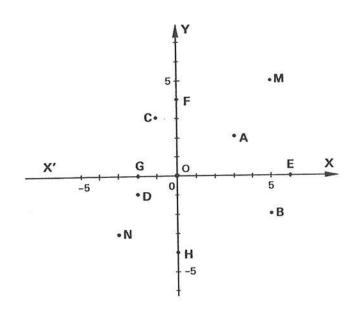
1 Represente graficamente os pontos:


A(3, 2); B(5, -2); C(-1, 3); D(-2, -1);

E(6, 0); F(0, 4); G(-2, 0); H(0, -4);

M(5, 5); N(-3, -3); O(0, 0).

As questões 2 a 13 referem-se ao seguinte sistema de coordenadas:


2 ■ Dê as coordenadas dos pontos:

M(,); N(,); P(,); Q(,); R(,); S(,); T(,); U(,).

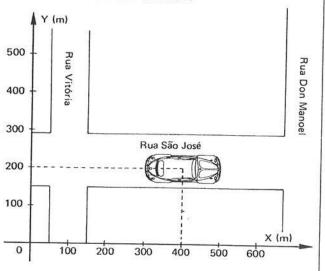
- 3 M As coordenadas da origem são ______.
- 4 = A ordenada do ponto A(16, 5) é _____.
- 5 M A abscissa do ponto P(-4, 0) é _____.
- 6 O ponto representado pelos números (2, 0) encontra-se sobre o eixo das ______.
- 7 O ponto representado pelo par de números (0, -5) encontra-se sobre o eixo das _____
- 8 O ponto P(1, 3) pertence ao _____ quadrante.
- 9 m O ponto M(1, -8) pertence ao ______
- 10 = O ponto N(-53, -14) pertence ao ______
- 11 = O ponto O(15, 0) pertence ao_____
- 12 M O ponto R(-7, 12) pertence ao _____
- 13 O ponto T(0, 8) pertence ao ______

RESPOSTAS

1.

- 2. M(-4, 10); N(6, 5); Γ(2, -10); Q(-6, -5); R(-8, 0); S(8, 0); T(2, 15); U(0, 0)
- 3. 0; 0
- 4. 5
- 5. -4
- 6. abscissas 7. ordenadas

- 8. 1.0
- 9. 4.0 quadrante
- 10. 3.º quadrante


- 11. eixo das abscissas
- 12. 2.º quadrante
- 13. eixo das ordenadas

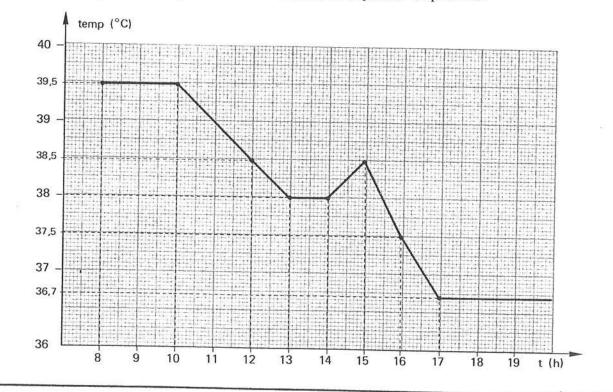
B – ANÁLISE DE GRÁFICOS

Na figura ao lado representamos um pequeno trecho de uma cidade, através de um sistema de coordenadas. A localização do veículo representado esquematicamente ficará determinada se conhecermos as coordenadas cartesianas x e y da posição por ele ocupada no instante ao qual corresponde a figura. As coordenadas cartesianas do veículo são ______.

(400, 200)

10

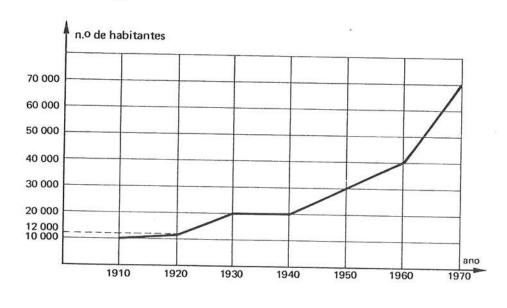
11


12 1

13 1

Leia atentamente o Quadro A e em seguida responda às questões 2 a 13.

QUADRO A


- a. Uma pessoa dá entrada num hospital em estado febril. O médico examina-o e faz o diagnóstico de sua doença. Determina o seu internamento e a medicação que julga recomendável para o caso. Para acompanhar a evolução da enfermidade solicita que a temperatura do doente seja tomada de hora em hora.
- b. A primeira temperatura do paciente foi tirada às 8 h, quando o termômetro acusou 39,5°C (39,5 graus Celsius). O gráfico cartesiano abaixo representa a temperatura do doente em função do tempo. O eixo das abscissas corresponde ao tempo e o eixo das ordenadas às respectivas temperaturas:

	2 MAS 8 h o	paciente acusava a temperatura de
	****	*****
	39,5°C	
	3 m Às 10 h	a temperatura do doente era de
	****	****
	39,5°C	
	4 = Às 12 h	sua temperatura era de
	****	****
229	38,5°C	
	5 = Às 15 h	o termômetro acusava°C.
	****	****
	38,5	
	6 ■ Às 18 h	o termômetro acusava
	***	****
	36,7°C	
		ratura do paciente permaneceu constante nos intervalos de tempo compreendidos entre 8 e 10 h; h; e h.
	****	****
		4; 17 (e) 20
	8 a A tempe	eratura do paciente decresceu nos seguintes intervalos de tempo: das às h e das às
	***	****
		15; 17
		em consideração que a temperatura do paciente reflete o seu estado de saúde, podemos afirmar que o sofreu uma piora das às h.
	***	****
	14; 15	
	10 = A tempe	eratura do paciente decresceu mais rapidamente das (15 às 16 h; 16 às 17 h).

		6 h (Neste intervalo de tempo, 1 hora, a temperatura diminuiu de 1°C, ao passo que das 16 às 17 heratura diminuiu menos: 0,8°C.)
	11 ■ Das 10	às 13 h a temperatura do paciente diminuiu numa proporção de°C em cada
	***	****
	0,5; hor	a
	12 ■ O doent	te acusou a temperatura de 38,0°C
	***	****
	das 13	às 14 h
	13 ■ O pacie	nte acusou a temperatura de 38,5°C
	***	****
	àc 12 h	e às 15 h

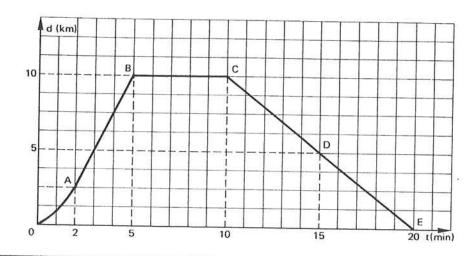
QUADRO B

- a. O censo de determinada cidade foi realizado de 1910 a 1970, de 10 em 10 anos. O censo corresponde ao levantamento do número de habitantes de determinada cidade, região ou país.
- b. O gráfico cartesiano abaixo representa os resultados obtidos nos diversos censos realizados a partir de 1910, quando a cidade possuía cerca de 10 000 habitantes. Foram arredondados os números de habitantes para uma melhor análise do gráfico:

2!

26

27


28

14 1	14 Em 1910 a cidade possuía cerca dehabitantes.	

	10 000	
15 🛮	15 ■ No censo realizado em a cidade possuía cerca de 30 000 habitantes.	

	1950	
16 =	16 = Em 1970 a cidade possuía cerca de habitantes.	

	70 000	
17 =	17 A cidade não apresentou aumento de população entre os anos de e, uma sos realizados registraram cerca de habitantes.	vez que os dois cen-

	1930; 1940; 20 000	
18 m	18 ■ Entre 1910 e 1940 a população aumentou emhabitantes.	14.1

	10 000	

19 ■ De 1940 a 1970 a população da cidade aumentou em	_ habitantes.

50 000	P
20 O maior aumento de população registrou-se entre os anos de	e

1960; 1970	9
21 Em algum censo realizado foi registrado uma diminuição de população	? (sim; não)

não	
22 De 1910 a 1970 a população da cidade aumentou em	_ habitantes.

60 000	
23 Podemos dizer que, em média, o crescimento da população entre 1910 habitantes por ano.	e 1920 foi de

$(12\ 000\ -\ 10\ 000)\ : (1920\ -\ 1910)\ =\ 2\ 000\ :\ 10\ =\ 200$	
24 De 1920 a 1930 a taxa de crescimento populacional foi de	habitantes por ano.

(20 000 - 12 000) : (1930 - 1920) = 8 000 : 10 = 800	
25 Entre 1930 e 1940 a taxa de crescimento populacional foi de	habitantes por ano.

$(20\ 000\ -\ 20\ 000)$: $(1940\ -\ 1930)=0$: $10=0$ (Não houve crescim década.)	nento ou aumento de população nesta
26 Entre 1940 e 1950 a taxa de crescimento populacional foi de hab/ano.	hab/ano e entre 1950 e 1960

1 000; 1 000	
27 Entre 1960 e 1970 a taxa de crescimento foi de	

3 000 hab/ano	
28 ■ Entre 1910 e 1970 o aumento médio de população foi da ordem de _	habitantes por ano.

$(70\ 000\ -\ 10\ 000)\ : (1970\ -\ 1910)\ = 60\ 000\ : 60\ = 1\ 000$	
29 A maior taxa de crescimento populacional foi entre os anos de anos de e	ee a menor, entre os

1960; 1970; 1930; 1940	

QUADRO C

- a. Um motorista sai de sua casa e realiza um percurso ao longo de uma estrada retilínea, retornando ao ponto de partida ao fim de 20 minutos.
- b. O gráfico abaixo nos mostra a distância do motorista à sua casa (eixo das ordenadas), em cada instante particular t (eixo das abscissas). Portanto, qualquer ponto da curva nos indica o valor de d para aquele particular valor de t (A, B, C, D, E, ou qualquer outro ponto não indicado da curva).

30	O ponto A indica que o veículo alcançou a distância de km no instante t = 2 min.

	2,5
31	O ponto B possui coordenadas B(,). Isto significa que o veículo estava akm de sua casa ao fim de 5 min.

	5; 10; 10
32	Ao fim de 10 min o veículo encontrava-se akm do ponto de partida.

	10
33 ■	Ao fim de 15 min a distância do veículo ao ponto de partida era dekm.

	5
34 ■	No instante t = 20 min o veículo encontrava-se a uma distância de do ponto de partida. Isto significa que o motorista retornou ao ponto de partida (sua casa).

	0 km
35 ₪	O ponto mais distante de sua casa alcançado pelo motorista foi dekm.

	10

36 O veículo permaneceu parado entre os instantes _____ min e ____ min.

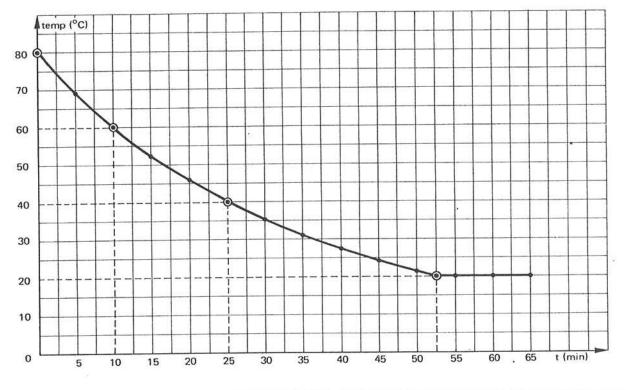
5; 10

37 ■ O veículo afastou-se de sua casa entre os instantes ____min e ____min e iniciou o retorno no instante

t = ____ min, atingindo sua casa no instante t = ____ min.

0; 5; 10; 20

Leia atentamente o Quadro D e em seguida responda às questões 38 a 42.


QUADRO D

a. Um recipiente contendo água foi aquecido e em seguida posto sobre uma mesa para resfriar naturalmente. Em seu interior foi introduzido um termômetro que nos permitiu ler a temperatura da água. (Vide figura ao lado.)

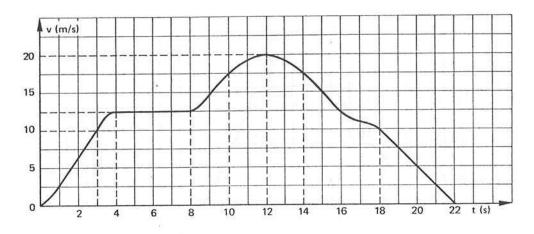
b. A temperatura do líquido era lida de 5 em 5 minutos.

Com os valores obtidos construiu-se o gráfico abaixo:

38 O gráfico indica que, no início da contagem do tempo, a temperatura da água era de ______.

80°C

39 A temperatura da água atingiu 60°C no instante t = _____ min.


40 ■ No instante t = 25 min, o termômetro registrava ___ ***** 40°C 41 ■ A partir do instante t = 52,5 min a temperatura do líquido (permaneceu; não permaneceu) constante. ***** permaneceu 42 ■ A análise do gráfico nos permite concluir que a temperatura do líquido caiu até o instante t = _____ min. A partir deste instante o termômetro sempre registrou a temperatura de ______. ***** 52,5; 20°C Leia atentamente o Quadro E e em seguida responda às questões 43 a 47. QUADRO E V (volume) Tem-se determinada quantidade de água contida no interior de um recipiente, à temperatura de 0°C. O recipiente é aquecido e através de instrumentos apropriados são medidos os volumes e as respectivas temperaturas da água. Com os valores obtidos constróise o gráfico V X t, para a água, que está indicado ao lado. 4°C t (temp) 43 ■ O gráfico mostra de que forma o volume da água varia em função da sua ***** temperatura 44 ■ O gráfico mostra o comportamento da água à medida que sua temperatura cresce. Entre 0 e 4°C o volume da água (aumenta; diminui; permanece constante). ***** diminui 45 ■ A partir de 4°C, à medida que a temperatura da água cresce, seu volume (aumenta; diminui; permanece constante). ****** aumenta 46
O menor volume apresentado por uma determinada massa de água é o correspondente à temperatura de ____ ***** 4°C 47 Lembrando que a massa específica de uma substância é dada por $\rho = \frac{m}{V}$, podemos verificar através do gráfico que a massa específica da água é maior à temperatura de ______. ***** 4°C

!

E

QUADRO F

O gráfico abaixo representa a velocidade em função do tempo de um veículo que se movimenta numa trajetória retilínea.

48 ■ A velocidade do veículo após 4 segundos é de ______.

12,5 m/s

49 ■ A máxima velocidade atingida pelo veículo foi no instante t = _____s e seu valor foi de _____ m/s.

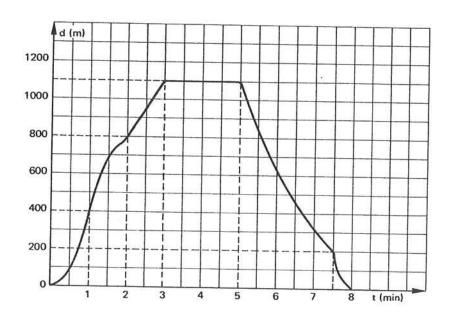
12; 20

50 M A velocidade do veículo permaneceu constante entre os instantes _____s e _____s.

4: 8

51 • O veículo possuía a velocidade de 10 m/s nos instantes _____s e ____s.

3; 18


52 A velocidade do veículo era nula nos instantes _____ s e _____ s.

0; 22

QUADRO G

Um motorista sai de sua casa e percorre um trecho retilíneo da rua onde reside. O gráfico abaixo mostra, em cada instante, a distância em que se encontra do ponto de partida (sua casa).

53	Após 1 min o veículo encontrava-se a uma distância de m do ponto de partida.

	400
54 1	No instante t = 2 min o motorista estava a uma distância de m de sua casa.
89	*****
	800
55 =	O veículo esteve parado a uma distância de m de sua casa entre os instantes min e min.

	1 100; 3; 5
56 ■	O motorista iniciou o retorno para sua casa no instante t = min e a ela chegou no instante t = min.
	5; 8
5/ 🖺	Desde o instante da partida até o retorno o motorista percorreu o espaço de m.

	2 200

9

10

C - FUNÇÃO LINEAR

Podemos fazer corresponder a cada número real x, um número real y tal que y = ax + b, onde a e b são constantes reais. Na equação: y = 2x - 4, a constante real 2 corresponde à letra a e à letra b corresponde a constante real _____.

4

2 Dada a equação $y = \frac{x}{2} + 3$, temos: $a = \frac{1}{2} e b = \underline{\hspace{1cm}}$.

3

3 ■ Dada a equação y = 7x - 1, temos: b = -1 e a = ____.

7

4 ■ Dada a equação d = 3t + 2, temos: a = _____ e b = ____.

3: 2

5 ■ Dada a equação v = 6 - 5t, temos: a = ____ e b = ___ .

-5: 6

6 ■ Dada a equação F = kx, temos: a = ____e b = ____.

k; 0

7 **■** Dada a equação V = 10, temos: a = 0 e b = _____.

10

8 **u** Dada a equação d = 5, temos: a = _____e b = ____.

0; 5

9 • O conjunto dos pares ordenados (x, y) tais que y = ax + b caracteriza uma função linear. y é chamado valor da função no ponto x, ou então, imagem de x pela função y = ax + b.

O valor da função y = -x + 3 no ponto 8 é: y = -(8) + 3 = -5.

O valor da função y = 3x - 5 no ponto 4 é:

$$y = 3(4) - 5 = 7$$
 : $y = 7$

10 ■ Dada a função linear y = 2x - 1, o valor da função no ponto 2 é ______.

$$y = 2x - 1 = 2(2) - 1 = 3$$
 : $y = 3$

11 ■ Dada a função linear y = x - 4, para y = 6 o valor de x é: 6 = x - 4 ∴ x = 10.

Quando o valor da função linear (acima) for 3, o valor de x será _____.

$$y = x - 4 \rightarrow 3 = x - 4$$
 : $x = 7$

12	Pada a função linear y = 2x - 4, para y = 12 temos x =

	8
13	 □ Dada a função y = 2x - 4, para cada valor de x corresponde (um só; mais de um) valor de y. ★★★★★★★★★ um só
14	■ Dada a função linear F = 2x, para cada valor de x (corresponde; não corresponde) um só valor de F. ***********************************
45	corresponde
15	■ Dada a função linear d = 5 - t, para cada valor de corresponde apenas um valor de d. ********* t
16	
10	Dada a equação d = 2 + 5t, os valores de d (dependem; independem) dos valores de t.
47	dependem .
17	Dada a equação V = 5t - 10, os valores de V (dependem; independem) dos valores atribuídos a t.

10 -	dependem
10 1	Dada a função y = ax + b, onde a e b são constantes reais, os valores de y (dependem; independem) dos valores atribuídos a x.

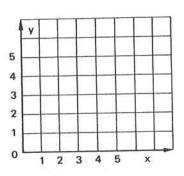
	dependem
19 =	Das equações abaixo, indique as funções lineares:
	a) $d = 3t + 1$ b) $d = 2t^2 + 1$ c) $y = \frac{2}{x}$ d) $y = -x$ e) $y = x^3 - 1$ f) $y = 3x^2 - x$ g) $F = 10x$ h) $V = 2 - t$

	a); d); g); h)
20 ■	y = x + 2. Esta equação (é; não é) uma função linear. Quando for atribuído a x o valor 3 (x = 3), o valor da função (y) será

	é; 5
	y = x + 2. Para $x = 1$, temos $y = 3$. O par de números (1, 3) satisfaz à equação dada, porque, quando substituídos na equação, fazem com que o primeiro membro (y) fique (igual; desigual) ao segundo membro $(x + 2)$.

	igual
	y = x + 2. O par de números $(x = 2)$ e $(y = 3)$ (satisfaz; não satisfaz) à equação dada, porque quando substituídos tornam o primeiro membro (y) (igual; desigual) ao segundo membro $(x + 2)$.
0.0	*****
	$n\tilde{a}$ 0 satisfaz: designal $(2 + 2 + 2)$

27 1

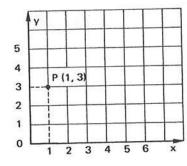

23 ■ V = 5 - t. Assinale quais dos pares de números abaixo satisfazem à equação dada:

- a) (V = 0, t = 5)
- b) (V = 2, t = 4)
- c) (V = 1, t = 2)

- d) (V = -1, t = 6)
- b) (V = 2, t = 4) c) (V = 1, t = 2)e) (V = 4, t = 1) f) (V = -2, t = 3)

- a); d); e)
- **24** y = x + 2. O par de números (x = 1, y = 3) (satisfaz; não satisfaz) à equação dada. No sistema de coordenadas cartesianas dado ao lado, representaremos no eixo das abscissas os valores de x e no eixo das ordenadas os correspondentes valores de y. Represente graficamente o par (x = 1, y = 3).

satisfaz;

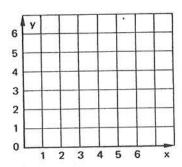

los

alor

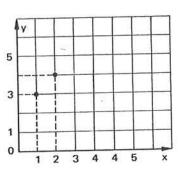
ubs-

nbro

subs-



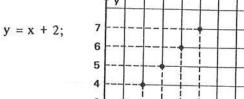
25 Com referência ao item anterior, ao par de números (x = 1, y = 3) que satisfaz à equação y = x + 2 corresponde, no sistema de coordenadas cartesianas, (um ponto; dois pontos).

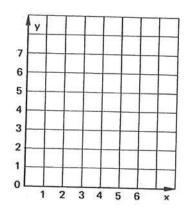


um ponto

26 y = x + 2. Os pares (x = 1, y = 3) e (x = 2, y = 4)(satisfazem; não satisfazem) à equação y = x + 2. Represente os dois pares no sistema de coordenadas cartesianas dado ao lado.

satisfazem;


27 Com referência à questão anterior, os dois pares de números que satisfazem à equação representam, no plano de um sistema de coordenadas cartesianas, dois _____



pontos

Represente-os no plano cartesiano ao lado.

3

3 2

> 3 4 5

29 ■ Com referência à questão anterior, os pares de números que satisfazem à equação y = x + 2 (estão; não estão) alinhados.

estão

30 ■ Com réferência à questão 28 acima, o par (x = 2,5, y = 4,5) (satisfaz; não satisfaz) à equação. O ponto correspondente a este par, no plano cartesiano, (está; não está) alinhado com os demais.

satisfaz; está

31 ■ Ainda com referência à questão 28, se passarmos uma reta por todos os pontos representados, teremos a representação gráfica da função y = x + 2. Portanto, o gráfico da função y = x + 2 (é; não é) uma reta. *****

é

32 ■ y = x + 2. Todos os pares de números que representam graficamente esta função (satisfazem; não satisfazem) à equação y = x + 2.

satisfazem

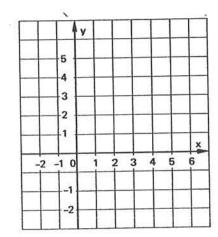
33 ■ A representação gráfica da função y = ax + b é uma reta e pode ser obtida desde que se estabeleça um sistema de coordenadas, atribuindo-se valores para x, efetuando-se as operações indicadas e determinando-se assim os correspondentes valores de y. Reciprocamente, se num gráfico cartesiano temos uma reta, seus pontos são tais que suas coordenadas estão relacionadas por uma função do tipo y = __

ax + b

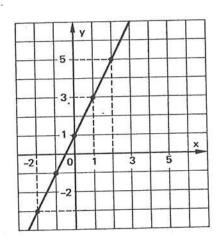
34 ■ Dada a função y = 2x + 1 podemos construir seu gráfico cartesiano. Primeiramente montamos uma tabela de valores:

para x = 0 $y = 2 \cdot (0) + 1 = 1$

para x = 1 $y = 2 \cdot (1) + 1 = 3$


para x = 2 $y = 2 \cdot () + 1 = 5$

para x = -1 $y = 2 \cdot (-1) + 1 = -1$

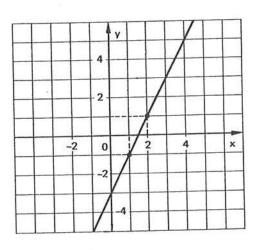

y =_.· (_) +__=__ para x = -2

x	у
0	1
1	3
2	
-1	-1
-2	200.000.00

Estabelecemos então um sistema de coordenadas cartesianas e colocamos os pares ordenados, ligando-os em seguida. No sistema de coordenadas construído ao lado, coloque os pares ordenados e ligue-os em seguida.

35 ■ A função y = 2x - 3 é representada no plano cartesiano por uma ______. Represente-a.

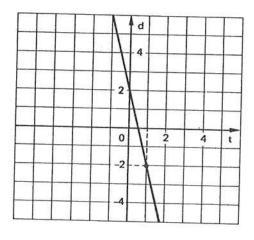
х	У
0	
1	
2	
-1	
-2	


-4 -3 -2 -1 0 1 2 3 4 5 x

n)

isim ais

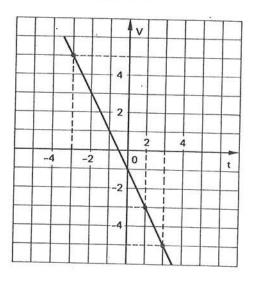
ela

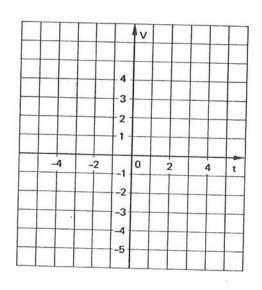


; reta

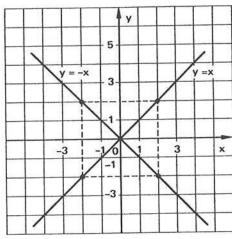
36 ■ Represente graficamente a função d = -4t + 2.

t	d
0	
1	F F II
2	
-1	
-2	

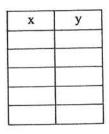


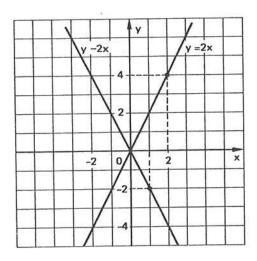

37 ■ Construa o gráfico da função: V = -2t - 1.

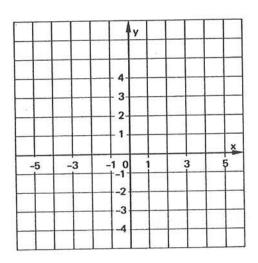
V

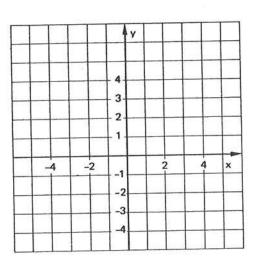

-3 -2 -1 0 1 2 3 4 t

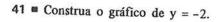
38 Construa, num mesmo plano cartesiano, as retas definidas pelas equações: y = x e y = -x.


х	у




- 39 E Construa, num mesmo plano cartesiano, as retas definidas pelas equações: y = 2x e y = -2x.


х	у



40 A função y = 3 significa que, para qualquer valor de x, sua ordenada vale 3. Logo, comparando-a com a função y = ax + b, verificamos que a = ____ e b = ____

A representação gráfica de y = 3 é dada ao lado.

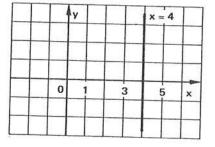
0; 3

-	1		у			
+	+	- 2			+	+
					T	×
	-2	0		2		
				y =	-2	
		-2			T	T

0 x

y = 3

3


2

42 ■ A equação x = 4 não define uma função linear, pois ela não é equivalente a uma equação do tipo y =

A representação gráfica de x = 4 é dada ao lado.

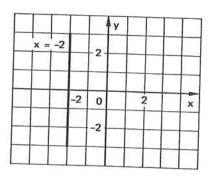
ax + b

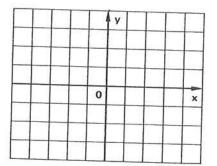
2

6

8

9


10


11

12

43 ■ Construa o gráfico de x = -2.

44 • Observe o gráfico do item 34. Verifique o ponto onde a reta intercepta o eixo das ordenadas (y). Este ponto tem coordenadas (0,___).

	45 ■ Verifique o gráfico do item 35. A reta intercepta o eixo y no ponto (,).

	0; -3
	46 M Observe agora, o gráfico do item 36. A reta intercepta o eixo y no ponto (,).

	0; 2
	47 Werifique as equações correspondentes aos três exemplos anteriormente citados. Os números (1), (-3) e (2) correspondem ao termo da função linear y = ax + b.

	ь
	48 Werifique igualmente os gráficos dos itens 37, 38, 39 e 40. As retas representadas naqueles gráficos interceptam o eixo das ordenadas nos pontos: (,), (,), (,) e (,). As ordenadas destes pontos correspondem ao termo da função y =

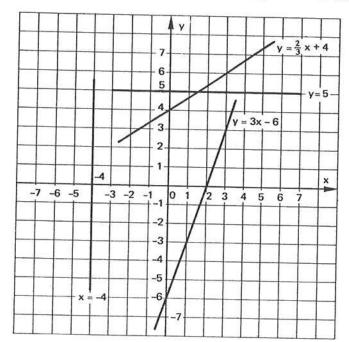
	(0,-1); (0,0); (0,0); (0,3); b; ax + b
	49 O termo b de y = ax + b corresponde à ordenada do ponto em que a reta intercepta o eixo das

	ordenadas
	EXERCÍCIOS DE REVISÃO
	1 ■ Dada a equação y = 3x - 8, ao termo a corresponde e ao b,
	2 Sendo a = -4 e b = 5, complete: y =
	3 ■ O valor da função y = -3x + 7 no ponto 2 é
	4 ■ O valor da função y = 2x + 8 é 26. Determine o valor de x
	Dada a equação V = 16 + 3t, sua representação gráfica é uma
	6 v = 2x - 6. O ponto onde a reta correspondente no plano cartesiano intercepta o eixo das ordenadas e
	7 ■ y = x + 2. O ponto onde a reta correspondente no plano cartesiano intercepta o eixo das abscissas e (,).
	8 Construa num plano cartesiano os gráficos das retas definidas pelas equações:
e de la composition della comp	a) $y = 3x - 6$ b) $y = \frac{2}{3}x + 4$ c) $y = 5$ d) $x = -4$
	9 • Verifique os quadrantes em que se encontram os pontos das retas definidas pelas equações:
	a) $y = -2x + 1$ b) $y = -x$ c) $y = x$ d) $y = 3x - 5$
ě.	10 = Identifique as funções lineares:
	a) $y = 3x - 15$ b) $y = 7$ c) $d = 3t^2$ d) $x = 5$ e) $y = \frac{2}{x}$
	f) $z = 4x - 1$ g) $F = 10x$ h) $V = 4 - x^2$ i) $y = x^3 - 1$
	11 Construa o gráfico de uma reta paralela ao eixo das abscissas e que intercepta o eixo das ordenadas no ponto (0, 3). Escreva sua equação.
STATE OF THE PARTY	12 Construa o gráfico de uma reta paralela ao eixo das ordenadas e que intercepta o eixo das abscissas no ponto
SINK	IZ = Constitus o granico de dim rom paraster

(4, 0). Escreva sua equação.

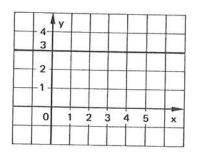
1. 3; -8

2.
$$-4x + 5$$

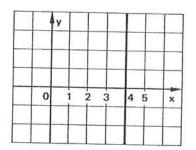

6.
$$(0, -6)$$

5

6 I


7 =

8 =



9. a) 1.0, 2.0 e 4.0

11.

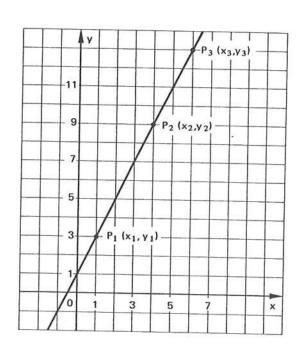
12.

D - DECLIVIDADE DE UMA RETA NÃO VERTICAL

1 Dada a reta definida no gráfico ao lado, vamos efetuar o cálculo de:

$$\frac{y_2 - y_1}{x_2 - x_1} =$$

Ou seja, o quociente da diferença das ordenadas de dois pontos pertencentes a reta pela diferença das abscissas dos mesmos pontos. Substituindo-se os valores, obteremos:


$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - 3}{4 - 1} = 2$$

Efetue agora:

$$\frac{y_3 - y_2}{x_3 - x_2} = ---- = ----$$

$$\frac{13-9}{6-4}$$
; 2

2 Com relação ao item anterior, efetue: $\frac{y_3 - y_1}{x_3 - x_1} = -----=$

$$\frac{13-3}{6-1}$$
; 2

3 Retornando ao item 1 vamos trocar a ordem dos números e efetuar:

$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{3 - 9}{1 - 4} = \frac{-6}{-3} = 2; \qquad \frac{y_2 - y_3}{x_2 - x_3} = -----= -$$

$$\frac{y_2 - y_3}{x_2 - x_3} = ----=$$

$$\frac{y_1 - y_3}{x_1 - x_3} = ----=$$

$$\frac{9-13}{4-6}$$
; 2; $\frac{3-13}{1-6}$; 2

Os resultados obtidos no item 3 (foram; não foram) idênticos aos obtidos nos itens anteriores.

foram

Ainda com relação ao item 1, observe a ordem em que as coordenadas são colocadas: 5 =

$$\frac{|y_2| - |y_1|}{|x_2| - |x_1|}$$
 ou $\frac{|y_1| - |y_2|}{|x_1| - |x_2|}$

O quociente de:
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 é (igual ao; diferente do) quociente de: $\frac{y_1 - y_2}{x_2 - x_1}$

diferente do

Retorne à página 72, item 34. Tome dois pontos pertencentes à reta e proceda da mesma forma que no item 1, isto é, efetue:

$$\frac{y_2 - y_1}{x_2 - x_1} = ----=$$

2

Com relação ao item anterior, troque a ordem dos pontos:

$$\frac{y_1 - y_2}{x_1 - x_2} = ----=$$

2

8 Com relação aos itens 6 e 7, (observamos; não observamos) diferença no quociente obtido.

não observamos

Compare o quociente obtido (itens 6 ou 7) com a correspondente equação da reta: y = 2x + 1. O quociente obtido parece representar o termo _____ da função: y = ax + b.

10 ■ Proceda de forma idêntica com as retas construídas nas páginas 73 e 74, itens 35, 36 e 37; isto é, tome dois pontos pertencentes a cada reta e efetue o cálculo de:

 $\frac{y_2 - y_1}{x_2 - x_1}$; os resultados obtidos são:_____, ____e____.

2; -4; -2

11 • Compare os quocientes obtidos com as correspondentes equações das retas. Os quocientes obtidos correspondem ao termo _____ de y = ax + b.

a

12 ■ Portanto, se tomarmos dois pontos quaisquer P₁(x₁, y₁) e P₂(x₂, y₂) pertencentes a uma reta, teremos:

$$\frac{y_2 - y_1}{x_2 - x_1} = a$$

O termo a é chamado de declividade da reta. Dada a reta definida pela equação y = 7x - 1, sua declividade é .

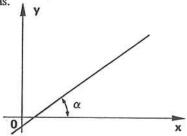
7

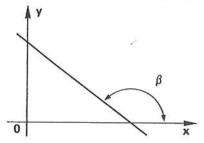
13 ■ A reta definida pela equação y = 3x, possui declividade _____.

3

14 ■ A reta definida pela equação y = -4x + 1, possui declividade _____.

-4


15 ■ A reta definida pela equação y = 5/2 x - 8, possui declividade _____.



 $\frac{5}{2}$

16 M A declividade da reta caracteriza a inclinação ou ângulo que a reta forma com a orientação positiva do eixo

das abscissas.

O ângulo α é (maior que; menor que; igual a) 90°. Já o ângulo β é (maior que; menor que; igual a) 90°.

menor; maior

17 • Verifique os gráficos dos itens 36 a 39 (páginas 74 e 75). Podemos concluir que, se a reta forma um ângulo menor que 90° com a orientação positiva do eixo das abscissas, a declividade da reta é (positiva; negativa). Se o ângulo formado é maior que 90°, a declividade da reta é (positiva; negativa).

positiva; negativa

menor; maior	a nasta co	eo 2 r	eta é n	aralela	ao eixo	das
9 ■ Nos itens 40 e 41 (página 76) o valor de a é	_ e neste ca	30 a 10	ta e p	araioia	uo obro	_

zero; abscissas						,
20 ■ A reta definida pela equação y = -3x + 1 forma com	a orientação	positi	va do	eixo da	s abscis	ssas um
que 90°, uma vez que sua declividade é (po	ositiva; nega	tiva).				

maior; negativa				7	n gelle	
A reta definida pela equação $y = \frac{2}{3}x - 5$ forma com	a orientação	posit	iva do	eixo da:	s abscis	sas um
que 90°, uma vez que sua declividade $(\frac{2}{3})$	e (positiva	, nega	iva).			
****			Av		П	
menor; positiva			6+-			
22 ■ Construa no plano cartesiano ao lado, as retas de- finidas pelas equações:			4			
y = 2x - 4		-	-	-	\mathbb{H}	
y = 2x			2			
y = 2x + 3						
Observe que as retas obtidas são paralelas entre	-4	-2	0	2	4	×
si. As três retas possuem a mesma		++	-2	+	+	\vdash
****		\vdash	-4			
declividade; $y = 2x$						
y = 2x-	4					
3/ 1/						

23 Retas distintas e paralelas num plano cartesiano possuem a mesma ______.

ıde

eixo

gulo iva).

declividade

24 As retas definidas pelas equações y = -3x - 4 e y = -3x + 1 são ______ porque possuem a mesma _____, ao passo que as retas definidas pelas equações y = x - 1 e y = 3x + 2 não são _____ pois suas declividades (são; não são) iguais.

f) y = 3x + 7

g) $y = \frac{x}{2} + 8$

h) y = 3 + 2x

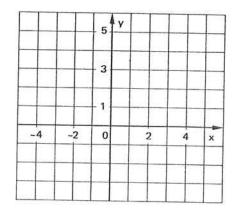
i) y = 4x - 9

j) y = -2x + 3

paralelas; declividade; paralelas; não são

25
Identifique os pares de retas paralelas entre si:

a)
$$y = 2x - 1$$

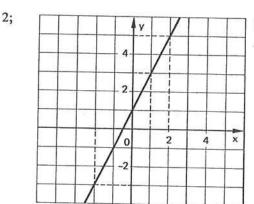

b)
$$y = x - 2$$

c)
$$y = 4x + 3$$

d)
$$y = -2x + 5$$

e)
$$y = \frac{x}{2} - 3$$

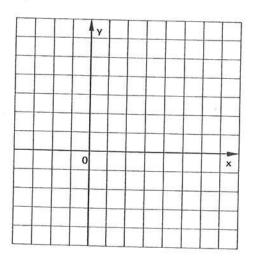
26 ■ Dada a reta definida pela equação y = 2x + 1, a declividade desta reta é _____. Construa no plano cartesiano ao lado a reta dada. O ponto P(4, 9) (pertence; não pertence) à reta.

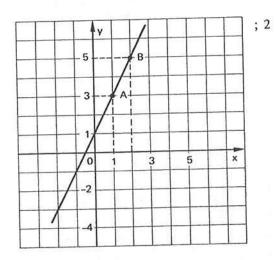


29

30

31 1




; pertence

27 © Coloque no plano cartesiano ao lado os pontos A(1, 3) e B(2, 5). Os pontos A e B determinam uma só reta. Passe uma reta pelos referidos pontos. Vamos determinar a equação desta reta. Sua declividade é determinada pela expressão:

$$a = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 3}{2 - 1} = \frac{}{}$$

28 = Já vimos que a declividade de uma reta é dada por:

$$\frac{y_2 - y_1}{x_2 - x_1}$$
 = a, o que é igual a: $y_2 - y_1 = a(x_2 - x_1)$, sendo $x_1 \neq x_2$.

Localize sobre a reta do item anterior um ponto qualquer P(x, y). A posição deste ponto é arbitrária. Vamos determinar a equação da reta que passa por este ponto e possui a declividade já determinada no item 27, que é igual a ___.

A equação pode ser escrita:

$$y - y_1 = 2(x - x_1)$$
 ou $y - y_2 = 2(x - __)$

2; x₂

29 Com relação ao item anterior, vamos efetuar a substituição dos valores (x_1, y_1) ou (x_2, y_2) por um ponto pertencente à reta e que seja conhecido, por exemplo, o ponto A(1, 3):

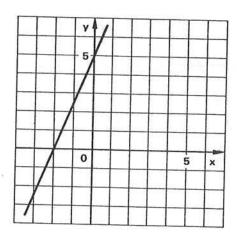
$$y - 3 = 2(x - 1)$$
 efetuando as operações indicadas, temos: $y =$ ______.

2x + 1

30 ■ Substitua agora o ponto (x₁, y₁) ou (x₂, y₂) pelas coordenadas do ponto B(2, 5) e efetue as operações indicadas:

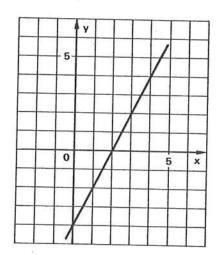
5; 2;
$$2x + 1$$

31 M A expressão y - y₁ = a(x - x₁) nos permite calcular a equação de uma reta desde que seja conhecida sua declividade e as coordenadas de um de seus pontos (x₁, y₁). Determine a equação da reta que passa pelo ponto (-1, 2) e possui declividade 3:


3x + 5

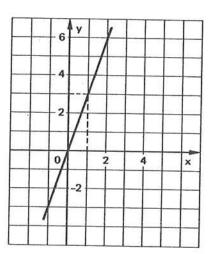
32 ■ Dados dois pontos podemos determinar a equação da reta que passa por eles. Uma vez conhecidas as coordenadas de dois pontos podemos determinar a ______ da reta que passa por eles; e conhecida a declividade da reta e as coordenadas de um de seus pontos podemos determinar, através da expressão _____ a equação da reta.

declividade; $y - y_1 = a(x - x_1)$


33 ■ Determine a equação da reta:

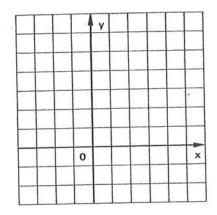
 $y = \frac{5}{2}x + 5$

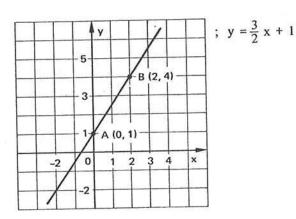
34 Determine a equação da reta:



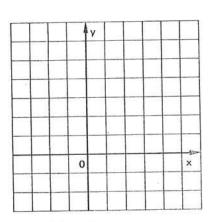
3

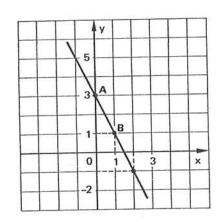
y = 2x - 4


35 ■ Determine a equação da reta:

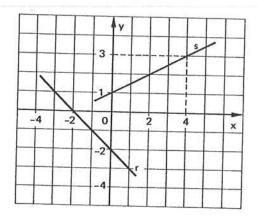


y = 3x

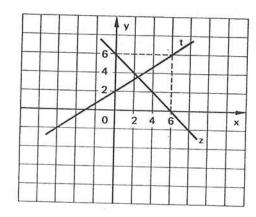

36 Determine a equação da reta que passa pelos pontos A(0, 1) e B(2, 4). Represente-a no plano cartesiano ao lado.



37 Determine a equação da reta que passa pelos pontos A(0, 3) e B(1, 1). Represente-a no plano cartesiano ao lado.



$$y = -2x + 3;$$



EXERCÍCIOS DE REVISÃO

1 Determine a declividade das retas construídas no plano cartesiano:

2 Equacione as retas construídas no plano cartesiano:

- 3 Dê a equação da reta que passa pelos pontos A(2, 1) e possui declividade 4.
- 4 Determine a equação da reta que passa pelos pontos A(0, 2) e B(2, 0).
- 5 Dê a equação da reta que possui declividade -5 e intercepta o eixo das ordenadas no ponto (0, -1).
- 6 Determine a equação da reta que passa pelos pontos: A(0, 0) e B(-1, 4). Represente-a graficamente.
- 7 Indique as declividades das retas dadas e as ordenadas das intersecções das mesmas com o eixo das ordenadas:

a)
$$y = \frac{7}{2}x + 3$$

b)
$$2y - 6x + 4 = 0$$

c)
$$y = -9x - \frac{2}{3}$$

8 Das equações de retas abaixo, indique os pares de retas paralelas:

a)
$$y = 2x + 5$$

f)
$$y = 7x + 2$$

b)
$$y = -2x + 3$$

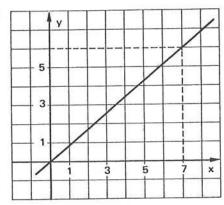
g)
$$y = \frac{x}{2} - 12$$

c)
$$y = 4x + 3$$

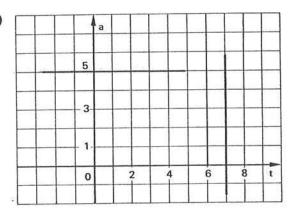
h)
$$y = 2x - 9$$

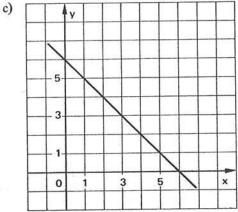
d)
$$y = \frac{x}{2} + 1$$

e) $y = 7x - \frac{1}{4}$

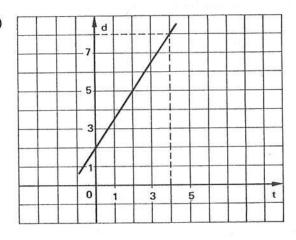

i)
$$y = -4x + 5$$

e) $y = /x - \frac{1}{4}$


- j) $y = 3x \frac{3}{4}$
- 9 Quando a declividade da reta é negativa, o ângulo que a reta forma com a orientação positiva do eixo das abscissas é _____ que 90°.
- 10 Construa o gráfico de y = 2x + 2. À medida que os valores de x crescem, os correspondentes valores da função y (aumentam; diminuem).
- 11 Construa o gráfico da equação y = -2x + 2. À medida que os valores de x crescem, os correspondentes valores de y (aumentam; diminuem).
- 12 Construa os gráficos das retas definidas pelas equações: x = -6 e y = 12.


13 ■ Dê as equações das retas:

a)



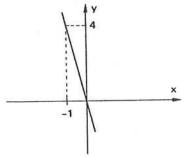
b)

d)

las:

RESPOSTAS:

1. r: -1; s:
$$\frac{1}{2}$$


1. r: -1; s:
$$\frac{1}{2}$$

2. t: $y = \frac{2}{3}x + 2$; z: $y = -x + 6$
3. $y = 4x - 7$

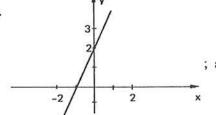
3.
$$v = 4x - 7$$

4.
$$y = -x + 2$$

5.
$$y = -5x - 1$$

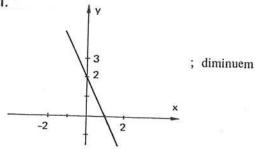
6. y = -4x

das


fun-

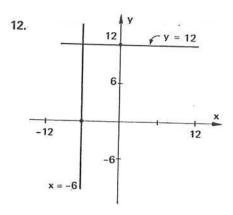
; va-

- 7. a) $\frac{7}{2}$ e 3 b) 3 e -2


 - c) -9 e $-\frac{2}{3}$
- 8. a) e h); d) e g); e) e f)
- 9. maior

10.

; aumentam



13. a) $y = \frac{6}{7} x$

b)
$$t = 7$$
 e $a = 5$

c)
$$y = -x + 6$$

d)
$$d = \frac{3}{2}t + 2$$

Observação: Você irá agora resolver um problema experimentalmente. Siga as orientações dadas na página 152.

SEÇÃO 3 — O SURGIMENTO DA GEOMETRIA ANALÍTICA — HISTÓRICO

A geometria analítica aparentemente não tem ligação com problemas práticos e concretos, pois ela é altamente abstrata. Contudo, esta aparência é bastante enganadora. Se fizermos o tempo recuar 400 anos, para a época do Renascimento, quando a geometria analítica apareceu pela primeira vez, poderemos compreender melhor esse fato.

Em primeiro lugar, vamos notar um número muito grande de afamados sábios interessados em unir a geometria à álgebra e vice-versa (álgebra + geometria = geometria analítica). E por que estavam eles interes-sados nessa tarefa? Seria uma inspiração coletiva, que de repente iluminou o cérebro de todos? A resposta é, certamente, não.

A INFLUÊNCIA DO COMÉRCIO

Na época do Renascimento, o comércio começou a tornar-se uma atividade importante na Europa. Na época anterior, conhecida como Idade Média, o comércio praticamente não existia: cada senhor feudal vivia na sua terra com seus vassalos e soldados. Mas, gradualmente, as pequenas feiras onde os aldeões iam trocar os excessos dos seus produtos começaram a se multiplicar e tomaram importância. Assim, o comércio se intensificou e com isso o uso da moeda aumentou. Isso tornou muito grande a procura de metais preciosos, tais como o ouro e a prata. Quando esses começaram a escassear no continente europeu, as pessoas se voltaram para terras estranhas e desconhecidas.

Por outro lado, os árabes e os turcos controlavam o mar Mediterrâneo e as vias terrestres do comércio com a Ásia e conseqüentemente monopolizavam o açúcar e as especiarias necessárias aos europeus. Desse modo, quando as idéias de a Terra ser redonda começaram a ser difundidas, graças aos escritos de Pierre d'Ailly, Paulo Toscanelli, Raimundo Lulio e outros, a tentação de procurar uma outra via, através dos mares, para a Ásia, se tornou grande. Quando finalmente conseguiram aperfeiçoar as caravelas e torná-las aptas para enfrentar as grandes ondas dos oceanos, começaram as chamadas grandes navegações.

qu

vej e : na

- 1

iet

ter

por

a g

pro

Por

as I

de :

te c

por

cun

to 1

ao 1

de :

tuíd

cialr

uso

lo X

- 15

o pe

cont

quen

ção

A A

nessa

das,

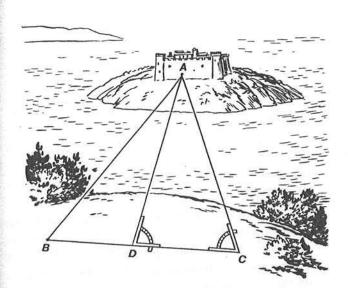
de cc

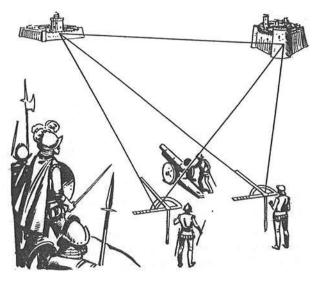
lume

rio m

exem

você


conse


AS GRANDES NAVEGAÇÕES

Mesmo preparados para enfrentar o oceano com sucesso, era preciso algo mais que a coragem. Por exemplo, no mar alto surgia de imediato o problema de orientação. No mar, de águas iguais, não existem marcos de orientação. O único recurso seria orientar-se com a ajuda da astronomia e da bússola. Assim, olhando a posição das estrelas, do Sol e da Lua, os astrônomos engajados nos navios tentavam determinar a posição das coordenadas terrestres. As coordenadas terrestres são a latitude e a longitude. Muito simplificadamente, nos mapas, as latitudes são as retas paralelas horizontais e as longitudes as paralelas verticais. Conhecendo-se a paralela horizontal e a vertical de um ponto, podemos evidentemente determinar a posição do mesmo no mapa. Os astrônomos desenhavam nos mapas as longitudes e as latitudes para determinarem a posição da caravela. Era na verdade o uso elementar das coordenadas depois desenvolvidas por Descartes.

ESTUDO DE TRAJETÓRIAS DE PROJÉTEIS

Enquanto isso, a utilização cada vez maior de canhões nas guerras desenvolvia o estudo das trajetórias das balas. Havia dois problemas envolvidos no caso. O primeiro era a determinação da distância ao alvo. Isto era feito usando a triangulação (uso conveniente de triân-

gulos e ângulos para a determinação de uma distância): veja figs. 1 e 2. O outro era a determinação do alcance e a forma da trajetória. Grandes cientistas, como Leonardo da Vinci (1452 - 1519), Nicolo Tartaglia (1500 - 1557) e muitos outros, tentaram fazer o gráfico das tra jetórias e não foram felizes. Galileu foi o primeiro a determinar essa forma: uma parábola. Esses problemas não podiam ser resolvidos com o uso da geometria comum, a geometria euclidiana. A razão disto estava em ser esse problema não só de geometria mas também de álgebra. Por exemplo, Galileu foi bem sucedido, não porque viu as balas descreverem a parábola, pois isso é impossível de se ver a olho nu, mas porque, analisando teoricamente o movimento da bala, chegou a uma equação e, transportando essa equação para o gráfico, encontrou essa curva. A relação entre a posição da bala e o tempo gasto também foi muito estudada. Isso foi possível graças ao progresso de relojoaria. Os velhos gnômons (relógios de Sol) e as clepsidras (relógios de água) foram substituídos gradualmente por relógios mecânicos. Estes inicialmente eram grandes e desajeitados e baseavam-se no uso de roldanas, pesos e engrenagens dentadas (do século XI ao XV). Nos fins do séc. XV, Peter Henlein (1448 - 1542), fabricante de relógios de Nurenberg, substituiu o peso e a roldana por uma mola metálica. Esse relógio, conhecido com o nome de "ôvo de Nurenberg", era pequeno, preciso e portátil e possibilitou uma fácil medição de tempo.

A ÁLGEBRA E A GEOMETRIA

n

1-

le

io

a-

. 6

a-

es

n-

te

es

la-

vi-

de

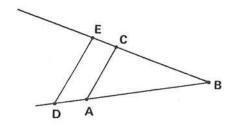
ias

0

sto

ân-

A álgebra estava também em grandes progressos nessa época. O comércio lida com lucros, prejuízos, vendas, trocas, compras, juros, etc., enfim com toda série de coisas envolvendo números e equações. Quando o volume das transações tornou-se muito grande, foi necessário metodizá-las e resolver novas questões surgidas. Por exemplo, o logaritmo, uma nova forma de cálculo (que você aprenderá no seu curso de Matemática) foi uma conseqüência dos estudos sobre juros.


Premidos pelas condições sociais e práticas, a união de geometria e álgebra tornou-se uma necessidade urgente. Deste modo, um dos grandes trabalhos dos matemáticos do Renascimento consistiu em realizar essa união. A álgebra e a geometria já estiveram unidas antes na Grécia. Em Platão (célebre filósofo grego que desprezava o trabalho manual e dava importância exagerada ao raciocínio puro; viveu de 427 - 347 a.C.) a álgebra foi considerada um ramo da geometria. Isto é, as equações tinham que ter um significado geométrico. Por exemplo: problemas de equações do segundo grau reduziam-se a problemas de traçar figuras geométricas planas. Isso trazia uma série de dificuldades. Como por exemplo, tornava impossível o estudo de equações com mais de 3 variáveis no espaço de 3 dimensões. Mas essa tradição continuou e a álgebra praticamente deixou de progredir no ocidente cristão.

Alheios a esse tipo de tradição, os hindus e os árabes desenvolveram a álgebra como uma ciência autônoma de cálculo. Os grandes matemáticos europeus do início do Renascimento, tais como Tartaglia, François Viète (1540-1603) e outros, tinham recebido como herança a tradição grega. Entretanto, a álgebra por eles desenvolvida era mais do tipo árabe, uma arte de cálculo com símbolos literais. Não conseguindo livrar-se inteiramente da tradição, esses matemáticos adotaram uma atitude de meio termo. Tartaglia fez uma distincão entre a álgebra para o cálculo e a álgebra das figuras geométricas. Viète também aderiu a esse tipo de distinção embora, por outro lado, tentasse fazer uma união: dar uma interpretação geométrica a qualquer equação algébrica.

Portanto, o problema de relacionar a álgebra com a geometria estava em voga. Esse relacionamento teria de ser, no entanto, diferente daquele feito pelos gregos, que não passava de uma sujeição da álgebra à geometria. A solução seria encontrada finalmente por Renè Descartes (1596-1650).

A GEOMETRIA ANALÍTICA DE DESCARTES

Na sua famosa "Geometria", publicada em 1637, Descartes explicou a essência do seu método. Os números e os símbolos literais devem ser representados por entes geométricos mais simples possíveis, no caso segmentos de reta. Em álgebra, por mais complicada que seja a equação, o cálculo com números ou símbolos literais resulta sempre em números ou símbolos. Logo, qualquer operação com retas deve resultar sempre em retas. Para isso, Descartes arquitetou engenhosamente o seguinte método de correspondência. Seja AB da figura um segmento unitário. Para multiplicar BD por BC, traçamos os dois segmentos fazendo um ângulo arbitrário como mostra a figura. Unimos A com C. Em seguida, de D traçamos um segmento DE, paralelo a AC. O segmento BE é o produto procurado.

O triângulo ABC é semelhante ao triângulo DBE.

Logo,

AB : BC = BD : BE

 $AB \cdot BE = BD \cdot BC$; como AB = 1

 $BE = BC \cdot BD$

Jividir BE por BD significa achar de modo inverso o 3C.

Usando métodos semelhantes, ele fez corresponder, a qualquer resultado de uma operação, sempre segmentos de retas. Com esse artifício, ele conseguiu trans-

ladar a álgebra para o mundo geométrico, sem perder a sua capacidade de cálculo.

Para atingir o objetivo da construção da geometria analítica era necessário ainda um outro artifício. A todo resultado de cálculo algébrico correspondia uma reta. Logo, seria necessário utilizar segmentos para determinar a forma de equação correspondente a uma figura geométrica.

Deste modo, surge a idéia de coordenadas que vocês aprenderam neste capítulo. As figuras são pensadas como constituídas de pontos e esses pontos seriam determinados pela abscissa e pela ordenada.

Desta forma, estabeleceu-se os fundamentos da Geometria Analítica. O importante a ser notado é que o conceito de coordenadas ampliou o campo da álgebra e levou ao conceito de função. Por exemplo, equações do tipo Y = aX ou $X^2 + Y^2 = r^2$, do ponto de vista puramente algébrico, são equações indeterminadas, pois cada uma delas é uma equação com duas incógnitas. Porém, do ponto de vista da nova geometria, são equações perfeitamente viáveis e representam, como vimos, uma reta e uma circunferência. Isso significa que a álgebra da geometria cartesiana, ao contrário da álgebra anterior, preocupada em achar determinadas raízes para satisfazer à equação, está preocupada em retratar a variação das grandezas. Por exemplo, a equação y = ax, significa que, quando a abscissa varia de um determinado valor, a ordenada varia de uma quantidade a vezes maior. É o aparecimento da idéia de variável e função. Essas palavras (variável e função) na verdade não foram usadas por Descartes; elas seriam usadas somente algum tempo depois por Gottfried W. Leibniz (1646-1716) e Jean Bernoulli (1667-1748). Mas o mérito da descoberta das idéias fundamentais é de Descartes.

SE

Estudo dos movimentos em trajetórias retilíneas.

Estudaremos no presente capítulo movimentos de corpos que descrevem trajetórias retilíneas; entende-se por trajetória a linha determinada pelas sucessivas posições de um corpo que se movimenta. Assim, estudaremos movimento de veículos em estradas retas, movimento de um elevador, movimento de queda ou ascenção vertical de objetos, etc. Nos exemplos citados, à medida que o tempo passa, os objetos em estudo descrevem trajetórias retilíneas. Não nos preocuparemos, neste capítulo, com o estudo de movimentos de corpos que descrevem trajetórias não-retilíneas, como os movimentos das extremidades dos ponteiros de um relógio, movimento da Lua em torno da Terra, movimento de satélites artificiais, o movimento de uma pedra presa na extremidade de uma corda e posta a girar, etc. Estes movimentos cujas trajetórias são circulares ou elípticas serão objetos de estudo em capítulos posteriores.

Dividiremos o nosso capítulo em duas partes: a primeira, para movimento de objetos cuja velocidade é constante; a segunda, para aqueles cuja velocidade é variável uniformemente. Não se preocupe com os nomes acima; eles serão definidos no decorrer do estudo.

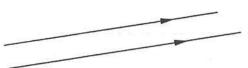
1ª PARTE: Movimento retilíneo uniforme.

OBJETIVOS: Ao final desta parte do Capítulo III o estudante deve estar apto para:

- a. definir posição e deslocamento de um objeto.
- b. definir e calcular velocidade média.
- c. conceituar velocidade instantânea.
- d. equacionar o movimento de um objeto.
- e. representar graficamente o movimento de um objeto e equacioná-lo.
- f. resolver problemas.

SEÇÃO 1 - DIREÇÃO E SENTIDO

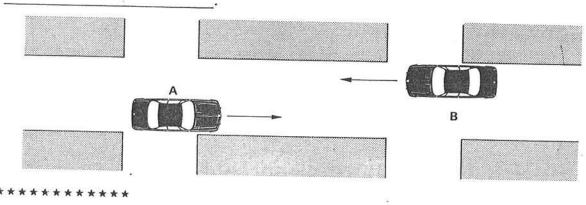
Verifique a figura abaixo. Nela indicamos duas pessoas que se dirigem em linha reta, uma ao encontro da outra. A direção dos movimentos das duas pessoas é indicada por uma reta imaginária que passa pelas duas pessoas e o sentido do movimento de um deles é contrário ao do outro. Portanto as duas pessoas caminham na mesma direção mas em sentidos _______.


contrários

as

is

Ili


Dois amigos caminham lado a lado em linha reta. As trajetórias descritas pelos dois são retilíneas e podem ser indicadas pelas duas retas orientadas abaixo. Dizemos que os dois amigos movimentam-se na mesma direção e


no mesmo sentido

3 • Verifique a figura abaixo. Nela indicamos dois veículos percorrendo uma rua em linha reta. Dizemos que os veículos A e B percorrem a rua na mesma direção (suas trajetórias são retilíneas e paralelas) e em sentidos contrários. A direção nos é fornecida pelas trajetórias dos veículos e o sentido deve ser estabelecido. Se convencionarmos que o móvel A percorre a rua da esquerda para a direita, o móvel B percorre a mesma rua da

direita para a esquerda

Verifique a figura abaixo. Nela indicamos três veículos percorrendo a mesma rua. Os veículos A e B movimentam-se na mesma _____ e no mesmo _____, ao passo que o veículo C movimenta-se na mesma direção que os veículos A e B, mas em sentido

direção; sentido; contrário ou oposto.

Um corpo se movimenta numa mesma direção se todos os pontos ocupados pelo mesmo durante o movimento estiverem numa mesma reta. Uma bolinha de gude rola sobre a superfície de uma mesa, despencando em seguida ao chão (experimente). A direção do movimento da bolinha sobre a mesa até despencar ao chão (mantém-se; não se mantém) a mesma, porque os pontos ocupados pela bolinha (estão; não estão) numa mesma reta.

não se mantém; não estão

6 ■	Uma companhia de soldados em formação desfila percorrendo um trecho de uma rua reta. A direção dos movimentos dos soldados é a mesma, porque eles descrevem ou uma mesma trajetória retilínea (soldados de uma mesma fileira) ou trajetórias paralelas (soldados pertencentes a fileiras paralelas). Se o comandante ordenar: "ALTO", e em seguida: "MEIA-VOLTA" e "MARCHEM", eles retornam na mesma mas em sentido

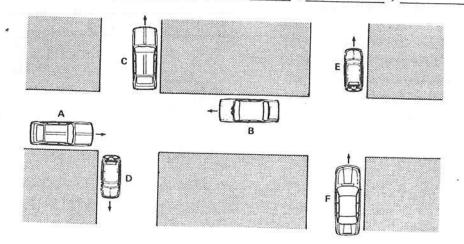
	direção; contrário ou oposto
7 =	Verifique a figura ao lado. Nela indicamos três veículos movimentando-se nas proximidades de um cruzamento. Os veículos A e B movimentam-se na mesma direção? (sim; não). Os veículos A e C movimentam-se na mesma direção? (sim; não). Os veículos A e C movimentam-se no mesmo sentido? (sim; não)

	não; sim; não
8 =	Uma pedra é lançada verticalmente para cima. A pedra sobe e cai. A direção do movimento na subida e na descida (é; não é) a mesma; os sentidos dos movimentos da pedra na ascenção e na queda são (os mesmos; contrários ou opostos).

	é; contrários ou opostos
9 11	Um elevador nas sucessivas subidas e descidas movimenta-se sempre na mesma Em cada ascenção ou descida ele inverte o do movimento.

	direção; sentido
10	■ Um veículo movimentando-se numa pista circular não se desloca numa mesma, porque a trajetória descrita pelos veículos (linha que liga os pontos ocupados pelo veículo) (é; não é) retilínea.

	direção; não é
11	■ Um veículo descreve a trajetória indicada na figura ao lado. No trecho AB o veículo descreve uma trajetória retilínea, mantendo constante a direção e o sentido. No trecho BC o veículo muda de e No trecho CD o veículo possui a mesma direção que em (AB; BC), ao passo que o sentido do movimento em CD é (igual; contrário) ao do trecho AB.



to iise;

direção; sentido; AB; contrário

12 • Observação: Em linguagem usual os termos direção e sentido são empregados como sinônimos, entretanto, cada termo tem um significado distinto. Se um veículo descreve uma trajetória retilínea representada pela reta abaixo, sua direção é de A para B e ou de B para A; já seu sentido é de B para A.

524	
Α	
	R

AeB; C, D, EeF

14 Com relação ao item anterior, os veículos que se movimentam na mesma direção, mas em sentidos contrários são: _____ e ____; ____ e ____; ____ e ____; ____ e ____.

AeB; CeD; DeF; DeE

SEÇÃO 2 - POSIÇÃO DE UM CORPO

1 ■ Analise a seguinte afirmação: "Moro a 400 metros do Colégio onde estudo". A localização da minha casa (fica; não fica) bem definida com a indicação dada.

não fica, pois, com a informação dada, uma pessoa não será capaz de "achá-la".

2 Com relação ao item anterior, a informação fornecida nos dá um ponto de referência ou origem (Colégio) e a distância da casa ao Colégio, mas ela pode ocupar qualquer lugar indicado pela linha pontilhada indicada na figura ao lado. O Colégio é tomado como ou origem.

O. Colégio
400 m

7

8

9 .

10 1

11 .

ponto de referência

3 ■	Analise a afirmação: "Moro a 400 metros do Colegio, na direção leste-oeste". Com esta informação a posição de minha casa (fica; não fica) bem determinada.

	não fica
4 =	Verifique agora a informação: "Moro a 400 metros do Colégio, na direção leste-oeste e no sentido leste". Com esta indicação a posição da minha casa (fica; não fica) bem determinada.

	fica
5 ■	Analise a seguinte afirmação: "Um veículo encontra-se estacionado na rua que passa defronte ao Colégio, a 100 metros dele". Com relação a esta afirmação, o ponto de referência ou origem é o

	Colégio
6 =	Com relação ao item anterior, além do ponto de referência ou origem e da distância, indicamos a direção em que o veículo está estacionado. Entretanto, para alguém saindo da Escola, o veículo pode estar ou à sua direita ou à sua

	esquerda
7 =	Analise agora a afirmação: "Um veículo encontra-se estacionado a 100 metros do Colégio, à direita de quem sai do mesmo". Com esta indicação a posição do veículo (fica; não fica) bem determinada.

	fica
8 =	Com relação ao item anterior, para indicarmos a posição do veículo, fornecemos: um ponto de referência ou origem (Colégio), a direção (rua que passa defronte ao Colégio), o sentido (direita de quem sai do Colégio) e a distância () do veículo ao ponto de referência (Colégio).

	100 metros
9 =	A posição de um objeto fica bem determinada se conhecermos um ponto de referência ou origem, a direção, o sentido e a distância deste objeto à

	origem ou ponto de referência
10	Vamos utilizar um eixo para representarmos uma estrada retilínea. À origem da estrada corresponde a origen
	do eixo. O ponto A (60 km) representa um veículo estacionado no kmda referida estrada.
	do eixo. O ponto A (60 km) representa um veículo estacionado no kmda referida estrada.
	do eixo. O ponto A (60 km) representa um veículo estacionado no kmda referida estrada.
	do eixo. O ponto A (60 km) representa um veículo estacionado no kmda referida estrada. X'
	do eixo. O ponto A (60 km) representa um veículo estacionado no km da referida estrada. X'
	do eixo. O ponto A (60 km) representa um veículo estacionado no km da referida estrada. X'
	do eixo. O ponto A (60 km) representa um veículo estacionado no km da referida estrada. X'
	do eixo. O ponto A (60 km) representa um veículo estacionado no km da referida estrada. X'

ios

asa

12	■ No item 10, ao darmos a posição do veículo, fornecemos: um ponto de referência ou origem (início da estra da); a direção (reta que contém os pontos da estrada), o sentido (direita da origem) e a distância do móve à (60 km).

	origem ou ponto de referência
13	■ Portanto, os elementos que caracterizam a posição de um objeto são:

	origem ou ponto de referência; direção; sentido; distância do objeto à origem
14	O eixo abaixo representa uma estrada retilínea que se estende na direção leste-oeste. À origem do eixo corres-
	ponde a origem da estrada.
	P
	0.
	O ponto P representa um veículo estacionado no kmda referida estrada.

	30
15	Com referência ao item anterior, podemos afirmar que a posição do veículo está perfeitamente definida: ele está a 30 km da origem da estrada, na direção oeste-leste ou leste-oeste e no sentido (oeste; leste)

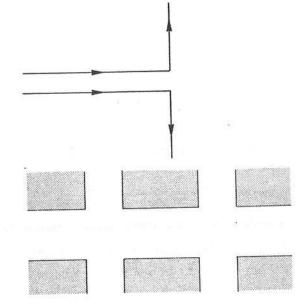
	leste
16	Analise o eixo indicado na figura abaixo. Ele representa uma estrada retilínea que se estende na direção norte- sul. Adotamos na sua construção a seguinte convenção: abscissas dos pontos que se estendem, a partir da ori- gem, no sentido sul são positivas e as situadas, a partir do ponto de referência ou origem, no sentido norte são
	norte
	-40 -20 0 20 40 60 sul (m)

	negativas
17 =	Com referência ao item anterior, a posição do ponto A (-20 m) pode ser também representada pela letra d acompanhada do índice A, da seguinte forma: $d_A = -20$ m; o que significa que o ponto A situa-se a 20 metros do ponto de referência ou origem, na direção norte-sul e no sentido norte. O sinal -, antes do número 20, indica que o ponto A situa-se no semi-eixo (negativo; positivo).

	negativo
18 ■	O eixo abaixo representa uma estrada retilínea que se estende na direção norte-sul. Podemos representar a posição do ponto M (-30 km) da seguinte forma: $d_{\rm M}=-30$ km, e a do ponto P (40 km) assim: $d_{\rm P}=$
	M P
	N40 -20 0 20 40 S. (km)

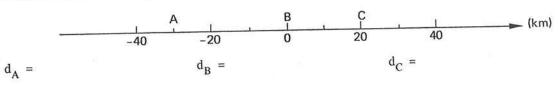
	40 km

EXERCÍCIOS DE REVISÃO


1 • Um jogador chuta uma bola rasteira para o goleiro. Qual a direção do movimento da bola? Qual o sentido?

Dois amigos caminham lado a lado em linha reta. Ao atingirem determinado ponto, eles se separam. A figura ao lado representa suas trajetórias. Ini-

cialmente eles caminham na . Ao se separarem


eles caminham na

A figura ao lado representa trechos de ruas. Represente dois veículos A e B movimentando-se na mesma direção e em sentidos contrários. Na mesma figura indique dois veículos movimentando-se em direção diferente da dos veículos A e B, mas que possuam os mesmos sentidos.

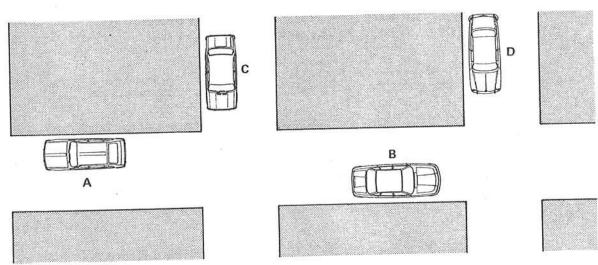
Quais são os elementos que caracterizam a posição de um objeto?

O eixo abaixo representa uma estrada retilínea. Os pontos A, B e C representam veículos estacionados na referida estrada. Dê suas posições:

RESPOSTAS

le

rite


a d iros 20,

ar a

n)

1. Direção: goleiro-jogador (e ou jogador-goleiro) Sentido: jogador-goleiro

2. Mesma direção e mesmo sentido; mesma direção e em sentidos opostos

4. Origem ou ponto de referência, direção, sentido e distância do objeto à origem.

5. $d_A = -30 \text{ km};$ $d_B = 0 \text{ km};$ $d_C = 20 \text{ km}$

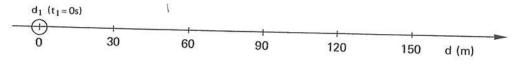
SEÇÃO 3 — DESLOCAMENTO E INTERVALO DE TEMPO

Leia atentamente o Quadro A, onde descrevemos o movimento de um veículo em uma estrada retilínea. Em seguida, responda às questões referentes a ele.

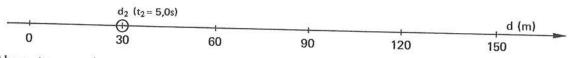
a. A figura abaixo indica um trecho de uma estrada retilínea.

b. Vamos representá-la através do eixo abaixo. À origem do eixo corresponde a origem da estrada.

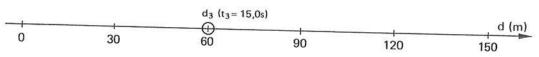
- c. Através do eixo acima vamos estudar o movimento de um veículo num trecho da referida estrada.
- d. Um ponto sobre o eixo indica um veículo em movimento. Ao passar pela origem do eixo, um cronômetro é ligado. A posição do veículo neste instante é $d_1=0$ m e o instante inicial $t_1=0$ s. Isto significa que começaremos a contar os tempos no instante em que o veículo passa pela posição inicial $d_1=0$ m.


7

8 1


9 1

10 1


11 1

e. Instantes após o veículo atinge a posição d₂ = 30 m. Ao passar por esta posição o cronômetro indica 5,0 s.

f. Algum tempo após o veículo atinge a posição $d_3 = 60$ m. Neste instante o cronômetro registra 15,0 s.

g. A figura abaixo indica o eixo citado anteriormente. Algumas posições ocupadas pelo veículo e os respectivos instantes em que o móvel passou por elas estão indicadas sobre o eixo.

$\frac{d_1(t_1=0)}{\Box}$	$d_2 (t_2 = 5,0s)$	d ₃ (t ₃ =15,0s)	$d_4 (t_4 = 25,0s)$	$d_5 (t_5 = 45,0s)$	d ₆ (t ₆ =60,0s)
0	30	60	90	120	150 d (m)

No item d, para o instante inicial t₁ = 0 s, a posição inicial do veículo é d₁ = _____ m; no item e, ao passar pela posição d₂ = 30 m, o cronômetro registra _____.

0 (zero); 5,0 s

2 ■ O tempo gasto pelo veículo para movimentar-se da posição d₁ = 0 m até a posição d₂ = 30 m foi de ____.
5,0 s

3 ■	Itens e e f: O tempo para o veículo ir da posição d ₂ = 30 m até a posição d ₃ = 60 m foi de

	10,0 s
4 =	Item g: No instante t ₄ = 25,0 s a posição do veículo é d ₄ =

	90 m
5 m	Item g: O veículo passa pela posição $d_s = \underline{\hspace{1cm}}$ no instante $t_s = \underline{\hspace{1cm}}$

	120 m: 45 0 s
6 11	Definimos intervalo de tempo entre os instantes t ₁ e t ₂ como sendo a diferença entre os referidos instantes:
0	$\Delta t = t_2 - t_1$
	O símbolo A, empregado antes da letra t, é a letra maiúscula grega chamada de delta, e significa "diferença".
	Item g: O intervalo de tempo entre os instantes t ₁ e t ₂ é

	5,0 s
7 ■	Item g: É usual representar o intervalo de tempo da seguinte forma:
	$\Delta t = t_f - t_i$
	onde t_i representa o instante inicial em que determinado fenômeno é focalizado e t_f corresponde ao instante final. Assim, no exemplo dado no item anterior, ao instante inicial corresponde o instante t_1 e ao instante final corresponde o instante t_2 , ou seja, $t_i = t_1$ e $t_f = $

	t_2
8 =	Ao definirmos intervalo de tempo como sendo a diferença entre os instantes final e inicial de determinado fenômeno observado, quer dizer que estamos preocupados com o que ocorre entre aqueles referidos instantes. No item g, o intervalo de tempo entre os instantes t ₁ = e t ₃ = é:
	$\Delta t = t_f - t_i = \underline{\qquad}$

	0 s; 15,0 s; 15,0 s
9 1	Item g: O intervalo de tempo gasto pelo veículo para passar da posição d₂ para a d₅ é ∆t =
ο.	****
	Section developments and the section of the section
	40,0 s
10	■ Item g: O intervalo de tempo entre os instantes t ₅ e t ₆ é

	$\Delta t = 15.0 \text{ s}$
11	■ As aulas do período noturno começam as 19 h 30 min e terminam às 23 h. O intervalo de tempo corres pondente é:
- F	$\Delta t = t_f - t_i = \underline{} = \underline{}$

	23 h - 19 h 30 min; 3 h 30 min

12 O intervalo de tempo gasto em uma viagem foi de 4 h. A viagem iniciou às 15 h, logo terminou às

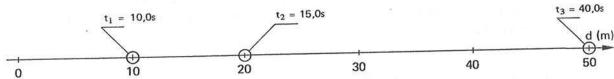
19 h
13 ■ O deslocamento de um móvel entre dois instantes quaisquer t₁ e t₂ é a diferença entre as posições do móvel no instante t₂ e t₁. Sendo d₁ a posição do móvel no instante t₁ e d₂ a posição no instante t₂, podemos escrever:
$\Delta d = d_2 - d_1$
Da mesma forma como definimos intervalo de tempo, ao instante inicial associaremos a posição inicial do móvel e a chamaremos de d _i e ao instante final associaremos a posição final e a chamaremos de d _f . Desta forma, o deslocamento de um móvel entre os instantes inicial e final pode ser definido assim:
$\Delta d = d_f - d_i$
Item g: O deslocamento do móvel entre os instantes $t_1 = 0$ s e $t_2 = 5,0$ s é:
$\Delta \mathbf{d} = \mathbf{d_f} - \mathbf{d_i} = 30 - \underline{} = \underline{}$

0; 30 m
14 I Item g: O deslocamento do mánul
14 ■ Item g: O deslocamento do móvel entre os instantes t ₂ =e t ₃ =é Δd =
5,0 s; 15,0 s; 30 m
5,6 5, 15,6 8, 50 m
15 ■ Item g: O deslocamento do móvel entre os instantes t ₃ e t ₆ é

$\Delta d = 90 \text{ m}$
16 ■ Item g: O deslocamento do vesculo entre es interestado de la
16 ■ Item g: O deslocamento do veículo entre os instantes t ₁ e t ₆ é ******************************
$\Delta d = 150 \text{ m}$
17 ■ Portanto o deslocamento de um móvel entre dois instantes quaisquer é a diferença entre a posição final e a

inicial
18 Sempre que estivermos estudando o movimento de um objeto entre dois instantes quaisquer, ao primeiro instante (t _i) associaremos a posição inicial do móvel (d _i) e ao segundo instante (t _f), a

posição final
10 M Itam as County I
19 Item g: Se estudarmos o movimento do veículo entre os instantes t ₄ = s e t ₆ = s, verificaremos que t ₄ = t; (instante inicial) e t = s
verificaremos que $t_4 = t_i$ (instante inicial) e $t_6 = $ (instante final).
25,0; 60,0; t _f
~~,v, vo,u, t _[


20 Com relação ao item anterior, o deslocamento do móvel entre os instantes inicial $t_i = ___e$ final $t_f = ____c$ corresponderá à diferença entre a posição final d_f e a inicial d_i , no caso:

$$\Delta d = d_f - d_i =$$

25,0 s; 60,0 s; 60 m

21 ■ Observe o eixo abaixo. Nele indicamos as posições de um veículo que se desloca numa estrada retilínea. Os instantes t₁, t₂ e t₃ indicam as marcações de um cronômetro utilizado para estudar o movimento do referido veículo.

Determine os deslocamentos do veículo entre os instantes t1 e t2, t2 e t3 e finalmente entre os instantes t1 e t3.

10 m; 30 m; 40 m

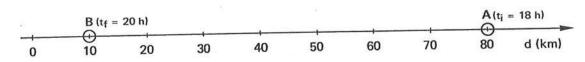
22 Com relação ao item anterior, determine os valores dos intervalos de tempo decorridos em cada deslocamento.

5,0 s; 25,0 s; 30,0 s

Verifique o eixo abaixo. Ele representa uma estrada retilínea. Às 14 h um veículo passa pela posição d₁ = -20 km.
 Às 15 h ele atinge a posição d₂ = 40 km. O deslocamento do veículo entre os instantes t₁ = ______
 e t₂ = ______ foi de ______

14 h; 15 h;
$$\Delta d = d_f - d_i = (40 \text{ km}) - (-20 \text{ km}) = 60 \text{ km}$$

24 © Com referência ao item anterior, para o veículo deslocar-se 60 km entre os instantes considerados, o correspondente intervalo de tempo foi de _______.



1 hora

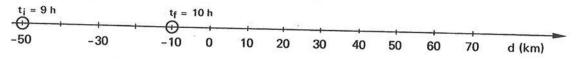
a

TO

25 ■ Observe o eixo construído a seguir. Nele representamos, através dos pontos A e B, as posições de um veículo que se desloca numa estrada retilínea. O ponto A indica a posição inicial do veículo (d_i = _______) e o ponto B a posição final (d_f = ________). O deslocamento do veículo entre os instantes t_i = 18 h e t_f = 20 h foi de _______

80 km; 10 km;
$$\Delta d = d_f - d_i = (10 \text{ km}) - (80 \text{ km}) = -70 \text{ km}$$

26 • O sinal -, na resposta do item anterior, indica que o deslocamento do veículo foi no sentido (positivo; negativo) do eixo.



negativo

27 ■ Com relação ao item 25, o intervalo de tempo para o veículo deslocar-se de -70 km foi de ______

 $\Delta t = t_f - t_i = 2 h$

28 M Observe o eixo abaixo. Nele indicamos um veículo passando pela posição (-50 km) no instante t_i = 9 h e momentos após, em t_f = 10 h, o veículo atinge a posição (-10 km). No intervalo de tempo Δt = 1 h o veículo deslocou-se Δd =

S

A

1

2 4

3 =

$$\Delta d = d_f - d_i = (-10 \text{ km}) - (-50 \text{ km}) = 40 \text{ km}$$

29 ■ Com relação ao item anterior, se o veículo passasse pela posição d_i = -10 km às 15 h e atingisse a posição d_f = -50 km às 15 h 40 min, o deslocamento do veículo no intervalo de tempo de 40 min seria de _____

$$\Delta d = d_f - d_i = (-50 \text{ km}) - (-10 \text{ km}) = -40 \text{ km}$$

30
Quando um móvel se desloca no sentido positivo do eixo, o deslocamento é (positivo; negativo). Quando o deslocamento se dá no sentido negativo do eixo, ele é (positivo; negativo).

positivo; negativo

31 ■ Pode haver deslocamentos negativos mesmo que o móvel percorra o semi-eixo positivo e, da mesma forma, o deslocamento pode ser positivo mesmo que o veículo percorra o semi-eixo negativo. O sinal negativo ou positivo do deslocamento é determinado pelas posições final e inicial; se d_i > d_f o deslocamento será (negativo; positivo) e se d_f > d_i o deslocamento será (positivo; negativo).

negativo; positivo

32 ■ Um veículo percorre uma trajetória retilínea representada pelo eixo abaixo. Ao passar pela posição A (10 m) um cronômetro é acionado. Ele atinge a posição B (80 m) e em seguida retorna até atingir a posição C (40 m). Os instantes correspondentes a cada posição estão indicados no eixo. O intervalo de tempo para o veículo, partindo de A, atingindo B e em seguida retornando até C, foi de ______. O deslocamento do móvel naquele intervalo de tempo foi de

50,0 s;
$$\Delta d = d_f - d_i = (40 \text{ m}) - (10 \text{ m}) = 30 \text{ m}$$

	33 = Reexamine a questão anterior. O deslocamento de um móvel qualquer não é sinônimo de espaço percorrido
	pelo mesmo. No exemplo do item anterior o veículo percorreu o espaço de
	tempo considerado (50,0 s) e seu deslocamento foi de

	110 m; 30 m
	34 • O deslocamento indica quanto um móvel se desloca, quer no sentido positivo quer no negativo de um dado eixo, e (é; não é) sinônimo de espaço percorrido pelo móvel.

	não é
	35 • Um veículo parte da posição A (10 km), atinge a posição B (50 km) e retorna em seguida para a posição de partida A (10 km), em determinado intervalo de tempo. O deslocamento do móvel foi de

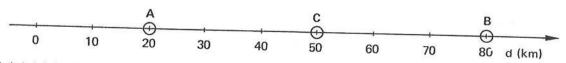
	$\Delta d = d_f - d_i = (10 \text{ km}) - (10 \text{ km}) = 0 \text{ km}$
STATE OF THE PARTY.	36 Reexamine a questão anterior. O deslocamento do veículo foi zero, ao passo que o mesmo percorreu o espaço de km.
20000	****
Silverine Control	
Service Services	Observação: No estudo dos movimentos, apenas em casos particulares nós nos preocuparemos com o espaço percorrido.
od consoletie	SEÇÃO 4 — VELOCIDADE MÉDIA E VELOCIDADE INSTANTÂNEA
	A - VELOCIDADE MÉDIA
	1 ■ Releia atentamente o Quadro A. Definiremos velocidade média de um móvel, e a representaremos por v _m , como sendo a relação entre o deslocamento de um móvel e o correspondente intervalo de tempo para efetuar
	tal deslocamento:
	$\mathbf{v_m} = \frac{\Delta \mathbf{d}}{\Delta \mathbf{t}}$
	Quadro A, item g: Entre os instantes t ₁ = 0 s e t ₂ = 5,0 s, o deslocamento do móvel foi de e o correspondente intervalo de tempo, Por definição, a velocidade média do móvel foi de
I	

	30 m; 5,0 s; $v_m = \frac{\Delta d}{\Delta t} = \frac{30 \text{ m}}{5,0 \text{ s}} = 6,0 \text{ m/s}$
	Quando afirmamos que a velocidade média de um veículo é de 6,0 m/s (seis metros por segundo), significa que em média ele se desloca 6 metros em cada segundo. Quando um veículo percorre determinado trecho de uma trajetória retilínea com a velocidade média de 36 km/h (36 quilômetros por hora), significa que em cada hora ele percorre em média

1	36 km
-	3 Item g: A velocidade média do veículo entre os instantes t ₁ e t ₃ é de
-	****
-	$v_{\rm m} = \frac{\Delta d}{\Delta t} = \frac{60 \text{ m}}{15 \text{ s}} = 4.0 \text{ m/s}$
1 3	

1a, ou 1ti-

m) n). ilo, naAnalogamente, a velocidade média do veículo entre os instantes $t_2\,$ e $t_3\,$ é de


$$v_{\rm m} = \frac{\Delta d}{\Delta t} = \frac{30 \text{ m}}{10 \text{ s}} = 3.0 \text{ m/s}$$

Item g: A velocidade média do veículo entre os instantes t1 e t6 é de _

2,5 m/s

6 ■ Observe o eixo abaixo. Nele representamos um veículo deslocando-se ao longo de uma estrada retilínea. O carro parte da posição A (20 km) e atinge a posição B (80 km) e em seguida retorna até a posição C (50 km). O intervalo de tempo para efetuar o deslocamento foi de 2,0 horas. Determine a velocidade média do veículo.

$$v_{\rm m} = \frac{\Delta d}{\Delta t} = \frac{30 \text{ km}}{2.0 \text{ h}} = 15 \text{ km/h}$$

Ainda com relação ao item anterior, se o veículo partisse da posição A (20 km) dirigindo-se até a posição B (80 km) e em seguida retornando à posição A (20 km), no intervalo de tempo de 3,0 horas, qual seria a velocidade média do veículo?

$$v_{m} = \frac{\Delta d}{\Delta t} = \frac{d_{f} - d_{i}}{t_{f} - t_{i}} = \frac{(20 \text{ km}) - (20 \text{ km})}{3.0 \text{ h}} = \frac{0}{3.0} = 0$$

8 ■ Um veículo parte da posição A (200 m) no instante t_A = 20,0 s e atinge a posição B (80 m) no instante $t_{\rm B}$ = 50,0 s. A velocidade média do veículo foi de __

$$v_{m} = \frac{\Delta d}{\Delta t} = \frac{d_{f} - d_{i}}{t_{f} - t_{i}} = \frac{(80 \text{ m}) - (200 \text{ m})}{(50,0 \text{ s}) - (20,0 \text{ s})} = \frac{-120 \text{ m}}{30,0 \text{ s}} = -4.0 \text{ m/s}$$

O sinal -, na resposta anterior, indica que o veículo se movimenta no sentido (positivo; negativo) do eixo. *****

negativo

10 \blacksquare Um móvel parte da posição d_i = -40 m e atinge a posição d_f = 60 m no intervalo de tempo de 50,0 s. Qual é a velocidade média do veículo?

$$v_{\rm m} = \frac{\Delta d}{\Delta t} = \frac{d_{\rm f} - d_{\rm i}}{t_{\rm f} - t_{\rm i}} = \frac{(60 \text{ m}) - (-40 \text{ m})}{50.0 \text{ s}} = \frac{100 \text{ m}}{50.0 \text{ s}} = 2.0 \text{ m/s}$$

11 " Um projétil é lançado verticalmente para cima atingindo a altura de 180 m e em seguida cai no local de onde partiu. O intervalo de tempo durante a ascenção e a queda foi de 12,0 s. Qual foi a velocidade média do

5

$$v_{m} = \frac{\Delta d}{\Delta t} = \frac{0}{12,0} = 0$$

(O deslocamento do projétil é zero, uma vez que a posição final coincide com a inicial e por definição o deslocamento é igual a df - di.)

12 ■ Quando um móvel efetua um deslocamento de tal forma que sua posição final (df) coincide com sua posição inicial (di), isto é, o veículo parte de um ponto e em seguida retorna ao ponto de partida, o deslocamento do mesmo é _____e, consequentemente, sua velocidade média também vale _____ ***** 0: 0 B - VELOCIDADE INSTANTANEA 1 Vamos estudar a seguinte situação. Um veículo acha-se estacionado num determinado ponto de uma rua. O motorista quer determinar sua velocidade média entre o ponto onde se encontra até outro situado 400 m adiante. Liga o motor do carro e ao partir liga um cronômetro; ao atingir um cruzamento pára e em seguida continua até atingir o ponto de chegada. Ao atingi-lo desliga o cronômetro e verifica a marcação: tf = 80,0 s. Vamos construir um eixo para melhor estudar o movimento do referido carro: O deslocamento do veículo foi de ______, ao passo que o correspondente intervalo de tempo para efetuar tal deslocamento foi de ***** $\Delta d = d_f - d_i = (400 \text{ m}) - (0) = 400 \text{ m}$ $\Delta t = t_f - t_i = (80,0) - (0) = 80,0 \text{ s}$ 2 Com relação ao item anterior, podemos afirmar que a velocidade média do veículo foi de ***** $v_{\rm m} = \frac{\Delta d}{\Delta t} = \frac{400 \text{ m}}{80.0 \text{ s}} = 5, 0 \text{ m/s}$ 3 Com relação ao item anterior, ao afirmarmos que a velocidade média foi de 5,0 m/s, estamos dizendo que em média o veículo percorreu _____ m em cada segundo. Isto (significa; não significa) que o velocímetro do veículo marcou sempre o valor 5,0 m/s; ele pode ter acusado, em cada instante, valores acima e abaixo do valor médio. ***** 5,0; não significa 4 " Um jornal estampou a seguinte manchete: "Emerson Fittipaldi venceu em Interlagos: desenvolveu a velocidade média de 186 km/h". A afirmação do jornal indica que em todos os instantes o veículo pilotado por Fittipaldi acusou a marca de 186 km/h? (sim; não) ***** não A velocidade em um dado instante é chamada de velocidade instantânea e a designaremos pela letra v. A velocidade que um velocímetro nos fornece é a instantânea. Quando se afirma: "um veículo ultrapassou outro a 100 km/h", significa que no instante em que ele ultrapassou o outro veículo sua velocidade era de 100 km/h.

A velocidade média é a considerada num intervalo de tempo, ao passo que a velocidade instantânea é a considerada num determinado instante. Portanto, o velocímetro de um carro nos fornece a velocidade (média; ins-*****

instantânea

1).

:ão

a a

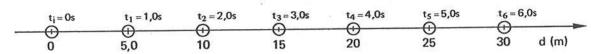
nte

XO.

ual

ade

do


6	Imagine-se no interior de um veículo que se encontra inicialmente parado. O motorista aciona o motor e "arranca" no mesmo instante em que um cronômetro é ligado. A velocidade do veículo cresce rapidamente até atingir o valor de 72 km/h (20 m/s); neste instante o cronômetro é desligado e verifica-se que, desde o instante inicial da partida do veículo até ele atingir a velocidade de 20 m/s, decorreram-se 10 s e durante este intervalo de tempo o veículo deslocou-se 100 m. Portanto, a velocidade média do veículo foi de ****************************	
7	Com referência ao item anterior, a velocidade média do veículo foi de 10 m/s, entretanto a velocidade instantânea do mesmo variou de 0 até 20 m/s. Portanto, a velocidade média do móvel foi (igual; diferente) da velocidade instantânea no instante t _f = 10 s.	
	diferente	
SF	CÃO 5 - MOVIMENTO RETURNES UNUSCENSIVA	
O.L.	ÇÃO 5 — MOVIMENTO RETILÍNEO UNIFORME (MRU)	
1 =	Vamos supor um veículo movendo-se numa rodovia retilínea e que seu velocímetro marque sempre um determinado valor, por exemplo, 10 m/s (36 km/h). Chamaremos este tipo de movimento de movimento retilíneo uniforme, abreviadamente, MRU. Portanto, no movimento retilíneo uniforme, o valor da velocidade (varia; não varia) à medida que o tempo passa.	

	não varia	
2 ■	Quando afirmamos que um móvel executou movimento retilíneo uniforme, queremos dizer que durante todo o intervalo de tempo em que o móvel foi focalizado o valor de sua velocidade (variou; não variou). ***********************************	
3 ≡	No MRU a velocidade de um dado móvel (varia; não varia) com o tempo. Temos um tipo de movimento no qual a v _m (velocidade média) do móvel é igual à v (velocidade instantânea).	
	não varia	
4 ■	Quando um móvel executa um movimento retilíneo de tal forma que durante todo o intervalo de tempo em que é focalizado o valor da sua velocidade instantânea não varia, temos um tipo de movimento chamado de	

	movimento retilíneo uniforme ou MRU	Section of the last
	Leia atentamente o Quadro B e em seguida responda às questões referentes a ele.	STREET, STREET

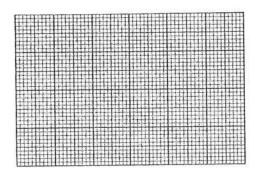
QUADRO B

a. A figura abaixo indica um veículo movendo-se em uma trajetória retilínea. Um cronômetro nos fornece os instantes em que o veículo passa pelos marcos desta estrada.

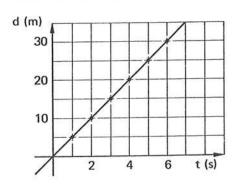
b. O eixo abaixo representa a estrada do item 1. As sucessivas posições do veículo e os correspondentes instantes estão anotados no eixo:

 c. A tabela ao lado nos fornece as posições do veículo e os correspondentes instantes em que o veículo passou por elas:

d (m)	t (s)
0	0
5	1,0
10	2,0
15	3,0
20	4,0
25	5,0
30	6,0


5 ■ No instante t₂ = 2,0 s a posição do veículo é de_____.

10 m


6 ■ O veículo passa pela posição d = 25 m no instante______

$$t_5 = 5.0 \text{ s}$$

Vamos determinar de que forma a posição do vefculo (d) depende do tempo (t). Com os valores da tabela do item c do quadro acima, construa um gráfico, colocando os valores das posições no eixo das ordenadas. Ligue os pontos. A curva obtida foi uma (reta; parábola; circunferência).

; reta

8 = A reta obtida (passa; não passa) pela origem do sistema de coordenadas.	

passa	
9 Se obtivemos uma reta no plano cartesiano, a função a ela associada é (linear; não li tipo y = *******************************	near) e sua equação é do
linear; ax + b	
10 ■ Vamos agora determinar a expressão matemática do movimento descrito no Quadro I forma a posição do veículo (d) depende do tempo (t). O primeiro passo consiste em da reta construída no item 7. Determine seu valor:	3, isto é, verificar de que determinar a declividade
$\frac{d_2 - d_1}{t_2 - t_1} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$	

$\frac{5.0 - 0}{1.0 - 0}$ (ou qualquer outro par de pontos); 5.0 m/s	
11 • Observe a diferença d ₂ - d ₁ , do item anterior. Ela representa oinstantes t ₁ e t ₂ .	do veículo entre os
* * * * * * * * * * *	
deslocamento	
12 • Ao calcularmos a declividade da reta no item 10, encontramos a mesma expressão vista anteriormente, ou seja $v_m = \frac{\Delta d}{\Delta t}$. Como a declividade de uma reta possui um v dade média do veículo é igual à velocidade instantânea, logo $v_m = \underline{\hspace{1cm}}$	da velocidade média já valor constante, a veloci-
*****	v.
v	
13 ■ Portanto, se no plano cartesiano o gráfico d X t nos fornecer uma reta, trata-se de n forme que, por definição, tem sua velocidade instantânea (constante; variável).	novimento retilíneo uni-

constante	
14 Determinada a declividade da reta que corresponde, no caso em estudo, à velocidade podemos determinar a equação deste movimento. Para tanto basta determinar a equação é:	instantânea do veículo, ação da reta construída
$\mathbf{d} - \mathbf{d_i} = \mathbf{v}(\mathbf{t} - \mathbf{t_i})$	
onde v = 5,0 m/s e d corresponde à posição do veículo num instante qualquer t.	
Calcule a equação deste movimento.	

$d = 5,0 \cdot t$	
15 M A equação obtida no item anterior chama-se equação horária do movimento. O valor corresponde à do veículo.	5,0 da referida equação
velocidade instantânea (v)	

16 ■ Através da equação horária d = 5,0 t podemos obter qualquer informação a respeito da posição ou instante que quisermos. Por exemplo, se pretendermos obter a posição do veículo no instante t = 50,0 s, basta efetuar:

$$d = 5.0$$
 (50) = 250 m = 2.5 \times 10² m (2 algarismos significativos)

Determine a posição do veículo no instante igual a 120,0 s.

 $d = 6.0 \times 10^2 \text{ m}$

17 Da mesma forma podemos determinar o instante em que o móvel atinge determinada posição. Por exemplo, o móvel atinge a posição d = 80 m no instante t igual a:

$$80 = 5.0 \cdot t$$
 ou seja $t = \frac{80}{5.0} = 16.0$ s

Determine o instante em que o veículo atinge a posição d = 60 m.

12,0 s

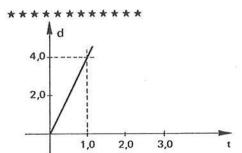
18 ■ A equação encontrada para o movimento em estudo foi de d = 5,0 · t e portanto para o instante inicial ti = 0 a posição do veículo é d_i = 5 (0) = 0, ou seja, quando o tempo começou a ser contado o veículo encontrava-se na

origem

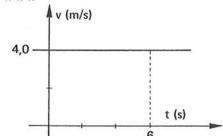
19 ■ Dada a equação horária de um movimento d = 4,0 · t, podemos afirmar que a velocidade do móvel é _____ (onde d é medido em metros e t em segundos).

4.0 m/s

20 Com relação ao item anterior a posição do veículo no instante t = 10,0 s é


4,0 × 10 m (2 algarismos significativos)

21 Com referência ao item 19, em que instante o veículo atinge a posição d = 60 m?


15,0 s

22 Construa o gráfico d X t da equação horária do item 19 acima.

23 Vamos construir um gráfico cartesiano, no espaço ao lado, da velocidade instantânea em função do tempo. Coloque os valores do tempo no eixo das abscissas e o valor da velocidade no eixo das ordenadas. A reta obtida é (paralela; perpendicular) ao eixo das ordenadas.

24 Quando um móvel executa MRU, seu gráfico v X t nos fornece uma reta perpendicular ao eixo das ordenadas (v) num ponto que corresponde ao valor da (velocidade; deslocamento; instante).

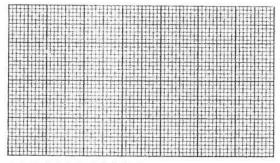
velocidade

perpendicular;

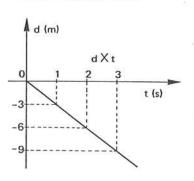
25 Retorne ao item 23 acima. Calcule a área do retângulo cujos vértices possuem as seguintes coordenadas: (0, 0), (6, 0), (0, 4) e (6, 4); seu valor é

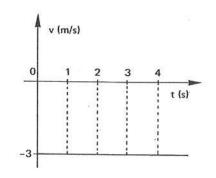
24 m

26 Para determinarmos a área do retângulo do item anterior, efetuamos: A_{ret.} = base X altura. O valor da base é Δt = 60,0 s, e o da altura é v = 4,0 m/s, logo a área do referido retângulo e dado por: A_{ret.} = Δt · v. Mas v · Δt nada mais é que o ______ do móvel no intervalo de tempo Δt.


deslocamento

27 ■ Portanto no gráfico v X t, para determinar o deslocamento de um móvel num intervalo de tempo ∆t qualquer, basta determinarmos a ______ do retângulo de tal forma que um de seus lados corresponda ao valor de ∆t e o outro ao valor de v.



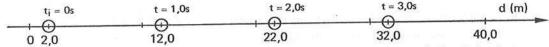

área

28 M A equação horária de um movimento é d = -3 t. Construa o gráfico d X t e v X t para este movimento.

3

32

29 Verifique o gráfico v X t acima. Observe que a reta construída no gráfico encontra-se (abaixo; acima) do eixo dos tempos (t). Logo, a área de qualquer retângulo nos fornecerá um deslocamento (positivo; negativo).

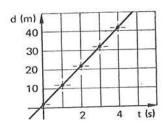


abaixo; negativo

Leia atentamente o Quadro C, onde descrevemos o movimento de um veículo em uma estrada retilínea. Em seguida, responda às questões referentes a ele.

QUADRO C

a. O eixo indica uma estrada retilínea e os instantes marcados sobre o eixo indicam os momentos em que o veículo parou pelas posições marcadas sobre o eixo.



b. Podemos construir a seguinte tabela de valores para as posições e os correspondentes instantes:

d (m)	t (s)
2,0	0
12,0	1,0
22,0	2,0
32,0	3,0

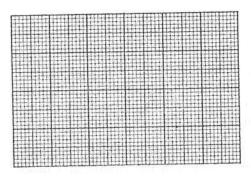
30 ■ Com a tabela de valores fornecida no item c, construa um gráfico d X t (posição em função do tempo). A reta obtida (passa; não passa) pela origem.

; não passa

31 \blacksquare A posição inicial do veículo (para o instante inicial $t_i = 0$) é $d_i =$ ______.

2,0 m

32 ■ Vamos agora determinar a equação horária deste movimento. Primeiramente determine a declividade da reta construída no item 30. Seu valor é ______ e corresponde à ______ do móvel.


10 m/s; velocidade instantânea ou v

Determine agora a equação desta reta, cujo resultado e chamado de equação horaria do movimento.

d = 2,0 + 10 t
34 \blacksquare O resultado encontrado, d = 2,0 + 10 t, indica que para o instante inicial (t _i = 0) a posição inicial do veículo será d _i =
* * * * * * * * * *
2,0 m
35 Desde que um veículo execute movimento retilíneo e uniforme (velocidade instantânea constante), podemos deduzir a equação geral para este tipo de movimento, ou seja:
$d = d_i + v \Delta t$
Portanto, se obtivermos num gráfico cartesiano d X t uma reta, o móvel executa e sua equação horária é do tipo

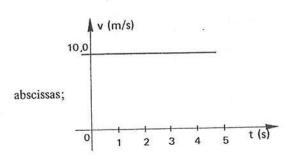
movimento retilíneo uniforme; $d = d_i + v \Delta t$
36 ■ d = d _i + v \(\Delta t\). Lembrando que \(\Delta t = t_f - t_i\), quando o instante inicial (t _i) for igual a zero, podemos escrever \(\Delta t = t_f\). Neste caso \(\delta u\) usual representarmos a equação horária do movimento retilíneo uniforme como se segue:
$d = d_i + v t$
A equação horária de um móvel que executa MRU nos dá a posição de um veículo, em um determinado instante, desde que conheçamos sua velocidade (v) , o instante inicial (t_i) e a sua posição

inicial
37 • Um móvel executa movimento retilíneo uniforme, sendo sua equação horária d = 6 - 4t. Sendo as posições dadas em metros e os instantes em segundos, verifica-se que a posição inicial do móvel é e sua velocidade é m/s.

6 m; -4
38 ■ O sinal - da velocidade do móvel, no item anterior, indica que o móvel se desloca no sentido (positivo; negativo) do eixo.

negativo
39 ■ A velocidade de um móvel que executa MRU é 3 m/s e sua posição inicial é -8 m. Sua equação horária é d = *****************************
$-8 + 3 \Delta t$
40 • Com relação ao item anterior, se o instante inicial for igual a zero (t _i = 0), a equação horária do movimento
pode ser escrita d = e para o instante t = 5 s a posição do móvel é d =

-8 + 3t; $d = -8 + 3(5) = -8 + 15 = 7 m$


41 ■ Com relação ao item anterior, o móvel passa pela posição d = 36 m no instante t = _____

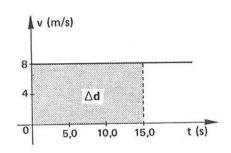
$$36 = -8 + 3t$$

 $36 + 8 = 3t$ e $t = \frac{44}{3}$ s

42 Construa neste item o gráfico v X t correspondente ao movimento descrito no Quadro C. A reta obtida é paralela ao eixo das (abscissas; ordenadas).

43 Com relação ao item anterior, entre os instantes t = 1,0 s e t = 3,0 s, o deslocamento do móvel é representado pela área do retângulo cujos vértices possuem as coordenadas (1, 0), (3, 0), (1, 10) e (3, 10). Determine o valor da área do referido retângulo que representa o ______ do móvel entre os instantes t = 1,0 s

$$A_{ret.} = v \Delta t = 10 (3.0 - 1.0) = 20 m; deslocamento; 3.0 s$$


44 ■ Observe o gráfico ao lado. Através de sua análise podemos concluir que o veículo, entre os instantes 0 e 15 s, (executa; não executa) MRU.

executa

35

ı é

nto

45 ■ A área do retângulo nos fornece o______ do móvel entre os instantes 0 e 15,0 s.

deslocamento

32

0

48 ■ A posicão do veículo no instante t = 4,0 s é ___ ********

12,0 m

49 M A velocidade do veículo é _____ m/s. (Calcule a declividade da reta.)

d (m)

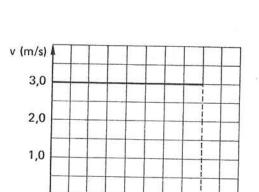
12,0

6,0

0

1,0

50
O gráfico representa o movimento do veículo do item 47 acima. A reta construída é paralela ao eixo das (abscissas; ordenadas).



abscissas

51 A representação gráfica v X t de um móvel que executa MRU é uma reta perpendicular ao eixo v (ordenadas) em um ponto que corresponde à (posição; deslocamento; velocidade) do veículo e esta, por definição, é (constante; variável).

velocidade; constante

2,0

2,0

3,0

4,0 t(s)

4,0 t(s)

52 • Calcule através deste gráfico o deslocamento do veículo entre os instantes t = 1,0 s e t = 3,0 s. (Sugestão: Determine a área formada no referido gráfico.)

$$\Delta d = (3,0 - 1,0)(3,0) = 6,0 \text{ m}$$

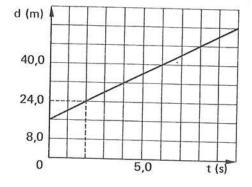
53 Retornando ao gráfico do item 47, para determinarmos a equação horária do movimento representado graficamente, basta determinarmos a equação da _____ construída no plano cartesiano.

reta

54 A equação da reta construída é d = _____, onde à declividade da reta corresponde a (velocidade; deslocamento; posição) do veículo que está executando movimento _____.

3t; velocidade; retilíneo uniforme

55 ■ Neste gráfico estamos indicando um veículo animado de ______.



movimento retilíneo uniforme ou MRU

56 ■ A posição inicial deste veículo (d_i) é _____.

16 m

114

E

59

60

61

62 1

63 ■

64 m

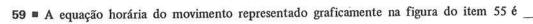
.

d

57 ■ No instante t = 2,0 s a posição do veículo é ____.

24,0 m

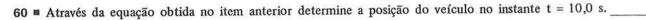
58 ■ Este gráfico mostra de que forma a velocidade depende do tempo. A figura construída é uma reta perpendicular ao eixo das velocidades no ponto

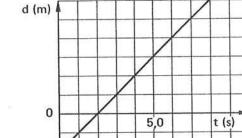


v (m/s)

5,0

-


(0,4)



d = 16 + 4t

d = 16 + 4t = 16 + 4(10) = 16 + 40 = 56 m

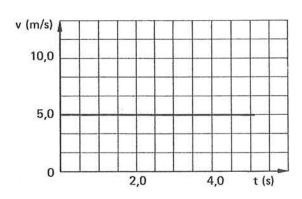
-10,0

5,0

61 Neste gráfico, a posição inicial do veículo é d_i = ____
 m. O veículo atinge a posição 0 (origem) no instante t = ____

-10; 2,0

62 ■ Esta figura representa o gráfico v X t do movimento representado na figura anterior. A análise do


gráfico nos indica que o veículo executa movimento _____ com velocidade constante de

_____m/s.

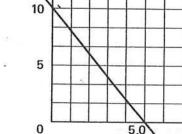
retilíneo uniforme; 5,0

63 ■ Veja o gráfico do item 61; a equação horária do movimento representado neste gráfico é d =_____

-10 + 5t

64 ■ Através da equação horária deduzida no item anterior podemos determinar a posição do móvel em qualquer instante ou determinar o instante em que o móvel passa por uma dada posição. O veículo passa, no instante t = 8,0 s, pela posição d = _____ m. O veículo passa pela posição d = 90 m no instante t = _____ s.

$$d = -10 + 5t = -10 + (5)(8) = -10 + 40 = 30 m;$$


$$d = -10 + 5t$$
 : $t = \frac{10 + d}{5} = \frac{10 + 90}{5} = \frac{100}{5} = 20,0 \text{ s}$

65 ■ A posição inicial do móvel, cujo gráfico d×t é representado na figura, é d_i = _____.

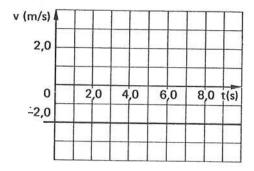
10 m

66 ■ A declividade da reta construída no plano cartesiano é (positiva; negativa). Isto significa que o móvel se desloca no sentido (positivo; negativo) do eixo_____

d (m)

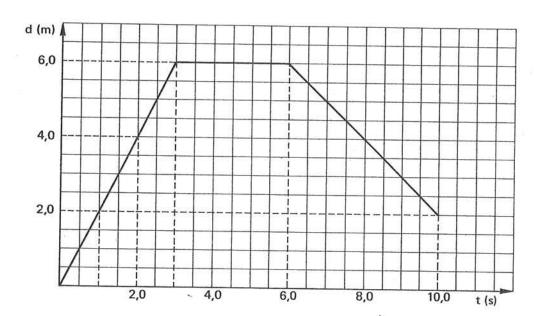
negativa; negativo

67 ■ A equação horária do movimento representado nesta figura é d = _____



10 - 2t

68 ■ Calcule o deslocamento do móvel entre os instantes t = 2,0 s e t = 8,0 s.


- 12 m

75

76

77

69 ■ O gráfico acima representa as posições de um veículo e os correspondentes instantes (entre t = 0 e t = 10,0 s). Entre os instantes t = 0 e t = 3,0 s, o veículo está animado de MRU com velocidade constante v = _____. (Determine a declividade da reta.)

2,0 m/s

70 ■ Entre os instantes t = 3,0 s e t = 6,0 s, o veículo possui velocidade v = ______

0 (Observe no gráfico que o tempo cresce de 3,0 para 6,0 s, enquanto que o veículo permanece na posição 6m.)

116

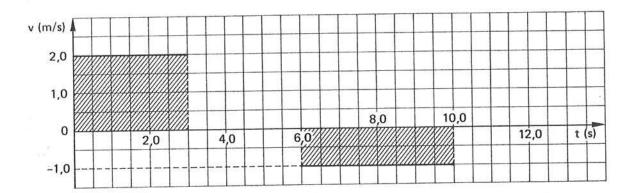
71 Entre os instantes t = 6,0 s e t = 10,0 s, o veículo está animado de MRU com velocidade (positiva; negativa), o que significa que ele está se movimentando no sentido (positivo; negativo) do eixo.

negativa; negativo

72 M A velocidade do veículo entre os instantes t = 6,0 s e t = 10,0 s, é v = ____ m/s.

-1,0

73 ■ A velocidade média do veículo entre os instantes t = 0 e t = 10,0 s é v_m = _____



$$v_{\rm m} = \frac{\Delta d}{\Delta t} = \frac{d_{\rm f} - d_{\rm i}}{t_{\rm f} - t_{\rm i}} = \frac{2.0 - 0}{10 - 0} = \frac{2.0}{10} = 0.20 = 2.0 \times 10^{-1} \ {\rm m/s}$$

74 ■ A velocidade média do veículo entre os instantes t = 1,0 s e t = 10,0 s é v_m = _____

$$v_{m} = \frac{\Delta d}{\Delta t} = \frac{d_{f} - d_{i}}{t_{f} - t_{i}} = \frac{2 - 2}{10 - 1} = \frac{0}{9} = 0$$

75 Este gráfico representa o gráfico v X t do movimento descrito na figura do item 69. A análise deste gráfico nos informa que, entre os instantes 0 e 3,0 s, a velocidade do veículo é de ______. Entre 3,0 s e 6,0 s, a velocidade do veículo é _______ e finalmente, entre 6,0 e 10,0 s, a velocidade é ______.

2,0 m/s; 0; -1,0 m/s

76 ■ A soma das áreas das figuras aí construídas corresponde ao ______ do móvel entre os instantes 0 e 10,0 s.

deslocamento

77 A soma da área do retângulo construído acima do eixo t com a do retângulo construído abaixo do mesmo eixo é ______e corresponde ao deslocamento do veículo entre os instantes 0 e 10,0 s.

 $\Delta d = (2.0 \times 3.0) + (-1.0 \times 4.0) = 2.0$ m (Observe que este resultado coincide com o obtido através da figura do item 69.)

78 ■ Reveja o gráfico do item 69. Podemos equacionar os três movimentos observados entre os instantes t = 0 e t = 10,0 s. A equação horária do móvel entre os instantes t = 0 e t = 3,0 s é d = ____ ***** 2t 79 ■ No mesmo gráfico, a equação horária do veículo entre os instantes t = 3,0 s e t = 6,0 s é d = _____. ***** 6,0 (Observe que entre os referidos instantes o veículo está em repouso, ou seja, v = 0.) 80 ■ Continuando com o gráfico, a equação horária do veículo entre os instantes t = 6,0 s e t = 10,0 s é d =***** 6 - ∆t (Observe que nesta equação introduzimos o símbolo ∆ antes de t, uma vez que o instante inicial neste trecho não é 0, mas sim 6,0 s.) d (m) 8,0 6,0 4,0 2,0 2,0 4,0 6,0 8,0 10,0 12,0 81 ■ Podemos verificar, através da análise deste gráfico, que entre os instantes t = 0 e t = 1,0 s, o veículo possui velocidade_ ***** 82 ■ Entre os instantes 1,0 e 4,0 s, o móvel está animado de MRU com velocidade constante de _____ m/s. ****** 1,0 83 Entre os instantes 4,0 e 5,0 s, a velocidade do móvel é de _____ m/s. ****** 84 Entre os instantes 5,0 e 6,0 s, a velocidade é _____. ***** 0

85 ■ Entre os instantes 6,0 e 8,0 s, a velocidade do móvel é de _____m/s.

93

-4,0

1,4 m/s

87 M A velocidade média do movimento descrito no gráfico, entre os instantes 0 e 8,0 s, é: v_m = _____ m/s.

$$v_{m} = \frac{\Delta d}{\Delta t} = \frac{d_{f} - d_{i}}{t_{f} - t_{i}} = \frac{0 - 1.0}{8.0 - 0} = \frac{-1.0}{8.0} = -0.125 = -1.3 \times 10^{-1} \text{ m/s (2 algarismos significativos)}$$

88 ■ A equação horária do móvel entre os instantes 0 e 1,0 s é d = ______

1,0

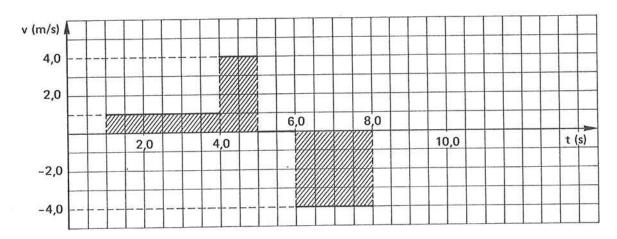
89 M A equação horária do móvel entre os instantes 1,0 e 4,0 s é d = _____

 $1 + \Delta t$

90 M A equação horária do móvel entre os instantes 4,0 e 5,0 s é d = _____

 $4 + 4 \Delta t$

91 ■ A equação horária do móvel entre os instantes 5,0 e 6,0 s é d = _____

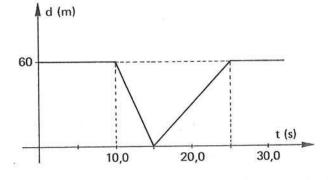

8

i

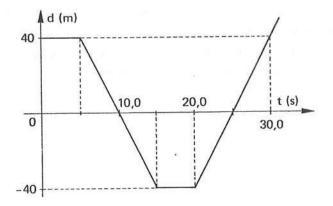
92 A equação horária do móvel entre os instantes 6,0 e 8,0 s é d = _____

8 - 4 Δt

93 Neste gráfico descrevemos a velocidade em função do tempo do movimento descrito na figura apresentada no item 81. Determine através dele o deslocamento do veículo entre os instantes 0 e 1,0 s; 1,0 e 4,0 s; 4,0 e 5,0 s; 5,0 e 6,0 s; 6,0 e 8,0 s; 0 e 8,0 s.

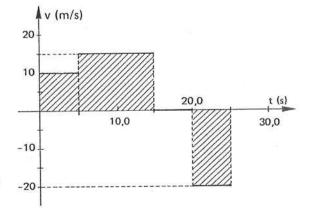


0; 3 m; 4 m; 0; -8 m; -1 m


94	■ Observe	o grá	tico ao	lado.	Nele re	presen	tamos a							
	velocida	de em	função	do ter	npo de	um má	ovel que							
	se deslo								A	v (m/s)				
	(executa						motor							
	***						1		10,0				77	
2	executa								5,0					
95	■ Podemos	atrav	ás do o	-6G	11	36							t (s)	
.H0.T0	 Podemos tematicas 	mente	o deale	ianco a	io iado,	descre	ver ma-		0	annique.	2,0	1141111	4,0	
	tematicar $\Delta d = $				to do r	eferido	móvel:				1000		4,0	
	****	***	***	*										
	10 ∆t													
96	Portanto,	atrav	és do	gráfico	vXt.	podem	os deter	rminar (o deelo	aamanta		~ \ 1	727.11	86
	são conh	ecidos	a velo	cidade	e o int	ervalo	de temr	oo	o desio	camento;	a posi	çao) de	um móve	l, quando
	****						do tomp	ю.						
				^										
	o desloca	mento												
97	Quando u	ım mó	vel exe	cuta N	IRII o	gráfico	do	:-~-	c ~	ar v				
	 Quando u pende da 		· or one	do	móvel	granice	ua pos	ação em	Tunçao	do tem	oo é un	na reta c	uja declivi	idade de-
	****				movel.									
			* * *	×										
	velocidade													
98	Quando u	m móv	el exe	cuta M	RII	gráfico	do volo		c		THE STATE OF THE S			
	V		ao eix	o dos	tempos	e crus	da velo	o vertice	m runç	ao do te	mpo é	uma reta	a, sempre	
	do valor d	la _			· · · · · p oc	o oraz	a o eix	o vertica	ii (eixo	das velo	cidades)	em pon	tos que de	ependem

	paralela; ve													
	puraicia, vi	ciocida	ue											
							8							
EXE	RCICIOS	DE F	REVIS	ÃO										
I	Um móvel sou por ela	desloc	a-se er	n uma	estrada	retilír	nea. As s	suas pos	ições e	os corres	nonden	tee ineta	ntos om a	
	sou por ela	is estão	o anota	ados na	tabela	abaixo	o:		•		ponden	ics msta	nies em c	que pas-
	1()	1.0												
	d (m)	10	20	30	40	50	60	60	50	30	10	0	-20	
	t (s)	0	2,0	3,0	6,0	8,0	10,0	12,0	15,0	20,0	25,0	30,0	40,0	-H
		×.									20,0	30,0	40,0	
	a) Duranteb) O desloc	todo o	interv	alo de	tempo	(0 a 40	0.0 (2 0.0	móvel ev	ecutou	mouriman	to 4:11 *			ro
	,		o do n	TOACT	une os	mstan	res II e	XII e fo	da			neo unifo	orme? (sii	n; não)
	c) o destoc	amente	o do n	novel e	ntre os	instan	tes 0 e	25.0 s f	oi de					
	a) o acsioca	amente	ou II	lovel e	ntre os	instan	tes 10.0	s e 12 (e foi	da				
	c) o acsioca	amenic	o do m	lovel ei	itre os	instant	es O e	30.0 s fo	oi de	uc				
) O mover	passou	pela	posição	30 m	nos in	stantes							
1	g) A velocid	lade m	édia d	o móve	el entre	os ins	tantes 0	e 8,0 s	foi de		——·			
	i) A velocid	ade m	édia d	o móve	el entre	os ins	tantes 8	,0 s e 1	5,0 s fo	oi de	—.			
-) A velocid	ada m	ádia d	6	1 .	7.2			- e - d - 83					51

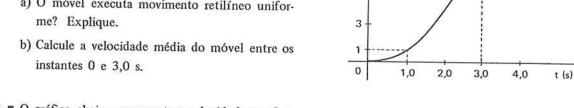
i) A velocidade média do móvel entre os instantes 0 e 40,0 s foi de______.


- 2 O gráfico das posições para um móvel é dado pela figura abaixo:
 - a) Determine as velocidades do móvel nos instantes: 3,0; 9,0; 12,0; 20,0 e 30,0 s.
 - b) Determine as posições do móvel nos instantes: 8,0; 14,0; 15,0; 18,0 e 30,0 s.
 - c) Determine a velocidade média do móvel entre os instantes 5,0 e 25,0 s.
 - d) Construa o correspondente gráfico das velocidades.

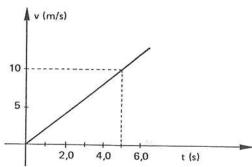
- 3 O gráfico ao lado evidencia a variação das posições para um móvel:
 - a) Determine as posições do mesmo nos instantes: 3,0; 8,0; 10,0; 15,0; 20,0; 22,0; 25,0 e 28,0s.
 - b) Determine as velocidades nos instantes: 4,0; 10,0; 18,0 e 24,0 s.
 - c) Determine a velocidade média entre os instantes 10,0 e 30,0 s.
 - d) Construa o gráfico das velocidades.

- O gráfico das velocidades de um móvel em uma trajetória retilínea é dado ao lado. Sabe-se que o mesmo encontra-se na origem no instante inicial (t = 0).
 - a) Determine o deslocamento total do móvel entre os instantes 0 e 25,0 s.
 - b) Determine a velocidade média do móvel entre os instantes 0 e 25,0 s.
 - c) Construa o correspondente gráfico das posições do móvel (d × t).

- 5 Um móvel animado de movimento retilíneo uniforme possui velocidade de 6 m/s. No instante inicial (t_i = 0) ele se encontrava na posição -40 m. Qual é sua equação horária?
- 6 Com relação ao item anterior, determine a posição do móvel no instante t = 8,0 s.
- 7 As equações horárias de dois móveis que se deslocam numa mesma trajetória retilínea são: $d_A = -20 + 5t$ e $d_B = 10 + 2t$.
 - a) Construa num mesmo plano cartesiano os gráficos $d_A \times t$ e $d_B \times t$.
 - b) Determine através do gráfico e matematicamente o instante em que os dois móveis se cruzam.
 - c) Qual a distância entre os móveis no instante t = 20,0 s?
- 8 Um elétron percorre com velocidade constante v = 5,0 × 10⁶ m/s o espaço de 4,0 × 10⁻⁴ m. Qual foi o tempo gasto?
- Dois veículos, um a 40 km/h e outro a 60 km/h, iniciam uma viagem de 120 km, no mesmo instante. Quanto tempo antes do outro um veículo chega ao destino?


10 ■ As posições de um veículo e os correspondentes instantes constam na tabela abaixo:

d (m)										
t (s)	0	1,0	3,0	5,0	6,0	7,0	9,0	11,0	13,0	15,0

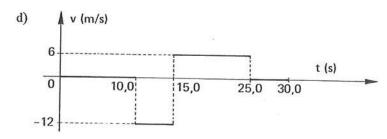

- a) Construa o gráfico d X t.
- b) Construa o gráfico v X t.
- c) Determine a velocidade média do móvel entre os instantes 0 e 15,0 s.
- d) Determine o deslocamento do veículo entre os instantes 5,0 e 15,0 s.
- e) Entre que instantes a velocidade do veículo foi maior?
- 11 A luz possui, no vácuo, velocidade constante de 2,99790 × 10⁸ m/s. A distância média Terra-Sol é cerca de 1,49 × 108 km. Quanto tempo um raio luminoso demora para atingir a Terra, partindo do Sol?
- 12 A velocidade do som no ar é constante e vale cerca de 340 m/s. Duas pessoas conversam separadas de uma distância de 60 cm. Qual é o intervalo de tempo decorrido entre a produção de um som por um dos interlocutores e sua percepção pelo outro.

6

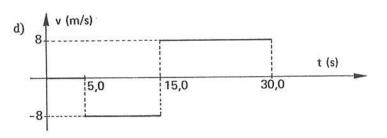
- 13 M O gráfico ao lado nos dá as posições em função do tempo de um móvel que se desloca numa trajetória retilínea.
 - a) O móvel executa movimento retilíneo uniforme? Explique.

- 14 O gráfico abaixo representa a velocidade em função do tempo de um móvel que se desloca numa trajetória retilínea.
 - a) O móvel executa MRU? Explique.
 - b) Qual é o deslocamento do móvel entre os instantes 0 e 5,0 s?

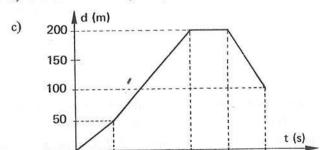
11


11

13.


14.

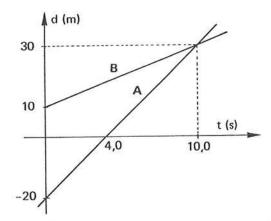
RESPOSTAS


- 1. a) não b) 40 m c) 0 d) 0 e) -10 m f) 3,0 s; 20,0 s g) 5,0 m/s h) 0 i) $-\frac{3}{4}$ m/s
- 2. a) 0; 0; -12 m/s; 6 m/s; 0 b) 60 m; 12 m; 0; 18 m; 60 m

- 3. a) 40 m; 16 m; zero; -40 m; -40 m; -24 m; zero; 24 m
 - b) 0; -8,0 m/s; 0; 8,0 m/s
 - c) 2,0 m/s

- 4. a) 100 m
- b) 4 m/s

5,0

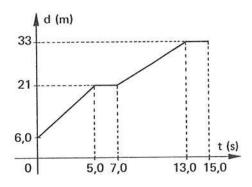

15,0 20,0

25,0

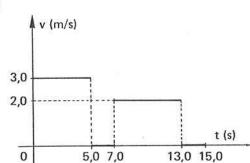
5.
$$d = -40 + 6t$$

6.8 m

7. a)



- b) t = 10,0 s
- c) $d_A = 80 \text{ m}$ e $d_B = 60 \text{ m}$, logo distância AB = 20 m


8. $t = 8 \times 10^{-11} \text{ s}$

9. 1 hora

10. a)

b)

- c) 1,8 m/s
- d) 12 m
- e) 0 e 5,0 s
- 11. $\Delta t = 4.97 \times 10^2 \text{ s} = 8 \text{ min e } 17 \text{ s}$
- 12. $\Delta t = 1.8 \times 10^{-3} \text{ s}$
- 13. a) Não. Porque o gráfico d X t não é uma linha reta.
 - b) $\Delta d = 9 \text{ m}$ e $\Delta t = 3 \text{ s}$, $\log v_m = 3 \text{ m/s}$
- 14. a) Não. Porque a velocidade não é constante.
 - b) $\Delta d = 25 \text{ m}$ (pela área).

2ª PARTE: Movimento retilíneo uniformemente variado.

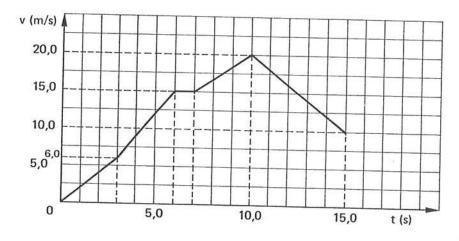
OBJETIVOS: Ao final desta parte do Capítulo III o estudante deve estar apto para:

- a. identificar um movimento retilíneo uniformemente variado.
- b. calcular a aceleração média de um móvel.
- c. descrever matemática e graficamente um movimento retilíneo uniformemente variado.
- d. aplicar os itens a, b e c para o caso da queda livre de um corpo.
- e. resolver problemas.

Quando as características de um carro são dadas, uma delas refere-se ao intervalo de tempo que o veículo leva para aumentar a velocidade 0 (repouso) até um valor determinado. Este teste não é para determinar a velocidade, mas para se conhecer o quanto a velocidade varia (aumenta) na unidade de tempo (1 s). Esta variação de velocidade na unidade de tempo é chamada de aceleração. A função do acelerador de um carro é a de aumentar a velocidade de um veículo, introduzindo no motor mais gasolina, e a dos freios é diminuir a velocidade. Um acelera, o outro desacelera.

Nesta segunda parte do capítulo, a exemplo do movimento retilíneo uniforme, estudaremos os movimentos em uma única dimensão, ou seja, movimentos de corpos ao longo de uma trajetória retilínea.

SEÇÃO 1 — Variação de velocidade: △v


Aceleração média: $a_m = \frac{\Delta v}{\Delta t}$

Aceleração instantânea e aceleração constante

Gráficos da velocidade e da aceleração em função do tempo

Equação da velocidade: $v = v_0 + at$

1 ■ Um veículo desloca-se numa estrada retilínea. O gráfico v x t (velocidade em função do tempo) para este veículo está representado abaixo:

1

11

O diagrama representa a (posição de um móvel; velocidade de um móvel) em função do tempo.

velocidade de um móvel

2 =	A velocidade do móvel no instante t = 3,0 s é/

	6,0 m/s
3 ■	Para $t = 6.0 \text{ s}, v = $

	15,0 m/s
4 ■	A velocidade do móvel é zero somente para t =

5 m	Entre 0 e 6,0 s a velocidade do móvel (manteve-se; não se manteve) constante. Neste intervalo de tempo ele (executou; não executou) movimento retilíneo uniforme (MRU).

	não se manteve; não executou
6 ■	Durante o intervalo de tempo compreendido entre 6,0 e 7,0 s, a velocidade do veículo (permaneceu; não permaneceu) constante. O seu valor foi de Portanto, durante este intervalo de tempo, o veículo executou movimento retilíneo uniforme.

	permaneceu; 15,0 m/s
7 =	Durante o intervalo de tempo de 7,0 a 10,0 s, o veículo (executou; não executou) MRU, uma vez que sua velocidade instantânea variou de 15,0 m/s para

	não executou; 20,0 m/s
8 m	Durante o intervalo de tempo compreendido entre 0 e 15,0 s, a velocidade instantânea do veículo variou de
	para m/s.

	0; 10,0
9 =	Entre 10,0 e 15,0 s a velocidade instantânea variou de para

	20,0 m/s; 10,0 m/s
10 •	Define-se variação de velocidade (representa-se pelo símbolo Δv) num intervalo de tempo (Δt) como sendo a diferença entre a velocidade no fim do intervalo de tempo (v_f) e a velocidade no início do intervalo (v_i). Em símbolos: $\Delta v = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} - \underline{\hspace{1cm}}$

44 .	v _{(; v_i} ■ A unidade de variação de velocidade (△v) é
11 1	* A unidade de variação de velocidade (\(\Delta\varphi\) e
40 -	m/s Entre 0 e 3,0 s, $\Delta t = \underline{} e \Delta v = \underline{}$
12	*******
	3,0 s; 6,0 m/s

13 Entre os instantes 6,0 e 7,0 s, $\Delta t = \underline{}$ e $\Delta v = \underline{}$, pois v_f é (igual a; maior que; menor que) v_i . ***** 1,0 s; 0; igual a ****** 5,0 s; -10 m/s 15 ■ A variação de velocidade no item anterior é (positiva; negativa). Isto significa que no intervalo de tempo considerado (o móvel se deslocou no sentido negativo no eixo das posições; a velocidade diminuiu; a velocidade aumentou). ***** negativa; a velocidade diminuiu (Lembre-se que o móvel se desloca no sentido negativo no eixo das posições somente quando a velocidade é negativa.) 16 ■ Calcule a variação de velocidade entre os instantes 3,0 e 6,0 s. Interprete o sinal. ***** 9,0 m/s; O sinal positivo indica que a velocidade aumentou no referido intervalo de tempo. 17 ■ Calcule a variação de velocidade no intervalo de tempo compreendido entre 0 e 15,0 s. Δv = ****** $\Delta v = v_f - v_i = (10.0 \text{ m/s}) - (0) = 10.0 \text{ m/s}$ 18 ■ Em determinado instante, a velocidade de um veículo é de 20 m/s. Nos 10 segundos subsequentes, a variação de velocidade do veículo foi de 6 m/s. Sua velocidade ao fim do referido intervalo de tempo é de __ ***** $\Delta v = v_f - v_i$ e 6 = $v_f - 20$: $v_f = 6 + 20 = 26$ m/s 19 ■ A velocidade de um veículo é de 25 m/s. O motorista aplica os freios reduzindo-a para 15 m/s. A variação de velocidade do veículo durante a ação dos freios foi de _ ***** $\Delta v = v_f - v_i = 15 - 25 = -10 \text{ m/s}$ 20 ■ Aceleração é um termo utilizado para especificar a rapidez com que a velocidade de um objeto varia. Definiremos aceleração média como sendo a razão entre a variação de velocidade e o correspondente intervalo de tempo gasto para efetuar a referida variação de velocidade. Em 'símbolos: $a_{\rm m} = \frac{\Delta v}{\Delta t} = \frac{v_{\rm f} - v_{\rm i}}{t_{\rm f} - t_{\rm i}}$ Portanto, a aceleração média de um móvel é o quociente da pelo correspondente ***** variação de velocidade; intervalo de tempo 21 \equiv $a_m = \frac{\Delta v}{\Delta t}$. Desde que Δv seja dado em m/s e Δt em s, a unidade de aceleração é dada por $a_m = \underline{}$

2

21

29

 $a_{\rm m} = \frac{\frac{\rm m}{\rm s}}{\rm s} = \frac{\rm m}{\rm s^2}$

22 Retornando ao gráfico, a aceleração média entre os instantes 0 e 3,0 s é a_m =

$$a_{m} = \frac{\Delta v}{\Delta t} = \frac{v_{f} - v_{i}}{t_{f} - t_{i}} = \frac{6 - 0}{3 - 0} = 2 \text{ m/s}^{2}$$

23 ■ a_m = 2,0 m/s². Isto significa que, em cada 1 segundo do intervalo de tempo considerado, a velocidade do veículo aumentou de

2,0 m/s

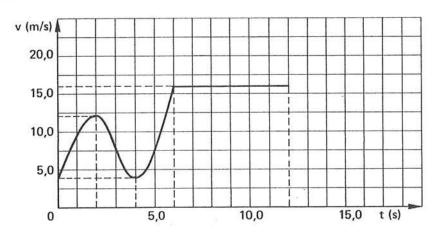
24 M No gráfico que estamos analisando, calcule a aceleração média do veículo entre 3,0 e 6,0 s.

25 Entre os instantes 6,0 e 7,0 s, a_m = ____

0

26 • a_m = 0. Isto significa que no intervalo de tempo considerado a velocidade final é sempre (igual a; maior que; menor que) a inicial.

igual a

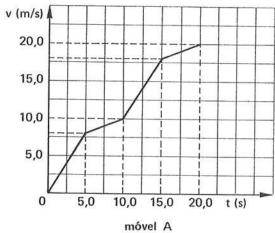

27 Entre os instantes 10,0 e 15,0 s, a_m = _____

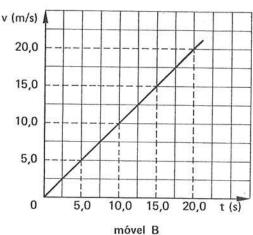
$$-2,0 \text{ m/s}^2$$

28 ■ a_m = -2,0 m/s². Isto significa que, em cada 1 s, durante o intervalo de tempo considerado, a velocidade do veículo diminui de ______.

2,0 m/s

29 ■ O gráfico v x t (velocidade em função do tempo), para um veículo que se desloca numa estrada retilínea, está indicado abaixo:


A aceleração média entre os instantes 0 e 2,0 s é



$$a_{\rm m} = \frac{\Delta v}{\Delta t} = \frac{v_{\rm f} - v_{\rm i}}{t_{\rm f} - t_{\rm i}} = \frac{12,0 - 4,0}{2,0 - 0} = 4,0 \text{ m/s}^2$$

30 = Entre os instantes 0 e 4,0 s, a_m = _____ ***** 0 31 ■ Entre os instantes 0 e 6,0 s, a_m = _____ ******* 2.0 m/s^2 32 ■ Entre os instantes 2,0 e 4,0 s, a_m =_____ ****** -4 m/s^2 33 ■ Entre os instantes 6,0 e 12,0 s, a_m =_____ ****** zero suas velocidades em função do tempo (v x t) estão indicados abaixo: v (m/s) / v (m/s)

34 " Dois veículos, A e B, partem simultaneamente de um mesmo ponto de uma estrada retilínea. Os diagramas de

Os veículos A e B partem com velocidades iniciais iguais a _____ *****

zero

35 ■ Ao final de 20,0 s a velocidade do móvel A é _____e a do B, ____ ***** 20,0 m/s; 20,0 m/s

36 ■ A aceleração média do móvel A no intervalo de tempo compreendido entre 0 e 20,0 s é de ____ ****** 1,0 m/s2

37 ■ A aceleração média do móvel B no intervalo de tempo compreendido entre 0 e 20,0 s é de _____ ***** 1,0 m/s2

38
Calcule as acelerações médias para os veículos A e B, nos intervalos de tempo indicados abaixo:

A

Intervalo de tempo (s)	∆t (s)	∆v (m/s)	$a_{\rm m} = \frac{\Delta v}{\Delta t} ({\rm m/s^2})$
0 a 5,0			
5,0 a 10,0			
10,0 a 15,0			
15,0 a 20,0			

B

Intervalo de tempo (s)	∆t (s)	∆v (m/s)	$a_{\rm m} = \frac{\Delta v}{\Delta t} ({\rm m/s^2})$
0 a 5,0			
5,0 a 10,0			
10,0 a 15,0			
15,0 a 20,0			

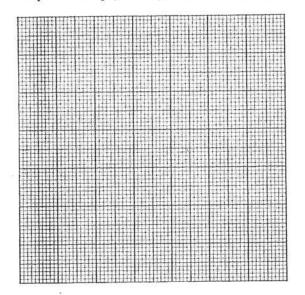
A: 1,6; 0,4; 1,6; 0,4 m/s²

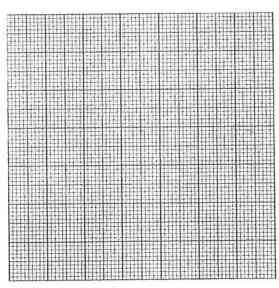
B: 1,0; 1,0; 1,0; 1,0 m/s²

39 ■ A aceleração média do móvel A, durante o intervalo de tempo compreendido entre 0 e 20,0 s, (permaneceu; não permaneceu) constante.

não permaneceu

40 ■ A aceleração média do móvel B, durante o intervalo de tempo compreendido entre 0 e 20,0 s, (permaneceu; não permaneceu) constante.


permaneceu


41 • O móvel B apresentou aceleração média (constante; não constante), ao passo que o móvel A apresentou aceleração média (constante; não constante), nos intervalos de tempo mencionados no item 38.

constante; não constante

42 ■ Com os valores das acelerações médias obtidas no item 38, construa o gráfico a_m X t (aceleração média em função do tempo). Coloque os valores de a_m no eixo das ordenadas e t no eixo das abscissas.

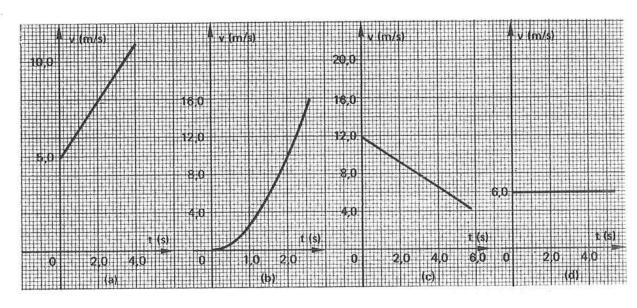
5,0 110,0 15,0 móvel A 43 ■ Relativamente aos gráficos do item acima, qual a aceleração dos veículos A e B nos instantes t = 2,0 s e t = 12,0 s?***** A: 1,6 m/s²; 1,6 m/s² B: 1,0 m/s²; 1,0 m/s² 44 ■ O gráfico da aceleração média do móvel B indica que, em qualquer instante, a aceleração média é sempre igual a ______. Ao passo que o gráfico relativo a A indica que a aceleração (é; não é) constante. ***** 1,0 m/s2; não é 45 • Quando a aceleração média calculada em qualquer intervalo de tempo for a mesma, dizemos que a aceleração instantânea do objeto (é; não é) igual à aceleração média. ****** é 46 ■ A aceleração instantânea de um objeto é a aceleração que ele possui num determinado _ Representaremos a aceleração instantânea pela letra a. ****** instante

47 ■ Quando a aceleração instantânea de um móvel for constante, o gráfico v X t deste móvel é uma (reta; parábola).

48 ■ A aceleração de B é constante porque seu gráfico v X t é uma ______. Calcule a declividade da refe-

do móvel.

49 ■ Com relação ao item anterior o valor encontrado para a declividade é igual à ______


reta; 1,0 m/s2

aceleração

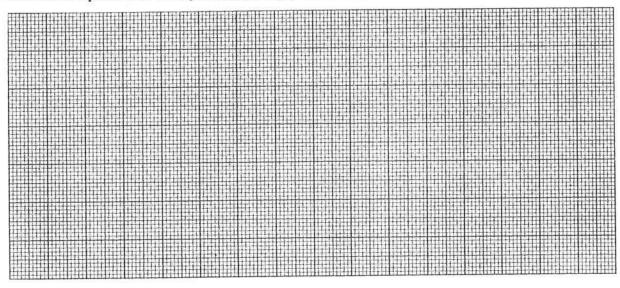
rida reta. (atenção para as unidades)

reta

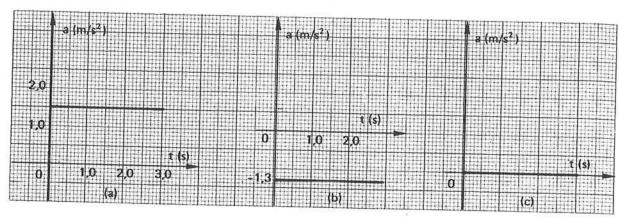
50 P Qual dos movimentos representados nos diagramas abaixo apresentam aceleração constante? Justifique.

(a); (c); (d). Porque os gráficos v X t são segmentos de retas.

51 ■ O movimento representado pela figura (b) do item anterior não representa um movimento com aceleração constante porque


seu gráfico v X t não é uma reta

52 • Calcule a aceleração instantânea dos movimentos representados graficamente pelos diagramas (a), (c) e (d) do item 50.



 $1,5 \text{ m/s}^2$; $-1,3 \text{ m/s}^2$; zero

53 A menos que se especifique o contrário, quando nos referirmos à aceleração de um móvel, estamos tratando da aceleração instantânea. Construa os gráficos a x t (aceleração instantânea em função do tempo) para os movimentos representados nas figuras (a), (c) e (d) do item 50.

54	A aceleração do movimento representado na figura (d) do item 50 vale A velocidade (varia: não varia) com o tempo. Portente ale
	(varia; não varia) com o tempo. Portanto, ele caracteriza o movimento chamado de retilíneo (uniforme; não uniforme).

	0; não varia; uniforme
55	■ A aceleração de um objeto que se move numa trajetória retilínea é de 5 m/s². Isto significa que, em cada segundo, sua velocidade

	aumenta de 5 m/s
56	A aceleração de um objeto é constante e vale - 5 m/s². Isto significa que(preencha)

	em cada segundo sua velocidade diminui de 5 m/s
57 (A velocidade de um objeto aumentou de 15 m/s em cerca de 5 segundos. Sua aceleração instantânea é decaso ela seja (constante; não constante).

	3 m/s ² ; constante
58 •	Um objeto parte do repouso (velocidade inicial igual a zero) com uma aceleração constante de 4 m/s². Ao fim de 5,0 s sua velocidade é de

	20 m/s
59 ■	Quando um objeto está animado de movimento retilíneo com aceleração constante diferente de zero, sua velocidade varia (uniformemente; não uniformemente) com o tempo.

	uniformemente
60 ■	Um objeto em movimento retilíneo com aceleração constante e diferente de zero executa um tipo de movimento que em Física chamamos de movimento retilíneo uniformemente variado (abreviadamente: MRUV), em virtude de sua velocidade variar

	uniformemente com o tempo

61 ■ Em um movimento do tipo MRUV (a aceleração é constante e diferente de zero; a velocidade é constante), ao passo que no MRU (a aceleração é constante e diferente de zero; a velocidade é constante). ***** a aceleração é constante e diferente de zero; a velocidade é constante 62 Puando a aceleração média de um objeto em uma trajetória retilínea, calculada em qualquer intervalo de tempo, der o mesmo valor, a aceleração instantânea do objeto (é; não é) constante, e, portanto, a aceleração instantânea é igual à _____ ***** é; aceleração média 63 $= a_m = \frac{\Delta v}{\Delta t}$ No MRUV a = ----***** 64 • $a = \frac{\Delta v}{\Delta t}$ Onde: $\Delta v = \underline{}$ $e \Delta t = \underline{}$ ***** $v_f - v_i$; $t_f - t_i$ 65 \blacksquare Portanto: a = (em função de v_f , v_i , t_f e t_i) ****** $v_f - v_i$ 66 ■ a = $\frac{v_f - v_i}{t_f - t_i}$ · Tire o valor de v_f desta expressão: $v_f =$ ______. ****** $v_i + a (t_f - t_i)$ 67 ■ v_f = v_i + a (t_f - t_i). Esta expressão permite determinar o valor de v_f num instante t_f conhecendo-se: ______, ____e__ ***** vi; a; ti (em qualquer ordem) 68 ■ Um móvel parte do repouso com aceleração constante de 2,5 m/s². Sua velocidade ao fim de 10 s é de ***** $v_f = v_i + a(t_f - t_i) = 0 + 2.5 \text{ (m/s}^2) (10 - 0) (8) = 25 \text{ m/s}$ 69 ■ Um corpo, com velocidade inicial de 12,0 m/s, possui aceleração constante igual a 5,0 m/s². Qual a sua velocidade depois de 2,0 s? $v_i =$ ____; $t_i =$ ____; $t_f =$ ____; a =____; portanto, $v_f =$ ____. ***** 12,0 m/s; 0 s; 2,0 s; 5,0 m/s²; 22,0 m/s 70 " Um veículo com velocidade de 20,0 m/s é freado e pára em 10,0 s. Qual sua aceleração durante a freagem? $v_i = ___; v_f = ___; t_i = ___; t_f = ___; portanto, a = ___.$ ****

20,0 m/s; 0 m/s; 0 s; 10,0 s; -2 m/s²

71 ■ Um automóvel possui, num determinado instante, velocidade de 10,0 m/s. É acelerado constantemente à razão de 3 m/s², até atingir uma velocidade de 19,0 m/s. O intervalo de tempo em que o veículo foi acelerado é Δt = ______. (Lembre-se que Δt = t_f - t_i.)

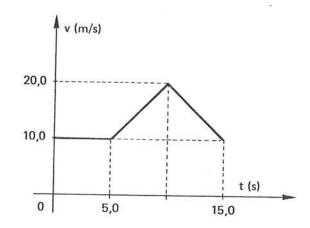
$$\Delta t = \frac{\Delta v}{a} = \frac{(19,0 - 10,0) \text{ ph/s}^2}{3 \text{ ph/s}^2} = 3,0 \text{ s}$$

72 ■ v_f = v_i + a (t_f - t_i). Esta equação é chamada de equação da velocidade de um móvel animado de MRUV. Quando v_i = 0 e t_i = 0, a equação da velocidade torna-se mais simples:

v_f =_____

a · tr

73 ■ O móvel, entre os instantes 0 e 5,0 s, executa movimento ______, porque sua aceleração é _____.



retilíneo uniforme; zero

74 • Entre 0 e 5,0 s: $a = _____$; $v_i = _____$; $t_i = _____$; $t_i = _____$. Logo, a equação da velocidade é: $v_f = ____$.

0; 10,0 m/s; 0; 10,0 m/s

2

3

75 ■ Entre 5,0 a 10,0 s o movimento do objeto é do tipo (MRU; MRUV). A aceleração neste intervalo de tempo vale:

MRUV; a = inclinação = 2,0 m/s²

76 Entre 5,0 a 10,0 s $t_i =$ _____; $v_i =$ _____; a =____. A equação da velocidade neste intervalo é:

 $v_f =$ ______+____.

5,0 s; 10,0 m/s; 2 m/s²; 10,0; 2 (t_f - 5,0)

77 ■ Entre 10,0 a 15,0 s a velocidade do móvel (aumenta; diminui). A aceleração deve ser (positiva; negativa).

diminui; negativa

78 ■ Calcule a aceleração entre 10,0 e 15,0 s.

 -2 m/s^2

79 ■ Escreva a equação da velocidade no trecho compreendido entre 10,0 e 15,0 s.

$$v_f = 20.0 - 2.0 (t_f - 10.0)$$

80 Calcule a velocidade no instante 12,5 s.

$$v_f = 20.0 - 2.0 (t_f - 10.0) = 20.0 - 2.0 (12.5 - 10.0) = 15.0 m/s$$

	O movimento representado por este gráfico (é; não é) do tipo MRUV, porque	4 v(m/s)	

	é; a velocidade varia uniformemente, isto é, a ace- leração é constante	10,0	
	$v_i = $; $t_i = $ Logo, a equação da velocidade é:	0 2,0	4,0 t(s)
	****	▲ v(m/s)	
	0; 0; $v_f = 2.5 \cdot t_f$, onde a aceleração é a = 2.5 m/s ²		
83 ₪	Calcule a aceleração do movimento representado.	12,0	

	3,0 m/s ²	6,0	
84 =	A equação da velocidade é: $v_f = $		
	****	0 1,0	2,0 t(s)
	$6,0 + 3,0 (t_f)$		
85 ■	O movimento representado apresenta (uma; mais de uma) aceleração.	20,0 v(m/s)	

	uma	1	
86 =	A aceleração do movimento é (negativa; positiva). O seu valor é:	5,0 -	
	****	0	5,0 t(s)
	negativa; - 1 m/s ²		
87 🖦	Determine a equação da velocidade do movimento: ******** 20 - t _f	v _f =	
EXI	ERCÍCIOS RESOLVIDOS		
1 =	Define-se variação de velocidade de um objeto com	no sendo a	(menos; mais)

	velocidade final; menos; velocidade inicial		
2 =	Representamos, simbolicamente, a variação de veloc	cidade como:	
	****	,	
	$\Delta \mathbf{v} = \mathbf{v_f} - \mathbf{v_i}$		
3 ■	$\Delta v = v_f - v_i$. Se Δv for maior que zero, é porque Se $\Delta v = 0$, a velocidade é igual a a inicial, Δv será (maior; menor) que zero.	a velocidade (aumentou; dir	ninuiu; permaneceu constante) velocidade final for menor qu

	aumentou; final; a velocidade inicial; menor		

4 #	Aceleração é uma grandeza utilizada para especificar a com que a (posição; velocidade) de um objeto varia.

	rapidez; velocidade
5 ■	Um objeto apresentou em um intervalo de tempo igual a 10,0 s, uma variação em sua velocidade igual a 20,0 m/s. Definimos aceleração média como sendo: a _m = (em símbolos). Logo a aceleração média do objeto acima citado é de

	$\frac{\Delta v}{\Delta t}$; 2,0 m/s ²
6	A aceleração média de um objeto, em um intervalo de tempo de 2,0 s, foi de 5,0 m/s². A variação de velocidade do objeto foi de

	10 m/s
7 ■	Um objeto em movimento retilíneo apresenta velocidade uniformemente variada quando a aceleração média calculada em

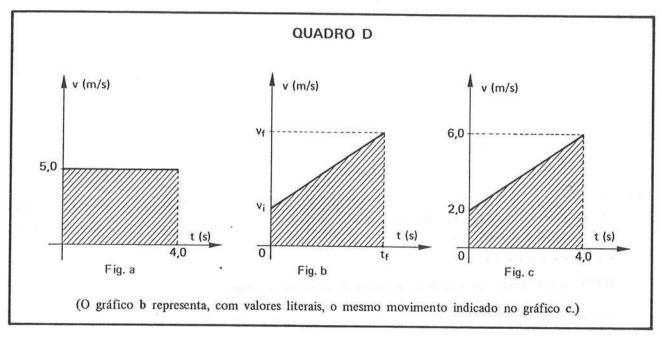
	qualquer intervalo de tempo for a mesma, isto é, constante
8 =	No movimento que os físicos denominam de MRUV, a aceleração é (zero; constante e diferente de zero; variável) e, no movimento denominado de MRU, a aceleração é

	constante e diferente de zero; sempre igual a zero
9 =	Um objeto movimenta-se em linha reta e a sua velocidade é dada pela equação: v_f = 10 - 2 · t_f . Trata-se de um (MRU; MRUV). A aceleração é: ; v_i = e t_i =

Maran Inte	MRUV; -2 m/s^2 ; 10 m/s ; 0
10 ■	$v_f = 10 - 2 \cdot t_f$. A velocidade será igual a zero ($v_f = 0$) quando $t_f = $

	5,0 s
11 =	Uma esfera com velocidade inicial de 4,0 m/s desce um plano inclinado com MRUV. A sua aceleração é de 8,0 m/s². A sua velocidade depois de 10,0 s será:

	$v_f = v_i + a t_f$ $v_f = 4.0 + 8.0 \times 10.0 = 84 \text{ m/s}$


SEÇÃO 2 — POSIÇÃO DE UM MÓVEL ANIMADO DE MRUV

$$d_f = d_i + v_i \Delta t + \frac{1}{2} a (\Delta t)^2$$

Gráfico d X t do MRUV

Fórmula de Torricelli: $v_f^2 = v_i^2 + 2 \cdot a \cdot \Delta d$

Observe atentamente o Quadro D e em seguida responda às questões 1 a 9.

1 =	Fig. a: Este gráfico ilustra um tipo de movimento chamado de

	movimento retilíneo uniforme ou MRU

2 Fig. b: Este diagrama ilustra um tipo de movimento chamado de *****

movimento retilíneo uniformemente variado ou MRUV

3 = Fig. a: A figura hachurada neste diagrama é um _____e sua área representa o _____ do móvel entre os instantes _____ e ____.

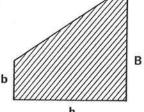
***** retângulo; deslocamento; 0 e 4,0 s

4 = Fig. a: A área do retângulo construído neste diagrama representa o deslocamento do móvel no intervalo de tempo compreendido entre 0 e 4,0 s e seu valor é $\Delta d =$ ______.

 $\Delta d = v \Delta t = (5,0 \text{ m/s}) (4,0 \text{ s}) = 20 \text{ m}$

5 = Fig. c: Neste diagrama, o deslocamento do móvel entre os instantes 0 e 4,0 s é representado pela área do

trapézio


6 ■ A área de um trapézio é dada pela expressão

$$A_{\text{trap.}} = \frac{(B + b)h}{2}$$

B = base major b = base menor h = altura

$$A_{\text{trap.}} = \frac{(B+b)h}{2}$$

Fig. b: A figura hachurada é de um _____, onde $B = v_f$; $b = _____ e h = _____.$

trapézio; vi; ∆t ou (tf - 0) ou tf

7 **Fig. b:** $A_{trap.} = \Delta d =$ (em função de v_f , v_i e Δt).

$$\frac{\mathbf{v_f} + \mathbf{v_i}}{2} \cdot \Delta \mathbf{t}$$

8 • $\Delta d = \frac{v_f + v_i}{2} \cdot \Delta t$. Fig. c: Entre 0 e 4,0 s, $\Delta t = \underline{\hspace{1cm}}$, $v_i = \underline{\hspace{1cm}}$, $v_f = \underline{\hspace{1cm}}$.

9 • Δd = $\frac{v_f + v_i}{2}$ · Δt. Esta expressão permite calcular o deslocamento de um objeto animado de (MRU; MRUV) em um intervalo de tempo Δt. Na expressão, v_f corresponde ao valor da velocidade do objeto no (início; fim) do intervalo de tempo e v_i

MRUV; fim; é o valor da velocidade no início do intervalo de tempo

Leia atentamente o Quadro E e em seguida responda às questões 10 a 28.

QUADRO E

Fig. a. Um objeto desloca-se em linha reta e a sua velocidade varia de acordo com o gráfico do diagrama ao lado.

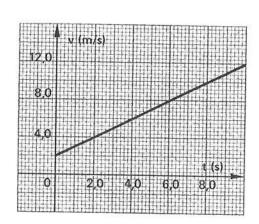


Fig. b. A tabela abaixo corresponde ao movimento do objeto mencionado na fig. a.

Intervalo de tempo (s)	Δt (s)	$\frac{v_f + v_i}{2}$ (m/s)	$a = \frac{v_f - v_i}{t_f - t_i}$ (m/s^2)	$\Delta d = \frac{v_f + v_i}{2} \cdot \Delta t$ (m)	$v_{m} = \frac{\Delta d}{\Delta t}$ (m/s)
0 a 2,0	2,0				
2,0 a 4,0	2,0				
4,0 a 6,0	2,0				
6,0 a 8,0	2,0				
8,0 a 10,0	2,0				

uniformemente).	onstante; varia

MRUV; varia uniformemente	
11 ■ Fig. a: Calcule a aceleração do objeto. a = (em função de v _f , v _i , t _f e t _i)	
$a = \underline{\qquad} \qquad (ciri runyao de v1, v1, v1 e v1)$ $a = \underline{\qquad} \qquad m/s^2$	

$V_{C} = V_{C}$	
$\frac{\mathbf{v_f} - \mathbf{v_i}}{\mathbf{t_f} - \mathbf{t_i}}; 1,0$	
12 Fig. b: Todos os intervalos de tempo são (iguais; diferentes) e valeme es	tão registrados
na segunda coluna da tabela.	

iguais; 2,0 s	
13 ■ Fig. b: Na terceira coluna, que está em branco, devemos registrar os valores de	v _i
corresponde à velocidade do intervalo e v_f à Para o primeiro intervalo de tempo, t_i = 0 e v_i = ; t_f = e v_f =	·
Para o primeiro intervalo de tempo, $t_i = 0$ e $v_i = $; $t_f = $ e $v_f = $	

$\frac{v_f + v_i}{2}$; inicial; velocidade final do intervalo; 2,0 m/s; 2,0 s; 4,0 m/s	
14 ■ Fig. b: A terceira coluna (representa; não representa) o valor da aceleração do objeto.	

não representa	
15 ■ Fig. b: Preencha a terceira coluna.	

3,0; 5,0; 7,0; 9,0; 11,0	
16 = Fig. b: A quarta coluna da tabela representa (o deslocamento; a aceleração; a velocidade) do	-1.1.4.
*****	objeto.
a aceleração	
17 ■ Fig. b: Preencha a quarta coluna da tabela.	

1,0; 1,0; 1,0; 1,0; 1,0	
18 ■ Fig. b: A quarta coluna nos mostra que a aceleração (é; não é) a mesma em todos os interve	alos de tempo.

é	
19 Fig. b: A quinta coluna da tabela representa os valores do nos respectivos	intervalos de
tempo.	
* * * * * * * * * * * *	
deslocamento ∆d	

$\Delta d = $ e $\Delta t = $ Portanto

3,0 m/s; 2,0 s; 6,0 m
21 Fig. b: Preencha totalmente a quinta coluna da tabela.

6,0; 10; 14; 18; 22
22 Fig. b: A quinta coluna desta tabela mostra que o objeto realiza deslocamentos (iguais; diferentes) em intervalos de tempo (iguais; diferentes).

diferentes; iguais
23 Fig. b: A sexta coluna desta tabela representa os valores das em cada intervalo de tempo. Para o primeiro intervalo de tempo, Δd = m e Δt = s. Logo, a velocidade média para o primeiro intervalo de tempo será: v _m = ******************* velocidades médias; 6,0; 2,0; 3,0 m/s
24 ■ Fig. b: A sexta coluna desta tabela mostra que a velocidade média do objeto durante o seu movimento (permaneceu; não permaneceu) constante. ***********************************
não permaneceu
25 ■ Fig. b: Compare os valores, para cada intervalo de tempo, da terceira e sexta colunas. Eles (coincidem; não coincidem).

coincidem
26 ■ Somente quando o movimento é retilíneo e uniformemente variado a velocidade média em um intervalo de tempo é igual à média aritmética entre a velocidade final do intervalo e a velocidade inicial do intervalo. Algebricamente, v _m = *****************************
$\frac{\mathbf{v_f} + \mathbf{v_i}}{2}$
27 m v _m = Δd/Δt. Esta expressão permite calcular a velocidade (média; instantânea) no intervalo de tempo Δt, conhecendo-se o Ela é válida (para qualquer movimento; somente para o MRUV).

média; deslocamento ∆d no intervalo considerado; para qualquer movimento
28 • $v_m = \frac{v_f + v_i}{2}$. Esta expressão permite calcular ade um objeto em (MRUV; qualquer movimento).

velocidade média; MRUV (somente)

EXERCÍCIOS RESOLVIDOS

PROBLEMA 1. Um objeto possui movimento retilíneo uniformemente variado. Ele parte do repouso e depois de 10,0 s possui uma velocidade de 10,0 m/s.
1 O objeto está animado de (MRU; MRUV).

MRUV
2 A velocidade média do veículo no intervalo de tempo de 10,0 s foi de

$v_{\rm m} = \frac{v_{\rm f} + v_{\rm i}}{2} = \frac{10.0 + 0}{2} = 5.0 \text{ m/s}$
3 A equação da velocidade para este objeto é

v = 1t
4 m No instante t = 20,0 s a velocidade do objeto é de

20 m/s
5 Nos primeiros 20,0 s o móvel desloca-se

200 m
PROBLEMA 2. Uma esfera é abandonada do topo de um plano inclinado e, depois de 2,0 s, ela atinge a parte mais baixa com velocidade de 16,0 m/s. O movimento da esfera é retilíneo uniformemente variado.
1 ■ A esfera ao rolar no plano inclinado executa

movimento retilíneo uniformemente variado ou MRUV
2 M velocidade média da esfera durante o intervalo de tempo de 2,0 s (enquanto rola pelo plano inclinado) é

8,0 m/s
3 M A equação da velocidade para a esfera em movimento neste plano inclinado é: v =

8,0 t (onde t é menor ou igual a 2,0 s)

4
O deslocamento da esfera no plano inclinado é de ______.

16 m

	após, a sua velocidade é igual a 21,0 m/s.
1 =	Neste problema, $v_i = \underline{}$; $v_f = \underline{}$ e $\Delta t = \underline{}$.

	15,0 m/s; 21,0 m/s; 3,0 s
2 =	A aceleração do carro no intervalo de tempo igual a 3,0 s é de

	2 m/s^2
3 ■	O deslocamento do móvel no referido intervalo de tempo é

	$\Delta d = 54 \text{ m}$
4 =	A equação da velocidade do móvel referido é v =

	15,0 + 2t (onde t é igual ou menor que 3,0 s).
PRO	BLEMA 4. Um objeto está animado de MRUV. No instante t = 0 possui velocidade de 4,0 m/s e, no instante t = 5,0 s, a sua velocidade é 2,0 m/s.
1 =	Neste problema $v_i = $; $v_f = $; $t_i = $; $t_f = $ A aceleração do veículo no intervalo de tempo considerado é de

	4,0 m/s; 2,0 m/s; 0; 5,0 s; $-0,40$ m/s ²
2 =	A equação da velocidade do veículo é: v =

	4,0 - 0,40 t
3 a	No instante t = 1,0 s a velocidade do móvel é

	3,6 m/s
4 m	m.

	$\Delta d = \frac{v_f + v_i}{2} \cdot \Delta t = \frac{4 + 3.6}{2} \times 1 = 3.8 \text{ m}$
PRO	BLEMA 5. Um veículo possui MRUV. Quando sua velocidade é de 30 m/s, o motorista pisa nos freios e o veículo pára depois de 2,0 s.
1 =	A velocidade final do veículo vale e a inicial,

	0; 30 m/s

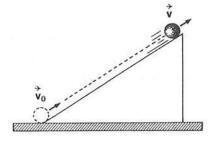
PROBLEMA 3. Um carro animado de MRUV possui, num determinado instante, velocidade de 15,0 m/s; 3,0 s

2 M A equação da velocidade para este móvel durante a freagem é: v = _____

30 - 15t

3 Durante a freagem o móvel desloca-se

$$\Delta d = \frac{(v_f + v_i)}{2} \cdot \Delta t = \frac{(30 + 0)}{2} \cdot 2 = 30 \text{ m}$$


4 = 1,0 s após a aplicação dos freios a velocidade do veículo é de ______ e seu deslocamento foi de

$$v_f = v_i + at = 30 - 15 \times 1,0 = 15 \text{ m/s}; \ \Delta d = \frac{(v_f + v_i)}{2} \cdot \Delta t = \frac{(30 + 15)}{2} = 22,5 \text{ m}$$

PROBLEMA 6. Uma esfera é lançada sobre um plano inclinado de baixo para cima, com velocidade inicial de 10,0 m/s.

Quando ela atinge o topo do plano inclinado, a sua velocidade é de 2,0 m/s e o tempo gasto foi de 1,0 s.

1 Durante a ascenção da esfera no plano inclinado seu movimento é do tipo______

MRUV

2 A equação da velocidade para esta esfera é: v = ______

10,0 - 8,0t

3 Calcule a velocidade média da esfera enquanto se movimenta sobre o plano inclinado, desde a parte mais baixa até o topo.

$$v_{\rm m} = \frac{v_{\rm f} + v_{\rm i}}{2} = \frac{10.0 + 2.0}{2} = 6.0 \text{ m/s}$$

4 A esfera, em 1,0 s, desloca-se de um valor que (é; não é) igual ao comprimento do plano. Calcule o comprimento do plano.

é;
$$\Delta d = v_m \Delta t = (6.0 \text{ m/s}) (1.0 \text{ s}) = 6.0 \text{ m}$$

SEÇÃO 3 — EQUAÇÃO HORÁRIA DO MOVIMENTO

1 ■ ∆d = (v_f + v_i)/2 · ∆t. Através desta expressão podemos calcular (a velocidade média; a posição; o deslocamento) de um móvel animado de movimento retilíneo uniformemente variado.

o deslocamento

2	
	$(2) \mathbf{v_f} = \mathbf{v_i} + \mathbf{a} \ \Delta \mathbf{t}$
	Substitua em (1) o valor de v_f dado na expressão (2): $\Delta d =$

	$\frac{(\mathbf{v}_i + \mathbf{a}\Delta t + \mathbf{v}_i)\Delta t}{2} = \frac{(2\mathbf{v}_i + \mathbf{a}\Delta t)}{2} \cdot \Delta t = \frac{2\mathbf{v}_i\Delta t + \mathbf{a}(\Delta t)^2}{2} = \frac{2\mathbf{v}_i\Delta t}{2} + \frac{1}{2}\mathbf{a}(\Delta t)^2$
3	A expressão obtida no item anterior pode ser escrita da seguinte forma:
	$\Delta d = v_i \cdot \Delta t + \frac{a(\Delta t)^2}{2}$
	Esta expressão nos permite determinar o deslocamento de um móvel em função de sua velocidade inicia (v _i), do intervalo de tempo (Δt) e de sua

	aceleração (a)
4 1	$\Delta d = v_i \cdot \Delta t + \frac{a(\Delta t)^2}{2}$. Sendo por definição $\Delta d = d_f - d_i$, podemos escrever: $d_f =$

	$d_i + v_i \Delta t + \frac{a(\Delta t)^2}{2}$
5 🛚	$d_f = d_i + v_i \Delta t + \frac{1}{2} \cdot a(\Delta t)^2$. Esta equação nos permite determinar (a posição; o deslocamento) de um móve num determinado instante.

	a posição
6 ■	$d_f = 2 + 3t + 4t^2$. Nesta equação estamos utilizando o símbolo t ao invés de $\triangle t$ por considerarmos o instante inicial (t_i) igual a zero. Na expressão acima temos: $d_i = $; $v_i = $; $a = $ (utilize as unidades do SI)

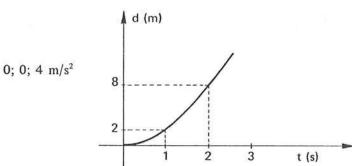
	2 m; 3 m/s; 8 m/s ²
7 =	$d_f = -4t + t^2$. Nesta expressão temos: $d_i =$; $v_i =$; $a =$ (utilize as unidades do SI)

	$0; -4 \text{ m/s}; 2 \text{ m/s}^2$
8 =	$d_f = 5t^2$. Nesta expressão temos $d_i =; v_i =; a =$

	0; 0; 10 m/s ²
9 =	$d_f = d_i + v_i(\Delta t) + \frac{1}{2} \cdot a(\Delta t)^2$. Esta equação é chamada de equação horária do MRUV. Escreva a equação horária para um móvel animado de MRUV, onde: $a = 2 \text{ m/s}^2$; $v_i = -15 \text{ m/s}$; $d_i = 8 \text{ m}$; $t_i = 0$.

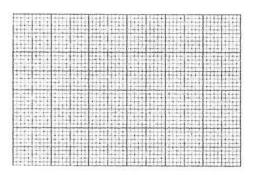
	$d_f = 8 - 15t + t^2 \qquad \cdot$
10 =	$d_f = 9t + 2t^2$. A posição do móvel no instante $t = 3.0$ s é $d_c =$

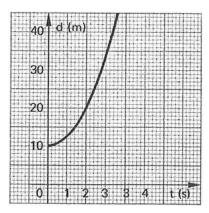
45 m


11 m d_f = 2t + 4t². Entre os instantes t = 0 e t = 2,0 s o móvel desloca-se Δd = ______.

$$\Delta d = d_f - d_i = 20 - 0 = 20 \text{ m}$$

12 ■ d_f = 2t². Nesta equação horária, temos: d_i = ____; v_i = _____; a = _____. Construa o gráfico d × t para este movimento.




13 " Quando um móvel executa movimento retilíneo uniformemente variado o seu gráfico d X t corresponde a uma (reta; parábola).

parábola

14 ■ d = 10 + 3t². Nesta equação horária temos v_i = ___. Construa o gráfico d X t para este movimento.

15. $\blacksquare d_f = d_i + v_i t + \frac{1}{2} at^2$. Esta equação é chamada de ______ do MRUV. ***** equação horária 16 m d_f = 2 - 3t - 2t². A equação da velocidade para este movimento é: v_f = ___ ****** -3 - 4t17 = (1) $\triangle d = v_i \triangle t + \frac{1}{2} a (\triangle t)^2$ (2) $v_f = v_i + a (\Delta t)$, donde $\Delta t = \frac{v_f - v_i}{a}$ Substitua na expressão (1) o valor de \(Delta\) t dado pela expressão (2). Efetue as simplificações necessárias e escreva a expressão final: v_f = _____. ***** $\Delta d = v_i \frac{(v_f - v_i)}{a} + \frac{1}{2} a \frac{(v_f - v_i)^2}{a} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a^2} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a^2} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a^2} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a^2} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a^2} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a^2} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a^2} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a^2} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a^2} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a^2} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a^2} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a^2} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a^2} = \frac{v_i v_f - v_i^2}{a} + \frac{1}{2} \varkappa \frac{(v_f^2 - 2v_i v_f + v_i^2)}{a} = \frac{v_i v_f - v_i^2}{a} + \frac{v_i^2}{a} +$

$$\Delta d = v_1 \frac{v_1}{a} + \frac{1}{2} a \frac{(v_1 - v_1)}{a} = \frac{v_1 v_1 - v_1^2}{a} + \frac{1}{2} a^2 \frac{(v_1 - 2v_1 v_1 + v_1^2)}{a^2} =$$

$$= \frac{2v_1 v_1 - 2v_1^2 + v_1^2 - 2v_1 v_1 + v_1^2}{2a} = \frac{v_1^2 - v_1^2}{2a}.$$

$$2a\Delta d = v_f^2 - v_i^2$$
 \therefore $v_f^2 = v_i^2 + 2a\Delta d$

18 ■ v_f² = v_i² + 2 · a · ∆d. Esta expressão relaciona a velocidade final com a inicial, a aceleração e o ______. Esta equação é chamada de fórmula de Torricelli.

deslocamento

19 ■ Um veículo animado da velocidade de 20,0 m/s é freado e pára depois de percorrer 40 m. Determine sua aceleração.

$$v_f^2 = v_i^2 + 2 a \Delta d$$
 : $0 = (20,0)^2 + 2 \cdot a \cdot (40)$
 $80a = -400$: $a = -5,0 \text{ m/s}^2$

20 ■ Qual é a velocidade atingida por um corpo acelerado a 2,0 m/s², depois de percorrer 4,0 m, se sua velocidade inicial foi de 3,0 m/s? $v_f =$

4

5 1

6

5,0 m/s

21 " Um corpo com velocidade inicial de 20,0 m/s é acelerado a 4,0 m/s², durante determinado intervalo de tempo, até atingir a velocidade de 24,0 m/s. Qual o deslocamento do móvel?

22 m

SEÇÃO 4 - QUEDA LIVRE

Quando objetos são soltos de determinada altura do solo, observa-se que eles executam movimento retilíneo uniformemente variado, ou seja, desprezando a resistência do ar, suas velocidades aumentam uniformemente com o tempo. Observa-se ainda que, independente das massas dos corpos, eles atingirão o solo ao mesmo tempo,

quando abandonados de uma mesma altura do solo. Próximos à superfície da Terra, os corpos estão sujeitos a uma aceleração, chamada de aceleração da gravidade, que vale, aproximadamente, 9,80 m/s². Universalmente representa-se a aceleração da gravidade pela letra g. A aceleração da gravidade tem sentido vertical para baixo. Quando um objeto é lançado verticalmente para cima, a aceleração da gravidade é responsável pela sua diminuição de velocidade até zero e em seguida por atraí-lo de novo para o solo. As expressões deduzidas anteriormente para o MRUV são igualmente válidas para um corpo em queda livre. Os símbolos utilizados para deslocamentos e aceleração são substituídos pelas letras h (quando nos referimos a altura de queda ou ascenção de objetos) e g (no lugar de a). Assim podemos escrever as expressões para um corpo em queda livre da seguinte forma:

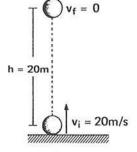
$$\begin{array}{lll} v_f = v_i + a \ \Delta t & v_f = v_i + g \cdot \Delta t \\ \Delta d = v_i \ \Delta t + \frac{1}{2} \ a \cdot (\Delta t)^2 & \Delta h = v_i \ t + \frac{1}{2} \ g \ (\Delta t)^2 \\ d_f = d_i + v_i \ \Delta t + \frac{1}{2} \ a \ (\Delta t)^2 & h_f = h_i \ v_i \ \Delta t + \frac{1}{2} \ g \ (\Delta t)^2 \\ v_f^2 = v_i^2 + 2 \cdot a \cdot \Delta d & v_f^2 = v_i^2 + 2 \cdot g \cdot \Delta h \end{array}$$

Para efeito de simplificação dos cálculos, usaremos para o valor da aceleração da gravidade 10,0 m/s².

1 u Quando um objeto é lançado verticalmente para cima seu movimento é do tipo (MRU; MRUV).

MRUV

2 Próximo à superfície da Terra a aceleração da gravidade é (variável; constante).


constante

3 • Um objeto é lançado verticalmente para cima com uma velocidade inicial de 20 m/s. Qual é a altura máxima atingida pelo objeto?

$$v_f^2 = v_i^2 + 2 \cdot g \cdot \Delta h$$

$$0 = 20^2 - 2 \cdot 10 \cdot \Delta h$$
 :. $\Delta h = \frac{400}{20} = 20 \text{ m}$

(O valor de g foi tomado com o sinal negativo (-) porque o eixo das posições (h) foi orientado de baixo para cima. Neste caso, enquanto o objeto sobe, a velocidade é positiva e a aceleração da gravidade, negativa.)

4 . Com relação ao item anterior, quanto tempo após ser lançado, o objeto retorna ao ponto de partida?

$$\Delta h = v_i t + \frac{1}{2} \cdot gt^2$$
 (pelas condições do problema $\Delta h = 0$)

$$0 = 20t - 5t^2$$
 : $5t^2 = 20t$

t = 4s

nula; não nula

6 Quando um objeto cai em queda livre, sua velocidade varia (uniformemente; não uniformemente) com o tempo.

uniformemente

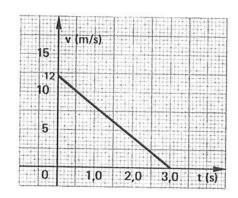
ıpo,

ua

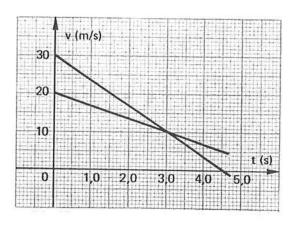
ci-

em-

7 ■ Quando um objeto é lançado verticalmente para cima, o tempo de ascenção do mesmo é igual ao tempo de queda. Isto implica que a velocidade com que um objeto atinge um ponto de partida depois de lançado verticalmente é (igual; diferente) à velocidade de lançamento.

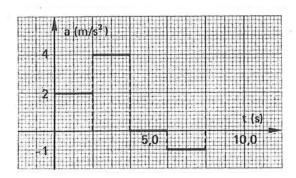


igual


SEÇÃO 5 - EXERCÍCIOS DE REVISÃO

- 1 m Um veículo desloca-se numa trajetória retilínea com aceleração constante de 4,0 m/s², tendo no instante t = 0 a velocidade v_i = 10 m/s e encontrando-se nesse instante na posição definida por d_i = 40 m. Determinar:
 - a) a posição e a velocidade do veículo no instante t = 3,0 s.
 - b) em que instante a velocidade do veículo atinge 20 m/s.
 - c) em que instante o móvel passa pela posição d = 140 m.
- 2 Um carro se move ao longo de uma estrada a 36 km/h. O motorista, então, "pisa na tábua", e acelera uniformemente, até atingir 72 km/h em 10,0 s.
 - a) Qual foi a aceleração durante este intervalo de tempo?
 - b) Que distância percorreu o carro durante estes 10,0 s?
- 3 Um motorista de um carro que vai a 54 km/h freia, desacelera uniformemente, e pára em 5,0 s. Outro motorista, que vai a 36 km/h, freia mais suavemente, e pára em 10,0 s. Represente, num mesmo gráfico, a velocidade em função do tempo, para cada um dos dois carros.
 - a) Qual dos dois carros percorreu maior distância, depois de freiados?
 - b) Adicione ao gráfico uma linha que represente o segundo carro desacelerando na mesma razão do primeiro. Quanto tempo leva o carro para parar, nesta razão de desaceleração?
- 4 Um foguete, que coloca um satélite em órbita, alcançou uma velocidade de 3,60 × 10⁴ km/h em 2,50 min, a partir do repouso.
 - a) Qual era a aceleração média?
 - b) Se o foguete tivesse combustível suficiente para manter a mesma razão de aceleração durante uma hora, que velocidade teria ao fim de uma hora, partindo do repouso?
 - c) Que distância percorreria durante esta hora?
- 5 Um carro de corrida é acelerado ao longo de uma pista, a partir do repouso, durante 10,0 s, com uma aceleração de 5,0 m/s². Ele, então, se move sem aceleração durante 5,0 s. Em seguida, se move com uma aceleração de -2,5 m/s² até parar.
 - a) Qual é a máxima velocidade atingida?
 - b) Quanto tempo leva o veículo para parar, a partir do instante em que começa a desacelerar?
 - c) Que distância percorre durante os primeiros 10,0 s? Durante o período de desaceleração? Durante o percurso total?
 - d) Faça um gráfico da aceleração do carro em função do tempo.
- 6 Um automóvel, partindo do repouso, aumenta sua velocidade uniformemente, durante 10,0 s. Sua velocidade, ao fim de 5,0 s, é 36 km/h.
 - a) Qual é a aceleração?
 - b) Qual será sua velocidade após 10,0 s?
 - c) Que distância percorrerá em 10,0 s?
 - d) Que distância percorrerá até o sexto segundo?

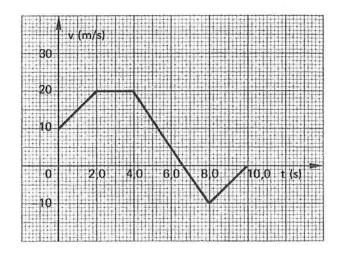
- 7 Uma bola, partindo do repouso, rola com aceleração constante por um plano inclinado de 216 cm de comprimento e gasta um tempo de 1,2 s.
 - a) Determine sua aceleração.
 - b) Represente graficamente a velocidade da bola em função do tempo.
- 8 Um veículo tem uma aceleração constante de 2,0 m/s² e parte do repouso.
 - a) Que velocidade tem após 6,0 s?
 - b) Que distância percorreu em 6,0 s?
 - c) Qual é sua velocidade média durante os primeiros 6,0 s?
 - d) Que distância percorreu até o instante em que atinge a velocidade de 20 m/s?
 - e) Construa o gráfico d X t para este movimento.
 - f) Construa o gráfico v X t para este movimento.
 - g) Que distância percorre até o quinto segundo?
- 9 Do alto de um poste cai um objeto, que leva 2,0 s para atingir o solo. Qual é a altura do poste?
- 10 Do topo de uma torre de 120 m lança-se verticalmente, em direção ao solo, uma pedra, com a velocidade inicial de 10 m/s.
 - a) Com que velocidade atinge o solo?
 - b) Qual o tempo gasto para isto?
- 11 Lança-se um objeto verticalmente para cima com a velocidade inicial de 30 m/s.
 - a) Qual é a altura máxima atingida?
 - b) Com que velocidade o objeto atinge o solo?
 - c) Determine a altura do objeto no instante t = 4.0 s.
 - d) Construa o gráfico v X t para este movimento.
 - e) Construa o gráfico h X t para este movimento.
- 12 O gráfico ao lado representa a variação de velocidade do movimento de um veículo.
 - a) Dê a equação horária de sua velocidade.
 - b) Dê a equação horária de sua posição.
 - c) Quanto o móvel se deslocou nos primeiros 3,0 s?



13 Dois veículos viajam no mesmo sentido em uma estrada retilínea. No instante em que um está ultrapassando o outro, os dois motoristas percebem um perigo à frente e freiam simultaneamente. O gráfico da figura mostra a variação da velocidade dos dois com o tempo. Pede-se a distância entre os dois carros no instante em que suas velocidades forem iguais.

14 ■ O gráfico das acelerações em função do tempo para um móvel que parte do repouso é dado ao lado.

Construa o correspondente diagrama das velocidades.

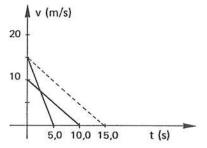


15 O diagrama da velocidade para um móvel que se desloca numa trajetória retilínea é dado ao lado. Determine:

a) o deslocamento do móvel entre 0 e 10,0 s.

b) a aceleração média do móvel entre 0 e 10,0 s.

c) a velocidade média entre 0 e 10,0 s.


RESPOSTAS

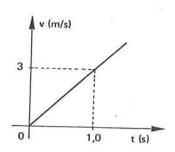
b)
$$t = 2.5 \text{ s}$$

c)
$$t = 5.0 \text{ s}$$

b)
$$d = 150 \text{ m}$$

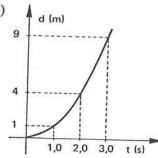
- a) o segundo carro
- b) linha pontilhada. Leva 15,0 s até parar.

- 4. a) 66,7 m/s²
- b) 2,40 X 10⁵ m/s
- c) 4.32×10^8 m

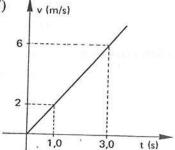

- 5. a) 50 m/s
- b) 20 s

- c) d = 250 m nos primeiros 10.0 s
 - d = 500 m na desaceleração
 - d = 1000 metros no total

- 6. a) 2 m/s^2
- b) 20 m/s
- c) 100 m
- d) 36 m


7. a) 3 m/s^2

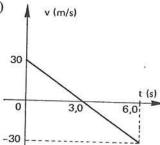
b)



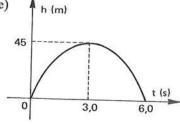
- 8. a) 12 m/s
- b) 36 m
- c) 6 m/s
- d) 100 m
- g) 25 m

e)

f)

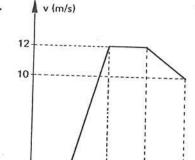


9. h = 20 m


c) 40 m

10. v = 50 m/s; t = 4 s

- .11. a) 45 m
- b) 30 m/s
- d)


e)

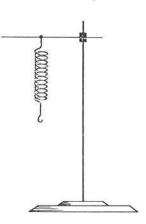
- **12.** a) $\dot{v} = 12 4t$
- b) $\triangle h = 12t 2t^2$
- c) 18 m

13. 15 m

14.

- 15. a) 80 m
 - b) $-1,0 \text{ m/s}^2$
 - c) 8,0 m/s

EXPERIÊNCIA 1. RELAÇÃO ENTRE A DEFORMAÇÃO DE UMA MOLA (ou ELÁSTICO) E O PESO DA MASSA RESPONSÁVEL PELA DEFORMAÇÃO.


- OBJETIVOS: a) Construir, a partir de dados experimentais, o gráfico que relaciona o peso da massa com a deformação da mola.
 - b) Calcular, a partir do gráfico acima, a equação que relaciona o peso da massa com a deformação.

MATERIAL UTILIZADO: a) mola ou elástico;

- b) régua;
- c) massas aferidas (50 g; 100 g; etc.);
- d) suportes.

PROCEDIMENTO:

- a) Pendure uma mola (ou elástico) conforme mostra a figura ao lado.
- b) Meça o comprimento inicial Lo da mola (ou elástico), sem peso.
- c) Coloque, na extremidade da mola ou elástico, uma massa de 50 g e meça o novo comprimento da mola L.
- d) Coloque, na extremidade da mola, uma massa de 100 g e meça o novo comprimento.
- e) Repita as operações descritas em c) e d) para massas de 150, 200 e 250 g.

ANÁLISE:

a) A deformação, para cada peso, é definida como o comprimento final (com peso) menos o comprimento inicial (sem peso). Simbolicamente:

$$\Delta L = L - L_0$$

Por exemplo: Se o comprimento inicial é L = 20 cm e sob um peso de 100 g o comprimento final é L = 25 cm, a deformação será

$$\Delta L = 25 - 20 = 5.0$$
 cm

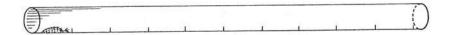
- b) Construa uma tabela de valores, que contenha m (massa); L₀; L e ΔL
- c) Com os dados obtidos, construa um gráfico em um papel milimetrado, relacionando a massa com a deformação, colocando os valores das massas no eixo das ordenadas.

QUESTÕES:

- a) É linear a relação entre o peso deformador e a deformação da mola? Explique.
- b) Escreva a respectiva equação.
- c) Determine o valor da deformação ΔL para o peso de uma massa de 120 g.
- d) Se a deformação $\Delta L = 5,0$ cm, qual é o valor do peso da massa deformadora?
- e) Com quantos algarismos significativos você deve escrever o valor da declividade?
- f) Quais são as unidades de medida da declividade?

RELATÓRIO:

Você deverá entregar um relatório da experiência. No relatório deverão aparecer claramente: os objetivos, a parte teórica, tabelas de dados, gráficos, respostas às questões formuladas e suas conclusões.


EXPERIÊNCIA 2. ESTUDO DE UM MOVIMENTO RETILÍNEO.

- OBJETIVOS: a) Construir, a partir dos dados experimentais, o gráfico deslocamento X tempo do movimento de um tatuzinho de jardim.
 - b) Calcular, a partir do gráfico acima, a velocidade média do tatuzinho em diversos trechos de sua trajetória.

MATERIAL UTILIZADO: a) tatuzinho de jardim;

- b) tubo de vidro de aproximadamente 1 m;
- c) relógio com ponteiro de segundo ou cronômetro.

PROCEDIMENTO:

- a) Gradue o tubo de vidro de 5 em 5 cm.
- b) Coloque um tatuzinho de jardim numa das extremidades do tubo. Ele certamente caminhará para frente.
- c) Quando o tatuzinho passar pela posição tomada como origem, inicie a leitura do tempo. Anote os instantes em que ele passa por cada marca.

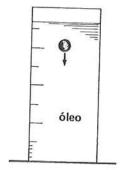
- ANÁLISE: a) Construa uma tabela dos valores obtidos.
 - b) Com os valores da tabela anterior construa um gráfico deslocamento X tempo.
 - c) Construa o gráfico da velocidade média X tempo.

- QUESTÕES: a) Em qual intervalo de tempo a velocidade do tatuzinho foi maior?
 - b) Em qual intervalo de tempo a velocidade do tatuzinho foi menor?
 - c) Determine a velocidade do tatuzinho nos trechos onde ela foi praticamente constante.

RELATÓRIO:

Você deverá entregar um relatório da experiência. No relatório deverão aparecer claramente: os objetivos, a parte teórica, tabelas de dados, gráficos, respostas às questões formuladas e suas conclusões.

EXPERIÊNCIA 3. ESTUDO DE UM MOVIMENTO RETILÍNEO.


- OBJETIVOS: a) Construir, a partir dos dados experimentais, o gráfico deslocamento X tempo do movimento de uma esfera de chumbo, aço, ou outro material similar, num tubo contendo óleo.
 - b) Calcular, a partir do gráfico acima, a velocidade média da esfera.

MATERIAL UTILIZADO: a) tubo de vidro;

- b) óleo de carro n.o 50;
- c) relógio com ponteiro de segundo ou cronômetro;
- d) esferas de chumbo ou aço.

PROCEDIMENTO:

- a) Gradue o tubo de 10 em 10 cm.
- b) Solte uma esfera no interior do óleo.
- c) Quando a esfera passar pela posição tomada como origem, inicie a leitura do tempo. Anote os instantes em que ela passa por cada marca.

- ANÁLISE: a) Construa uma tabela dos valores obtidos no item c anterior.
 - b) Com os valores do item anterior, construa um gráfico deslocamento X tempo.

- QUESTÕES: a) Que tipo de movimento a esfera executa no interior do óleo?
 - b) Qual é o valor da velocidade média da esfera?

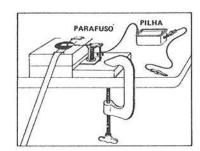
RELATÓRIO:

Você deverá entregar um relatório da experiência. No relatório deverão aparecer claramente: os objetivos, a parte teórica, tabelas de dados, gráficos, respostas às questões formuladas e suas conclusões.

EXPERIÊNCIA 4. MARCADOR DE TEMPO.

OBJETIVOS:

- a) Determinar o período e a frequência de um marcador de tempo.
- b) Calibrar, para leituras em segundos, um marcador de tempo.


O marcador de tempo é um dispositivo elétrico que funciona de maneira semelhante a uma campainha elétrica. Ele é acionado por uma ou duas pilhas, destas utilizadas em lanternas, e possui uma lâmina metálica, que vibra diversas vezes por segundo quando as pilhas são ligadas.

Além de medir o período e a frequência do instrumento, o objetivo da experiência é a familiarização com o instrumento, pois ele será utilizado em outras oportunidades. Você poderá verificar que o marcador de tempo pode ser utilizado para medir peque-

MATERIAL UTILIZADO: a) marcador de tempo;

nos intervalos de tempo.

- b) pilhas;
- c) cronômetro ou relógio que indique segundos;
- d) presilha em U;
- e) fita de papel em forma de serpentina.

- PROCEDIMENTO: a) Prenda o marcador de tempo firmemente, conforme mostra a figura acima.
 - b) Faça as conexões elétricas e ajuste o parafuso que se encontra em cima da bobina de modo que você ouça batidas ou tiques bem uniformes. Veja a figura.
 - c) Coloque a fita de papel no marcador de tempo, fazendo com que ela passe entre o papel carbono e a madeira.
 - d) Puxe, apenas para praticar, alguns pedaços de fita de modo que os tiques apareçam claramente separados para melhor facilidade de contagem.
 - e) Para se determinar o período e a frequência do vibrador é necessário contar os tiques formados no papel em um determinado intervalo de tempo. Para tal, coloque no instrumento uma fita de aproximadamente 2 metros e deixe ligado o marcador de forma que o ponto inicial seja bem distinto (grosso). Quando você começar a puxar a fita, conforme você praticou no item d, um seu colega deverá acionar o cronômetro, e, quando a outra extremidade da fita passar pelo carbono, o cronômetro deverá ser desligado.
 - f) Repita a operação pelo menos uma vez.

ANÁLISE:

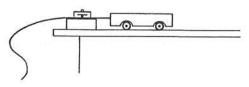
- a) Marque o intervalo de tempo gasto e conte o número de tiques formado na fita de papel.
- b) A frequência do marcador de tempo é definido como a quantidade de tiques formados em um segundo.
- c) O período é o intervalo de tempo entre cada tique e o seu sucessivo.

QUESTÕES:

- a) Qual é o período e a frequência deste marcador de tempo?
- b) Com quantos algarismos significativos pode você determinar tais grandezas? Por quê?
- c) Se você puxar uma fita e contar 56 tiques, qual é, em segundos, o intervalo de tempo correspondente?

RELATÓRIO:

Você deverá entregar um relatório da experiência. No relatório deverão aparecer claramente: os objetivos, a parte teórica, tabela de dados, gráficos, respostas às questões formuladas e suas conclusões.


EXPERIÊNCIA 5. ESTUDO DE UM MOVIMENTO RETILÍNEO.

OBJETIVOS: a) Construir, a partir dos dados experimentais, o gráfico deslocamento X tempo do movimento de um carrinho.

> b) Calcular, a partir do gráfico acima, a velocidade média do carrinho em diversos trechos de sua trajetória.

- MATERIAL UTILIZADO: a) os mesmos da experiência anterior (sem o cronômetro);
 - b) um carrinho de rolemã;
 - c) régua graduada em milímetros.

PROCEDIMENTO:

- a) O marcador de tempo já deve estar calibrado, isto é, a sua frequência ou o seu período já devem ter sido determinados.
- b) Prenda o marcador como foi realizado na experiência anterior.
- c) Passe pelo marcador um pedaço de fita de aproximadamente 1 metro. (conforme o comprimento da mesa).
- d) Prenda uma das extremidades da fita ao carrinho, conforme mostra o diagrama acima. (utilize fita colante)
- e) Ligue o marcador e deixe que o ponto inicial seja bem distinto (bem grosso).
- f) Dê um empurrão no carrinho e deixe que ele se movimente por si só.

ANÁLISE:

- a) Utilizando-se do ponto inicial como a origem, marque a posição de cada tique. Nesta operação você estará marcando a posição do carrinho em cada ponto ou instante.
- b) Construa uma tabela de valores do deslocamento e do tempo (em segundos), com o marcador já calibrado.
- c) Construa um gráfico deslocamento X tempo.

QUESTÕES:

- a) Em qual intervalo de tempo a velocidade do carrinho foi maior?
- b) Em qual intervalo de tempo a velocidade do carrinho foi menor?
- c) Determine a velocidade do carrinho nos trechos onde ela foi praticamente constante.

RELATÓRIO:

Você deverá entregar um relatório da experiência. No relatório deverão aparecer claramente: os objetivos, a parte teórica, tabelas de dados, gráficos, respostas às questões formuladas e suas conclusões.

EXPERIÊNCIA 6. MOVIMENTO RETILÍNEO COM ACELERAÇÃO CONSTANTE - MRUV

a) Construir, a partir dos dados experimentais, o gráfico da posição em função do tempo. **OBJETIVOS:**

b) Determinar a velocidade média em sucessivos intervalos de tempo.

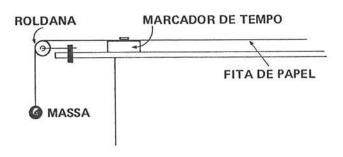
c) Determinar a velocidade instantânea em diversos instantes.

d) Construir o gráfico da velocidade em função do tempo.

e) Determinar a aceleração resultante.

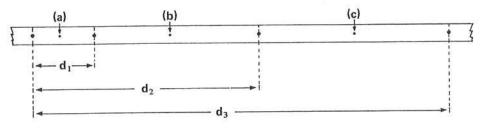
MATERIAL UTILIZADO: a) marcador de tempo, já calibrado em segundos;

b) pilhas;


c) presilha em U;

d) fita de papel;

e) uma massa com cerca de 1 kg;


f) fita colante e régua milimetrada.

PROCEDIMENTO:

- a) Prenda o marcador de tempo, como foi feito em experiências anteriores.
- b) Prenda, com fita colante e bem firme, a massa numa extremidade da fita, e segure a outra com a mão. Veja o diagrama esquematizado acima.
- c) Ligue o marcador de tempo e solte a extremidade da fita que você está segurando, deixando a massa atingir o solo.
- d) A fita deve possuir cerca de 1 m.

ANÁLISE:

- a) Assinale na fita grupos consecutivos de 3 tiques. O ponto grosso é tomado como a origem. Conte os grupos consecutivos de 3 tiques a partir do primeiro. Observe bem a figura acima.
- b) Calcule, em segundos, o tempo de duração de 3 tiques.
- c) Meça com uma régua milimetrada as posições d1, d2, d3, etc. As posições citadas correspondem aos deslocamentos totais a partir da origem. Observe a figura acima.
- d) Construa uma tabela dos valores das posições e dos respectivos tempos. E, a partir desta, construa um gráfico das posições em função do tempo. (com papel milimetrado)

e) Para se determinar a aceleração é necessário conhecer a velocidade da massa em diversos instantes. Os instantes escolhidos são os instantes médios de cada grupo de 3 pontos consecutivos. Na figura acima, tais instantes correspondem aos tiques marcados com as letras a, b, c, etc. A velocidade média, no intervalo de tempo que corresponde ao grupo de 3 pontos consecutivos, é igual à velocidade instantânea no instante intermediário. Exemplificando: no primeiro grupo de 3 tiques consecutivos a velocidade média é igual à velocidade instantânea no instante assinalado pela letra a. E assim sucessivamente.

Determine então a velocidade média nos grupos de 3 tiques consecutivos.

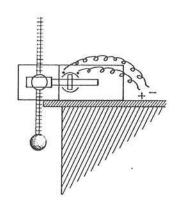
Lembre-se:
$$v_m = \frac{\Delta d}{\Delta t} = \frac{d_f - d_i}{t_f - t_i}$$

- f) A partir das velocidades médias calculadas acima e a partir das informações fornecidas no item anterior, construa uma tabela de valores de velocidade instantânea × tempo, isto é, uma tabela v × t.
- g) Construa agora o gráfico v X t num papel milimetrado.
- h) Determine, a partir do gráfico, a aceleração resultante na massa.

QUESTÕES:

- a) Quais são os fatores que nos impedem de considerar a massa em queda livre?
- b) Qual a hipótese feita quando traçamos a melhor reta que passa pelos pontos do gráfico v X t?
- c) Qual seria a velocidade da massa para o tique n.o 8?

RELATÓRIO:


Você deverá entregar um relatório completo da experiência realizada, seguindo os mesmos critérios anteriormente adotados.

EXPERIÊNCIA 7. QUEDA LIVRE.

- a) A partir de dados experimentais, construir um gráfico da posição em função do tempo.
- b) Determinar a velocidade média em diversos intervalos de tempo.
- c) Determinar a velocidade instantânea em diversos instantes.
- d) Construir o gráfico v X t e determinar a aceleração de queda da massa.

MATERIAL UTILIZADO: os mesmos da experiência anterior.

- PROCEDIMENTO: a) O marcador de tempo deve ficar na vertical, conforme mostra a figura ao lado.
 - b) Os passos restantes são idênticos aos da experiência anterior.

ANÁLISE:

a mesma da experiência anterior.

QUESTÕES:

- a) Explique porque devemos colocar o marcador de tempo na posição vertical.
- b) Quais são as hipóteses necessárias para que a massa esteja realmente em queda livre?
- c) Com quantos algarismos significativos pode você determinar a aceleração de queda da massa?
- d) Supondo que a aceleração de queda seja de 9,8 m/s², qual foi o seu erro cometido na determinação?

RELATÓRIO: Você deverá, como fez nas experiências anteriores, entregar o relatório da experiência.