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Science is an adventure of the whole human race to learn to live in and perhaps to

love the universe in which they are. To be a part of it is to understand, to understand

oneself, to begin to feel that there is a capacity within man far beyond what he felt

he had, of an infinite extension of human possibilities

I propose that science be taught at whatever level, from the lowest to the highest,

in the humanistic way. It should be taught with a certain historical understanding,

with a certain philosophical understanding, with a social understanding and a

human understanding in the sense of the biography, the nature of the people who
made this construction, the triumphs, the trials, the tribulations.

I. I. RABI

Nobel Laureate in Physics

Preface

Background The Project Physics Course is based on the ideas and

research of a national curriculum development project that worked

in three phases. First, the authors — a high school physics teacher,

a university physicist, and a professor of science education —

collaborated to lay out the main goals and topics of a new
introductory physics course. They worked together from 1962 to

1964 with financial support from the Carnegie Corporation of New
York, and the first version of the text was tried out in two schools

with encouraging results.

These preliminary results led to the second phase of the

Project when a series of major grants were obtained from the U.S.

Office of Education and the National Science Foundation, starting

in 1964. Invaluable additional financial support was also provided

by the Ford Foundation, the Alfred P. Sloan Foundation, the

Carnegie Corporation, and Harvard University. A large number of

collaborators were brought together from all parts of the nation,

and the group worked together for over four years under the title

Harvard Project Physics. At the Project's center, located at

Harvard University, Cambridge, Massachusetts, the staff and

consultants included college and high school physics teachers,

astronomers, chemists, historians and philosophers of science,

science educators, psychologists, evaluation specialists, engineers,

film makers, artists and graphic designers. The teachers serving as

field consultants and the students in the trial classes were also of

vital importance to the success of Harvard Project Physics. As each

successive experimental version of the course was developed it was
tried out in schools throughout the United States and Canada. The
teachers and students in those schools reported their criticisms and

suggestions to the staflTin Cambridge. These reports became the

basis for the next year's revision. The number of participating



teachers during this period grew from 2 in 1962-63 to over 100 in

1967-68. In that year over five thousand students participated in a

large-scale formal research program to evaluate the results

achieved with the course materials.

During 1968, the last of the experimental course materials was
completed. With the culmination of course development and data

gathering activities, the final phase of Harvard Project Physics got

under way. During 1968-69 and 1969-70 the work of the Project

concentrated on developing and conducting special training

programs for teachers, disseminating information about the course

to physics teachers, science department heads, school administrators

and other interested persons, analyzing the large pool of final

evaluation data and writing a complete report on the results, and

trying to find out how the course might be reshaped to fit special

audiences.

We wish it were possible to list in detail the contributions of

each person who participated in some part of Harvard Project

Physics. Unhappily it is not feasible, since more staff members
worked on a variety of materials and had multiple responsibilities.

Furthermore, every text chapter, experiment, piece of apparatus,

film or other item in the experimental program benefitted from the

contributions of a great many people. On the preceding pages is a

partial list of contributors to Harvard Project Physics. There were,

in fact, many other contributors too numerous to mention. These

include school administrators in participating schools, directors

and staff members of training institutes for teachers, teachers who
tried the course after the evaluation year, and most of all the

thousands of students who not only agreed to take the experimental

version of the course, but who were also willing to appraise it

critically and contribute their opinions and suggestions.

Aims. From the beginning Harvard Project Physics had three

major goals in mind. These were to design a humanistically oriented

physics course, to attract more students to the study of introductory

physics, and to find out more about the factors that influence the

learning of science in schools. The last of these involved extensive

educational research, and has now been reported to the teaching

profession in books and journals.

About ten years ago it became clear that a new physics course,

having far wider appeal than the existing ones, was needed.

Students who plan to go to college to study the humanities or

social sciences, those already intent on scientific careers, and those

who may not wish to go to college at all, can all benefit from a good

introductory physics course. The challenge facing Harvard Project

Physics was to design a humanistic course that would be useful

and interesting to students with widely differing skills, backgrounds,

and career plans. In practice, this meant designing a course that

would have the following effect:



1. To help students increase their knowledge of the physical

world by concentrating on ideas that characterize physics as a

science at its best, rather than concentrating on isolated bits of

information.

2. To help students see physics as the wonderfully many-sided

human activity that it really is. This meant presenting the subject

in historical and cultural perspective, and showing that the ideas

of physics have a tradition as well as ways of evolutionary

adaptation and change.

3. To increase the opportunity for each student to have

immediately rewarding experiences in science even while gaining

the knowledge and skill that will be useful in the long run.

4. To make it possible for teachers to adapt the course to the

wide range of interests and abilities of their students.

5. To take into account the importance of the teacher in the

educational process, and the vast spectrum of teaching situations

that prevail.

How well did Harvard Project Physics meet the challenge? In a

sense each student who takes this course must answer that

question himself. It is a pleasure to report, however, that the large-

scale study of student achievement and student opinion in the

participating schools throughout the United States and Canada

showed gratifying results -ranging from the excellent scores on the

College Entrance Examination Board achievement test in physics

to the personal satisfaction of individual students. It is clear that

the diverse array of individual students in the experimental groups

responded well to the physics content, the humanistic emphasis of

the course, and to its flexible multimedia course materials.

The Project Physics Course Today. Using the last of the

experimental versions of the course developed by Harvard Project

Physics in 1964-68 as a starting point, and taking into account the

evaluation results from the try-outs, the three original collaborators

set out to develop the version suitable for large-scale publication.

We take particular pleasure in acknowledging the assistance of

Dr. Andrew Ahlgren of Harvard University. Dr. Ahlgren was

invaluable because of his skill as a physics teacher, his editorial

talent, his versatility and energy, and above all, his commitment

to the goals of Harvard Project Physics.

We would also especially like to thank Miss Joan Laws whose

administrative skills, dependability, and thoughtfulness contributed

so much to our work. The publisher. Holt, Rinehart and Winston,

Inc. of New York, provided the coordination, editorial support, and

general backing necessary to the large undertaking of preparing the

final version of all components of the Project Physics Course,

including texts, laboratory apparatus, films, etc. Damon, located in

Needham, Massachusetts, worked closely with us to improve the

engineering design of the laboratory apparatus and to see that it

was properly integrated into the program.



Since their last use in experimental form, all of the instruc-

tional materials have been more closely integrated and rewritten in

final form. The course now consists of a large variety of coordinated

learning materials of which this textbook is only one; in addition

there are readers, handbooks, programmed instruction booklets,

film loops, documentary films, transparencies, apparatus and various

materials for teachers. With the aid of these materials and the

guidance of your teacher, with your own interest and effort, you can

look forward to a successful and worthwhile experience.

In the years ahead, the learning materials of the Project Physics

Course will be revised as often as is necessary to remove remaining

ambiguities, clarify instructions, and to continue to make the

materials more interesting and relevant to students. We therefore

urge all students and teachers who use this course to send to us

(in care of Holt, Rinehart and Winston, Inc., 383 Madison Avenue,

New York, New York 10017) any criticisms or suggestions they may
have. And now — welcome to the study of physics!
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UNIT 1

Concepts of Motion

CHAPTERS
1 The Language of Motion

2 Free Fall -Galileo Describes Motion

3 The Birth of Dynamics -Newton Explains Motion

4 Understanding Motion

PROLOGUE It is January 1934, a dreary month in the city of Paris. A

husband and wife, working in a university laboratory, are exposing a

piece of ordinary aluminunn to a stream of tiny charged bits of matter

called alpha particles. Stated so simply, this certainly does not sound like

a momentous event. But let us look more closely, for it is momentous

indeed.

Never mind the technical details. Don't let them get in the way of

the story. It all began as something of a family affair. The husband and

wife are the French physicists Frederic Joliot and Irene Curie. The alpha

particles they are using in their experiment are shooting out of a piece

of naturally radioactive metal, polonium, discovered 36 years before

by Irene's parents, Pierre and Marie Curie, the famous discoverers of

radium. What Frederic and Irene have found is that when the aluminum

is bombarded by alpha particles, the commonplace bit of material

becomes radioactive for a while.

This is a surprise. Until this moment, nothing like this-a familiar,

everyday substance becoming artificially radioactive — has ever been

observed. But physicists in the laboratory cannot force new phenomena

on nature, they can only show more clearly what nature is like. We
know now that this sort of thing is a frequent occurrence. It happens,

for example, in stars and in our atmosphere when it is bombarded by

cosmic rays.

The news was exciting to scientists and traveled rapidly, though it

made few, if any, newspaper headlines. Enrico Fermi, a young physicist

on the staff of the University of Rome, became intrigued by the

possibility of repeating the experiment of Frederic and Irene- repeating

it with one significant alteration. The story is told in the book Atoms in

the Family by Enrico Fermi's wife, Laura. She writes:

... he decided he would try to produce artificial radioactivity

with neutrons [instead of alpha particles]. Having no electric
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charge, neutrons are neither attracted by electrons nor

repelled by nuclei; their path inside matter is much longer

than that of alpha particles; their speed and energy remain

higher; their chances of hitting a nucleus with full impact are

much greater.

All quotations in the Prologue are

from Laura Fermi, Atoms in the

Family: IVIy Life Witt) Enrico Fermi,

University of Chicago Press, Chicago,

1954 (available as a paperback
book in the Phoenix Books series).

Fermi was one of the major

physicists of the twentieth century.

Usually a physicist has some theory to guide him in setting up an

experiment. This time, no good theory had yet been developed. Only

through actual experiment could one tell whether or not neutrons would

be good projectiles for triggering artificial radioactivity in the target

nuclei. Therefore, Fermi, already an outstanding theoretical physicist

at the age of 33, decided to design some experiments that could settle

the issue. His first task was to obtain instruments suitable for detecting

the particles emitted by radioactive materials. The best such laboratory

instruments by far were Geiger counters, but in 1934 Geiger counters

were still relatively new and not readily available. Therefore, Fermi built

his own.

The counters were soon in operation detecting the radiation from

radioactive materials. But Fermi also needed a source of neutrons. This

he made by enclosing beryllium powder and the radioactive gas radon

in a glass tube. Alpha particles from the radon, striking the beryllium,

caused it to emit neutrons, which passed freely through the glass tube.

Now Enrico was ready for the first experiments. Being a

man of method, he did not start by bombarding substances

at random, but proceeded in order, starting from the lightest

element, hydrogen, and following the periodic table of

elements. Hydrogen gave no results; when he bombarded
water with neutrons, nothing happened. He tried lithium next,

but again without luck. He went on to beryllium, then to

boron, to carbon, to nitrogen. None were activated. Enrico

wavered, discouraged, and was on the point of giving up his

researches, but his stubbornness made him refuse to yield. He
would try one more element. That oxygen would not become
radioactive he knew already, for his first bombardment had

been on water. So he irradiated fluorine. Hurrah! He was
rewarded. Fluorine was strongly activated, and so were other

elements that came after fluorine in the periodic table.

This field of investigation appeared so fruitful that

Enrico not only enlisted the help of Emilio Segre and of

Edoardo Amaldi but felt justified in sending a cable to Rasetti

[a colleague who had gone abroad], to inform him of the

experiments and to advise him to come home at once. A
short while later a chemist, Oscar D'Agostino, joined the

group, and systematic investigation was carried on at a fast

pace.

With the help of his colleagues, Fermi's work at the laboratory was

pursued with high spirit, as Laura Fermi's account shows:

Follow the story rather than worrying

about the techniques of the

experiment.

. . . Irradiated substances were tested for radioactivity with

Geiger counters. The radiation emitted by the neutron source

would have disturbed the measurements had it reached the
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counters. Therefore, the room where substances were
irradiated and the room with the counters were at the two
ends of a long corridor.

Sometimes the radioactivity produced in an element was
of short duration, and after less than a minute it could no
longer be detected. Then haste was essential, and the time to

cover the length of the corridor had to be reduced by swift

running. Amaldi and Fermi prided themselves on being the

fastest runners, and theirs was the task of speeding short-

lived substances from one end of the corridor to the other.

They always raced, and Enrico claims that he could run

faster than Edoardo. . . .

And then, on the morning of October 22, 1934, a fateful discovery

was made. Two of Fermi's co-workers were irradiating a hollow

cylinder of silver with neutrons from a source placed at the center of the

cylinder, to make it artificially radioactive. They found that the amount

of radioactivity induced in the silver depended on other objects that

happened to be present in the room!

. . . The objects around the cylinder seemed to influence its

activity. If the cylinder had been on a wooden table while being

irradiated, its activity was greater than if it had been on a

piece of metal.

By now the whole group's interest has been aroused, and

everybody was participating in the work. They placed the

neutron source outside the cylinder and interposed objects

between them. A plate of lead made the activity increase

slightly. Lead is a heavy substance. "Let's try a light one
next," Fermi said, "for instance, paraffin. " [The most plentiful

element in paraffin is hydrogen.] The experiment with

paraffin was performed on the morning of October 22.

They took a big block of paraffin, dug a cavity in it, put

the neutron source inside the cavity, irradiated the silver

cylinder, and brought it to a Geiger counter to measure its

activity. The counter clicked madly. The halls of the physics

building resounded with loud exclamations: "Fantastic!

Incredible! Black Magic! " Parrafin increased the artificially

induced radioactivity of silver up to one hundred times.

By the time Fermi came back from lunch, he had already formulated

a theory to account for the strange action of paraffin.

Paraffin contains a great deal of hydrogen. Hydrogen

nuclei are protons, particles having the same mass as

neutrons. When the source is enclosed in a paraffin block, the

neutrons hit the protons in the paraffin before reaching the

silver nuclei. In the collision with a proton, a neutron loses

part of its energy, in the same manner as a billiard ball is

slowed down when it hits a ball of its same size [whereas it

loses little speed if it is reflected off a much heavier ball, or a

solid wall]. Before emerging from the paraffin, a neutron will

have collided with many protons in succession, and its

velocity will be greatly reduced. This slow neutron will have

tjtufron Source

Silver cilindir-

paraffin block

Because of Fermi's earlier

experiments, they knew the water

would not become artifically

radioactive. However, they now
reasoned that it would slow down
neutrons and so allow silver to

become more strongly radioactive.
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Fermi and his associates showed stubborn perseverance in the face

of discouraging results, innagination in the invention of theories and

experiments, alertness to the appearance of unexpected results,

resourcefulness in exploiting the material resources at hand, and joy in

finding out something new and important. Traits we usually think of as

being distinctly humane are of value in pursuing scientific work no less

than elsewhere in life.

Scientists build on what has been found out and reported by other

scientists in the past. Yet, every advance in science raises new scientific

questions. The work of science is not to produce some day a finished

book that can be regarded as closed once and for all, but to carry

investigation and imagination on into fields whose importance and

interest had not been realized before.

Some work in science depends upon painstaking observation and

measurement, which can sometimes stimulate new ideas and sometimes

reveals the need to change or even completely discard existing theories.

Measurement itself, however, is usually guided by a theory. One does

not gather data just for their own sake.

All these are characteristics of science as a whole and not of

physics alone. This being a physics text, you may well wish to ask, "Yes,

but just what is physics?" The question is fair enough, yet there is no

simple answer. Physics can be thought of as an organized body of

tested ideas about the physical world. Information about this world is

accumulating ever more rapidly; the great achievement of physics has

been to find a fairly small number of basic principles which help to

organize and to make sense of certain parts of this flood of information.

This course will deal with some, but not nearly all, of the ideas that

together make up the content of physics. The purpose of this course is

to provide you with the opportunity to become familiar with some of

these ideas, to witness their birth and development, and to share in the

pleasure that comes from using them to view the world in a new light.

Physics is more than just a body of laws and an accumulation of

facts. Physics is what each physicist does in his own way: It is a

continuing activity- a process of search that sometimes leads to

discovery. Look in on different physicists at work and you will see

differences in problems being studied, in apparatus being used, in

individual style, and in much more. Fermi has provided us with one

example, but as the course proceeds, we will encounter other, sometimes

very different examples. By the end of this course, you will have dealt

with many of the ideas and activities which together comprise physics.

You will not just have learned about it-you will have actually done

some physics.

Science gives us no final answers. But it has come upon wondrous

things, and some of them may renew our childhood delight in the

miracle that is within us and around us. Take, for example, so basic a

thing as size ... or time.

The Project Physics Course has

made two documentary films that you

might like to see. One is called The

World of Enrico Fermi and includes

the discovery described here. The

other is entitled People and Particles

and shows what it is like to be

working now on a research problem

in elementary particle physics.
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Our place in space

Physics deals with those laws of the universe that apply

everywhere -fronn the largest to the smallest.

ORDER OF MAGNITUDE
Distance to the furthest observed galaxy

Distance to the nearest galaxy

Distance to the nearest star

Distance to the sun

Diameter of the earth

One mile

Human height

Finger breadth

Paper thickness

Large bacteria

Small virus

Diameter of atom
Diameter of nucleus

10-*^ meters
1022

10'^

10"

10'

103

10"

10--

10-^

10-5

io-»

10-10

10-'^

A globular star cluster

The estimated size of the universe

now is of the order of 100 million,

million, million, million times a man's
height (man's height x 10.000,000,

000,000,000,000,000,000).

The smallest known constituent

units of the universe are less in size

than a hundreth of a millionth of a

millionth of a man's height (mans
height x 0.000,000,000,000,01).



Prologue

Our place in time

Physicists study phenomena in the extremes of time-space

and the whole region between the longest and shortest.

ORDER OF MAGNITUDE

Age of universe

Precession of the earth's axis

Human life span

One year

One day

Light from sun to earth

Time between heartbeats

One beat of fly's wings

Duration of strobe flash

Short laser pulse

Time for light to cross an atom

Shortest-lived subatomic particles

10'^ seconds

109

10^

105

103

10«

10-3

10-5

io-»
10-'«

lO-^'

Particle tracks in a bubble chamber

Fossilized trilobites

•#^

The history of the universe has

been traced back as far into the past

as a hundred million times the length

of a man's life (man's life x 100,000,

000).

Events have been recorded that

last only a few millionths of a millionth

of a millionth of a millionth of a

man's heartbeat (man's heartbeat x

0.000,000,000,000,000,000,000,001).

It is hard to resist the temptation to say more about these intriguing

extremes; however, this is not where physics started. Physics started

with the human-sized world-the world of horse-drawn chariots, of

falling rain, and of flying arrows. It is with the physics of phenomena on

this scale that we shall begin.
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1.1 The motion of things

CHAPTER ONE

The Language of Motion

The world is filled with things in motion: things as small as

dust and as large as galaxies, all continually moving. Your textbook

may seem to be lying quietly on the desk, but each of its atoms is

incessantly vibrating. The "still" air around it consists of molecules

tumbling chaotically, at various speeds, most of them moving as fast

as rifle bullets. Light beams dart constantly through the room,

covering the distance from wall to wall in about a hundred-millionth

of a second, and making about ten million vibrations during that

time. Even the whole earth, our majestic spaceship, is moving at

about 18 miles per second around the sun.

There is a very old maxim: "To be ignorant of motion is to be

ignorant of nature." Of course we cannot investigate all motions.

So, from this swirling, whirling, vibrating world of ours let us choose

just one moving object for our attention, something interesting and

typical, but above all, something manageable. Then let us describe

its motion.

But where shall we start? A machine, such as a rocket or a car?

Though made and controlled by man, they or their parts move in

fast and complicated ways. We really ought to start with something

simpler and slower, something that our eyes can follow in detail.

Then how about a bird in flight? Or a leaf falling from a tree?

Surely, in all of nature there is no motion more ordinary than

that of a leaf fluttering down from a branch. Can we describe how
it falls or explain why it falls? As we think about it we quickly

realize that, while the motion may be "natural," it is very

complicated. The leaf twists and turns, sails to the right and left,

Study for "Dynamism of a Cyclist"

(1913) by Umberto Boccioni. Courtesy

Yale University Art Gallery.

-r
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back and forth, as it floats down. Even a motion as ordinary as this

may turn out, on closer examination, to be more complicated than

the motion of machines. And even if we could describe it in detail,

what would we gain? No two leaves fall in quite the same way;

therefore, each leaf would seem to require its own detailed

description. Indeed, this individuality is typical of most events

occurring spontaneously on earth.

And so we are faced with a dilemma. We want to describe

motion, but the motions we encounter under ordinary circumstances

appear too complex. What shall we do? The answer is that we

should go, at least for a while, into the physics laboratory -because

the laboratory is the place to separate the simple ingredients that

make up all complex natural phenomena and to make those

phenomena more easily visible to our limited human senses.

1.2 A motion experiment that does not quite worit

A billiard ball, hit squarely in the center, speeds easily across a

tabletop in a straight line. An even simpler motion (simpler because

there is no rolling) can be obtained in this way: Take a disk of what

is called "dry ice" (really frozen carbon dioxide), put it on a

smooth floor, and give it a gentle push. It will move slowly and

with very little friction, supported on its own vapor. We did this in

front of a camera to get a photograph that would "freeze" the action

for easier measurement later. While the dry ice disk was moving,

Laboratory setup

Time exposure of the disk in motion

Close-up of

a dry ice disk
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The speed of an object, is, of course,

how fast it moves from one place

to another. A more formal way to

say the same thing is: Speed is the

time rate of change of position.

From time to time you will be
referred to items in the Study Guide,

a few pages found at the end of

each chapter. Usually the letters SG
plus a number will indicate this. See
SG 1.1 on page 31 for more
information on how to study for this

course and on the use of the Study

Guide.

the shutter of the camera was kept open; the resulting time-

exposure shows the path taken by the disk.

What can we learn about the disk's motion by examining the

photographic record? Our question is easy enough to answer: as

nearly as we can judge by placing a ruler on the photograph, the

disk moved in a straight line. This is a very useful result, and we
shall see later that it is really quite surprising. It shows how
simplified the laboratory can be: the kinds of motion one ordinarily

sees are almost never that simple. But did it move steadUy, or did it

slow down? From this photograph we cannot tell. Let us improve

our experiment. Before we do so, however, we must be clear on

just how we might expect to measure the speed.

Why not use something like an automobile speedometer? A
speedometer is supposed to tell us directly the speed at which the

car is moving at any time. Everyone knows how to read that most
popular of all meters, even though few of us have a clear notion of

how it works. Think of how speeds are expressed. We say, for

example, that a car is moving at 60 miles per hour. This means
that if the car continues to move with the same speed it had at the

instant the speed reading was taken, the car would move a distance

of 60 miles in a time interval of 1.0 hour. Or we could say that the

car would move 1.0 mile in 1/60 of an hour, or 6.0 miles in 1/10 of

an hour— or any distance and time intervals for which the ratio of

distance to time is 60 miles per hour.

Unfortunately, an automobile speedometer cannot be hooked to

a disk of dry ice, or to a bullet, or to many other objects whose
speed we might wish to measure. (See SG 1.2.) However, there is a

way to measure speeds in most cases that would interest us.

As a clue, remember what you would have to do if the

speedometer in your car were broken and you still wanted to know
your speed as you moved along a turnpike. You would do one of two

things (the result is the same in either case): you would count the

number of mile markers passed in one hour (or some fraction of it)

and find the average speed by getting the ratio of miles and hours;

or, you would determine the fraction of an hour it takes to go from

one mile marker to the next (or to another marker a known number
of miles away) and find again the average speed as a ratio of miles

to hours.

Either method gives, of course, only the average speed for the

interval during which speed is measured. That is not the same as

the speed at any given instant, which a speedometer registers, but

it is good enough for a start. After we get average speeds clear, we
shall see a simple way of getting instantaneous speeds.

Therefore, to find the speed of an object, we measure the

distance it moves and the time it takes to move that distance. Then
we divide the distance by the time, and the speed comes out in

miles per hour, or feet per second, or meters per second, depending

upon the units used to measure distance and time. With this plan of

attack, we return to the experiment with the dry ice disk. Our task

now is to find the speed of the disk as it moves along its straight-line

path. If we can do it for the disk, we can do it for many other

objects as well.
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There will usually be one or more brief questions at the end of

each section in a text chapter. Ql below is the first. Use these to

check on your own progress. Answer the questions before continuing

to the next section. Check your answers to the end-of-section

questions at the back of this book (page 197); whenever you

find you did not get the correct answers, study through the section

again. And of course, if anything is still unclear after you have
tried to study it on your own or together with other students, then

ask your teacher!

Ql Why is it not possible to determine the speed of the dry ice

puck in the time-exposure photograph on page 11?

1.3 A better experiment

To find speed, we need to be able to measure both distance and
time. So let's repeat the experiment with the dry ice disk after first

placing a meter stick (100 cm) on the table parallel to the expected

path of the disk. This is the photograph we obtain:

We now have a way of measuring the distance traveled by the

disk, but we still need a way to measure the time it takes the disk

to travel a given distance.

This can be done in various ways but here is a fine trick that

you can try in the laboratory. The camera shutter is again kept open

and everything else is the same as before, except that the only

source of light in the darkened room comes from a stroboscopic

lamp. This lamp produces bright flashes of light at a frequency

which can be set as we please. Since each pulse or flash of light

lasts for only about 10 millionths of a second (10 microseconds), the

moving disk appears in a series of separate, sharp exposures, rather

than as a continuous blur. The photograph below was made by

using such a stroboscopic lamp flashing 10 times a second, after the

disk had been gently pushed as before.
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See the articles "Motion in Words"
and "Representation of Movement"
in Project Physics Reader 1.

Now we're getting somewhere. Our special setup enables us to

record accurately a series of positions of the moving object. The
meter stick helps us to measure the distance moved by the front

edge of the disk between successive light flashes. The time interval

between images is, of course, equal to the time interval between

stroboscopic lamp flashes (which is 0.10 second in these photos).

We can now determine the speed of the disk at the beginning

and end of its photographed path. The front edge of the first clear

image of the disk at the left is 6 cm from the zero mark on the

meter stick. The front edge of the second image from the left is at

the 19-cm position. The distance traveled during that time was the

difl"erence between those two positions, or 13 cm. The corresponding

time interval was 0.01 second. Therefore, the speed at the start must
have been 13 cm/0.10 sec, or 130 cm/sec.

Turning now to the two images of the disk farthest to the right

in the photograph, we find that the distance traveled during 0.10

sec was 13 cm. Thus the speed at the right end was 13 cm/0.10 sec,

or 130 cm/sec.

The disk's motion was not measurably slower at the right end

than at the left end. Its speed was 130 cm/sec near the beginning

of the path — and 130 cm/sec near the end of the path. However,

that does not yet prove that the speed was constant all the way.

We might well suspect that it was, and you can easily check for

yourself that this suspicion is justified. Since the time intervals

between images are equal, the speeds will be equal if the distance

intervals are equal to one another. Is the distance between images

always 13 cm? Did the speed stay constant, as far as you can tell

from the measurements?

When you think about this result, there is something really

unusual in it. Cars, planes, and ships do not move in neat, straight

lines with precisely constant speed even when they go under

power. Yet this disk did it, coasting along on its own, without

anything to keep it moving. You might well think it was just a

rare event and it would not happen again. In any case, you should

try it. The equipment you will use for this study of physics will

include cameras, strobe lamps (or mechanical strobes, which work
just as well), and low-friction disks of one sort or another. Repeat the

experiment several times at diff"erent initial speeds, and then

compare your results with those we found above.

You may have a serious reservation about the experiment. If

you ask, "How do you know that the disk didn't slow down an

amount too small to be detected by your measurements?" we can

only answer that we don't know. All measurements involve some
uncertainty which one can usually estimate. With a meter stick we
can measure distances reliably to the nearest 0.1 cm. If we had
been able to measure to the nearest 0.01 cm or 0.001 cm. we might

have detected some slowing down. But if we again found no change
in speed, you could still raise the same objection. There is no way
out of this. We must simply admit that no physical measurements
are ever infinitely precise. Thus it is wise to leave open to question
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the results of any set of measurements and the findings based on

them if increased precision could reveal other results.

Let us briefly review the results of our experiment. We devised

a way to measure the successive positions of a moving dry ice disk

at known time intervals. From this we calculated first the distance

intervals and then the speed between selected positions. We soon

discovered that (within the limits of accuracy of our measurement)
the speed did not change. Objects that move in such a manner are

said to have uniform speed or constant speed. We know now how
to measure uniform speed. But, of course, actual motions are

seldom uniform. What about the more usual case of nonuniform

speed? That is our next concern.

Q2 Suppose the circles below represent the successive positions

of a moving object as photographed stroboscopically. Did the object

move with uniform speed? How do you know?

o o o o o o

Q3 Describe uniform speed without referring to dry ice pucks

and strobe photography or to any particular object or technique of

measurement.

Some practice problems dealing

with constant speed are given in

Study Guide 1.3 (a, b, c, and d).

1.4 Leslie's "50" and the meaning of average speed

Consider the situation at a swimming meet. At the end of each

race, the name of the winner is announced — the swimmer with the

shortest time; but since in a given race — say the 100-yard back-

stroke—every swimmer goes the same distance, the swimmer with

the shortest time is the one having the highest average speed while

covering the measured distance. The ratio of the distance traveled

to the elapsed time is the measure of average speed. This relation-

ship is expressed in the following equation:

distance traveled
average speed

elapsed time

What information does a knowledge of the average speed give us?

We shall answer this question by studying a real example.

Leslie is not the fastest girl freestyle swimmer in the world, but

Olympic speed is not necessary for our purposes. One day after

school, Leslie was timed while swimming two lengths of the

Cambridge High School pool. The pool is 25.0 yards long, and it took

her 56.1 seconds to swim the two lengths. Thus her average speed

over the whole 50-yard distance was

50.0 yd

56.1 sec
= 0.89 yd/sec, or nearly 2.7 ft/sec

Did Leslie swim the 50 yards at uniform (or constant) speed? If

not. which length did she cover more quickly? What was her

greatest speed? her least speed? How fast was she moving when
she passed the 10-yard, or 18-yard or 45-yard mark? These are

2.7 ft/sec is the equivalent of 1.8

miles per hour. No great speed! A
sailfish can do over 40 mph. But

man is a land animal. For short

distances he can run better than

20 mph.
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useful things to know when training for a meet. But so far we do

not have a way to answer any of these questions. The value 0.89

yd/sec probably comes closer than any other one value to describing

the whole event.

To compare Leslie's speed at different parts of the swim, we
must observe the times and distances covered as we did in

experimenting with the dry ice disk. That is why we arranged the

event as shown on the photograph below.

Observers stationed at 5-yard intervals from the mark along

the length of the pool started their stopwatches when the starting

signal was given. Each observer had two watches, one which he

stopped as Leslie passed his mark going down the pool, and another

which he stopped as she passed on her return trip. The data are

tabulated in the margin.

d

O.Oijci
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in our study of motion, the more we refine our measurements to look

at detail, the more variation we find.

In a moment we shall continue our analysis of the data we have
obtained for Leslie's swim — mostly because the concepts we are

developing here, to discuss this everyday type of motion, will be

needed later to discuss other motions, ranging from that of planets

to that of atoms. First, we shall introduce some shorthand notation

with which the definition of average speed can be simplified from

average speed =
distance traveled

elapsed time

to the more concise statement that says exactly the same thing:

Ad

In this equation v,„. is the symbol for the average speed. Ad is the

symbol for change in position, and At is the symbol for an elapsed

interval of time. The symbol A is the fourth letter in the Greek

alphabet and is called delta. When A precedes another symbol, it

means "the change in. . .
." Thus, Ad does not mean "A multiplied

by d" but rather "the change in d" or "the distance interval."

Likewise, At stands for "the change in t" or "the time interval."

We can now go back to the data to see what we can learn about

Leslie's average speed for each 5-yard interval, from beginning to

end. This calculation is easily made, especially if we reorganize our

data as in the table on page 19. The values of v,„. calculated at

5-yard intervals for the first lap are entered in the right-hand column.

(The computations for the second lap are left for you to complete.)

Much more detail is emerging from the picture. Looking at the

speed column, we see that Leslie's speed was at its greatest right

near the beginning. Her racing jump into the water gave her extra

speed at the beginning. In the middle of her first length she was
swimming at a fairly steady rate, and she slowed down coming into

the turn. Use your own figures to see what happened after the turn.

Although we have determined Leslie's speeds at various

intervals along the path, we are still dealing with average speeds.

The intervals are smaller — 5 yards rather than the entire 50 — but

we do not know the details of what happened within any of the

5-yard intervals. Thus, Leslie's average speed between the 15- and

20-yard marks was 1.0 yd/sec, but we don't know yet how to

compute her speed at the very instant and point when she was, say,

18 yards or 20 yards from the start. Even so, we feel that the average

speed computed over the 5-yard interval between the 15- and

20-yard marks is probably a better estimate of her speed as she went

through the 18-yard mark than is the average speed computed

over the whole 50 yards, or over either 25-yard length. We shall

come back to this problem of the determination of "speed at a

particular instant and point" in Sec. 1.7.

Q4 Define average speed.

Practice problems on average speed
can be found in Study Guide 1.3

(e, f, g, and h.) Study Guide 1.4, 1.5,

1.6, and 1.7 offer somewhat more
challenging problems. Some
suggestions for average speeds to

measure are listed in Study Guide
1.8 and 1.9. An interesting activity

is suggested in Study Guide 1.10.
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Q5 If you have not already completed the table on page 19, do

so now before going on to the next section.

1.5 Graphing motion and finding the slope

What can we learn about motion by graphing the data rather

than just tabulating them? Let us find out by preparing a distance-

versus-time graph, using the data from Leslie's 50-yard swim. As
shown in the first graph on the next page, all we really know are the

data points. Each point on the graph shows the time when Leslie

was at a particular position along her path. In the second graph,

dotted lines have been drawn to connect the points. We don't

actually know what the values are between the data points — the

straight-line connections are just a very simple way of suggesting

what the overall graph might look like. In fact, the straight lines are

not likely to be a very good approximation, because the resulting

broken-line graph would indicate very abrupt changes. If we believe

that Leslie changed speed only gradually, we can get a better

approximation by drawing the smoothest curve possible through the

data points. One experimenter's idea of a smooth curve is shown
in the last graph.

Now let us "read" the graph. Notice that the line is steepest at

the start. This means that there was a comparatively large change

in position during the first seconds — in other words, she got off to a

fast start! The steepness of the graph line is an indication of how
fast she was moving. From 10 yards to 20 yards the line appears to

be straight, becoming neither more nor less steep. This means that

her speed in this stretch was constant. Reading the graph further,

we see that she slowed down noticeably before she reached the

25-yard mark, but gained in speed right after the turn. The steepness

decreases gradually from the 30-yard mark to the finish as Leslie

was slowing down. There was no final spurt over the last 5 yards.

(She could barely drag herself out of the pool after the trial.)

Looked at in this way, a graph provides us at a glance with a

visual representation of motion. But this way of representing

motion so far does not help us if we want to know actual values of

her speed at various times. For this, we need a way of measuring

the steepness of the graph line. Here we can turn to mathematics

for help, as we often shall. There is an old method in geometry for

solving just this problem. The steepness of a graph at any point is

related to the change in the vertical direction (Ai/) and the change
in the horizontal direction (Ax). By definition, the ratio of these two
changes (Ay IAx) is the slope:

Ay
slope = -—

Ax

Slope is a widely-used mathematical concept, and can be used to

indicate the steepness of a line in any graph. In a distance-time

graph like the one for Leslie's swim, distance is usually plotted on
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highway engineers are concerned with an actual physical slope: on

a graph of their data the vertical axis and horizontal axis would

both show distance. We, on the other hand, are using the

mathematical concept of slope as a way of expressing distance

measured against tim.e.

We can get a numerical value quickly and directly for the slope

of each straight-line segment in the graph on p. 19. so we will have

the value of the average speed for each of the 5-yard intervals

between data points. For example, we used our data table to

calculate Leslie's average speed between the 5- and 10-yard

markers as 1.4 yd/sec. She moved 5 yards on the vertical

(distance) axis during a lapse of 3.5 seconds on the horizontal

(time) axis. Therefore, the slope of the hne segment connecting the

5-yard and 10-yard points is equal to 5 yards divided by 3.5 seconds,

or 1.4 yd/sec.

The slope, as we have defined it here, is not exactly the same
thing as the steepness of the line on the graph paper. If we had
chosen a different scale for either the distance or time axis (making

the graph, say, twice as tall or twice as wide), then the apparent

steepness of the entire graph would be different. The slope, however,

is measured by the ratio of the distance and time units — a Ad of 10

meters in a At of 5 seconds gives a ratio of 2 meters/second, no

matter how much space is used for meters and seconds on the

graph.

But the graph is more useful than just leading us back again

to the values in the table. We can now ask questions that cannot

be answered directly from the original data: What was Leslie's

speed 10 seconds after the start? What was her speed as she

crossed the 37-yard mark? Questions like these can be answered

by finding the slope of a fairly straight portion of the graph line

around the point of interest. Two examples are worked out on the

MiSL_ = 0.7O yVjec
1.0 sec "^

- 0.S5 i^lscc

20 30 40

timt (stconds)

50 60
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graph at the bottom of page 20. For each example, At was chosen The 4-sec value for f is just for

to be a 4-sec interval -from 2 sec before the point in question to 2 convenience; some other value

sec after it; then the Ad for that At was measured. ^°"'^ ^^"^ ^^^" ^,^^^- ^'' ^^ ^°"'^
have chosen a value for Ad and then

The reasonableness of usmg the graph in this way can be measured the corresponding At.

checked by comparing the results with the values listed in the table

on p. 19. For example, the speed near the 10-second mark is found

from the graph to be about 3.0 yd/4.0 sec = 0.75 yd/sec. This is

somewhat less than the value of 0.9 yd/sec given in the table for

the average speed between 6 and 11 seconds; and that is just what
we would expect, because the smooth-curve graph does become
momentarily less steep around the 10-second point. If the smooth
curve that was drawn really is a better description of Leslie's

swimming than the broken line is, then we can get more information

out of the graph than we put into it.

Q^ Turn back to p. 13 and draw a distance-time graph for the

motion of the dry ice disk.

Which of the two graphs below has the greater slope?Q7

400

0/2545676
timt (Itoon)

Q8 Where was Leslie swimming most rapidly? Where was she

swimming most slowly?

Q9 From the graph, find Leslie's speed at the 47-yard mark.

From the table on p. 19, calculate her average speed over the last

5 yards. How do the two values compare?

1.6 Time out for a warning

Graphs are useful — but they can also be misleading. You must
always be aware of the limitations of any graph you use. The only

actual data in a graph are the plotted points. There is a limit to the

precision with which the points can be plotted, and a limit to how
precisely they can be read from the graph.

The placement of a line through a series of data points, as in

the graph on page 19, depends on personal judgment and
interpretation. The process of estimating values between data

points is called interpolation. That is essentially what you are

doing when you draw a line between data points. Even more risky

than interpolation is extrapolation, where the graph line is
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extended to provide estimated points beyond the known data.

An example of a high-altitude balloon experiment carried out in

Lexington, Massachusetts, nicely illustrates the danger of

extrapolation. A cluster of gas-filled balloons carried cosmic ray

detectors high above the earth's surface, and from time to time a

measurement was made of the height of the cluster. The graph on

the right shows the data for the first hour and a half. After the first 20

minutes the balloons seem to be rising in a cluster with unchanging

speed. The average speed can be calculated from the slope: speed

of ascent = Ad/At = 27,000 ft/30 min = 900 ft/min. If we were asked

how high the balloons would be at the very end of the experiment

(500 min), we might be tempted to extrapolate, either by extending

the graph or by computing from the speed. In either case we would

obtain the result 500 min x 900 ft/min = 450,000 ft, which is over

90 miles high! Would we be right? Turn to Study Guide 1.12 to see

for yourself. (The point is that mathematical aids, including graphs,

can be a splendid help, but only within the limits set by physical

realities.)

Q10 What is the difference between extrapolation and

interpolation?

Q11 Which estimate from the graph would you expect to be

less accurate: Leshe's speed as she crossed the 30-yard mark, or

her speed at the end of an additional lap?

Jimt (min)

SG 1.13

1.7 Instantaneous speed

Now let us wrap up the chief lessons of this first chapter. In

Sec. 1.5 we saw that distance-time graphs could be very helpful in

describing motion. When we reached the end of the section, we
were speaking of specific speeds at particular points along the path

(like "the 14-yard mark") and at particular instants of time (like "the

instant 10 seconds after the start"). You probably were bothered by

this manner of talking, since at the same time we admitted that the

only kind of speed we can actually measure is average speed. To

find average speed we need a ratio of distance and time intervals.

A particular point on the path, however, does not have any

interval. Nevertheless, it makes sense to speak about the speed at a

point. We will summarize what reasons there are for using "speed"

in this way, and see how well we can get away with it.

You remember that our answer to the question (page 20),

"How fast was Leslie swimming at time t = 10 sec?" was 0.85 yd/sec.

That answer was obtained by finding the slope of a small portion

of the curve encompassing the point P when t = 10 sec. That

section of the curve has been reproduced in the margin here. Notice

that the part of the curve we used appears to be nearly a straight

line. As the table under the graph shows, the value of the slope

for each interval changes very little as we decrease the time interval

At. Now imagine that we closed in on the point where t = 10 sec

^ 20

./me

At Ad ^tt

G.O sec 5A()d 0.90y'^/5C£

4.0 3.4 0.85

2.0 \n 0-95
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until the amount of curve remaining became vanishingly small.

Could we not safely assume that the slope of that infinitesimal part

of the curve would be the same as that on the straight line of which
it seems to be a part? We think so. That is why we took the slope

of the straight line from t = 8 sec to t = 12 sec, and called it the

speed at the midpoint, the speed at t = 10 sec, or to use the correct

term, "the instantaneous speed" at t = 10 sec.

In estimating a value for Leslie's instantaneous speed at a
particular time, we actually measured the average speed over a
4.0-sec interval. We then made the conceptual leap that we have
described. We decided that the instantaneous speed at a particular

instant can be equated to an average speed Ad/At provided: 1) that

the particular instant is included in At, and 2) that the ratio Ad/At

is obtained for a small enough part of the curve, one which is

nearly a straight-line segment, so that it does not change appreciably
when we compute it over a still smaller time interval.

A second concrete example will help here. In the oldest known
study of its kind, the French scientist de MontbeOlard periodically

recorded the height of his son during the period 1759-1777. A graph
of height versus age for his son is shown in the margin.

From the graph, we can compute the average growth rate

(v,a^ over the entire 18-year interval or over any shorter time
interval within that period. Suppose, however, we wanted to know
how fast the boy was growing just as he reached his fifteenth

birthday. The answer becomes evident if we enlarge the graph in

the vicinity of the fifteenth year. (See the second graph.) His height
at age 15 is indicated as point P, and the other letters designate

100

170

/60

/50

m
150

120

no

100
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instants of time on either side of P. The boy's average growth rate

over a two-year interval is given by the slope of the line segment

AB in the enlarged figure in the margin. Over a one-year interval

this average growth rate is given by the slope of CD. (See the third

graph.) The slope of EF gives the average growth rate over six

months, etc. The four lines, AB, CD, EF, GH, are not parallel to each

other and so their slopes are different. However, the difference in

slope gets smaller and smaller. It is large when we compare AB and

CD, less if we compare CD and EF, less still between EF and GH.

For intervals less than At = 1 yr, the lines appear to be more nearly

parallel to each other and gradually to merge into the curve,

becoming nearly indistinguishable from it. For very small intervals,

you can find the slope by drawing a straight line tangent to this

curve at P, placing a ruler at P (approximately parallel to line GH),

and extending it on both sides as in Study Guide 1.11.

The values of the slopes of the straight-line segments in the

middle and lower graphs have been computed for the corresponding

time intervals and are tabulated at the right.

We note that values of Vav calculated for shorter and shorter time

intervals approach closer and closer to 6.0 cm/yr. In fact, for any

time interval less than 2 months, the average speed Va,- will be 6.0

cm/yr within the limits of accuracy of measuring height. Thus we

can say that, on his fifteenth birthday, young de Montbeillard was

growing at a rate of 6.0 cm/yr. At that instant in his life, t = 15.0 yr,

this was his instantaneous growth rate (or if you will, the

instantaneous speed of his head with respect to his feet!)

Average speed over a time interval At, we have said, is the ratio

of distance traveled to elapsed time, or in symbols,

Ad
Vav

At

We now have added the definition of instantaneous speed at an

instant as the final limiting value approached by the average

speeds when we compute Vgv for smaller and smaller time intervals

including the instant t. In almost all physical situations, such a

limiting value can be accurately and quickly estimated by the

method described on the previous page.

From now on we will use the letter v without the subscript m- to

mean the instantaneous speed defined in this way. You may wonder

why we have used the letter "z;" instead of "s" for speed. The

reason is that speed is closely related to velocity. We shall reserve

the term "velocity" for the concept of speed in a specified direction

(such as 50 mph to the north) and denote it by the symbol v. When
the direction is not specified and only the magnitude (50 mph) is of

interest, we remove the arrow and just use the letter v, calling the

magnitude of the velocity "speed." This crucial distinction between

speed and velocity, and why velocity is more important in physics,

will be discussed in more detail in later sections.

Q12 Define instantaneous speed, first in words and then in

symbols.

Line



1
.
Paris street scene, 1 839. A daguerro-

type made by Louis Daguerre himself.

2. American street scene, 1859

3. Boys on skateboards

Photography 1839 to the Present
1. Note the lone figure in the otherwise empty street. He was getting his
shoes shined. The other pedestrians did not remain in one place long
enough to have their images recorded. With exposure times several
minutes long, the outlook for the possibility of portraiture was gloomy.
2. However, by 1859, due to improvements in photographic emulsions and
lenses, it was not only possible to photograph a person at rest, but one
could capture a bustling crowd of people, horses and carriages. Note the
slight blur of the jaywalker's legs.

3. Today, one can "stop" action with an ordinary camera.

4. A new medium-the motion picture. In 1873 a group of California
sportsmen called in the photographer Eadweard Muybridge to settle the
question, "Does a galloping horse ever have all four feet off the ground at
once?" Five years later he answered the question with these photos. The
five pictures were taken with five cameras lined up along the track, each
camera being triggered when the horse broke a string w'hich tripped the
shutter. The motion of the horse can be restructured by making a flip pad
of the pictures.

With the perfection of flexible film, only one camera was needed to
take many pictures in rapid succession. By 1895, there were motion
picture parlors throughout the United States. Twenty-four frames each
second were sufficient to give the viewer the illusion of motion.

()'



5. Stroboscopic photo of golfer's

swing. (See the article "The Dynamics
of a Golf Club" in Project Physics

Reader 1 .)

5. A light can be flashed successfully at a controlled rate and a multiple

exposure (similar to the strobe photos in this text) can be made. In this

photo of a golfer, the light flashed 100 times each second.

6. It took another ninety years after the time the crowded street was
photographed before a bullet in flight could be "stopped." This remarkable

picture was made by Harold Edgerton of MIT, using a brilliant electric

spark which lasted for about one millionth of a second.

7. An interesting offshoot of motion pictures is the high-speed motion
picture. In the frames of the milk drop series shown below, 1000 pictures

were taken each second (by Harold Edgerton). The film was whipped past

the open camera shutter while the milk was illuminated with a flashing

light (similar to the one used in photographing the golfer) synchronized
with the film. When the film is projected at the rate of 24 frames each
second, action which took place in 1 second is spread out over 42 seconds.

It is clear that the eye alone could not have seen the elegant details of

this event. This is precisely why photography of various kinds is used in

the laboratory.

6. Bullet cutting through a playing

card.

7. Action shown in high-speed film of milk drop.
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Q13 Explain the difference in meaning between average speed

and instantaneous speed.

Unless noted otherwise, "rate of

change" will always mean "rate of

change with respect to time."

1.8 Acceleration -by comparison

You can tell from the photograph below of a rolling baseball

that it was changing speed — accelerating. The increasing distances

between the instantaneous images of the ball give you this informa-

tion, but how can you tell how much acceleration the ball has?

To answer this question we have only one new thing to learn —

the definition of acceleration. The definition itself is simple; our

task is to learn how to use it in situations like the one above. For

the time being, we will define acceleration as rate of change of

speed. Later this definition will have to be modified somewhat when
we encounter motion in which change in direction becomes an

important additional factor. But for now, as long as we are dealing

only with straight-line motion, we can equate the rate of change

of speed with acceleration.

Some of the effects of acceleration are familiar to everyone. It

is acceleration, not speed, that you notice when an elevator

suddenly starts up or slows down. The flutter in one's stomach
comes only during the speeding up and slowing down, not during

most of the ride when the elevator is moving at a steady speed.

Likewise, much of the excitement of the roller coaster and other

rides at amusement parks is a result of their unexpected

accelerations. Speed by itself does not cause these sensations.

Otherwise they would occur during a smooth plane ride at 650 mph,
or even just during the continuous motion of the earth around the

sun at 65,000 mph.
Simply stated, speed is a relationship between two objects, one

of which is taken to be the reference object while the other moves
with respect to it. Some examples are the speed of the earth with

respect to the stars, the speed of the swimmer with respect to the

pool edge, the speed of the top of the growing boy's head with

respect to his feet. . . In a perfectly smooth-riding train, we could

tell that we were moving at a high speed only by seeing the

scenery whizzing by. We would have just the same experience if

the train were somehow fixed and the earth with rails, etc., were to

whiz by in the other direction. And if we "lost the reference object

"

(by pulling down the shades, say) we might not know at all

whether we were moving or not. In contrast, we "feel" accelerations

and do not need to look out the train window to realize that the

engineer has suddenly started the train or has slammed on the
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brakes. We might be pushed against the seat, or the luggage might
fly from the rack.

All this suggests a profound physical diff^erence between
motion at constant speed and motion with acceleration. While it is

best to learn about acceleration at first hand (in the laboratory and
through the film loops), we can summarize the main ideas here. For

the moment let us focus on the similarities between the concepts

speed and acceleration; for motion in a straight line:

The rate of change of position

is called speed.

The rate of change of speed

is called acceleration.

This similarity of form will enable us to use what we have just

learned about the concept of speed as a guide for making use of the

concept of acceleration. For example, we have learned that the

slope of the line of a distance-time graph is a measure of the

instantaneous speed. The slope of a speed-time graph is a measure
of the instantaneous acceleration.

This section concludes with a list of six statements about

motion along a straight line. The list has two purposes: 1) to help

you review some of the main ideas about speed presented in this

chapter, and 2) to present the corresponding ideas about

acceleration. For this reason, each statement about speed is

immediately followed by a parallel statement about acceleration.

1. Speed is the rate of change of position. Acceleration is the

rate of change of speed.

2. Speed is expressed in units of distance/time. Acceleration is

expressed in units of speed/time.

3. Average speed over any time interval is the ratio of the

change of position Ad and the time interval At:

Ad
Var =

At

Average acceleration over any time interval is the ratio of the

change of speed Ar and the time interval At

:

At;

4. Instantaneous speed is the value approached by the

average speed as At is made smaller and smaller. Instantaneous

acceleration is the value approached by the average acceleration

as At is made smaller and smaller.

5. On a distance-time graph, the instantaneous speed at any

instant is the slope of the straight line tangent to the curve at the

point of interest. On a speed-time graph, the instantaneous

acceleration at any instant is the slope of the straight line tangent

to the curve at the point of interest.

6. For the particular case of constant speed, the distance-time

graph is a straight line; everywhere on it the instantaneous speed

has the same value, equal to the average speed computed for the

whole trip. For the particular case of constant acceleration, the

speed-time graph is a straight line; everywhere on it the

For example, if an airplane changes
its speed from 500 mph to 550 mph
in 10 minutes, its average
acceleration would be

Ay 550 mi/hr - 500 mi/hr

_ 50 mi/hr

10 min

_ 5 mi/hr

min

That is, its speed changed at a rate

of 5 mph per minute. (If the speed
was decreasing, the value of the

acceleration would be negative.)

vA

A^-l

a =
_Ay_
At

Constant speed and constant
acceleration are often called

"uniform" speed and "uniform"

acceleration. In the rest of this

course, we will use the terms
interchangeably.
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SG 1.18 provides an opportunity to

worl< with distance-time and

speed-time graphs and to see their

relationship to one another.

Transparencies T3 and T4 may be

helpful also.

SG 1.19 to 1.21 are review problems
for this chapter. Some of these will

test how thoroughly you grasp the

language used for describing

straight-line motion.

instantaneous acceleration has the same value, equal to the

average acceleration computed for the whole trip. When speed is

constant, its value can be found from any corresponding Ad and At.

When acceleration is constant, its value can be found from any

corresponding At; and At. (This is useful to remember because

constant acceleration is the kind of motion we shall encounter

most often in the following chapters.)

We now have most of the tools needed to get into some real

physics problems. The first of these is the accelerated motion of

bodies caused by gravitational attraction. It was by studying motion

of falling objects that Galileo, in the early 1600's, was first able to

shed light on the nature of accelerated motion. His work remains

to this day a wonderful example of how scientific theory,

mathematics, and actual measurements can be combined to develop

physical concepts. More than that. Galileo's work was one of the

early and most crucial battlegrounds of the scientific revolution.

The specific ideas he introduced are even now fundamental to the

science of mechanics, the study of bodies in motion.

Q14 What is the average acceleration of an airplane which
goes from to 60 mph in 5 seconds?

Q15 What is your average acceleration if, while walking, you

change your speed from 4.0 miles per hour to 2.0 miles per hour in

an interval of 15 minutes? Is your answer affected by how your

change of speed is distributed over the 15 minutes?
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11 This book is probably different in many ways
from textbooks you have had in other courses.

Therefore we feel it might help to make some
suggestions about how to use it.

1. Do not write in this book unless your
teacher gives you permission to do so. In many
schools the books must be used again next year by
other students. However, if you are fortunate
enough to be in a situation in which the teacher
can permit you to mark in the book, we encourage
you to do so. You will note that there are wide
margins. One of our reasons for leaving that

much space is to enable you to record questions
or statements as they occur to you when you are
studying the material. Mark passages that you do
not understand so that you can seek help from
your teacher.

2. If you may not write in the textbook itself,

try keeping a notebook keyed to the text chapters.
In this study notebook jot down the kinds of
remarks, questions and answers that you would
otherwise write in the textbook as suggested
above. Also, you ought to write down the questions
raised in your mind by the other learning
materials you will use, by the experiments
you do, by demonstrations or other observations,

and by discussions you may have with
fellow students and others with whom you talk

physics. Most students find such an informal
notebook to be enormously useful when studying,
or when seeking help from their teachers (or, for

that matter, from advanced students, parents,

scientists they may know, or anyone else whose
understanding of physics they have confidence in).

3. You will find answers to all of the end-of-

section review questions on page 197. Always try

to answer the questions yourself first and then
check your answers. If your answer agrees with
the one in the book, it is a good sign that you
understand the main ideas in that section—
although it is true that you can sometimes get the

right answer for the wrong reason, and also that

there may sometimes be other answers as good
(or better than!) those given in the book.

4. There are many different kinds of items in

the Study Guide at the end of each chapter.

Brief answers to some of them are given on page
199. It is not intended that you should do every

item. Sometimes we include material in the Study
Guide which we think will especially interest only
some students. Notice also that there are several

kinds of problems. Some are intended to give

practice in the use of a particular concept,
while others are designed to help you bring
together several related concepts. Still other
problems are intended to challenge those students
who particularly like to work with numbers.

5. This text is only one of the learning
materials of the Project Physics course. The
course includes several other materials such as
film loops, programmed instruction booklets, and
transparencies. Use those. Be sure to familiarize

yourself also with the Handbook, which de-

scribes outside activities and laboratory

experiments, and with the Reader, in which we

have collected interesting articles related to

physics. Each of these learning aids makes its

own contribution to an understanding of physics,

and all are designed to be used together.

The Project Physics learning materials particularly

appropriate for Chapter 1 include:

Experiments (in the Handbook)
Naked Eye Astronomy
Regularity and Time
Variations in Data
Measuring Uniform Motion

Activities (in the Handbook)
Using the Electronic Stroboscope

Making Frictionless Pucks

Reader Articles

Motion in Words
Representation of Motion
Motion Dynamics of a Golf Club
Bad Physics in Athletic

Measurements

Transparencies

Analyzing a Stroboscopic Photograph
Stroboscopic Measurements
Graphs of Various Motions
Instantaneous Speed
Instantaneous Rate of Change

In addition the following Project Physics materials

can be used with Unit 1 in general:

Reader Articles

The Value of Science
Close Reasoning
How to Solve It

Four Pieces of Advice
to Young People
On Being the Right Size

The Vision of Our Age
Becoming a Physicist

Chart of the Future

1.2 One type of automobile speedometer is a
small electric generator driven by a flexible cable
run off" the drive shaft. The current produced
increases with the rate at which the generator is

turned by the drive shaft. The speedometer needle
indicates the current. Until the speedometer is

calibrated it cannot indicate actual speeds in

31
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miles per hour. Try answering the questions
below. If you have trouble you may want to try

again after you have studied through Sec. 1.9.

(a) How would you calibrate the speedometer
in a car if the company had forgotten to

do the job?
(b) If you replaced the 24"-diameter rear

wheels with 28"-diameter wheels, what
would your actual speed be if the
speedometer read 50 mph?

(c) Would the speedometer read too high or

too low if you loaded down the rear end of
your car and had the tire pressure too low?

(d) Does the operation of the speedometer
itself affect the motion of the car?

(e) How would you test to see if a bicycle
speedometer affects the speed of a bike?

(f ) Can you invent a speedometer that has no
effect on the motion of the vehicle that
carried it?

1.3 Some practice problems:

SITUATION FIND

a
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l.n Take a look at the graph of y versus x
shown below:

Although in this particular graph the

steepness of the line increases as x increases, the

method presented below would also hold for a
curve of any other shape. One way to indicate the

steepness of the line at a point P is by means of

its "slope." The numerical value of the slope at a

point P is obtained by the following procedure
(diagrammed above): At a very short distance
along the line from point P to either side of it,

mark 2 points, A and B. Choose these points so

close to P that although they also lie on the curve,

the line APB is a straight line as nearly as one
can determine with a ruler. Measure Ay Uhe
change in y) in going from A to B. In this example
y = 0.6. Measure Ax (the corresponding change in

x) in going from A to B. Ax here is 0.3. The slope

of the segment AB is defined as the ratio of Ay

to Ax of the short straight-line-segment APB. By
definition, the slope of the curve at point P is

taken to be equal to the slope of the straight-line-

segment APB.
Aw

slope=—
Ax

In this example,
Ay

slope = -T-^ =

Ax
0.6

0.3

Q. What are the dimensions or units for the

slope?

A. The dimensions are just those of y/x. For
example, if y represents a distance in meters and
X represents a time in seconds, then the units for

slope will be meters per second (or m/sec).

Q. In practice, how close must A and B be to

point P? (Close is not a very precise adjective.

Baltimore is close to Washington if you are flying

over both by jet. If you are walking, it is not close.)

A. Choose A and B near enough to point P so

that a straight line drawn carefully to connect A
and B also goes through point P.

Q. Suppose A and B are so close together that

you cannot adequately read Ax or Ay from your
graph. How would you try to calculate the slope?

A. Extend the straight line AB in both
directions, as shown in the figure, as far as you
wish, and compute its slope. What you are then
doing is putting a tangent line to the curve at the

chosen point between A and B. Notice that the
small triangle is similar to the large triangle, and,
therefore

Ay/Ax = AY/AX

Problem

:

(a) Determine the slope of this graph of

distance versus time (y in meters, t in

seconds) at four different points or

instants, namely when t = 1, 2, 3, and 4
seconds.

(b) Find the instantaneous speed at these 4
points, and plot a graph of speeds vs. time.

1.12 (Answer to question in text, page 23.)

Indeed the prediction based upon the first

hour and a half would be vastly wrong. A
prediction based on an extrapolation from the first

labour's observation neglects all the factors

which limit the maximum height obtainable by
such a cluster of balloons, such as the bursting of
some of the balloons, the change in air pressure
and density with height and many others.

Actually, at the end of 500 minutes the cluster

was not 450,000 feet high but had come down
again, as the distance-time graph for the entire

experiment shows. See top of next page. For
another extrapolation problem, see SG 1.13.
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100 zoo 300 400 500

iime (sec)

1.13 World's 400-nieter swimming records in

minutes and seconds for men and women
(numbers in parentheses are ages):

1926

1936

1946

1956

1966

4:57.0

5:53.2

4:46.4

28.5

46.4
00.1

33.3

47.2
4:11.1

4:38.0

Johnny Weissmuller (18)

Gertrude Ederle (17)

Syozo Makino (17)
Helene Madison (18)

(1936 record unbroken)
R. Hveger (18)

Hironoshin Furuhashi (23)

Lorraine Crapp (18)
Frank Weigand (23)
Martha Randall (18)

By about how many meters would Martha Randall
have beaten Johnny Weissmuller if they had
raced each other? Could you predict the 1976
records for the 400-meter race by extrapolating
the graphs of world's records vs. dates up to the
year 1976?

1.14 How can we justify defining instantaneous
speed as we have on p. 25? How can we be sure

the definition is right?

1.15 Using the graph on p. 20 find the
instantaneous speeds v at several points (0, 10,

20, 30, 40, and 50 sec, and near 0, or at other
points of your choice) by finding the slopes of lines

tangent to the curve at each of those points. Make
a graph of v vs. t. Use your graph to describe her
swim.

1.1 (i Turn back to p. 28. At the bottom of this page
there is a multiple-exposure photograph
of a baseball rolling to the right. The time interval

between successive flashes was 0.20 sec. The
distance between marks on the meter stick was
1 centimeter. You might tabulate your
measurements of the ball's progress between
flashes and construct a distance-time graph. From
the distance-time graph, you can determine the

instantaneous speed at several instants and

construct a speed-time graph. You can check your
results by referring to the answer page at the end
of this unit.

1.17 Careful analysis of a stroboscopic photograph
of a moving object yielded information which
was plotted on the graph below. By placing your
ruler tangent to the curve at appropriate points

estimate the following:

0-

7
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1.21 Discuss the motion of the cat in the

following series of photographs, "Cat in trot

changing to gallop." The numbers on each

photograph indicate the number of inches

measured from the fixed line marked "0." The
time interval between exposures is 0.030 sec.

20 10 20 ^iP 20
I

10
I

20

^^^ ^^^ ^^^
20

1

;
20 30

j
20 30

1

2l) 30^ --fr /^y" 1^^^
50 : 40 50 40

*- vtlStr
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CHAPTER TWO

Free Fall-
Galileo Describes Motion

2.1 The Aristotelian theory of motion

In this chapter we shall follow the development of an important

piece of basic research: Galileo's study of freely falling bodies.

While the physical problem of free fall is interesting in itself, our

emphasis will be on the way Galileo, one of the first modern

scientists, presented his argument. His view of the world, his way

of thinking, his use of mathematics, and his reliance upon

experimental tests set the style for modem science. These aspects of

his work, therefore, are as important to us as the actual results of his

investigation.

To understand the nature of Galileo's work and to appreciate its

significance, we must first examine the previous system of

physical thought that it eventually replaced. In medieval physical

science, as Galileo learned it at the University of Pisa, a sharp

distinction was thought to exist between the objects on the earth

and those in the sky. All terrestrial matter, the matter within our

physical reach, was believed to contain a mixture of four "elements"

-Earth, Water, Air, and Fire. These elements were not thought of

as identical with the natural materials for which they were named.

Ordinary water, for example, was thought to be a mixture of all

four elements, but mostly the element Water. Each of the four

elements was thought to have a natural place in the terrestrial

region. The highest place was allotted to Fire. Beneath Fire was Air,

then Water, and finally, in the lowest position, Earth. Each was

thought to seek its own place. Thus Fire, if displaced below its

natural position, would tend to rise through Air. Similarly, Air would

tend to rise through Water, whereas Earth would tend to fall

through both Air and Water. The movement of any real object

depended on its particular mixture of these four elements, and on

where it was in relation to the natural places of these elements.

SG 2.1

A sketch of a medieval world-system.
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A good deal of common-sense
experience supports this natural-

place view. See SG 2.2

From quinta essentia, meaning
fifth essence. In earlier Greek

writings the term for it was aether

(also written ether).

The painting entitled "School of

Athens, " was done by Raphael in the

beginning of the sixteenth century.

It reflects a central aspect of the

Renaissance, the rebirth of interest in

classical Greek culture. The central

figures are Plato (on the left, pointing

to the heavens) and Aristotle (pointing

to the ground).

When water boiled, for example, the element Water would be joined

by the element Fire, whose higher natural place would cause the

mixture to rise as steam. A stone, on the other hand, being

composed primarily of the element Earth, would fall when released

and would pass through Fire, Air, and Water until it came to rest on

the ground, its natural place.

The medieval thinkers also believed that the stars, planets, and

other celestial bodies differed in composition and behavior from

objects on or near the earth. The celestial bodies were believed to

contain none of the four ordinary elements, but instead to consist

solely of a fifth element, the quintessence. The natural motion of

objects composed of this element was neither rising nor falling, but

endless revolution in circles around the center of the universe. That

center was considered to be identical with the center of the earth.

Heavenly bodies, although moving, were at all times in their

natural places. Thus heavenly bodies were altogether different from

terrestrial objects, which displayed natural motion only as they

returned to their natural places from which they had been displaced.

This theory, so widely held in Galileo's time, had originated

almost 2000 years before, in the fourth century B.C. We find it stated

clearly in the writings of the Greek philosopher Aristotle. This

physical science, built on order, class, place, and purpose, fits well

many facts of everyday observation. It seemed particularly plausible

in societies like those in which Aristotle and Galileo lived, where

rank and order were dominant in human experience. Moreover,

these conceptions of matter and motion were part of an all-

embracing universal scheme or "cosmology." In his cosmology

Aristotle sought to relate ideas which are nowadays discussed

separately under such headings as science, poetry, politics, ethics,

and theology.

Not very much is known of Aristotle's physical appearance or

life. It is thought that he was bom in 384 B.C. in the Greek

province of Macedonia. His father was the physician to the King of

Macedonia, and so Aristotle's early childhood was spent in an

environment of court life. He completed his education in Athens

and later returned to Macedonia to become the private tutor to

Alexander the Great. In 335 B.C., Aristotle came back to Athens

and founded the Lyceum, a school and center of research.
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After the decline of the ancient Greek civilization, the writings

of Aristotle remained virtually unknown in Western Europe for

1500 years. They were rediscovered in the thirteenth century A.D.

and were later incorporated into the works of Christian scholars and

theologians. Aristotle became such a dominant influence in the late

Middle Ages that he was referred to simply as "The Philosopher."

The works of Aristotle make up almost an encyclopedia of

ancient Greek thought. Some of it was summarized from the work
of others, but much of it seems to have been created by Aristotle

himself. Today it is hard to believe that one man could have been

so well informed on such different subjects as logic, philosophy,

theology, physics, astronomy, biology, psychology, politics, and

literature. Some scholars doubt that it was all the work of one man.
Unfortunately, Aristotle's physical theories had serious

limitations. (This does not, of course, detract from his great

achievements in other fields.) According to Aristotle, the fall of a

heavy object toward the center of the earth is an example of

"natural" motion. He evidently thought that any object, after

release, quickly achieves some final speed of fall at which it

continues to move to the end of its path. What factors determine the

final speed of a falling object? It is a common observation that a

rock falls faster than a leaf. Therefore, he reasoned, weight is a

factor that governs the speed of fall. This fitted in well with his idea

that the cause of weight was the presence of the element Earth,

whose natural tendency was to the center of the earth. Thus a

heavier object, having a greater content of Earth, has a greater

tendency to fall to its natural place, and hence develops a greater

speed in falling.

The same object falls more slowly in water than in air, so it

seemed to Aristotle that the resistance of the medium must also be

a factor. Other factors, such as the color or temperature of the

falling object, could conceivably affect the rate of fall, but

Aristotle: rate of fall is proportional Aristotle decided that their influence could not be significant. He
to weight divided by resistance. concluded that the rate of fall must increase in proportion to the

weight of the object and decrease in proportion to the resisting

force of the medium. The actual rate of fall in any particular case

would be found by dividing the weight by the resistance.

Aristotle also discussed "violent" motion — that is. any motion

SG 2.3 of ^n object other than going freely toward its "natural place."

Such motion, he argued, must always be caused by a force, and the

speed of the motion will increase as the force increases. When the

force is removed, the motion must stop. This theory agrees with

our common experience, say in pushing a chair or a table across the

floor. It doesn't work quite so well for objects thrown through the

air, since such projectiles keep moving for a while even after we
have stopped exerting a force on them. To account for this kind of

motion, Aristotle proposed that the air itself somehow exerts a force

that keeps the object moving.

Later scientists proposed some modifications in Aristotle's
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theory of motion. For example, in the fifth century A.D. John

Philoponus of Alexandria argued that the speed of an object in

natural motion should be found by subtracting the resistance of

the medium from the weight of the object, rather than dividing by

the resistance. Philoponus claimed that his experimental work

supported his theory, though he did not report the details; he simply

said that he dropped two weights, one of which was twice as heavy

as the other, and observed that the heavy one did not reach the

ground in half the time taken by the light one.

There were still other difficulties with Aristotle's theory of

motion. However, the realization that his teachings concerning

motion had limitations did little to modify the importance given

to them in the universities of France and Italy during the fifteenth

and sixteenth centuries. Aristotle's theory of motion did, after all,

fit much of ordinary experience in a general -if qualitative- way.

Besides, the study of motion through space was of major interest to

only a few scholars, just as it had been only a very small part of

Aristotle's own work.

Two other influences stood in the way of radical changes in

the theory of motion. First, Aristotle believed that mathematics was

of little value in describing terrestrial phenomena. Second, he put

great emphasis upon direct, qualitative observation as the basis for

theorizing. Simple qualitative observation was very successful in

Aristotle's biological studies. But as it turned out, real progress in

physics began only when the value of mathematical prediction and

detailed measurement was recognized.

A number of scholars in the fifteenth and sixteenth centuries

had a part in this change to a new way of doing science. But of

all these, Galileo was by far the most eminent and successful. He

showed how to describe mathematically the motions of simple,

ordinary objects -falling stones and balls rolling on an incline. This

work not only paved the way for other men to describe and explain

the motions of everything from pebbles to planets, it also began an

intellectual revolution which led to what we now consider modem
science.

John Philoponus: rate of fall is

proportional to weight minus

resistance.

SG2.4

Qualitative refers to quality

-

the sort of thing that happens.

Quantitative refers to quantity

-

the measurement or prediction of

numerical values. This distinction

will appear often in the course.

Q1 Describe two ways in which, according to the Aristotelian

view, terrestrial and celestial bodies differ from each other.

Q2 Which of these statements would be accepted in the

fifteenth and sixteenth centuries by persons who believed in the

Aristotelian system of thought?

(a) Ideas of motion should fit in with poetry, politics, theology

and other aspects of human thought and activity.

(b) Heavy objects fall faster than light ones.

(c) Except for motion toward their natural location, objects will

not move unless acted on violently by a force.

(d) Mathematics and precise measurement are especially

important in developing a useful theory of motion.



1500
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2.2 Galileo and his times

Galileo Galilei was bom in Pisa in 1564 -the year of

Michelangelo's death and Shakespeare's birth. Galileo was the son

of a nobleman from Florence, and he acquired his father's active

interest in poetry, music, and the classics. His scientific inventive-

ness also began to show itself early. For example, as a young

medical student at the University of Pisa, he constructed a simple

pendulum-type timing device for the accurate measurement of

pulse rates.

Lured from medicine to physical science by reading Euclid and

Archimedes, Galileo quickly became known for his unusual ability

in science. At the age of 26, he was appointed Professor of

Mathematics at Pisa. There he showed an independence of spirit

unmellowed by tact or patience. Soon after his appointment, he

began to challenge the opinions of his older colleagues, many of

whom became his enemies. He left Pisa before his term was

completed, apparently forced out by financial difficulties and by his

enraged opponents. Later, at Padua in the Republic of Venice, he

began his work in astronomy. His support of the sun-centered theory

of the universe eventually brought him additional enemies, but it

also brought him immortal fame. We shall deal with that part of

his work in Unit 2.

Drawn back to his native province of Tuscany in 1610 by a

generous offer of the Grand Duke, Galileo became Court

Mathematician and Philosopher, a title which he chose himself.

From then until his death at 78, despite illness, family troubles,

occasional brushes with poverty, and quarrels with his enemies, he

continued his research, teaching and writing.

SWITZEKLANB AVSTRIfi,

hlUH<ffif(Y
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Italy about 1600

2.3 Galileo's Two New Sciences

Galileo's early writings on mechanics (the study of the

behavior of matter under the influence of forces) were in the

tradition of the standard medieval theories of physics, although he

was aware of some of the shortcomings of those theories. During

his mature years his chief interest was in astronomy. However,

when his important astronomical book. Dialogue on the Two Great

World Systems (1632), was condemned by the Roman Catholic

Inquisition and he was forbidden to teach the "new" astronomy,

Galileo decided to concentrate again on mechanics. This work led to

his book Discourses and Mathematical Demonstrations Concerning

Two New Sciences Pertaining to Mechanics and Local Motion

(1638), usually referred to as Two New Sciences. This treatise

signaled the beginning of the end, not only of the medieval theory

of mechanics, but also of the entire Aristotehan cosmology which it

supported.

Galileo was old, sick, and nearly blind at the time he wrote

Two New Sciences. Yet, as in all his writings, his style is spritely

Title page of Dialogue on Two Great

World Systems (1632).
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Title page of Discourses and Mathe-
matical Demonstrations Concerning
Two New Sciences Pertaining to Me-
chanics and Local Motion (1638).
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A page from the original Italian edition

of Two New Sciences, showing state-

ments that are translated in this text.

and delightful. He used the dialogue form to allow a lively

conversation among three 'speakers": Simplicio, who competently

represents the Aristotelian view; Salviati, who presents the new
views of Galileo; and Sagredo, the uncommitted man of good will

and open mind, eager to learn. Eventually, of course, Salviati leads

his companions to Galileo's views. Let us listen to Galileo's three

speakers as they discuss the problem of free fall:

Salviati: I greatly doubt that Aristotle ever tested by
experiment whether it is true that two stones, one
weighing ten times as much as the other, if allowed to

fall at the same instant from a height of, say, 100 cubits,

would so differ in speed that when the heavier had
reached the ground, the other would not have fallen

more than 10 cubits. [A "cubit" is equivalent to about 20
inches.]

Simplicio: His language would indicate that he had tried

the experiment, because he says: We see the heavier;

now the word see shows that he had made the

experiment.

Sagredo: But, I, Simplicio, who have made the test can
assure you that a cannon ball weighing one or two
hundred pounds, or even more, will not reach the ground
by as much as a span [hand-breadth] ahead of a musket
ball weighing only half a pound, provided both are

dropped from a height of 200 cubits.

Here, perhaps, one might have expected to find a detailed report

on an experiment done by Galileo or one of his colleagues. Instead,

Galileo uses a "thought experiment" -an analysis of what would
happen in an imaginary experiment -to cast grave doubt on
Aristotle's theory of motion:

Salviati: But, even without further experiment, it is

possible to prove clearly, by means of a short and
conclusive argument, that a heavier body does not move
more rapidly than a lighter one provided both bodies are

of the same material and in short such as those mentioned
by Aristotle. But tell me, Simplicio, whether you admit

'

that each falling body acquires a definite speed fixed by
nature, a velocity which cannot be increased or

diminished except by the use of violence or resistance?

Simplicio: There can be no doubt but that one and the
same body moving in a single medium has a fixed velocity

which is determined by nature and which cannot be
increased except by the addition of impetus or diminished
except by some resistance which retards it.

Salviati: If then we take two bodies whose natural speeds
are different, it is clear that on uniting the two. the more
rapid one will be partly retarded by the slower, and the

slower will be somewhat hastened by the swifter. Do you
not agree with me in this opinion?
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Simplicio: You are unquestionably right.

Salviati: But if this is true, and if a large stone moves

with a speed of, say, eight, while a smaller moves with a

speed of four, then when they are united, the system will

move with a speed less than eight; but the two stones

when tied together make a stone larger than that which

before moved with a speed of eight. Hence the heavier

body moves with less speed than the lighter one; an effect

which is contrary to your supposition. Thus you see how,

from your assumption that the heavier body moves more

rapidly than the lighter one, I infer that the heavier body

moves more slowly.

Simplicio: I am all at sea.

beyond my comprehension.

. This is, indeed, quite SG 2.6

Simplicio retreats in confusion when Salviati shows that the

Aristotelian theory of fall is self-contradictory. But while Simplicio

cannot refute Galileo's logic, his own eyes tell him that a heavy

object does fall faster than a light object:

Simplicio: Your discussion is really admirable; yet I do

not find it easy to believe that a birdshot falls as swiftly as

a cannon ball.

Salviati: Why not say a grain of sand as rapidly as a

grindstone? But, Simplicio, I trust you will not follow the

example of many others who divert the discussion from

its main intent and fasten upon some statement of mine

that lacks a hairsbreadth of the truth, and under this hair

hide the fault of another that is as big as a ship's cable.

Aristotle says that "an iron ball of one hundred pounds

falling from a height of 100 cubits reaches the ground

before a one-pound ball has fallen a single cubit." I say

that they arrive at the same time. You find, on making

the experiment, that the larger outstrips the smaller by

two fingerbreadths. . . . Now you would not hide behind

these two fingers the 99 cubits of Aristotle, nor would you

mention my small error and at the same time pass over

in silence his very large one.

This is a clear statement of an important principle: even in

careful observation of a common natural event, the observer's

attention may be distracted by what is really a minor effect, with the

result that he fails to see a much more significant regularity.

Different bodies falling in air from the same height, it is true, do

not reach the ground at exactly the same time. However, the

important point is not that the times of arrival are slightly different,

but that they are very nearly the same\ Galileo regarded the

failure of the bodies to arrive at exactly the same time as a minor

effect which could be explained by a deeper understanding of motion

in free fall. Galileo himself correctly attributed the observed results

to differences in the effect of the resistance of the air on bodies of

A stroboscopic photograph of two

freely falling balls of unequal weight.

The balls were released simultane-

ously. The time interval between

images is 1/30 sec.
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The phrase "free fall" as now used

in physics generally refers to fall

when the only force acting is gravity;

that is, when air friction is

negligible.

different size and weight. A few years after Galileo's death, the

invention of the vacuum pump allowed others to show that Galileo

was right. Once the effect of air resistance was eliminated — for

example, when a feather and a heavy gold coin were dropped from

the same height at the same time inside an evacuated container—

the different bodies fell at the same rate and struck the bottom of

the container at the same instant. Long after Galileo, it became
possible to formulate the laws of air resistance, so one could

understand exactly why and by how much a light object falls

behind a heavier one.

Learning what to ignore has been almost as important in the

growth of science as learning what to take into account. In the case

of falling bodies, Galileo's explanation depended on his being able

to imagine how an object would fall if there were no air resistance.

This may be easy for us who know of vacuum pumps, but in

Galileo's time it was an explanation that was difficult to accept. For

most people, as for Aristotle, common sense said that air resistance

is always present in nature. Thus a feather and a coin could never

fall at the same rate. Why should one talk about hypothetical

motions in a vacuum, when a vacuum could not be shown to exist?

Physics, said Aristotle and his followers, should deal with the world

all around us that we can readily observe, not with some imaginary

world which might never be found.

Aristotle's physics had dominated Europe since the thirteenth

century, mainly because many intelligent scientists were convinced

that it offered the most rational method for describing natural

phenomena. To overthrow such a firmly established doctrine

required much more than writing reasonable arguments, or simply

dropping heavy and light objects from a tall building, as Galileo is

often said to have done (but probably did not) at the Leaning Tower
of Pisa. It demanded Galileo's unusual combination of mathematical

talent, experimental skill, literary style, and tireless campaigning
to discredit Aristotle's theories and to begin the era of modem
physics.

A chief reason for Galileo's success was that he exposed the

Aristotelian theory at its weakest point: he showed that physics can

deal better with the world around us if we realize that the world of

common observation is not the simple starting point the

Aristotelians thought it to be. On the contrary, the world as we
ordinarily observe it is usually quite complex. For example, in

observing the fall of bodies you see the effects of both the law of

fall and the law of resistance on objects moving through air. To
understand what you see, you should start from a simple case (such

as fall without resistance), even if this has to be "seen" only in your

mind or by a mathematical model. Or you may turn to an

experiment in the laboratory, where the usual conditions of

observation can be changed. Only after you understand each of the

different effects by itself should you go back to face the complexities

of the ordinary case.
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Q3 If a nail and a toothpick are simultaneously dropped from

the same height, they do not reach the ground at exactly the same
instant. (Try it with these or similar objects.) How would Aristotelian

theory explain this? What was Galileo's explanation?

2.4 Why study the motion of freely falling bodies?

In Galileo's attack on the Aristotelian cosmology, few details

were actually new. However, his approach and his findings together

provided the first coherent presentation of the science of motion.

Galileo realized that, out of all the observable motions in nature,

free-fall motion is the key to the understanding of all motions of all

bodies. To decide which is the key phenomenon to study is the real

gift of genius. But Galileo is also in many ways typical of scientists

in general. His approach to the problem of motion makes a good

"case" to be used in the following sections as an opportunity to

discuss strategies of inquiry that are still used in science.

These are some of the reasons why we study in detail Galileo's

attack on the problem of free fall. Galileo himself recognized

another reason — that the study of motion which he proposed was
only the starting phase of a mighty field of discovery:

My purpose is to set forth a very new science dealing

with a very ancient subject. There is, in nature, perhaps

nothing older than motion, concerning which the books

written by philosophers are neither few nor small;

nevertheless, I have discovered some properties of it that

are worth knowing that have not hitherto been either

observed or demonstrated. Some superficial observations

have been made, as for instance, that the natural motion

of a heavy falling body is continuously accelerated; but to

just what extent this acceleration occurs has not yet

been announced. . . .

Other facts, not few in number or less worth knowing
I have succeeded in proving; and, what I consider more
important, there have been opened up to this vast and
most excellent science, of which my work is merely the

beginning, ways and means by which other minds more
acute than mine will explore its remote comers.

2.5 Galileo chooses a definition of uniform acceleration

Two New Sciences deals directly with the motion of freely

falling bodies. In studying the following paragraphs from it, we
must be alert to Galileo's overall plan. First, he discusses the

mathematics of a possible, simple type of motion (which we now
call uniform acceleration or constant acceleration). Then he

proposes that heavy bodies actually fall in just that way. N'ext, on

the basis of this proposal, he derives a prediction about balls rolling

down an incline. Finally, he shows that experiments bear out these

predictions.

By Aristotelian cosmology is meant
the whole interlocking set of ideas

about the structure of the physical

universe and the behavior of all the

objects in it. This was briefly

mentioned in Sec. 2.1. Other aspects

of it will be presented in Unit 2.

In fact, more than mere "superficial

observations" had been made long

before Galileo set to work. For

example, Nicolas Oresme and others

at the University of Paris had by

1330 discovered the same distance-

time relationship for falling bodies

that Galileo was to announce in

the Two New Sciences. Some of

their reasoning is discussed in

SG 2.7.

It will help you to have a plan clearly

in mind as you progress through the

rest of this chapter. As you study

each succeeding section, ask

yourself whether Galileo is

— presenting a definition

— stating an assumption (or

hypothesis)

-deducing predictions from his

hypothesis

-experimentally testing the

predictions
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This is sometimes l<nown as the

Rule of Parsimony: unless forced to

do otherwise, assume the simplest

possible hypothesis to explain

natural events.

Rephrasing Galileo and using our
symbols: for uniform speed v, the

ratio Ad/Af is constant. Similarly,

recall that for accelerated motion,

as we saw in Chapter 1, we defined

uniform acceleration as

a = -rr = constant
Af

Other ways of expressing this

relationship are discussed in SG 2.8

and 2.9.

The first part of Galileo's presentation is a thorough discussion

of motion with uniform speed, similar to our discussion in Chapter 1.

That leads to the second part, where we find Salviati saying:

We pass now to . . . naturally accelerated motion, such

as that generally experienced by heavy falling bodies.

... in the investigation of naturally accelerated

motion we were led, by hand as it were, in following the

habit and custom of nature herself, in all her various

other processes, to employ only those means which are

most common, simple and easy . . .

When, therefore, I observe a stone initially at rest

falling from an elevated position and continually

acquiring new increments of speed, why should I not

believe that such increases take place in a manner which
is exceedingly simple and rather obvious to everybody? If

now we examine the matter carefully we find no addition

or increment more simple than that which repeats itself

always in the same manner. This we readily understand
when we consider the intimate relationship between
time and motion; for just as uniformity of motion is

defined by and conceived through equal times and equal

spaces (thus we call a motion uniform when equal

distances are traversed during equal time-intervals), so

also we may, in a similar manner, through equal time-

intervals, conceive additions of speed as taking place

without complication. . . .

Hence the definition of motion which we are about to

discuss may be stated as follows:

A motion is said to be uniformly accelerated when,
starting from rest, it acquires during equal time-

intervals, equal increments of speed.

Sagredo: Although I can offer no rational objection to

this or indeed to any other definition devised by any
author whosoever, since all definitions are arbitrary, I

may nevertheless without defense be allowed to doubt
whether such a definition as the foregoing, established in

an abstract manner, corresponds to and describes that

kind of accelerated motion which we meet in nature in

the case of freely falling bodies ....

Here Sagredo questions whether Galileo's arbitrary definition of

acceleration actually corresponds to the way real objects fall. Is

acceleration, as defined, really useful in describing their observed

change of motion? Sagredo wonders about a further point, so far

not raised by Galileo:

From these considerations perhaps we can obtain an
answer to a question that has been argued by philosophers,

namely, what is the cause of the acceleration of the
natural motion of heavy bodies ....

But Salviati. the spokesman of Galileo, rejects the ancient

tendency to investigate phenomena by looking first for their causes.

It is premature, he declares, to ask about the cause of any motion
until an accurate description of it exists:
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Salviati: The present does not seem to be the proper

time to investigate the cause of the acceleration of

natural motion concerning which various opinions have
been expressed by philosophers, some explaining it by
attraction to the center, others by repulsion between the

very small parts of the body, while still others attribute it

to a certain stress in the surrounding medium which
closes in behind the falling body and drives it from one
of its positions to another. Now, all these fantasies, and
others, too, ought to be examined; but it is not really worth
while. At present it is the purpose of our Author merely

to investigate and to demonstrate some of the properties

of accelerated motion, whatever the cause of this

acceleration may be.

Galileo has now introduced two distinct propositions: 1)

"uniform" acceleration means equal speed increments Ai; in equal

time intervals At; and 2) things actually fall that way. Let us first

look more closely at Galileo's proposed definition.

Is this the only possible way of defining uniform acceleration?

Not at all! Galileo says that at one time he thought a more useful

definition would be to use the term uniform acceleration for motion

in which speed increased in proportion to the distance traveled. Ad,

rather than to the time At. Notice that both definitions met Galileo's

requirement of simplicity. (In fact, both definitions had been

discussed since early in the fourteenth century.) Furthermore, both

definitions seem to match our common sense idea of acceleration

about equally well. When we say that a body is "accelerating," we
seem to imply "the farther it goes, the faster it goes," and also "the

longer time it goes, the faster it goes." How should we choose

between these two ways of putting it? Which definition will be more
useful in the description of nature?

This is where experimentation becomes important. Galileo chose

to define uniform acceleration as the motion in which the change
of speed Av is proportional to elapsed time At, and then demonstrate

that this matches the behavior of real moving bodies, in laboratory

situations as well as in ordinary, "un-arranged," experience. As you

will see later, he made the right choice. But he was not able to

prove his case by direct or obvious means, as you shall also see.

Q4 Describe uniform speed without referring to dry ice pucks

and strobe photography or to any particular object or technique of

measurement.
Q5 Express Galileo's definition of uniformly accelerated

motion in words and in the form of an equation.

Q6 What two conditions did Galileo want his definition of

uniform acceleration to meet?

Here Salviati refers to the

Aristotelian assumption that air

propels an object moving through it

(see Sec. 2.1).

2.6 Galileo cannot test his hypothesis directly

After Galileo defined uniform acceleration so that it would

match the way he believed freely falling objects behaved, his next
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task was to devise a way of showing that the definition for uniform

acceleration was useful for describing observed motions.

Suppose we drop a heavy object from several different heights —

say, from windows on different floors of a building. We want to

check whether the final speed increases in proportion to the time it

The symbol a: means "directly takes to fall — that is, whether At; cc At, or what amounts to the same
proportional to." thing, whether Az;/At is constant. In each trial we must observe the

time of fall and the speed just before the object strikes the ground.

But there's the rub. Practically, even today, it would be very

SG 2.10 difficult to make a direct measurement of the speed reached by an

object just before striking the ground. Furthermore, the entire

time intervals of fall (less than 3 seconds even from the top of a

10-story building) are shorter than Galileo could have measured
accurately with the clocks available to him. So a direct test of

whether Aiy/At is constant was not possible for Galileo.

Q7 Which of these are valid reasons why Galileo could not test

directly whether the final speed reached by a freely falling object is

proportional to the time of fall?

(a) His definition was wrong.

(b) He could not measure the speed attained by an object just

before it hit the ground.

(c) There existed no instruments for measuring time.

(d) He could not measure ordinary distances accurately enough.

(e) Experimentation was not permitted in Italy.

2.7 Looking for logical consequences of Galileo's hypothesis

Galileo's inability to make direct measurements to test his

hypothesis -that Av/At is constant in free fall -did not stop him. He
turned to mathematics to derive from this hypothesis some other

relationship that could be checked by measurement with

equipment available to him. We shall see that in a few steps he
came much closer to a relationship he could use to check his

hypothesis.

Large distances of fall and large time intervals for fall are, of

course, easier to measure than the small values of Ad and At that

would be necessary to find the final speed just before the falling

body hits. So Galileo tried to find, by reasoning, how total fall

distance ought to increase with total fall time if objects did fall with

uniform acceleration. You already know how to find total distance

from total time for motion at constant speed. Now we will derive a

new equation that relates total fall distance to total time of fall for

motion at constant acceleration. In this we shall not be following

Galileo's own derivation exactly, but the results will be the same.

First, we recall the definition of average speed as the distance

traversed Ad divided by the elapsed time At

:

Ad
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This is a general definition and can be used to compute the average

speed from measurement of Ad and At, no matter whether Ad and

At are small or large. We can rewrite the equation as

Ad = Vav X At

This equation, still being really a definition of !;„,., is always true.

For the special case of motion at a constant speed v, then Vav = v

and therefore, Ad = i; x At. When the value of v is known (as, for

example, when a car is driven with a steady reading of 60 mph on

the speedometer), this equation can be used to figure out how far

(Ad) the car would go in any given time interval (At). But in

uniformly accelerated motion the speed is continually changing — so

what value can we use for Vav"^

The answer involves just a bit of algebra and some plausible

assumptions. Galileo reasoned (as others had before) that for any

quantity that changes uniformly, the average value is just halfway

between the beginning value and the final value. For uniformly

accelerated motion starting from rest (where t^initiai
^ and ending

at a speed Vanau this rule tells us that the average speed is halfway More generally the average speed

between and rnnai - that is, t;„,. = y t'nnai. If this reasoning is would be

correct, it follows that w ^ yjninai + Vfinai
" av 2

Ad = Jl^final X ^t

for uniformly accelerated motion starting from rest. SG 2.11 and 2.12

This relation could not be directly tested either, because the last

equation still contains a speed factor. What we are trying to arrive

at is an equation relating total distance and total time, without any

need to measure speed.

Now we look at Galileo's definition of uniform acceleration:

a = Az;/At. We can rewrite this relationship in the form Av= aX At.

The value of Ai; is just L'finai
-

^^initiai; and i^initiai = for motion that

begins from rest. Therefore we can write

Az;= a X At

l^final
~ ^initial — « X At

X^final ^ a X At

Now we can substitute this expression for Vami into the equation

for Ad above. Thus if the motion starts from rest, and if it is

uniformly accelerated (and if the average rule is correct, as we have

assumed) we can write

Ad = iVfinal X ^t

= ^(a X At) X At

Or. regrouping terms,

Ad = ja(My

This is the kind of relation Galileo was seeking -it relates total

distance Ad to total time At, without involving any speed term.

Before finishing, though, we will simplify the symbols in the

equation to make it easier to use. If we measure distance and time

from the position and the instant that the motion starts (dmitiai ^
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SG 2.13 and 2.14

SG 2.15

Because we will use the expression

t'fitu./f"fin;,i many times, it is simpler

to write it as d/r--it is understood

that d and f mean total distance and
time interval of motion, starting

from rest.

and tinitiai
= 0), then the intervals Ad and At have the values given

by dfinai and tfinai- The equation above can therefore be written more

simply as

"final ~ 2"^^ final

Remember that this is a very specialized equation— it gives the

total distance fallen as a function of total time of fall but only if the

motion starts from rest (t'lniuai ^ 0), if the acceleration is uniform

(a = constant), and if time and distance are measured from the

start (tinitiai = and di„i,iai = 0).

Galileo reached the same conclusion, though he did not use

algebraic forms to express it. Since we are dealing only with the

special situation in which acceleration a is constant, the quantity

ja is constant also, and we can cast the conclusion in the form of

a proportion: in uniform acceleration from rest, the distance

traveled is proportional to the square of the time elapsed, or

"final °~ t final

For example, if a uniformly accelerating car starting from rest

moves 10 m in the first second, in twice the time it would move
four times as far, or 40 m in the first two seconds. In the first 3

seconds it would move 9 times as far— or 90 m.

Another way to express this relation is to say that the ratio

cifinai to t^finai has a constant value, that is,

^^= constant
t final

Thus a logical result of Galileo's original proposal for defining

uniform acceleration can be expressed as follows: if an object

accelerates uniformly from rest, the ratio dlt' should be constant.

Conversely, any motion for which this ratio of d and t'^ is found to

be constant for different distances and their corresponding times,

we may well suppose to be a case of motion with uniform,

acceleration as defined by Galileo.

Of course, we still must test the hypothesis that freely falling

bodies actually do exhibit just such motion. Recall that earlier we
confessed we were unable to test directly whether Av/At has a

constant value. Galileo showed that a logical consequence of a

constant value of Av/At would be a constant ratio of dfi„a\ to t-fmai-

The values for total time and distance of fall would be easier to

measure than the values of short intervals Ad and At needed to find

All. However, measuring the time of fall still remained a difficult

task in Galileo's time. So, instead of a direct test of his hypothesis,

Galileo went one step further and deduced an ingenious, indirect

test.

Q8 Why was the equation d = ^at- more promising for Galileo

than a = Ai^/At in testing his hypothesis?

Q9 If you simply combined the two equations Ad = i;At and
Ai; = aAt it looks as if one might get the result Ad = aAt-. What is

wrong with doing this?
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2.8 Galileo turns to an Indirect test

53

Realizing that a direct quantitative test with a rapidly and
freely falling body would not be accurate, Galileo proposed to make
the test on an object that was moving less rapidly. He proposed a

new hypothesis: if a freely falling body has an acceleration that is

constant, then a perfectly round ball rolling down a perfectly

smooth inclined plane will also have a constant, though smaller,

acceleration. Thus Galileo claimed that if dit- is constant for a body

falling freely from rest, this ratio will also be constant, although

smaller, for a ball released from rest and rolling different distances

down a straight inclined plane.

Here is how Salviati described Galileo's own experimental test

in Two New Sciences:

A piece of wooden moulding or scantling, about 12 cubits

long, half a cubit wide, and three finger-breadths thick,

was taken; on its edge was cut a channel a little more
than one finger in breadth; having made this groove very

straight, smooth, and polished, and having lined it with
parchment, also as smooth and polished as possible, we
rolled along it a hard, smooth, and very round bronze ball.

Having placed this board in a sloping position, by lifting

one end some one or two cubits above the other, we rolled

the ball, as I was just saying, along the channel, noting,

in a manner presently to be described, the time required

to make the descent. We repeated this experiment more
than once in order to measure the time with an accuracy

such that the deviation between two observations never

exceeded one-tenth of a pulse beat. Having performed
this operation and having assured ourselves of its

reliability, we now rolled the ball only one-quarter of

the length of the channel; and having measured the time

of its descent, we found it precisely one-half of the

former. Next we tried other distances, comparing the

time for the whole length with that for the half, or with

that for two-thirds, or three-fourths, or indeed for any
fraction; in such experiments, repeated a full hundred
times, we always found that the spaces traversed were to

each other as the squares of the times, and this was true

for all inclinations of the . . . channel along which we
rolled the ball ....

Note the careful description of the

experimental apparatus. Today an

experimenter would add to his

verbal description any detailed

drawings, schematic layouts or

photographs needed to make it

possible for other competent
scientists to duplicate the

experiment.

This picture painted in 1841 by G.

Bezzuoii, attempts to reconstruct an

experiment Galileo is alleged to have

made during his time as lecturer at

Pisa. Off to the left and right are men
of ill will: the blase Prince Giovanni

de Medici (Galileo had shown a dredg-

ing-machine invented by the prince to

be unusable) and Galileo's scientific

opponents. These were leading men
of the universities; they are shown
here bending over a book of Aristotle,

where it is written in black and white

that bodies of unequal weight fall

with different speeds. Galileo, the

tallest figure left of center in the

picture, is surrounded by a group of

students and followers.

^«;
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For each angle, the acceleration is

found to be a constant.

Galileo's technique for measuring

time is discussed in the next section.

SG 2.16

Spheres rolling down planes of in-

creasingly steep inclination. At 90° the

inclined plane situation matches free

fall. (Actually, the ball will start slip-

ping instead of rolling long before the

angle has become that large.)

Galileo has packed a great deal of information into these lines.

He describes his procedures and apparatus clearly enough to allow

other investigators to repeat the experiment for themselves if they

wished. Also, he gives an indication that consistent measurements
can be made, and he restates the two chief experimental results

which he believes support his free-fall hypothesis. Let us examine
the results carefully.

(a) First, he found that when a ball rolled down an incline at a

fixed angle to the horizontal, the ratio of the distance covered to the

square of the corresponding time was always the same. For

example, if d^, d^, and d^ represent distances measured from the

same starting point on the inclined plane, and t,, tj, and tg the

corresponding times taken to roll down these distances, then

d^

In general, for each angle of incline, the value of dlt^ was
constant. Galileo did not present his experimental data in the full

detail which has become the custom since. However, his experiment

has been repeated by others, and they have obtained results which
parallel his (see data in SG 2.16). This is an experiment which you

can perform yourself with the help of one or two other students.

(The photographs on the next page show students in the Project

Physics course doing this experiment and also show some of their

results.)

(b) Galileo's second experimental finding relates to what happens
when the angle of inclination of the plane is changed. He found

that whenever the angle changed, the ratio dit- took on a new value,

although for any one angle it remained constant regardless of

distance of roll. GalUeo confirmed this by repeating the experiment

"a full hundred times" for each of many different angles. After

finding that the ratio d/t- was constant for each angle of inclination

for which measurements of t could be carried out conveniently,

Galileo was willing to extrapolate. He concluded that the ratio dlt^

is a constant even for larger angles, where the motion of the ball is

too fast for accurate measurements of t to be made. Finally, Galileo

reasoned that in the particular case when the angle of inclination

became 90°, the ball would move straight down — and so becomes
the case of a falling object. By his reasoning, d/t- would still be

some constant in that extreme case (even though he couldn't say

what the numerical value was.)

Because Galileo had deduced that a constant value of dIt- was
characteristic of uniform acceleration, he could conclude at last

that free fall was uniformly accelerated motion.

Q10 In testing his hypothesis that free fall motion is uniformly

accelerated, Galileo made the unproved assumption that (check one
or more):

(a) dlt^ is constant.
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For problems that will check and
extend your understanding of

uniform acceleration. See SG 2.17

through 2.24.

(b) the acceleration has the same value for all angles of

inclination of the plane.

(c) the results for small angles of inclination can be

extrapolated to large angles.

(d) the speed of the ball is constant as it rolls.

(e) the acceleration of the rolling ball is constant if the

acceleration in free fall is constant, though the value of the

two constants is not the same.

Q11 Which of the following statements best summarizes the

work of Galileo on free fall when air friction is negligible? (Be

prepared to defend your choice.) Galileo:

(a) proved that all objects fall at exactly the same speed

regardless of their weight.

(b) proved that for any freely falling object the ratio dlt^ is

constant for any distance of fall.

(c) proved that an object rolling down a smooth incline

accelerates in the same way as (although more slowly than)

the same object falling freely.

(d) supported indirectly his assertion that the speed of an object,

falling freely from rest is proportional to the elapsed time.

(e) made it clear that until a vacuum could be produced, it

would not be possible to settle the free-fall question once

and for all.

2.9 Doubts about Galileo's procedure

This whole process of reasoning and experimentation looks long

and involved on first reading, and some doubts may well arise

concerning it. For example, was Galileo's measurement of time

precise enough to establish the constancy of dlt^ even for the case

of a slowly rolling object? In his book, Galileo tries to reassure

possible critics by providing a detailed description of his

experimental arrangement (thereby inviting any skeptics to try it

for themselves):

For the measurement of time, we employed a large

vessel of water placed in an elevated position; to the

bottom of this vessel was soldered a pipe of small

diameter giving a thin jet of water, which we collected

in a small cup during the time of each descent, whether
for the whole length of the channel or for a part of its

length; the water thus collected was weighed on a very

accurate balance; the differences and ratios of these

weights gave us the differences and ratios of the time

intervals, and this with such accuracy that, although the

operation was repeated many, many times, there was no
appreciable discrepancy in the results.

The water clock described by Galileo was not invented by him.

Indeed, there are references to water clocks in China as early as the
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sixth century B.C., and they were probably used in Babylonia and
India even earlier. In the early 16th century a good water clock was
the most accurate of the world's instruments for measuring short

time intervals. It remained so until shortly after Galileo's death,

when the work of Christian Huygens and others led to practical

pendulum clocks. When better clocks became available, Galileo's

results on inclined-plane motion were confirmed.

Another reason for questioning Galileo's results is related to the

great difference between free fall and rolling motion on a slight

incline. Galileo does not report what angles he used in his

experiment. However, as you may have found out from doing a

similar experiment, the angles must be kept rather small. As the

angle increases, the speed of the ball soon becomes so great that it

is difficult to measure the times involved. The largest usable angle

reported in a recent repetition of Galileo's experiment was only

6°. (See SG 2.15) It is not hkely that Galileo worked with much
larger angles. This means that the extrapolation to free fall (90°

incline) is a large one, perhaps much too large for a cautious

person— or for one not already convinced of Galileo's argument.

Still another reason for questioning Galileo's results is the

observation that, as the angle of incline is increased, there comes
a point where the ball starts to slide as well as roll. This change in

behavior could mean that the motion is very different at large

angles. Galileo does not discuss these cases. It is surprising that he

apparently did not repeat the experiment with blocks which would

slide, rather than roll, down a smooth incline. If he had, he would

have found that for accelerated sliding motion the ratio dit- is also

a constant, although the constant has a different numerical value

than for rolling at the same angle.

01 2 Which of the following statements could be regarded as

major reasons for doubting the validity of Galileo's procedure?

(a) His measurement of time was not sufficiently accurate.

(b) He used too large an angle of inclination in his experiment.

(c) It is not clear that his results apply when the ball can slide

as well as roll.

(d) In Galileo's experiment the ball was rolling, and therefore

he could not extrapolate to the case of free fall where the

ball did not roll.

(e) dlt^ was not constant for a sliding object.

Early water clock

SG 2.25

2.10 Consequences of Galileo's work on motion

Galileo seems to have been well aware that one cannot get the

correct numerical value for the acceleration of a body in free fall

simply by extrapolating the results to increasingly large angles of

inclination. He did not attempt to calculate a numerical value for

the acceleration of freely falling bodies. But for his purposes it was

enough that he could support the hypothesis that the acceleration is

constant for any given body, whether rolling or falling. This is the
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We now know by measurement that

the magnitude of the acceleration of

gravity, symbol a^, is about 9.8

m/sec per sec, or 32 ft/sec per sec,

at the earth's surface. The Project

Physics Handbook contains five

different experiments for finding a

value of a^. (For many problems,

the approximate value 10 m/sec/sec

is satisfactory.)

SG 2.26

You can derive this equation. (See

SG 2.27)

SG 2.28 and 2.29

first consequence of Galileo's work, one that has been fully borne

out by all subsequent tests.

Second, if spheres of different weights are allowed to roll down
an inclined plane set at a given angle, they turn out to have the

same acceleration. We do not know how much experimental

evidence Galileo himself had for this conclusion, but it is consistent

with the observations for freely falling objects. It is consistent also

with his "thought experiment" by which he argued that bodies of

different weights fall at the same rate (aside from the comparatively

small effects of air resistance). His results provided a decisive

refutation of Aristotle's theory of motion.

Third, Galileo developed a mathematical theory of accelerated

motion from which other predictions about motion could be

derived. We will mention just one example here, which will turn

out to be very useful in Unit 3. Recall that Galileo chose to define

acceleration as the rate at which the speed changes with time. He
then found by experiment that falling bodies actually do experience

equal changes of speed in equal times, and not in equal distances

as some had supposed. Still, the idea of something changing by

equal amounts in equal distances has an appealing simplicity, too.

One might ask if there isn't something that does change in that way
during uniform acceleration. In fact, there is. It follows without

any new assumptions that, during uniform acceleration from rest,

the square of the speed changes by equal amounts in equal

distances. There is a mathematical equation which expresses this

result: If z/inuiai = 0, and a = constant, then

In words: if an object starts from rest and moves with uniform

acceleration, then the square of its speed at any point is equal to

twice the product of its acceleration and the distance it has moved.

(We shall see the importance of this relation in Unit 3.)

These consequences of Galileo's work, important as they are to

the development of physics, would scarcely have been enough to

bring about a revolution in science by themselves. No sensible

scholar in the seventeenth century would have given up his belief

in the Aristotelian cosmology only because some of its predictions

had been refuted in the case of falling (or rolling) bodies. But

Galileo's work on free-fall motion helped to prepare the way for the

development of a new kind of physics, and indeed a new cosmology,

by planting the seeds of doubt about the crucial assumptions of

Aristotelian science. For example, when it was recognized that all

bodies fall with equal acceleration if air friction is negligibly small,

then the whole Aristotelian explanation of falling motion (Section

2.1) broke down.

The most agitating scientific problem during Galileo's lifetime

was not in mechanics but in astronomy. A central question in

cosmology was whether the earth or the sun is the center of the

universe. Galileo supported the view that the earth and other

planets revolve around the sun, a view entirely contrary to
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Aristotelian cosmology. But to support such a view required a

physical theory of why and how the earth itself moved. Galileo's

work on free fall and other motions turned out to be just what was
needed to begin to construct such a theory. His work did not have its

full effect, however, until it had been combined with the

investigations of forces and motion by the English scientist Isaac

Newton. But as Newton acknowledged, Galileo was the pioneering

pathfinder. (In the next chapter we will consider Newton's work on
force and motion. In Chapter 8, after studying about motion in the

heavens, we will return to Newton's laws and the revolution they

began in science.)

Galileo's work on motion introduced a new and significant

method of doing scientific research, a method as applicable today

as when GalHeo demonstrated it. The basis of this procedure is a

cycle, repeated as often as necessary, entirely or in part, until a

satisfactory theory has emerged: general observation -^ hypothesis
-* mathematical analysis or deduction from hypothesis ->

experimental test of deduction -* modification of hypothesis in light

of test, and so forth.

While the steps in the mathematics are often determined

mainly by "cold logic," this is not so for the other parts of the SG 2.30

process. A variety of paths of thought can lead to the hypothesis in

the first place. A new hypothesis can come from an inspired hunch
based on general knowledge of the experimental facts, or from a

desire for mathematically simple statements, or from modifying a

previous hypothesis that failed. Moreover, there are no general

rules about exactly how well the experimental data must agree

with the theoretical predictions. In some areas of science, a theory

is expected to be accurate to better than one 1/ 1000th of one

percent; in other areas, or at an early stage of any new work, one

might be delighted to find a theory from which he could make
predictions with an error of only 50 percent. Finally note that while

experiment has an important place in this process, it is not at all

the only or even the main element. On the contrary, experiments

are worthwhile only in conjunction with the other steps in the

process.

The general cycle of observation, hypothesis, deduction, test,

modification, etc., so skillfully demonstrated by Galileo in the

seventeenth century, commonly appears in the work of scientists

today. Though there is no such thing as the scientific method, some

form of this cycle is almost always present in scientific research. It

is used not out of respect for Galileo as a towering figure in the

history of science, but because it works so well so much of the

time.

Galileo himself was aware of the value of both the results and

the methods of his pioneering work. He concluded his treatment of

accelerated motion by putting the following words into the mouths

of the commentators in his book:

Salviati: ... we may say the door is now opened, for the
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first time, to a new method fraught with numerous and
wonderful results which in future years will command
the attention of other minds.

Sagredo: I really believe that . . . the principles which are

set forth in this little treatise will, when taken up by

speculative minds, lead to another more remarkable

result; and it is to be believed that it will be so on account

of the nobility of the subject, which is superior to any
other in nature.

During this long and laborious day, I have

enjoyed these simple theorems more than their proofs,

many of which, for their complete comprehension, would
require more than an hour each; this study, if you will

be good enough to leave the book in my hands, is one
which I mean to take up at my leisure after we have
read the remaining portion which deals with the motion
of projectiles; and this if agreeable to you we shall take

up tomorrow.

Salviati: I shall not fail to be with you.

Many details of physics, mathe- Q13 which one of the following was not a result of Galileo's
matics and history have appeared , ^. o
• ».-• u * .- s .^ work on motion .''

in this chapter. For a review of the

most important ideas, see SG 2.31, ^^^ The correct numerical value of the acceleration in free fall

2.32, and 2.33. was obtained by extrapolating the results for larger and
larger angles of inclination.

(b) If an object starts from rest and moves with uniform

acceleration a through a distance d, then the square of its

speed will be proportional to d.

(c) Bodies rolling on a smooth inclined plane are uniformly

accelerated (according to Galileo's definition of acceleration).
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2.1 Note that at the beginning of each chapter in

this book there is a Hst of the section titles. This
is a sort of road map you can refer to from time to

time as you study the chapter. It is important,
expecially in a chapter such as this one, to know
how the part you are studying relates to what
preceded it and to have some idea of where it is

leading. For this same reason, you will find it very

helpful at first to skim through the entire chapter,

reading it rapidly and not stopping to puzzle out

parts that you do not quickly understand. Then
you should return to the beginning of the chapter
and work your way through it carefully, section

by section. Remember also to use the end-of-section

questions to check your progress.

The Project Physics learning materials particularly

appropriate for Chapter 2 include:

Experiments
A Seventeenth-Century Experiment
Twentieth Century Version of Galileo's

Experiment
Measuring the Acceleration Due to

Gravity, Og

Activities

When is Air Resistance Important?
Measuring Your Reaction Time
Falling Weights
Extrapolation

Reader Article

On the Scientific Method

Film Loops
Acceleration Due to Gravity — Method I

Acceleration Due to Gravity — Method II

Transparency
Derivation of d Vit + jat^

2.2 Aristotle's theory of motion seems to be

supported to a great extent by common sense

experience. For example, water bubbles up
through earth at springs. When sufficient fire is

added to water by heating it, the resulting mixture
of elements (what we call steam) rises through
the air. Can you think of other examples?

2.3 Drop sheets of paper with various degrees of

"crumpling." Try to crumple a sheet of paper

tight enough that it will fall at the same rate as a

tennis ball. Can you explain the results with

Aristotle's theory?

2.4 Compare Aristotle's hypothesis about falling

rate (weight divided by resistance) with
PhUoponus' (weight minus resistance) for some
extreme cases: a very heavy body with no
resistance, a very light body with great resistance.

Do the two hypotheses suggest very different

results?

2.5 Consider Aristotle's statement "A given

weight moves [falls] a given distance in a given

time; a weight which is as great and more moves
the same distances in less time, the times being

in inverse proportion to the weights. For instance.

if one weight is twice another, it will take half as

long over a given movement." (De Caelo)

Indicate what Simplicio and Salviati each
would predict for the falling motion in these

cases:

(a) A 2-pound rock falls from a cliff and,
whUe dropping, breaks into two equal
pieces.

(b) A hundred-pound rock is dropped at the

same time as one hundred 1-pound
pieces of the same type of rock.

(c) A hundred 1-pound pieces of rock, falling

from a height, drop into a draw-string

sack which closes, pulls loose and falls.

2.6 Tie two objects of greatly different weight
Gike a book and a pencil) together with a piece of

string. Drop the combination with different

orientations of objects. Watch the string. In a few
sentences summarize your results.

/f

2.7 A good deal of work preceded that of Galileo

on the topic of motion. In the period 1280-1340,

mathematicians at Merton College, Oxford,

carefully considered different quantities that

change with the passage of time. One result that

had profound influence was a general theorem
known as the "Merton Theorem" or "Mean Speed
Rule."

This theorem might be restated in our

language and applied to uniform acceleration as

follows: the distance an object goes during some
time while its speed is changing uniformly is the

same distance it would go if it went at the average
speed the whole time.

(a) First show that the total distance traveled

at a constant speed can be expressed as

the area under the graph line on a speed-

time graph. ("Area" must be found in speed

units X time units.)

(b) Assume that this area represents the

total distance even when the speed is not
constant. Draw a speed vs. time graph for

uniformly increasing speed and shade in

the area under the graph line.
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1

(c) Prove the "Merton Rule" by showing that

the area is equal to the area under a
constant-speed line at the average speed.

2.H According to Galileo, uniform acceleration
means equal Av's in equal At's. Which of the
following are other ways of expressing the same
idea?

(a) Av is proportional to At
(b) AvIAt = constant
(c) the speed-time graph is a straight line

(d) V is proportional to t

2.9 In the Two New Sciences Galileo states, ".
. .

for so far as I know, no one has yet pointed out
that the distances traversed, during equal intervals
of time, by a body falling from rest, stand to one
another in the same ratio as the odd numbers
beginning with unity (namely 1:3:5:7 ...)...."

The area beneath the curve in a speed-time
graph represents the distance traveled during
some time interval. Using that idea, give a proof
that the distances an object falls in successive
equal time intervals will be in the ratios of the odd
numbers.

2.10 Using whatever modem equipment you
wish, describe how you could find an accurate
value for the speed of a falling object just before
striking the ground.

2.11 Show that the expression

,, _ ^Initial + ^final
Vav

2

is equivalent to the "Merton Rule" discussed in
SG 2.7.

2.12 For any quantity that changes uniformly,
the average is the sum of the initial and final
values divided by two. Try it out for any quantity
you may choose -for example: what is the
average age in a group of five people having
individually the ages of 15, 16, 17, 18, and 19
years? What is your average earning power over
five years if it grows steadily from $5000
per year at the start to $9000 per year at the end?

2.13 Several special assumptions have been
made in arriving at the equation d = jat^. What
is the "unwritten text" behind it?

2.1 I Lt. Col. John L. Stapp achieved a speed of
632 mph (284 m/sec) in an experimental rocket
sled at the Holloman Air Base Development
Center, Alamogordo, New Mexico, on March 19,

1954. Running on rails and propelled by nine
rockets, the sled reached its top speed within 5
seconds. Stapp survived a maximum acceleration
of 22 g's in slowing to rest during a time interval
of I7 seconds (one g is an acceleration equal in
magnitude to that due to gravity; 22 g's means
22 X Og.)

(a) Find the average acceleration in reaching
maximum speed.

(b) How far did the sled travel before
attaining maximum speed?

(c) Find the average acceleration while
stopping.

2.1.T Derive the expression dlt^ = constant from
the expression d = jat^.

2.1(i Table 2.1 reports results from a recent
repetition of Galileo's experiment in which the
angle of inclination was 3.73° (Science, 133, 19-23,

June 6, 1961). A water clock with a constant-level
reservoir was used.

TABLE 2.1
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2.18 (a) Show by means of equations that

Galileo's statement in SG 2.9 follows from
dlt^ = constant for free fall from rest,

(b) The time interval between strobe flashes
was 0.35 sec. Use this information to

make a rough graph of d vs. t, also one of
V vs. t, and find the acceleration of the
ball.

2.19 The photograph in the figure below is of a
ball thrown upward. The acceleration due to

gravity increases the speed of the ball as it goes
down from its highest point (like any free-falling

object), if air friction is negligible. But the

acceleration due to gravity, which does not change,
acts also whUe the ball is still on its way up, and
for that portion of the path causes the baU to slow
down as it rises.

Stroboscopic photograph of a ball

thrown into the air.

When there is both up and down motion, it

will help to adopt a sign convention, an arbitrary

but consistent set of rules, similar to designating
the height of a place with respect to sea level. To
identify distances measured above the point of

initial release, give them positive values, for

example, the distance at B or at D, measured from

the release level, is about +60 cm and +37 cm,
respectively. If measured below the release level,

give them negative values; for example, E is at

—23 cm. Also, assign a positive value to the speed
of an object on its way up to the top (about +3
m/sec at A) and a negative value to a speed a

body has on the way down after reaching the top

(about —2 m/sec at D and —6 m/sec at E).

(a) Fill in the table with + and — signs.

AT POSITION
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(c) How long did the object take to reach its

maximum height?

(d) How high is this maximum height?

(e) When it descends, what is its final speed
as it passes the throwing point?

If you have no trouble with this, you may wish
to try problems SG 2.23 and 2.24.

2.23 A batter hits a pop fly that travels straight

upwards. The ball leaves his bat with an initial

speed of 40 m/sec. (Assume a„ = 10 m/sec/sec)

(a) What is the speed of the ball at the end of

2 seconds?
(b) What is its speed at the end of 6 seconds?
(c) When does the ball reach its highest point?

(d) How high is this highest point?

(e) What is the speed of the ball at the end of
10 seconds? (Graph this series of speeds.)

(f ) What is its speed just before it is caught
by the catcher?

2.24 A ball starts up an inclined plane with a
speed of 4 m/sec, and comes to a halt after 2
seconds.

(a) What acceleration does the ball

experience?
(b) What is the average speed of the ball

during this interval?

(c) What is the ball's speed after 1 second?
(d) How far up the slope will the ball travel?

(e) What will be the speed of the ball 3
seconds after starting up the slope?

(f ) What is the total time for a round trip to

the top and back to the start?

2.25 As Director of Research in your class, you
receive the following research proposals from
physics students wishing to improve upon Galileo's

free-fall experiment. Would you recommend
support for any of them? If you reject a proposal,

you should make it clear why you do so.

(a) "Historians believe that Galileo never
dropped objects from the Leaning Tower
of Pisa. But such an experiment is more
direct and more fun than inclined plane
experiments, and of course, now that

accurate stopwatches are available, it can
be carried out much better than in

Galileo's time. The experiment involves
dropping, one by one, different size spheres
made of copper, steel, and glass from the
top of the Leaning Tower and finding how
long it takes each one to reach the
ground. Knowing d (the height of the
tower) and time of fall t, I will substitute
in the equation d = jat' to see if the
acceleration a has the same value for each
sphere."

(b) "An iron shot will be dropped from the
roof of a 4-story building. As the shot falls,

it passes a window at each story. At each
window there will be a student who starts

his stopwatch upon hearing a signal that
the shot has been released, and stops the
watch as the shot passes his window.
Also, each student records the speed of the

shot as it passes. From his own data, each
student will compute the ratio vlt. I

expect that all four students will obtain

the same numerical value of the ratio."

(c) "Galileo's inclined planes dilute motion
all right, but the trouble is that there is

no reason to suppose that a ball rolling

down a board is behaving like a ball

falling straight downward. A better way
to accomplish this is to use light, fluffy,

cotton balls. These will not fall as rapidly

as metal spheres, and therefore it would
be possible to measure the time of the

fall t for different distances. The ratio dlt^

could be determined for different distances
to see if it remained constant. The
compactness of the cotton ball could then
be changed to see if a different value was
obtained for the ratio."

2.26 A student on the planet Arret in another
solar system dropped an object in order to

determine the acceleration due to gravity at that

place. The following data are recorded (in local

units):

TIME
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2.29 Use a graph like the one sketched below,

and the idea that the area under the graph line in

a speed-time graph gives a value for the distance

traveled, to derive the equation

d = v,t + jaf

can be summarized in the three equations listed

below.

i'lmt

2.30 List the steps by which Galileo progressed
from his first definition of uniformly accelerated

motion to his final confirmation that this definition

is useful in describing the motion of a freely

falling body. Identify each step as a hypothesis,

deduction, observation, or computation, etc. What
limitations and idealizations appear in the

argument?

2.31 In these first two chapters we have been
concerned with motion in a straight line. We have
dealt with distance, time, speed and acceleration,

and with the relationships among them.
Surprisingly, most of the results of our discussion

Vax-

Ad ^v , I .

The last of these equations can be applied only
to those cases where the acceleration is constant.

Because these three equations are so useful, they
are worth remembering (together with the
limitation on their use).

(a) State each of the three equations in words.
(b) Make up a simple problem to demonstrate

the use of each equation. (For example:
How long will it take a jet plane to travel

3200 miles if it averages 400 mi/hr?)
Then work out the solution just to be sure
the problem can be solved.

(c) Derive the set of equations which apply
whether or not the initial speed is zero.

2.32 Show to what extent the steps taken by
Galileo on the problem of free fall, as described

in Sections 2.5 through 2.8, follow the general
cycle in the scientific process.

2.33 What is wrong with the following common
statements? "The Aristotelians did not observe
nature. They took their knowledge out of old

books which were mostly wrong. Galileo showed it

was wrong to trust authority in science. He did

experiments and showed everyone directly that

the old ideas on free fall motion were in error. He
thereby started science, and also gave us the

scientific method."
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CHAPTER THREE

The Birth of Dynamics—
Newton Explains Motion

3.1 "Explanation" and the laws of motion

Kinematics is the study of how objects move, but not why they

move. Galileo investigated many topics in kinematics with

insight, ingenuity, and gusto. The most valuable part of that work
dealt with special types of motion, such as free fall. In a clear and
consistent way, he showed how to describe the motion of objects

with the aid of mathematical ideas.

When Isaac Newton began his studies of motion in the second

half of the seventeenth century, Galileo's earlier insistence that

"the present does not seem to be the proper time to investigate the

cause of the acceleration of natural motion . . .
." was no longer

appropriate. Indeed, because Galileo had been so effective in

describing motion, Newton could turn his attention to dynamics, the

study of why an object moves the way it does — why it starts to

move instead of remaining at rest, why it speeds up or moves on a

curved path, and why it comes to a stop.

How does dynamics differ from kinematics? As we have seen in

the two earlier chapters, kinematics deals with the description of

motion. For example, in describing the motion of a stone dropped

from a cliff, we can write an equation showing how the distance d

through which the stone has dropped is related to the time t the

stone has been falling. We can find the acceleration and the final

speed attained during any chosen time interval. But when we have

completed our description of the stone's motion, we are still not

satisfied. Why, we might ask, does the stone accelerate rather than

fall with a constant speed? Why does it accelerate uniformly as

long as air friction is negligible? To answer these questions, we
will have to add to our store of concepts those of force and mass;

and in answering, we are doing dynamics. Dynamics goes beyond

kinematics by taking into account the cause of the motion.

67
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Some kinematics concepts: position,

time, speed, acceleration.

Some dynamics concepts: mass,

force, momentum (Ch. 9), energy
(Ch. 10).
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In Chapter 4 we will take up motion

also along curved paths.

Newton's First Law: Every object

continues in its state of rest or of

uniform motion in a straight line

unless acted upon by an unbalanced
force.

Newton's Second Law: The
acceleration of an object is directly

proportional to, and in the same
direction as, the unbalanced force

acting on it, and inversely pro-

portional to the mass of the object.

Newton's Third Law: To every action

there is always opposed an equal

reaction; or, mutual actions of two
bodies upon each other are always
equal and in opposite directions.

In our study of kinematics in Chapters 1 and 2, we encountered

four situations: an object may:

(a) remain at rest; (b) move uniformly in a straight line; (c) speed

up during straight-line motion; (d) slow down during straight-line

motion.

Because the last two situations are examples of acceleration, the

list could really be reduced to:

(a) rest; (b) uniform motion; and (c) acceleration.

Rest, uniform motion, and acceleration are therefore the

phenomena we shall try to explain. But the word "explain" must

be used with care. To the physicist, an event is "explained" when he

can demonstrate that the event is a logical consequence of a law

he has reason to believe is true. In other words, a physicist with

faith in a general law "explains" an observation by showing that it

is consistent with the law. In a sense, the physicist's job is to show
that the infinite number of separate, different-looking occurrences

all around and within us are merely different manifestations or

consequences of some general rules which describe the way the

world operates. The reason this approach to "explanation" works

is still quite remarkable: the number of general rules or "laws" of

physics is astonishingly small. In this chapter we shall learn three

such laws. Taken together with the mathematical schemes of

Chapters 1 and 2 for describing motion, they will suffice for our

understanding of practically all motions that we can readily

observe. And in Unit 2 we shall have to add just one more law (the

law of universal gravitation), to explain the motions of stars,

planets, comets, and satellites. In fact, throughout physics one sees

again and again that nature has a marvelous simplicity.

To explain rest, uniform motion, and acceleration of any

object, we must be able to answer such questions as these: Why
does a vase placed on a table remain stationary? If a dry-ice disk

resting on a smooth, level surface is given a brief push, why does it

move with uniform speed in a straight line rather than slow down
noticeably or curve to the right or left? Answers to these (and

almost all other) specific questions about motion are contained

either directly or indirectly in the three general "Laws of Motion"

formulated by Isaac Newton. These laws appear in his famous

book, Philosophiae Naturalis Principia Mathematica (Mathe-

matical Principles of Natural Philosophy, 1687), usually referred

to simply as The Principia. They are among the most basic laws in

physics to this day.

We shall examine Newton's three laws of motion one by one.

If your Latin is fairly good, try to translate them from the

original. A modernized version of Newton's text of these laws, in

English, is reproduced in the margin at the left.

Before we look at Newton's contribution, it will be instructive

to find out how other scientists of Newton's time, or earlier, might

have answered questions about motion. One reason for doing this

now is that many people who have not studied physics still show
Intuitively a bit of the pre-Newtonian viewpoint! Let us look at

what we must overcome.
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Q1 A baseball is thrown straight upward. Which of these

questions about the baseball's motion are kinematic and which
dynamic?

(a) How high will the ball go before coming to a stop and starting

downward?
(b) How long will it take to reach that highest point?

(c) What would be the effect of throwing it upward twice as hard?

(d) Which takes longer, the trip up or the trip down?
(e) Why does the acceleration remain the same whether the ball

is moving up or down?

3.2 The Aristotelian explanation of motion

The idea of force played a central role in the dynamics of

Aristotle, twenty centuries before Newton. You will recall from

Chapter 2 that in Aristotle's physics there were two types of motion

— "natural" motion and "violent" motion. For example, a falling

stone was thought to be in "natural" motion (towards its natural

place), but a stone being steadily lifted was thought to be in

"violent" motion (away from its natural place). To maintain this

uniform violent motion, a force had to be continuously applied.

Anyone lifting a large stone is very much aware of this as he

strains to hoist the stone higher.

The Aristotelian ideas were consistent with many common-
sense observations. But there were also difficulties. Take a specific

example — an arrow shot into the air. It cannot be in violent motion

without a mover, or something pushing on it. Aristotelian physics
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Keeping an object in motion at uni-

form speed.

SG 3.2

required that the arrow be continually propelled by a force; if the

propelling force were removed, the arrow should immediately stop

its flight and fall directly to the ground in "natural" motion.

But of course the arrow does not fall to the ground as soon as

it loses direct contact with the bowstring. What then is the force

that propels the arrow? Here, the Aristotelians offered an ingenious

suggestion; the motion of the arrow through the air was maintained

by the air itself! A commotion is set up in the air by the initial

movement of the arrow. That is; as the arrow starts to move, the air

is pushed aside; the rush of air to fill the space being vacated by

the arrow maintains it in its flight.

More sophisticated ideas to explain motion were developed

before the mid-seventeenth century. But in every case, a force was
thought to be necessary to sustain uniform motion. The explanation

of uniform motion depended on finding the force, and that was not

always easy. There were also other problems. For example, a falling

acorn or stone does not move with uniform speed — it accelerates.

How is acceleration explained? Some Aristotelians thought the

speeding up of a falling object was associated with its approaching

anival at its natural place, the earth. In other words, a falling object

was thought to be like the tired horse that starts to gallop as it

approaches the barn. Others claimed that when an object falls, the

weight of the air above it increases while the column of air below

it decreases, thus offering less resistance to its fall.

When a falling object finally reaches the ground, as close to the

center of the earth as it can get, it stops. And there, in its "natural

place," it remains. Rest, being regarded as the natural state of

objects on earth, required no further explanation. The three

phenomena — rest, uniform motion, and acceleration — could thus be

explained in a more or less plausible fashion by an Aristotelian.

Now, let us examine the Newtonian explanation of the same
phenomena. The key to this approach is a clearer understanding of

the concept of force.

Q2 According to Aristotle, what is necessary to maintain

uniform motion?

Q3 Give an Aristotelian explanation of a dry-ice puck's uniform

motion across a table top.

3.3 Forces in equilibrium

Our common-sense idea of force is closely linked with our own
muscular activity. We know that a sustained effort is required to

lift and support a heavy stone. When we push a lawn mower, row a

boat, split a log, or knead bread dough, our muscles let us know
we are applying a force to some object. Force and motion and
muscular activity are naturally associated in our minds. In fact,

when we think of changing the shape of an object, or moving it or

changing its motion, we naturally think of the muscular sensation
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of applying a force to the object. We shall see that many -but not

all -of the everyday common-sense ideas about force are useful in

physics.

We know intuitively that forces can make things move, but

they can also hold things still. The cable supporting the main span
of the Golden Gate Bridge is under the influence of mighty forces,

yet it remains at rest. Apparently, more is required to start motion
than just the application of forces.

Of course, this is not surprising. We have all seen children

quarrelling over a toy. If each child pulls determinedly in his own
direction, the toy may go nowhere. On the other hand, the tide of

battle may shift if one of the children suddenly makes an extra

effort, or if two children cooperate and pull side by side against the

third.

Likewise, in the tug-of-war between the two teams shown
above, large forces were exerted on each side, but the rope remained

at rest: one may say the forces balanced, or they "cancelled." A
physicist would say that the rope was in equilibrium when the

sum of the forces on each side of it were equally large and acting

in opposite directions. Equally well, he might say the net force is

zero. Thus a body in equilibrium would not start to move until a

new, "unbalanced" force was added which destroyed the

equilibrium.

In all these examples, both the magnitude of the forces and

their directions are important. The effect of a force depends on the

direction in which it is applied. We can represent this directional

nature of forces in a sketch by using arrows: The direction the

arrow points represents the direction in which the force acts; the

length of the arrow represents how large the force is (for example,

a 10-lb force is shown by an arrow twice as long as a 5-lb force).

Now we discover a surprising result. If we know separately each

of the forces applied to any object at rest, we can predict whether

it will remain at rest. It is as simple as this: The object acted on by

forces will be in equilibrium under these forces and wUl remain at

rest only if the arrows representing the forces all "add up to zero."

How does one "add up" arrows? By a simple graphical trick.

Take the tug-of-war as an example. Let us call the force exerted by

the team pulling to the right ?,. (The httle arrow over the F
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the object is in equilibrium. This method tells us when an object is

in equilibrium, no matter how many different forces are acting on it.

We can now summarize our understanding of the state of rest

as follows: if an object remains at rest, the sum of all forces

acting on it must be zero. We regard rest as an example of the

condition of equilibrium, the state in which all forces on the object

are balanced.

An interesting case of equilibrium, very different from the

disputed toy or rope, is part of the "free fall" of a sky-diver. In fact

his fall is "free" only at the beginning. The force of air friction

increases with speed, and soon the upward frictional force on the

sky-diver is great enough to balance the force of gravity

downward. Under those circumstances he falls with constant speed,

much like a badminton bird or falling leaf. The sensation is not of

falling but, except for the wind, the same as lying on a soft bed.

During part of a dive from an airplane you can be as much in

equilibrium as lying in bed! In both cases the net force acting on

you is zero.

Q4 A vase is standing at rest on a table. What forces would you

say are acting on the vase? Show how each force acts (to some
scale) by means of an arrow. Can you show that the sum of the

forces is zero?

Q5 In which of these cases are the forces balanced?

SG 3.3
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Q6 Does an object have to be at rest to be in equilibrium?

3.4 About vectors

Graphical construction with arrows really works. With it we can

predict whether the forces balance and will leave the object in

equilibrium or whether any net force is left over, causing the object

to accelerate. Why can we use arrows in this way? The reason

involves the precise mathematical definitions of displacement and

of force, but you can demonstrate for yourself the reasonableness

of the addition rule by trying a variety of experiments. For example,

you could attach three spring scales to a ring and have some

friends pull on the scales with forces that just balance, leaving the

ring at rest. While they are pulling, you read the magnitudes of the

forces on the scales and mark the directions of the pulls. You can

then make a graphical construction with arrows representing the

forces and see whether they add to zero. Many different experiments

of this kind ought all to show a net force of zero.
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It is not obvious that forces should behave like arrows. But

arrows drawn on paper happen to be useful for calculating how
forces add. (If they were not, we simply would look for other

symbols that do work.) Forces belong in a class of concepts called

vector quantities, or just vectors for short. Some characteristics

of vectors are well represented by arrows. In particular, vector

quantities have magnitude which we can represent by the length

of an arrow drawn to scale. They have direction which can be

shown by the direction of an arrow. By experiment, we find that

they can be added in such a way that the total effect of two or

more, called the vector resultant, can be represented by the head-

to-tail addition of arrows.

In the example of the tug-of-war we talked about the effect of

equally large, opposing forces. If two forces act in the same
direction, the resultant force is found in essentially the same way,

as shown below.

If two forces act at some angle to each other, the same type of

construction is still useful. For example, if two forces of equal

magnitude, one directed due east and the other directed due north,

are applied to an object at rest but free to move, the object will

accelerate in the northeast direction, the direction of the resultant

force. The magnitude of the acceleration will be proportional to the

magnitude of the resultant force which is shown by the length of

the arrow representing the resultant.

You can equally well use a graphical
construction called the "parallelo-

gram method." It looks different

from the "head-to-tail" method, but
Is really exactly the same. In the

parallelogram construction, the

vectors to be added are represented
by arrows joined tail-to-tail instead

of head-to-tail, and the resultant is

obtained by completing the diagonal

of the parallelogram.

Cfr-

The same adding procedure is used if the forces are of any magni-
tude and act at any angles to each other. For example, if one force

were directed due east and a somewhat larger force were directed

northeast, the resultant vector sum could be found as shown below.
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To summarize, we can now define a vector quantity. It is a

quantity which has both direction and magnitude and which can
be added by the graphical construction of the head-to-tail

representation of arrows, or by the equivalent parallelogram method.

(It also has other properties which you will study if you take further

physics courses.) By this definition, many important physical

concepts are vectors — for example, displacement, velocity, and
acceleration. Some other physical concepts, including volume,

distance, and speed, do not require specification of direction, and so

are not vector quantities; these are called scalar quantities. When
you add 10 liters of water to 10 liters of water, the result is always

20 liters, and direction has nothing to do with the result. Similarly,

the term speed has no directional meaning; it is the magnitude of

the velocity vector, as given by the length of the arrow, without

regard to its direction. By contrast, when you add two forces of 10

lb each, the resultant force may be anywhere between zero and 20

lb, depending on the directions of the two individual forces.

We shall soon have to correct an oversimplification we had to

make in Sec. 1.8, where we defined acceleration as the rate of

change of speed. That was only partly correct, because it was
incomplete. We shall also want to consider changes in the direction

of motion as well. The more useful definition of acceleration is the

rate of change of velocity, where velocity is a vector having both

magnitude and direction. In symbols.

Any vector quantity is indicated by

a letter with an arrow over it; for

example, F^ a, or v^

-* Ax;

where Ai; is the change in velocity. Velocity can change in two

ways: by changing its magnitude (speed), and by changing its

direction. In other words, an object is accelerating when it speeds

up, or slows down, or changes direction. We shall explore this

definition more fully in later sections.

We shall use vectors frequently. To
learn more about them you can use

the Project Physics Programmed In-

struction booklets on vectors. See
also Reader 1 article "Introduction to

Vectors."

Q7 List three properties of vector quantities.

Q8 How does the new definition of acceleration given above

differ from the one used in Chapter 1?

3.5 Newton's first law of motion

Were you surprised when you first watched a dry-ice disk or

some other nearly frictionless device? Remember how smoothly it

glides along after just the slightest nudge? How it shows no sign of

slowing down or speeding up? Although our intuition and everyday

experience tell us that some force is constantly needed to keep an

object moving, the disk fails to hve up to our Aristotelian

expectations. It is always surprising to see this for the first time.

Yet the disk is behaving quite naturally. If the forces of friction

were absent, a gentle, momentary push would make tables and
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chairs take off and glide across the floor just like a dry-ice disk.

Newton's first law directly challenges the Aristotelian notion of

what is "natural." It declares that the state of rest and the state of

uniform, unaccelerated motion in a straight line are equally

natural. Only the existence of some force, friction for example,

keeps a moving object from moving forever \ Newton's first law of

motion can be stated as follows in modem terminology:

Because constant velocity means
both constant speed and constant

direction, we can write Newton's

first law more concisely:

r= constant

if and only if

This statement includes the

condition of rest, since rest is a

special case of unchanging velocity

—the case where v'= 0.

SG 3.5

Every object continues in its state of rest or of uniform
rectilinear motion unless acted upon by an unbalanced
force. Conversely, if an object is at rest or in uniform
rectilinear motion, the unbalanced force acting upon it

must be zero.

In order to understand the motion of an object, we must take

into account all the forces acting on it. If all forces (including

friction) are in balance, the body will be moving at constant v.

Although Newton was the first to express this idea as a general

law, Galileo had made similar statements fifty years before. Of
course, neither Galileo nor Newton had dry-ice disks, and so they

were unable to observe motion in which friction had been reduced

so significantly. Instead, Galileo devised a thought experiment in

which he imagined the friction to be zero.

This thought experiment was based on an actual observation. If

a pendulum bob on the end of a string is pulled back and released

from rest, it will swing through an arc and rise to very nearly its

starting height. Indeed, as Galileo showed, the pendulum bob will

rise almost to its starting level even if a peg is used to change the

path.

It was from this observation that Galileo generated his thought

experiment. He predicted that a ball released from a height on a

frictionless ramp, would roll up to the same height on a similar

facing ramp, regardless of the actual path length. For example, in

the diagram at the top of the next page, as the ramp on the right is

changed from position (a) to (b) and then to (c). the ball must roll

further in each case to reach its original height. It slows down
more gradually as the angle of the incline decreases. If the second

ramp is exactly level as shown in (d). the ball can never reach its

original height. Therefore, Galileo believed, the ball on this

frictionless surface would roll on in a straight line and at an
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unchanged speed forever. This could be taken to be the same as

Newton's first law. and some historians of science do give credit to

Galileo for having come up with the law first. Other historians,

however, point out that, for Galileo, rolling on forever meant staying

at a constant height above the earth — not moving in a straight line

through space.

This tendency of objects to maintain their state of rest or of

uniform motion is sometimes called "the principle of inertia."

Newton's first law is therefore sometimes referred to as the "law of

inertia." Inertia is a property of all objects. Material bodies have, so

to speak, a stubborn streak so far as their state of motion is

concerned. Once in motion, they continue to move with unchanging
velocity (unchanging speed and direction) unless compelled by

some externally applied force to do otherwise. If at rest, they remain

at rest. This is why seat belts are so helpful when the car stops very

suddenly, and also why a car may not follow an icy road around a

turn, but travel a straighter path into a field or fence. The greater

the inertia of an object, the greater its resistance to a change in its

state of motion, and hence the greater is the force needed to

produce a desired change in the state of its motion. This is why it is

more difficult to start a train or a ship and to bring it up to speed

than it is to keep it going once it is moving at the desired speed. (In

the absence of friction, it would keep moving without any applied

force at all.) But for the same reason it is difficult to bring it to a

stop, and passengers and cargo keep going forward if the vehicle is

suddenly braked.

Newton's first law tells us that if we see an object moving with

a constant speed in a straight line, we know at once that the forces

acting on it must be balanced, that is, it is in equilibrium. In Sec.

3.4 we established that an object at rest is in equilibrium. Does this

mean that in Newtonian physics the state of rest and the state of

uniform motion are equivalent? It does indeed. When we know that

a body is in equilibrium, we know only that v = constant. Whether

the value of this constant is zero or not depends in any case on

which body is chosen as reference for measuring the magnitude of

V. We can decide whether to say that it is at rest or that it is moving

with constant t/ larger than zero only by reference to some other

body.

Take, for example, a tug-of-war. Suppose two teams were sitting

on the deck of a barge that was drifting with uniform velocity down
a lazy river. Two observers — one on the same barge and one on the

shore — would each give a report on the incident as viewed from his

Inside the laboratory there is no

detectable difference between a

straight (horizontal) line and a

constant height above the earth. But

on a larger scale, Galileo's eternal

rolling would become motion in a

circle around the earth. Newton
made clear what is really important:

that in the absence of the earth's

gravitational pull or other external

forces, the ball's undisturbed path

would extend straight out into space.

Galileo's idea of a straight

line.

Newton' s idea of a straight
line.
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own frame of reference. The observer on the barge would observe

that the forces on the rope were balanced and would report that it

was at rest. The observer on the shore would report that the forces

on the rope were balanced and that it was in uniform motion.

Which observer is right? They are both right; Newton's first law of

motion applies to both observations. Whether a body is at rest or in

uniform motion depends on which reference frame is used to

observe the event. In both cases the forces on the object involved

are balanced.

Q9 What is the net force on the body in each of the four cases

sketched in the margin of the opposite page?

Q10 What may have been a difference between Newton's

concept of inertia and GalOeo's?

3.6 The significance of the first law

Of course, the idea of inertia does
not explain why bodies resist change
in their state of motion. It is simply

a term that helps us to talk about

this basic, experimentally observed

fact of nature. (See SG 3.6 and 3.7.)

The correct reference frame to use
in our physics turns out to be any
reference frame that is at rest or

in uniform rectilinear motion with

respect to the stars. The rotating

earth is, therefore, strictly speaking

not allowable as a Newtonian

reference frame; but for most
purposes the earth rotates so little

during an experiment that the

rotation can be neglected. (See

SG 3.8.)

You may have found Galileo's thought experiment convincing.

But think how you might try to verify the law of inertia

experimentally. You could start an object moving (perhaps a dry-

ice disk) in a situation in which you believe there is no unbalanced

force acting on it. Then you could observe whether or not the object

continued to move uniformly in a straight line, as the first law

claims it should.

The experiment is not as simple as it sounds; in fact, Newton's
laws involve some profound philosophical content (see SG 3.7); but

we can see the significance of Newton's first law even without

going into all these subtleties. For convenience let us list the

important insights the first law provides.

1. It presents the idea of inertia as a basic property of all material

objects. Inertia is the tendency of an object to maintain its

state of rest or uniform motion.

2. It points up the equivalence of a state of rest for an object

and a state of uniform motion in a straight line. Both states

indicate that the net force is zero.

3. It raises the whole issue of frame of reference. An object

stationary for one observer might be in motion for another

observer; therefore, if the ideas of rest or uniform motion are

to have any significance, a frame of reference must be

specified from which the observations of events are to be

made.

4. It purports to be a universal law. It emphasizes that a single

scheme can deal with motion anywhere in the universe. For

the first time no distinction is made between terrestrial and
celestial domains. The same law applies to objects on earth as

well as on the moon and the planets and the stars. And it

applies to balls, dry-ice pucks, magnets, atomic nuclei,

electrons — everything

!
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The first law describes the behavior of objects when no
unbalanced force acts on them. Thus, it sets the stage for the

question: precisely what happens when an unbalanced force

does act on an object?

3.7 Newton's second law of motion

In Section 3.1 it was stated that a theory of dynamics must
account for rest, uniform motion, and acceleration. So far we have
met two of our three objectives: the explanation of rest and of

uniform motion. In terms of the first law, the states of rest and
uniform motion are equivalent; they are different ways of describing

the state of equilibrium — that state in which no unbalanced force

acts on an object.

The last section concluded with a list of insights provided by

the first law. You noticed that there was no quantitative relationship

established between force and inertia. Newton's second law of

motion enables us to reach our third objective — the explanation

of acceleration— and also provides a quantitative expression, an

equation for the relationship between force and inertia. We shall

study separately the way in which force and inertia enter into the

second law. Later in this section we will look more closely at how
force and inertia are measured. But first we will take some time to

be sure that Newton's statement is clear. First we consider the

situation in which different forces act on the same object, and then

the situation in which the same force acts on different objects.

Force and Acceleration. To emphasize the force aspect, Newton's

second law can be stated as follows

:

The net, unbalanced force acting on an object is directly

proportional to, and in the same direction as, the acceleration

of the object.

More briefly, this can be written as: "acceleration is proportional

to net force." If we let F^et stand for net force and a stand for

acceleration, we can write this relationship precisely as:

a ^ fnet

Both a and f^net are vectors; the statement that they are proportional

includes the understanding that they also point in the same
direction.

To say that one quantity is proportional to another is to make
a precise mathematical statement. Here it means that if a given net

force (Fnet) causes an object to move with a certain acceleration (a),

then a new force equal to twice the previous force (2Fnet) will cause

the same object to have a new acceleration equal to twice the

earlier acceleration (or 2a); three times the net force will cause

three times the acceleration; and so on. Using symbols, this

principle can be expressed by a statement like the following:

SG 3.9

SG 3.10

r
Apple falling- negligible friction

Feather falling at nearly constant

speed

l^ili^^T^:^^ ""vS

Kite held suspended in the wind

Man running against the wind
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If a force f^net will cause a, then a force equal to

2P^net will cause 2a

sfnei will cause 3a

2-Fnet will cause ja

5.2Fnet will cause 5.2a

and so on.

One can readily imagine a rough experiment to test the

validity of the law — more easily as a thought experiment than

as a real one. Take a nearly frictionless dry-ice puck on a flat table,

attach a spring balance, and pull with a steady force so that it

accelerates continuously. The pull registered by the balance will be

the net force since it is the only unbalanced force acting. Measure

the forces and the corresponding accelerations in various tries, then

compare the values of Fnet and a. We shall look into this method in

detail in the next section.

Mass and Acceleration. Now we can consider the inertia aspect of

the second law, the effect of the same net force acting on different

objects. In discussing the first law, we said inertia is the resistance

an object exhibits to any change in its velocity. We know from

experience and observation that some objects have greater inertia

than others. For instance, if you were to throw a baseball and then

put a shot with your full effort, you know that the baseball would

be accelerated more and hence would reach a greater speed than

the shot. Thus, the acceleration given a body depends as much on

the body as it does on the force applied to it. The concept of the

amount of inertia a body has is expressed by the term mass.

Mass is a familiar word, but it becomes useful in physics only

after it is disentangled from some aspects of its common sense

meaning. For example, mass is often used as a synonym for weight.

But although mass and weight are closely related, they are not

at all the same thing. Weight is a force, the force with which
gravity is acting on an object; mass, on the other hand, is a

measure of an object's resistance to acceleration. It is true that

on or near the surface of the earth, objects that are hard to

accelerate are also heavy, and we will return to this relationship in

SG 3.11 Sec. 3.8.

If you supply the same force to several different objects, their

What does it mean to say that mass accelerations will not be the same. Newton claimed that the
is a scalar quantity? resulting acceleration of each object is inversely proportional to its

mass. Using the symbol m for mass (a scalar quantity), and the

symbol a for the magnitude of the vector acceleration a, we can
write "a is inversely proportional to m," or what is mathematically

the same, "a is proportional to — ,
" orm

1
a a. —

m

This means that if a certain force makes a given object have a

certain acceleration, then the same force will cause an object

having twice the mass to have one-half the acceleration, an object
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having three times the mass to have one-third the acceleration,

an object of one-fifth the mass to have five times the acceleration,

and so on. This is why, for example, a truck takes much longer to

reach the same cruising speed when it is full than when it is nearly

empty. Using symbols, we can express this as follows:

If a given force Fnet is applied, and an object

of mass m experiences a, then an object

of mass 2m will experience ^a,

of mass 3m will experience ^a,

of mass jm will experience 5a,

of mass 2.5m will experience 0.4a,

and so on.

This can be demonstrated by experiment. Can you suggest how it

might be done?

The roles played by force and mass in Newton's second law can
be combined in a single statement:

The acceleration of an object is directly proportional to, and

in the same direction as, the unbalanced force acting on it, and
inversely proportional to the mass of the object.

The ideas expressed in this long statement can be summarized by

the equation SG 3.12

Yn SG 3.13

We can regard this equation as one possible way of expressing

Newton's second law of motion. The same relation may of course

be equally well written in the form

FnPt — ma

In either form, this is probably the most fundamental single

equation in all of Newtonian mechanics. Like the first law, the

second has an incredible range of application: It holds no matter

whether the force is mechanical or electric or magnetic, whether

the mass is that of a star or a nuclear particle, whether the

acceleration is large or small. We can use the law in the easiest

problems and the most sophisticated ones. By measuring the

acceleration which an unknown force gives a body of known m.ass,

we can compute a numerical value for the force from the equation

Fnet ^ 'ma- Or, by measuring the acceleration that a known force

gives a body of unknown mass, we can compute a numerical value

for the mass from the equation (m = Fnet/a)- Clearly we must be

able to measure two of the three quantities in order to be able to

compute the other.

Units of mass and force. Even before we can make such measure-

ments, however, we must establish units for mass and force that

are consistent with the units for acceleration (which have already

been defined in terms of standards of length and time -for

example, meters per second per second).
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1 kg corresponds to the mass of

about 1 liter of water, or about
2.2 lb (more precisely 2.205 lb).

The 1/1000th part of 1 kg is 1 gram
(ig).

SG 3.14

One way to do this is to choose some convenient object, perhaps
a piece of corrosion-free metal, as the universal standard of mass,
just as a meter is a universal standard of length. We can
arbitrarily assign to this object a mass of one unit. Once this unit
has been selected we can proceed to develop a measure of force.

Although we are free to choose any object as a standard of
mass, ideally it should be exceedingly stable, easily reproducible,
and of reasonably convenient magnitude. Such a standard object
has, in fact, been agreed on by the scientific community. By
international agreement, the primary standard of mass is a
cylinder of platinum-iridium alloy, kept near Paris at the
International Bureau of Weights and Measures. The mass of this
platinum cylinder is defined as exactly 1 kilogram (abbreviated
1 kg). Accurately made copies of this international primary
standard of mass are kept in the various standards laboratories
throughout the world. Further copies have been made from these
for distribution to manufacturers and research laboratories.

The standard kilogram and meter at

the U.S. Bureau of Standards.

SG 3.15, 3.16

SG 3.17,3.18

In this equation we use only the

magnitudes-the direction is not
part of the definition of the unit of

force.

Now we can go on to answer the question of how much "push"
or "pull" should be regarded as one unit of force. We define 1 unit
of force as a force which, when acting alone, causes an object that
has a mass of 1 kilogram to accelerate at the rate of exactly
1 meter/second/per second.

Imagine an experiment in which the standard 1-kg object is

pulled with a spring balance in a horizontal direction across a level,
frictionless surface. The pull is regulated to make the 1-kg object
accelerate at exactly 1 m/secl The required force will by definition
be one unit in magnitude:

Fnei = 1 kg X 1 m/sec"^ = 1 kgm/sec-

I
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Thus, 1 kgm/sec^ of force is that quantity of force which causes a
mass of 1 kg to accelerate 1 m/sec-.

The unit kgm/sec^ has been given a shorter name, the newton
(abbreviated as N). The newton is therefore a derived unit, defined

in terms of a particular relationship between the meter, the

feilogram, and the second. Thus the newton is part of the "mks"
system of units, which is used almost universally in modem
scientific work.

The "hidden text" in Newton's second law involves both

definitions and experimental facts. There are several possible ways
of analyzing it: if you choose to define some part, you must prove

others experimentally— or vice-versa. Textbooks do not all agree on
how best to present the relation of definition and experiment in

Newton's second law, and Newton himself may have not thought it

through entirely. However, as a system of ideas (whichever way it

is analyzed), it was powerful in leading to many discoveries in

physics.

Newton did not "discover" the concepts of force and mass. But

he did recognize that these concepts were basic to an understanding

of motion. He clarified these concepts, and found a way to express

them in numerical values, and so made a science of dynamics

possible.

Q11 Which three fundamental units of distance, mass and

time are used to define the unit of force?

Q12 A net force of 10 N gives an object a constant acceleration

of 4 m/sec^. What is the mass of the object?

Q13 True or false? Newton's second law holds only when
frictional forces are absent.

Q14 A 2-kg object, shoved across the floor with a speed of 10

m/sec, slides to rest in 5 sec. What was the magnitude of the force

producing this acceleration?

Q15 Complete the table in the margin which lists some
accelerations resulting from applying equal forces to objects of

diff"erent mass.

The units of acceleration "m/sec
per second" can be written as

"m/sec/sec" or "m/sec-". The sec-

means that division by time units

occurs twice, not something like

"square time."

SG 3.19, 3.20, 3.21, 3.22, 3.23.

MASS ACCELERATION

m
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Is the boy weightless? Explain.

SG 3.24.)

(See

magnitude of the gravitational pull T„ is, roughly speaking, the

same anywhere on the surface of the earth for a particular object.

When we wish to be very precise, we must take into account the

facts that the earth is not exactly spherical, and that there are

irregularities in the composition of the earth's crust. These factors

cause slight differences — up to 1/2% — in the gravitational force

on the same object at different places. An object having a constant

mass of 1 kg will experience a gravitational force of 9.812 newtons

in London, but only 9.796 newtons in Denver, Colorado. Geologists

make use of these variations in locating oil and other mineral

deposits.

The term weight is often used in everyday conversation as if it

meant the same thing as bulk or mass. In physics, we define the

weight of an object as the gravitational force acting on the body.

Weight is a vector quantity, as are all forces. Your weight is the

downward force our planet exerts on you whether you stand or sit.

fly or fall, orbit the earth in a space vehicle or merely stand on a

scale to "weigh" yourself.

Think for a moment what a scale does. The spring in it

compresses until it exerts on you an upward force sufficient to hold

you up. So what the scale registers is really the force with which
it pushes up on your feet. When you and the scale stand still and are

not accelerating, the scale must be pushing up on your feet with a

force equal in magnitude to your weight. That is why you are in

equilibrium — the sum of the forces on you is zero.

Now imagine for a moment a ridiculous but instructive thought

experiment: as you stand on the scale, the floor (which, sagging

slightly, has been pushing up on the scale) suddenly gives way, and
you and the scale are dropping into a deep well in free fall. At every

instant, your fall speed and the scale's fall speed will be equal,

since you started falling together and fall with the same
acceleration. Your feet would now touch the scale only barely (if at

all), and if you looked at the dial you would see that the scale

registers zero. This does not mean you have lost your weight -that
could only happen if the earth suddenly disappeared, or if you were
suddenly removed to far, interstellar space. No, Pg still acts on you
as before, accelerating you downward, but since the scale is

accelerating with you, you are no longer pushing down on it -nor
is it pushing up on you.

You can get a fairly good idea of the difference between the

properties of weight and mass by holding a big book: First, just lay

the book on your hand; you feel the weight of the book acting down.
Next, grasp the book and shake it back and forth sideways. You still

feel the weight downwards, but you also feel how hard the book

is to accelerate back and forth — its mass. You could make your

sensation of the book's weight disappear by hanging the book on a

string, but the sensation of its inertia as you shake it remains the

same. This is only a crude demonstration, and it isn't clear that the

shaking sensation doesn't still depend on the pull of the earth. More
elaborate experiments would show, however, that weight can
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change without changing mass. Thus when an astronaut on the Consider SG 3.14 again,

moon's surface uses a big camera, he finds it much easier to hold-
its weight is only 1/6 of its weight on earth. But its mass or

inertia is not less, and it is as hard to swing around suddenly

into a new position as it is on earth.

We can now understand the results of Galileo's experiment on

falling objects in a more profound way. Galileo's discussion of

falling objects showed that any given object (at a given locality)

falls with uniform acceleration, a,,. What is responsible for its

uniform acceleration? A constant net force — in this case of free fall,

just Fg. Now Newton's second law expresses the relationship

between this force and the resulting acceleration. Applying the

equation Fnet = ma to this case, where Fnet ^ r „ and a = ay, we can
write

fg = mag

We can, of course, rewrite this equation as

We conclude from Newton's second law that the reason why the

acceleration of a body in free fall is constant is that for an object of

given mass m the gravitational force Fg over normal distances of

fall is nearly constant.

Galileo, however, did more than claim that every object falls

with constant acceleration: he found that all objects fall with the

same uniform acceleration, which we now know has the value of

about 9.8 m/sec at the earth's surface. Regardless of the mass m or

weight Fg, all bodies in free fall (in the same locality) have the

same acceleration a^. Is this consistent with the relation ag= Fglm7

It is consistent only if for every object Fg is directly proportional to

mass m: that is, if m is doubled, Fg must double; if m is tripled,

Fg must triple. This is a significant result indeed. Weight and mass
are entirely different concepts. Weight is the gravitational force on

an object (hence weight is a vector). Mass is a measure of the

resistance of an object to change in its motion, a measure of inertia

(hence mass is a scalar). Yet the fact that different objects fall

freely with the same acceleration means that the magnitudes of

these two quite different quantities are proportional in any given

locality.

Q16 An astronaut is orbiting the earth in a space vehicle. The

acceleration due to gravity at that distance is half its value on the

surface of the earth. Which of the following are true? SG 3.25, 3.26, 3.27, 3.28

(a) His weight is zero.

(b) His mass is zero.

(c) His weight is half its original value.

(d) His mass is half its original value.

(e) His weight remains the same.

(f ) His mass remains the same.
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Q17 A boy jumps from a table top. When he is halfway between

the table top and the floor, which of the statements in Q16 are true?

3.9 Newton's third law of motion

He is, to be sure, pushing against

the ground -but that is a force

acting on the ground.

In his first law, Newton described the behavior of objects when
they are in a state of equilibrium; that is, when the net force acting

on them is zero. His second law explained how their motion changes

when the net force is not zero. Newton's third law added a new
and surprising insight about forces.

Consider this problem: In a 100-meter dash, an athlete will go

from rest to nearly his top speed in less than a second. We could

measure his mass before he makes the dash, and we could use

high-speed photography to measure his initial acceleration. With his

mass and acceleration known, we could use F = ma to find the force

acting on him during the initial acceleration. But where does the

force come from? It must have something to do with the runner

himself. Is it possible for him to exert a force on himself as a

whole? Can he lift himself by his own bootstraps?

Newton's third law of motion helps us to understand just such

puzzling situations. First, let us see what the third law claims.

In Newton's words:

To every action there is always opposed an equal reaction: or,

mutual actions of two bodies upon each other are always equal

and directed to contrary parts.

SG 3.29

This is a word-for-word translation from the Principia. It is

generally agreed, however, that in Newton's statement the expression

force on one object may be substituted for the word action, and
the expression equally large force on another object for the words
equal reaction. Read it over with this change.

The most startling idea to come out of this statement is that

forces always exist in mirror-twin pairs, and on two different

objects. Indeed, the idea of a single force unaccompanied by another

force acting somewhere else is without any meaning whatsoever.

On this point Newton wrote: "Whatever draws or presses another

is as much drawn or pressed by that other. If you press a stone

with your finger, the finger is also pressed by the stone." This

suggests that forces always arise as a result of interactions between
objects: object A pushes or pulls on B. while at the same time

object B pushes or pulls with precisely equal amount on A. These
paired pulls and pushes are always equal in magnitude, opposite in

direction, and on two different objects.

Applying this idea to the athlete, we now see that his act of

pushing his feet on the earth (one may call it here the action) is

accompanied by a push of the earth on him (one can call it the

reaction)-and the latter is what propels him forward. In this and
all other cases it really makes no difference which we call the action
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and which the reaction, because they occur at exactly the same
time. The action does not "cause" the reaction -if the earth could

not "push back" on his feet, the athlete could not push on the earth

in the first place, but would slide around — as on slippery ice.

Action and reaction coexist. You can't have one without the other.

And most important, the two forces are not acting on the same
body. In a way, they are like debt and credit: one is impossible

without the other; they are equally large but of opposite sign; and
they happen to two different objects.

Any body A that affects body B must itself be affected by B —

equally and oppositely. We can use the efficient shorthand of algebra

to express the idea that whenever bodies A and B interact:

f^AB — ~^BA

This is the equivalent of Newton's explanatory statement:

Whenever two bodies interact, the forces they exert on each other

are equal in magnitude and opposite in direction.

A host of everyday observations illustrate Newton's third law:

A boat is propelled by the water that pushes forward on the oar

while the oar pushes back on the water. A car is set in motion by

the push of the ground on the tires as they push back on the

ground; when friction is not sufficient, the tires cannot start the car

forward. While accelerating a bullet forward, a rifle experiences a

recoil kick. A balloon jumps forward while the air spurts out the

opposite direction. Many such effects are not easily observed; for

example, when an apple falls, pulled down by its weight, the earth

accelerates upward, pulled up by the attraction to the apple.

Now note what the third law does not say— this, too, is

important. The third law speaks of forces, not of the effects these

forces produce. Thus in the last example, the earth accelerates

upward as the apple falls down; the forces on each are equally

large, but the accelerations produced by the forces are quite

different; owing to the enormous mass of the earth, the earth's

upward acceleration is insensibly small. The third law also

does not describe how the push or pull is applied, whether by

contact or by magnetic action or by electrical action. Nor does the

law require that the force be either an attraction or repulsion. The

third law really does not depend on any particular kind of force. It

applies equally to resting objects and to moving objects, to

accelerating objects as well as to objects in uniform motion. It

applies whether or not there is friction present. Indeed, the

universality of the third law makes it extremely valuable throughout

physics.

In the collision between the ball and

the club, the force the ball exerts on

the club is equal and opposite to the

force the club exerts on the ball. Both

the club and the ball get defornned by

the forces acting on them.

Force on

bail due

V- to club

is equal and

opposite to

Force on

club due

to ball

foy-ce, on earih force on moon

The force on the moon due to the

earth is equal and opposite to the

force on the earth due to the moon.
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Q18 According to Newton's third law, what are the four

general characteristics of forces?

Q19 Identify the forces that act according to Newton's third

law when a horse accelerates; when a swimmer moves at constant

speed.

Q20 A piece of fishing line breaks if the force exerted on it is

greater than 500 N. Will the line break if two people at opposite

ends of the line pull on it, each with a force of 300 N?
Q21 State Newton's three laws of motion as clearly as you can

SG 3.30, 3.31, 3.32 in your own words.

3.10 Using Newton's laws of motion

We have discussed each of Newton's three laws of motion in

some detail. The first law emphasizes the modem point of view in

the study of motion: What requires explanation is not motion itself,

but change of motion. The first law stresses that one must account

for why an object speeds up or slows down or changes direction. The
second law asserts that the rate of change of velocity of an object

is related to both the mass of the object and the net force applied to

it. In fact, the very meanings of force and mass are shown by the

second law to be closely related to each other. The third law is a

statement of a force relationship between interacting objects.

Despite their individual importance, Newton's three laws are

most powerful when they are used together. So successful was the

mechanics based on Newton's laws that until the late nineteenth

century it seemed that all of creation must be understood as

"matter in motion." Let us examine a specific example that

illustrates the use of these laws.

Example 1

On September 12, 1966, a dramatic experiment based on

Newton's second law was carried out high over the earth. In this

experiment, the mass of an orbiting Agena rocket case was
determined by accelerating it with a push from a Gemini spacecraft.

After the Gemini spacecraft made contact with the Agena rocket

case, the aft thrusters on the Gemini, calibrated to give an

average thrusting force of 890 N, were fired for 7.0 sec. The change
in velocity of the spacecraft and rocket case was found to be 0.93

m/sec. The mass of the Gemini spacecraft was known to be about

3400 kg. The question to be answered was: What is the mass of the

Agena?
(Actually, the mass of the Agena had already been measured

independently. The purpose of the experiment was to develop a

technique to find the unknown mass of a foreign satellite in orbit.)
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In this case, a known force of magnitude 890 N was acting on
two objects in contact, with a total mass of m,otai, where

Wtotal ~ mr + ni;

= 3400 kg + rriAgena

The magnitude of the average acceleration produced by the thrust

is found as follows:

At;

At

_ 0.93 m/sec

7.0 sec

= 0.13 m/sec2

Newton's second law gives us the relation

F = mtotai X «

or

= (mAgena + 3400 kg) X a

Solving for mAgena gives

F ^,^^, 890 N
mAgena--- 3400 kg =

^^3^^^^^
= 6900 kg - 3400 kg

= 3500 kg

3400 kg

The actual mass of the Agena, as previously determined, was
about 3660 kg. The technique of finding the mass by nudging the

Agena while in orbit therefore gave a result that was accurate to

within 5% — well within the margin of error expected in making
this measurement.
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Example 2

Imagine taking a ride on an elevator: (A) At first it is at rest on

the ground floor; (B) it accelerates upward uniformly at Im/sec/sec

for a few seconds; then (C) continues to go up at a constant speed

of 5m/sec.
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of reference. A critical analysis of the relationship between
descriptions of the same event seen from different frames of

reference was in fact the necessary first step toward the theory of

relativity.

Newton's second law shows the fundamental importance of the

concept of force. In fact, it presents us with a mandate: when you
observe acceleration, find the force! This is how we were first

directed to the gravitational force as an explanation of Galileo's

kinematics: For all objects, at a given place, a*g is constant for all

objects; since Ug = Tglm by Newton's second law, we must conclude

that the magnitude of Tg is always proportional to m.
But this is only a halfway solution. Now we want to know why

Fg is proportional to m for all bodies at a given place and how Fg

changes for a given body as it is moved to places more distant from
the earth. Is there a law connecting Fg, m, and distance -a "force

law"? As Unit 2 will show, there is indeed. Knowing that force

law, we shall be able to claim to understand all gravitational

interactions among objects.

Gravitational attraction is not the only basic force by which
objects interact. However, it is satisfying to realize that there

appear to be very few such basic forces. In fact, physicists now
believe that everything we observe in nature is the consequence of

just four basic interactions. In terms of our present understanding,

all the events of nature — subnuclear and nuclear, atomic and
molecular, terrestrial and solar, galactic and extragalactic — are the

manifestations of one or more of these few types of forces.

There is, of course, nothing sacred about the number four. New
discoveries or theoretical insights might increase or reduce the

number. For example, two (or more) of the basic interactions might

some day be seen as consequences of something even more basic.

The first of the interactions is the gravitational force, which

becomes important only on a relatively large scale, that is, when
tremendous numbers of atoms of matter are involved. Between

individual atoms, gravitational force is so weak so to be

insignificant, but it is this weak force that literally holds the parts

of the universe together. The second interaction involves electric

and magnetic processes and is most important on the atomic and

molecular scale. It is electromagnetic force that holds together

objects in the range between the atom and the earth.

We know the force laws governing gravitational and electro-

magnetic interactions; therefore these interactions are fairly well

"understood." The situation changes completely when we consider

the two remaining basic interactions. They are the subject of

vigorous research today. The third interaction (the so-called

"strong" interaction) somehow holds the particles of the nucleus

together. The fourth interaction (the so-called "weak" interaction)

governs certain reactions among subnuclear particles.

We do, of course, have other names for forces, but each of these

belongs to one of the basic types. One of the most common is the

"frictional" force; it is thought to be an electrical interaction — that is,

Refer to K. Ford's: The World of

Elementary Particles lor brief

discussion of four forces.

Einstein spent most of the latter

half of his life seeking a theory that

would express gravitational and
electromagnetic effects in a unified

way. A satisfactory "unified field

theory" is still being sought.
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"The Starry Night, " by Vincent Van
Gogh.
The intuitive feeling that all of nature's

phenomena are interlinked on a grand

scale is shared by scientists as well

as artists.

the atoms on the surfaces of the objects shding or rubbing against

each other interact electrically.

We shall be encountering these ideas again. We shall deal with

the gravitational force in Unit 2, the electrical and magnetic forces

in Units 4 and 5, and the forces between nuclear particles in Unit 6.

In all these cases, an object subjected to the force will behave in

accordance with Newton's laws of motion.

The knowledge that there are so few basic interactions is both

surprising and encouraging. It is surprising because at first glance

the events all around us seem so varied and complex. It is

encouraging because our elusive goal — an understanding of the

events of nature— looks more attainable.

^^^

.<^.^v.

4P SW*^
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3.1 The Project Physics learning materials
particularly appropriate for Chapter 3 include the
following

:

Experiments
Newton's Second Law
Mass and Weight

Activities

Checker Snapping
Beaker and Hammer
Pulls and Jerks
Experiencing Newton's Second Law
Make One of These Accelerometers

Reader Articles

Introduction to Vectors

Newton's Laws of Dynamics
The Scientific Revolution
How the Scientific Revolution of the 17th

Century Affected Other Branches of

Thought

Film Loops
Vector Addition- Velocity of a Boat

3.2 The Aristotelian explanation of motion should
not be dismissed lightly. Great intellects of the

Renaissance period, such as Leonardo da Vinci,

who among other things designed devices for

launching projectiles, did not challenge such
explanations. One reason for the longevity of

these ideas is that they are so closely aligned with
our common sense ideas.

In what ways do your common sense notions

of motion agree with the Aristotelian ones?

3.3 Three ants are struggling with a crumb. One
ant pulls toward the east with a force of 8 units.

Another pulls toward the north with a force of 6

units, and the third pulls in a direction 30° south

of west with a force of 12 units.

(a) Using the "head-to-taU" construction of

arrows, find whether the forces balance,
or whether there is a net (unbalanced)
force on the crumb.

(b) If there is a net force, you can find its

direction and magnitude by measuring
the line drawn from the tail of the first

arrow to the head of the last arrow. What
is its magnitude and direction?

3.4 Show why the parallelogram method of adding
arrows is geometrically equivalent to the head-to-

tail method.

3.5 There are many famihar situations in which
the net force on a body is zero, and yet the body
moves with a constant velocity. One example of

such "dynamic equilibrium" is an automobile
traveling at constant speed on a straight road: the

force the road exerts on the tires is just balanced
by the force of air friction. If the gas pedal is

depressed further, the tires will push against the

road harder and the road will push against the

tires harder; so the car will accelerate forward—
until the air friction builds up enough to balance

the greater drive force. Give another example of a
body moving with constant velocity under
balanced forces. Specify the source of each force

on the body and, as in the automobile example,
explain how these forces could be changed to

affect the body's motion.

3.6 (a) You exert a force on a box, but it does not
move. How would you explain this? How
might an Aristotelian explain it?

(b) Suppose now that you exert a greater

force and the box moves. Explain this

from your (Newtonian) point of view and
from an Aristotelian point of view.

(c) You stop pushing on the box and it

quickly comes to rest. Explain this from
both the Newtonian and the Aristotelian

points of view.

3.7 There are at least two drawbacks to an
experimental test of Newton's law of inertia.

(a) How can you really be sure that there is

no unbalanced force acting on the object,

even if you see that the object moves
uniformly in a straight line? We can
answer that we are sure because the

object does continue to move uniformly in

a straight line. But this answer is merely
a restatement of the first law, which we
wanted to prove by experiment. Surely we
cannot use the first law to verify the first

law! But we are not really caught in a
circular argument. Practically, we can
expect to find forces on an object only

when other objects are in contact with it,

or somewhere near it. The influences may
be of unfamiliar kinds, and we may have
to stretch what we mean by "near"; but
whenever a force is detected we look for

the source of the influence. If aU known
influences on an object were balanced,
and yet it didn't move uniformly, we
would suspect an unknown influence and
track it down — and we would find it. At
least, that's how it has always turned out
so far. As a practical example, consider
the demonstration involving low friction

pucks on a level surface. Without using
Newton's first law, how could you be sure

the surface was level?

(b) What is meant by a straight line?

3.8 (a) Assume that the floor of a laboratory

could be made perfectly horizontal and
perfectly smooth. A dry ice puck is placed
on the floor and given a small push.
Predict the way in which the puck would
move. How would this motion differ if the

whole laboratory were moving uniformly
during the experiment? How would it

differ if the whole laboratory were
accelerating along a straight line? If the

puck were seen to move in a curved path
along the floor, how would you explain this?

(b) A man gently starts a dry ice puck in

motion while both are on a rotating

93
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platform. What will he report to be the

motion he observes as the platform keeps
rotating? How will he explain what he
sees if he believes he can use Newton's
first law to understand observations made
in a rotating reference frame? Will he
be right or wrong?

3.9 In terms of Newton's first law, explain:

(a) Why people in a moving car lurch forward
when the car suddenly slows down;

(b) What happens to the passengers of a car
that makes a sharp, quick turn;

(c) When a coin is put on a phonograph
turntable and the motor started, does the

coin fly off when the turntable reaches a
certain speed? Why doesn't it fly off

sooner?

3.10 A balloon-like object stands before you,

unmoving, suspended in mid-air. What can you
say about the forces that may be acting on it?

Suddenly it moves off in a curved path. Give two
diff'erent explanations. How can you test which is

right?

3. 11 In an actual experiment on applying the

same force to different masses, how would you
know it was the "same force"?

3.12 Several proportionalities can be combined
into an equation only if care is taken about the

units in which the factors are expressed. When
we wrote Ad = ii x At in Chapter 1, we chose
meters as units for d, seconds as units for t, and
then made sure that the equation came out right

by using meters/second as units for v. In other
words, we let the equation define the unit for v.

If we had already chosen some other units for v,

say miles per hour, then we would have had to

write instead something like

Ad= fe X vAt

where fe is a constant factor that matches up the
units of d, t, and v.

What value would k have if d were measured in

miles, t in seconds, and v in miles per hour?
Writing a = T„Jm before we have defined

units of F and m is not the very best mathematical
procedure. To be perfectly correct in expressing
Newton's law, we would have had to write:

- f
m

where fe is a constant factor that would match up
whatever units we choose for a, F, and m. In fact,

we will take the easiest way out and let the
equation define the units of F in terms of the
units we choose for a and m, so the equation
comes out right without using k. (Or if you prefer
to say it that way, we choose units so that k = 1.)

3.13 A body is being accelerated by an
unbalanced force. If the magnitude of the net
force is doubled and the mass of the body is

reduced to one-third of the original value, what

wUl be the ratio of the second acceleration to the

first?

3.14 What does a laboratory balance measure-
mass or weight? What about a spring balance?
(Hint: consider what would happen to readings on
each if they were on the moon instead of the

earth.) You might want to consider this question
again after reading Sec. 3.8.

3.1.) Describe as a thought experiment how you
could calibrate a spring balance in force units. If

you actually tried to do the experiments, what
practical difficulties would you expect?

3.16 "Hooke's law" says that the force exerted by
a stretched or compressed spring is directly

proportional to the amount of the compression or

extension. As Robert Hooke put it in announcing
his discovery:

. . . the power of any spring is in the same
proportion with the tension thereof: that

is, if one power stretch or bend it one
space, two will bend it two, three will

bend it three, and so forward. Now as the

theory is very short, so the way of trying

it is very easie.

If Hooke says it's "easie," then it might well

be so. You can probably think immediately of how
to test this law using springs and weights, (a) Try
designing such an experiment; then after

checking with your instructor, carry it out. What
limitations do you find to Hooke's law? (b) How
could you use Hooke's law to simplify the

calibration procedure asked for in SG 3.15?

3.17 Refer to the discussion in SG 3.12. Show
that fe = 1 when we define a newton as we do on
p. 83.

3.18 When units for different terms in a relation

are defined completely independently from one
another, the numerical value of the constant
must be found experimentally. (Later in this

course you will see how finding the value of k in

certain relations was very important in the

development of physics.) Say. for example, that

we had decided to measure force in "tugs."

defining a tug as the force required to stretch a
standard rubber band one inch. How could we go
about finding k?
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3.19 Complete this table:

RESULTING
NET FORCE
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3.27 (a) Find your mass in kg, and your weight
in newtons.

(b) How much force is needed to accelerate

you 1 m/sec^? How many kilograms can
you lift? How many newtons of force

must you exert to do this?

3.28 Why is it often said that astronauts in orbit

are weightless?

3.29 When a runner pushes on the earth with the
sole of his shoe, the earth pushes with an equal
and opposite force on the sole of the shoe. This
latter force has an accelerating effect on the
runner, but what does the force acting on the
earth do to the earth? From Newton's second law
we would conclude that such an unbcdanced
force would accelerate the earth. The mass of the
earth is very great, however, so the acceleration
caused by the runner is very small. A reasonable
value for the average acceleration of a runner
when he starts is 5 m/sec/sec, and a reasonable
value for his mass would be 60 kg. The mass of
the earth is approximately 60 x 10" kg.

(a) What acceleration of the earth would the
runner cause?

(b) If the acceleration lasts for 2 seconds,
what speed will the runner have reached?

(c) What speed will the earth have reached?

3.30 In terms of Newton's third law, assess the
following statements:

(a) You are standing perfectly still on the
ground; therefore you and the earth exert
equal and opposite forces on each other.

(b) The reason that a propeller airplane
cannot fly above the atmosphere is that
there is no air to push one way while the
plane goes the other.

(c) Object A rests on object B. The mass of
object A is 100 times as great as that of
object B, but even so, the force A exerts
on B is no greater than the force of B
on A.

3.31 Consider a tractor pulling a heavy log in a
straight line. On the basis of Newton's third law,
one might argue that the log pulls back on the
tractor just as strongly as the tractor pulls the
log. But why, then, does the tractor move? (Make
a large drawing of the tractor, rope, log, and earth,
and enter the forces.)
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Second, draw in arrows to represent all the forces
acting on the object of interest. There will be
the horizontal pull Fp, the friction Pf, the
gravitational pull Fg (the bottle's weight), and the
upward force Ft exerted by the table. (There is,

of course, also a force acting down on the table,

but we don't care about that — we're interested

only in the forces acting on the bottle.)

Next, draw the arrows alone. In this sketch all

the forces can be considered to be acting on the
center of mass of the object.

L

The mass m is given as 1.0 kg. The acceleration
involved in going from rest to 6.0 m/sec in 2
seconds is

Ai;
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".
. . the greater the velocity . . . with

which [a stone] is projected, the
farther it goes before it falls to the

earth. We may therefore suppose the

velocity to be so increased, that it

would describe an arc of 1, 2, 5, 10,

100, 1000 miles before it arrived at the

earth, till at last, exceeding the limits

of the earth, it should pass into space
without touching it." — Newton's Sys-

tem of the World



CHAPTER FOUR

Understanding Motion

4.1 A trip to the moon

Imagine a Saturn rocket taking off from its launching pad at

Cape Kennedy. It climbs above the earth, passing through the

atmosphere and beyond. Successive stages of the rocket shut off

leaving finally a capsule hurtling through the near-vacuum of space

toward its destination 240,000 miles away. Approximately 65 hours

after take-off, the capsule circles the moon and descends to its

target— the center of the lunar crater Copernicus.

The complexity of such a voyage is enormous. To direct and
guide the flight, a great number and variety of factors must be

taken into account. The atmospheric drag in the early part of the

flight depends upon the rocket's speed and altitude. The engine

thrust changes with time. The gravitational pulls of the sun, the

earth, and the moon change as the capsule changes its position

relative to them. The rocket's mass is changing. Moreover, it is

launched from a spinning earth, which in turn is circling the sun,

and the target — the moon — is moving around the earth at a speed

of about 2,300 miles per hour.

Yet, as for almost any complex motion, the flight can be broken

down into small portions, each of which is relatively simple to

describe. What we have learned in earlier chapters will be useful in

this task.

In simplified form, the earth-moon trip can be divided into

these eight parts:

Part 1. The rocket accelerates vertically upward from the

surface of the earth. The force acting on the rocket is

not really constant, and the mass of the rocket

decreases as the propellent escapes. The value of the

acceleration at any instant can be computed using

Newton's second law; it is given by the ratio of net

force (thrust minus weight) at that instant to the mass

at that instant.

Part 2. The rocket, still accelerating, follows a curved path as

it is "injected" into an orbit about the earth.

In his science-fiction novels of more
than a hundred years ago, the French

author Jules Verne (1828-1905)

launched three spacemen to the

moon by means of a gigantic charge

fixed in a steel pipe deep in the earth.

SG4.1
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Part 3. In an orbit 115 miles above the earth's surface, the

capsule moves in a nearly circular arc at a constant

speed of 17,380 miles/hr.

Part 4. The rocket engines are fired again, increasing the

capsule's speed so that it follows a much less curved

path into space. (The minimum speed necessary to

escape the earth completely is 24,670 miles/hr.)

Part 5. In the flight between earth and moon, only occasional

bursts from the capsule's rockets are required to

keep it precisely on course. Between these

correction thrusts, the capsule moves under the

influence of the gravitational forces of earth, moon,
and sun; we know from Newton's first law that the

capsule would move with constant velocity if it were
not for these forces.

Part 6. On nearing the moon, the rocket engines are fired again

to give the capsule the correct velocity to "inject" into

a circular orbit around the moon.
Part 7. The capsule is moving with a constant speed of about 1

mile/sec in a nearly circular path 50 miles above the

moon's surface.

Part 8. After its rockets are fired in the direction of motion to

reduce the speed, the capsule accelerates downward
as it falls toward the surface of the moon. It follows

an arcing path before it lands in the crater Copernicus.

(Just before impact, the rocket engines fire a final time

to reduce speed of fall and prevent a hard landing.)

SG 4.2 Motion along a straight line (as in Parts 1 and 5) is easy
enough to describe. But let us analyze in greater detail other parts

of this trip: moving on a circular arc, as in Parts 3 and 7, and
projectile motion, as in Part 8, are two important cases.

How shall we go about making this analysis? Following the

example of Galileo and Newton, we can try to learn about the

behavior or moving objects beyond our reach, even on the moon or

in the farthest parts of the universe, by studying the motion of
objects near at hand. If we believe that physics is the same
everywhere, then the path of a lunar capsule moving as in Part 8
can be understood by studying a marble rolling off" the edge of a

table or a bullet fired from a horizontal rifle.
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4.2 Projectile motion

101

Consider this experiment: a rifle is mounted on a tower with its

barrel parallel to the ground; the ground over which the bullet will

travel is level for a very great distance. At the instant a bullet

leaves the rifle, an identical bullet is dropped from the height of the

barrel of the rifle. The second bullet has no horizontal motion

relative to the ground; it goes only straight down. Which bullet will

reach the ground first?

We do not need to know anything about the speed of the bullet

or the height of the tower in order to answer this question.

Consider first the motion of the second bullet, the one that is dropped.

As a freely falling object, it accelerates toward the ground with

constant acceleration. As it falls, the time t and the corresponding

downward displacement y are related by

y = iagt^

where Ug is the acceleration due to gravity at that location.

Now consider the bullet that is fired horizontally from the rifle.

When the gun is fired, the bullet is driven by the force of expanding

gases and accelerates very rapidly until it reaches the muzzle of the

rifle. On reaching the muzzle these gases escape and no longer

push the bullet. At that moment, however, the bullet has a large

horizontal speed, Vj,. The air will slow the bullet slightly, but we
shall ignore that fact and imagine an ideal case with no air

friction. As long as air friction is ignored, there is no force acting

on the projectile in the horizontal direction. Therefore, we expect

the horizontal speed will remain constant. From the instant the

bullet leaves the muzzle, we would expect its horizontal motion to

be described by the equation

X = Vj.t

So much for the forward part of the motion. There is, however,

another part that becomes more and more important as t increases.

From the moment the bullet leaves the gun, it falls toward the

earth while it moves forward, like any other unsupported body.

Can we use the same equation to describe its fall that we used to

describe the fall of the dropped bullets? And how will falling aff"ect

the bullet's horizontal motion? These doubts raise a more

J L -riJSl^l!;.



102 Understanding Motion

The two balls in this strobscopic

photograph were released simultane-

ously. The one on the left was simply

dropped from rest position; the one
on the right was given an initial veloc-

ity in the horizontal direction.

SG 4.3

SG 4.4

fundamental question that goes beyond just the behavior of the

bullets; namely, is the vertical motion of an object affected by its

horizontal motion? Or vice versa?

To answer these questions, we can carry out a real experiment
similar to our thought experiment. We can use a special laboratory

device designed to fire a ball in a horizontal direction at the

moment that a second ball is released to fall freely from the same
height. We set up our apparatus so that both balls are the same
height above a level floor. The balls are released and, although the
motions of the balls may be too rapid for us to follow with the eye,

we will hear that they reach the floor at the same time. This result

suggests that the vertical motion of the projected ball is unaffected
by its horizontal velocity.

In the margin is a stroboscopic photograph of this experiment.
Equally spaced horizontal lines aid our examination. Look first at

the ball on the left, which was released without any horizontal

motion. You see that it accelerates because it moves greater

distances between successive flashes. Careful measurement of the
photograph shows that the acceleration is constant, within the
uncertainty of our measurements.

Now compare the vertical positions of the second ball, fired to

the right, with the vertical positions of the ball which is falling

freely. The horizontal lines show that the distances of fall are the
same for corresponding time intervals. The two balls obey the same
law for motion in a vertical direction. That is, at every instant they
both have the same constant acceleration a^,, the same downward
velocity and the same vertical displacement. The experiment
therefore supports the idea that the vertical motion is the same
whether or not the ball has a horizontal motion also. The horizontal
motion does not aff'ect the vertical motion.

We can also use the strobe photo to see if the vertical motion of
the projectile aff"ects its horizontal velocity, by measuring the
horizontal distance between successive images. We find that the
horizontal distances are practically equal. Since the time intervals
between images are equal, we can conclude that the horizontal
velocity v^ is constant. So we can conclude that the vertical motion
doesn't aff'ect the horizontal motion.

The experiment shows that the vertical and horizontal
componerits of the motion are independent of each other. This
experiment can be repeated from diff"erent heights, and with
diff"erent horizontal velocities, but the results lead to the same
conclusion.

The independence of motions at right angles has important
consequences. For example, it is easy to predict the displacement
and the velocity of a projectile at any time during its flight. We need
merely to consider the horizontal and vertical aspects of the
motion separately, and then add the results -vectorially. We can
predict the magnitude of the components of displacement (x and y)
and of the components of velocity (Vj. and v„) at any instant by
application of the appropriate equations. For the horizontal
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component of motion, the equations are

Vx = constant

and
X= Vjct

and for the vertical component of motion,

Vy^ Ugt

'i

and

y = ^agt^

Q1 If a body falls from rest with acceleration Og, with what

acceleration will it fall if it has an initial horizontal speed Vx?

4.3 What is the path of a projectile?

It is easy to see that a thrown object, such as a rock, follows a

curved path, but it is not so easy to see just what kind of curve it

traces. For example, arcs of circles, ellipses, parabolas, hyperbolas,

and cycloids (to name only a few geometric figures) all provide

likely-looking curved paths.

Better knowledge about the path of a projectile was gained

when mathematics was applied to the problem. This was done by

deriving the equation that expresses the shape of the path. Only a

few steps are involved. First let us hst equations we already know

for a projectile launched horizontally:

X = v„t

and

y = Jttgt^

We would know the shape of the trajectory if we had an equation

that gave the value of y for each value of x. We can find the fall

distance y for any horizontal distance x by combining these two

equations in a way that eliminates the time variable. Solving the

equation x = v^t for t we get

_ ^

Because t means the same in both equations, we can substitute

xlvx for t in the equation for y:

y — 20.gt

and thus

^"^(t)

In this last equation there are two variables of interest, x and y,

and three constant quantities: the number y, the uniform

acceleration of free fall a«, and the horizontal speed Vx which we

Specialized equations such as

these need not be memorized.
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moon's surface. Let us assume that the orbit is a low one, so that

the acceleration due to gravity is almost constant between the

orbit and the surface. If the rocket engines are fired forward, in

the direction of motion, the capsule's speed will be reduced and
it will begin to fall closer to the surface. After firing, the reduced
horizontal speed remains constant, so the capsule falls toward

the surface on a parabolic path. Spaceflight engineers apply

ideas like these to land a space capsule on a desired moon target.

(See SG 4.23).

Q2 Which of the conditions below must hold in order for the

relationship y = kx- to describe the path of a projectile?

(a) Ug is a constant

(b) Ug depends on t

(c) ttg is straight down
(d) Vj. depends on t

(e) air friction is negligible

4.4 Moving frames of reference

stationary

earth

moving

earth

The critics of Galileo claimed that if

the earth moved, a dropped stone

would be left behind and land beyond
the foot of the tower.

Galileo's work on projectiles leads to thinking about reference

frames. As you will see in Unit 2, Galileo ardently supported the

idea that the preferred reference frame for discussing motions in

our planetary system is one fixed to the sun, not the earth. From
that point of view, the earth both revolves around the sun and
rotates on its own axis. For many scientists of Galileo's time, this

idea was impossible to accept, and they thought they could prove

their case. If the earth rotated, they said, a stone dropped from a

tower would not land directly at its base. For if the earth rotates

once a day, the tower would move on for hundreds of feet for every

second the stone is falling; hence, the stone would be left behind

while falling through the air and consequently would land far

behind the base of the tower. But this is not what happens. As near

as one can tell, the stone lands directly under where it was
released. Therefore, many of Galileo's critics believed that the tower

and the earth could not be considered to be in motion.

To answer these arguments, Galileo showed the same
observation can support his view that, during the time of fall, the

tower and the ground supporting it were moving forward together

with the same uniform velocity. While the stone was being held at

the top of the tower, it had the same horizontal velocity as the tower.

Releasing the stone allows it to gain vertical speed, but by the

principle of independence of Vj. and Vy discussed in Section 4.3, this

does not diminish any horizontal speed it had initially on being

released. In other words, the falling stone behaves like any other

projectile: the horizontal and vertical components of its motion are

independent of each other. Since the stone and tower continue to

have the same Vj. throughout, the stone will not be left behind as it

falls. Therefore, no matter what the speed of the earth, the stone

stationary

earth

moving

earth

Galileo argues that the falling stone

continued to share the motion of the

earth, so that an observer on earth

could not tell whether or not the earth

moved by watching the stone.
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At high speeds, air drag will

affect the results considerably. The
situation is still indistinguishable

from a car at rest— but in a high

wind!

When relative speeds become a

noticeable fraction of the speed
of light (almost a billion mph),

some deviations from this simple

relativity principle begin to appear.

We will consider some of them in

Unit 5.

SG 4.8, 4.9, 4.10

will land at the foot of the tower. The fact that falling stones are

not left behind is not a proof that the earth is standing stiU.

Similarly, Galileo said, an object released from a crow's nest at

the top of a ship's perpendicular mast will land at the foot of the

mast, whether the ship is standing still in the harbor or moving

with constant velocity through quiet water. This was actually tested

by experiment in 1642 (and is also the subject of three Project

Physics film loops). We know this to be the case from everyday

observation: when you drop or throw a book in a bus or train or

plane that is moving with constant velocity, you will see it moving
just as it would if the vehicle were standing still. Or again, if an

object is projected vertically upward from inside an open car that is

moving at constant velocity, it will fall back into the car. A person

in the car will see the same thing happen whether the car has

been continuously moving at constant velocity or has been standing

still.

From these and other observations has come a valuable

generalization: If there is any one laboratory in which Newton's

laws hold, then these laws will hold equally well in any other lab

(or "reference frame") that moves at constant velocity with

respect to the first. This generalization is called the Galilean

relativity principle. It holds true for all "classical" mechanical

phenomena — that is, phenomena involving a tremendous range of

relative velocities, up to millions of miles per hour.

If the laws of mechanics are found to be the same for all

reference frames moving with constant velocity with respect to

each other, then there is no way to find the speed of one's own
reference frame from any mechanical experiment done in the

reference frame, nor can one pick out any one reference frame as

the "true" frame — the one that is, say, at absolute rest. Thus
there can be no such thing as the "absolute" velocity of a body —
all measured velocities are only relative.

What about observations of phenomena outside of one's own
frame of reference? Certainly some outside phenomena can appear

differently to observers in different reference frames — for example,

the velocity of an airplane will have a different value when seen

from the earth and from a moving ship. But other measurables such

as mass, acceleration, and time interval will have the same values

when a phenomenon is observed from different reference frames

that move with constant velocity with respect to one another. More-

over, certain relationships among such measurements will be

found to be the same for these different reference frames. Newton's
laws of motion are examples of such "invariant" relationships, and
so are all the laws of mechanics that follow from them.

Notice that the relativity principle, even in this restricted

classical form, does not say "everything is relative." On the

contrary, it asks us to look for relationships that do not change
when reference systems are changed.
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Q3 If the laws of mechanics are found to be the same in two
reference frames, what must be true of their motions?

4.5 Circular motion

A projectile launched horizontally from a tall tower strikes the

earth at a point determined by the speed of the projectile, the

height of the tower, and the acceleration due to the force of gravity.

As the projectile's launch speed is increased, it strikes the earth at

points farther and farther from the tower's base, and we would
have to take into account that the earth is not flat but curved. If we
suppose the launch speed to be increased even more, the projectile

would strike the earth at points even farther from the tower, till at

last it would rush around the earth in a nearly circular orbit. At this

orbiting speed, the fall of the projectile away from the forward,

straight line motion is matched by the curvature of the surface, and
it stays at a constant distance above the surface.

What horizontal launch speed is required to put an object into

a circular orbit about the earth or the moon? We shall be able to

answer this question quite easily after we have learned about

circular motion.

The simplest kind of circular motion is uniform circular motion,

that is, motion in a circle at constant speed. If you are in a car or

train that goes around a perfectly circular track so that at every

instant the speedometer reading is forty miles per hour, you are

executing uniform circular motion. But this is not the case if the

track is any shape other than circular, or if your speed changes at

any point.

How can we find out if an object in circular motion is moving

at constant speed? The answer is to apply the same test we used in

deciding whether or not an object traveling in a straight line does

so with constant speed: we measure the instantaneous speed at

many different moments and see whether the values are the same.

If the speed is constant, we can describe the circular motion of the

object by means of two numbers: the radius R of the circle and

the speed v along the path. For regularly repeated circular motion,

we can use a quantity more easily measured than speed: either the

time required by an object to make one complete revolution, or the

number of revolutions the object completes in a unit of time. The
time required for an object to complete one revolution in a circular

path is called the period of the motion. The period is usuaUy

denoted by the capital letter T. The number of revolutions completed

by the same object in a unit time interval is called the frequency

of the motion. Frequency will be denoted by the letter/.

As an example, we will use these terms to describe a car moving

with uniform speed on a circular track. Let us suppose the car takes

20 seconds to make one lap around the track. Thus, T= 20 seconds.

Alternatively, we might say that the car makes 3 laps in a minute.

In discussing circular motion it is

useful to keep clearly in mind a dis-

tinction between revolution and
rotation. We define these terms dif-

ferently: revolution is the act of

traveling along a circular or elliptical

path; rotation is the act of spinning

rather than traveling. A point on the

rim of a phonograph turntable travels

a long way; it is revolving about the

axis of the turntable. But the turn-

table as a unit does not move from

place to place: it merely rotates. In

some situations both processes

occur simultaneously; for example,

the earth rotates about its own axis,

while it also revolves (in a nearly

circular path) around the sun.
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The term "revolutions" is not

assigned any units because it is a

pure number, a count. There is no

need for a standard as there is for

distance, mass, and time. So, the

unit for frequency is usually given

without "rev." This looks strange,

but one gets used to it— and it is not

very important, because it is merely

a matter of terminology, not a fact

of physics.

Thus/= 3 revolutions per minute, or/= 1/20 revolution per second.

The relationship between frequency and period (when the same

time unit is used) is/= 1/T. If the period of the car is 20 sec/rev,

then the frequency is

1 1 rev

20 sec
20

sec

rev

All units are a matter of convenience. Radius may be expressed

in terms of centimeters, kilometers, miles, or any other distance

unit. Period may be expressed in seconds, minutes, years, or any

other time unit. Correspondingly, the frequency may be expressed

as "per second," "per minute," or "per year." The most widely used

units of radius, period, and frequency in scientific work are meter,

second, and per second.

Table 4.1 Comparison of the frequency and period for various kinds of

circular motion. Note the differences between units.

PHENOMENA PERIOD FREOUENCY

Electron in circular accelerator
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with the aid of this equation is both its instantaneous speed and its

average speed. If the motion is not uniform, the formula gives only

the average speed; the instantaneous speed for any point on the

circle can be determined if we find Ad/At from measurements of

very small segments of the path.

Let us now see how the last equation can be used. We can, for

example, calculate the speed of the tip of a helicopter rotor blade in

its motion around the central shaft. On one model, the main rotor

has a diameter of 7.50 m and a frequency of 480 revolutions/minute

under standard conditions. Thus/= 480 per minute = 8.00 per

second and R = 3.75 m, and

V = 27rRf

v = 2 (3.14)(3.75)(8.00) meters/second
V = 189 m/sec

or about 420 miles/hr.

Q4 If a phonograph turntable is running at 45 rev.olutions per

minute,

(a) What is its period (in minutes)?

(b) What is its period (in seconds)?

(c) What is its frequency in cycles per second?

Q5 What is the period of the minute hand of an ordinary clock?

If the hand is 3.0 cm long, what is the linear speed of the tip of the

minute hand?
Q6 The terms frequency and period can also be used for any

other periodic, repetitive phenomenon. For example, if your heart

beats 80 times per minute, what are the frequency and period for

your pulse?

4.6 Centripetal acceleration and centripetal force

Let us assume that a stone on a string is moving with uniform

circular motion, for example in a horizontal plane as the stone is

whirled overhead. The speed of the stone is constant. The velocity,

however, is always changing. Velocity is a vector quantity, which

includes both speed and direction. Up to this point we have dealt

with accelerations in which only the speed was changing. In

uniform circular motion the speed of the revolving object remains

the same, while the direction of motion changes continually. The

figure shows the whirling stone at three successive moments in its

revolution. At any instant, the direction of the velocity vector is

tangent to the curving path. Notice that its speed, represented by

the length of the velocity arrow, does not vary; but its direction

changes from moment to moment. Since acceleration is defined

as a change in velocity, the stone is in fact accelerating.

But to produce an acceleration a net force is needed. In the case

of the whirling stone, a force is exerted on the stone by the string,

and if we neglect the weight of the stone or air resistance, that

SG 4.12 a to f

a'r and K are parallel, but iTis perpen-

dicular to a^. and T,.. Note that usually

one should not draw different kinds of

vector quantities on the same drawing.
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The adjective centripetal means
literally "moving, or directed,

toward the center."

In uniform circular motion, the

instantaneous velocity and the

centripetal force at any instant of

time are perpendicular, one being

along the tangent, the other along

the radius. So instantaneous velocity

and the acceleration are also

always at right angles.

will be the net force. If the string were suddenly cut, the stone

would go flying off on a tangent with the velocity it had at the

instant the string was cut— on a tangent to the circular path. As
long as the string holds, the stone is forced into a circular path.

The direction of this force acting on the stone is along the

string. Thus the force vector is always pointing toward the center of

rotation. This kind of force — always directed toward the center of

rotation — is called centripetal force.

From Newton's second law we know that force and

acceleration are in the same direction, so the acceleration vector is

also directed toward the center. We shall call this acceleration

centripetal acceleration, and give it the symbol ap. Any object

moving along a circular path has a centripetal acceleration.

We know now the direction of centripetal acceleration. What is

its magnitude? An expression for Op can be derived from the

definition of acceleration Op = Ax;/At. The details of such a derivation

are given on the next page. The result shows that a<, depends on v

and R, and in fact the magnitude of ac is given by

^^=R
Let us verify this relationship with a numerical example. If, as

sketched in the diagram, a car goes around a circular curve of

radius R = 100 m at a uniform speed of i; = 20 m/sec, what is its

centripetal acceleration a^ toward the center of curvature? By the

equation derived on the gray page:

(2oi^r
_ V sec/

100 m

jnf_

400 sec'
~ 100 m

This is about 4/10 of a„, and could

be called an acceleration of "0.4g."
= 4.0

m
sec^



Derivation of the equation Sc = -^

Assume the stone is moving uniformly in a circle of radius R.

We can find what the relationship between ac, v, and R is by treating

a small part of the circular path as the combination of a tangential

motion and an acceleration toward the center. To follow the circular

path, the stone must accelerate toward the center through a

distance h in the same time that it would move through a tangential

distance d. The stone, with speed v, would travel a tangential

distance d given by d = vM. In the same time At, the stone, with

acceleration a^ would travel toward the center through a distance h
given hy h = ^UcM^. (We can use this last equation because at

t = 0, the stone's velocity toward the center is zero.)

We can now apply the Pythagorean Theorem to the triangle in

the figure at the right.

R2 + ^2 = (R + h7
= R^ + 2Rh + h^

When we subtract R^ from each side of the equation we are left

with

d2 = 2Rh + h^

We can simphfy this expression by making an approximation: since

h is very small compared to R, h^ will be very small compared to Rh.

If we choose At to be vanishingly small (as we must to get the

instantaneous acceleration), h^ will become vanishingly small

compared to Rh; so we shall neglect h^ and write

d^ = 2Rh

Also, we know d = t;Af and h = ia^At^, so we can substitute for d^

and for h accordingly. Thus

(vMy = 2R • jUciMy

vKMy = RadMY

or
ar = -7r

The approximation becomes better and better as At becomes

smaller and smaller. In other words. v^lR is the magnitude of the

instantaneous centripetal acceleration for a body moving on a

circular arc of radius R. For uniform circular motion, V'^IR is the

magnitude of the centripetal acceleration at every point of the path.

(Of course it does not have to be a stone on a string. It can be a

point particle on the rim of a rotating wheel, or a house on the

rotating earth, or a coin sitting on a rotating phonograph disk, or a

car in a curve on the road.)
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^^- -^-^^ Does this make sense? We can check the result by going back
'^

^^<\2.0m to the basic vector definition of acceleration: a„,. = AvIAt. We will

/ V make a scale drawing of the car's velocity vector at two instants a

\ short time At apart, measure the change in velocity Av between

.,-,i„, i.,, o,.n 1^

''

\ them, and divide the magnitude of Av by At to get a„,. over the

1fnm = Imiy'hr ' ^ interval.

! Consider a time interval of At = 1 second. Since the car is

moving at 20 m/sec, its position will change 20 m during At. Two
positions P and P', separated by 20 m, are marked in diagram B.

/ Now draw arrows representing velocity vectors. If we choose a

/ scale of 1 cm = 10 m/sec, the velocity vector for the car will be

represented by an arrow 2 cm long. These are drawn at P and P' in

diagram C.

If we put these two arrows together tail to tail as in diagram

D, it is easy to see what the change in the velocity vector has been

during At. Notice that if Ai; were drawn halfway between P and P',

it would point directly toward the center of the curve; so the

average acceleration between P and P' is indeed directed

centripetally. Measurement of the Az; arrow in the diagram shows

that it has a magnitude of 0.40 cm; so it represents a velocity

change of 4.0 m/sec. This change occurred during At = 1 second, so

the rate of change is 4.0 m/sec/sec — the same value we found using

the relation Uc = v^/Rl

/ The best way of showing that a^ = z/^/R is entirely consistent

with the mechanics we have developed in Unit 1 is to do some
experiments to measure the centripetal force required to keep an
object moving in a circle. If, for example, the mass of the car were

1000 kg, there would have to be a centripetal force acting on the

car:

^ m
\ = 1000 kg X 4.0 -^

\
se&

\

' m
' = 4000 kg = 4000 N (or about 1800 pounds).
I sec^
/

/ This force would be directed toward the center of curvature of

the road — that is, it would always be sideways to the direction the

car is moving. This force is exerted on the tires by the road. If the

road is wet or icy, and can not exert a force of 4000 N sideways on
SG 4.13 the tires, the centripetal acceleration will be less than 4.0 m/sec — so

SG 4.14 the car will follow a less curved path as sketched in the margin on
the next page. In situations where the car's path is less curved
than the road, we would say the car "left the road" -although it

might be just as appropriate to say the road left the car.

The sideways force exerted on tires by a road is not easy to

measure. But in Project Physics Handbook 1 there are a number of

ways suggested for you to check experimentally whether Fc = muc
or Fr^m vVR.

For uniform motion in repeated cycles, it is often easier to

measure the frequency / or period T than it is to measure v directly.
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We can substitute the relations v = 27rR/or v = 2itRIT into the

equation equation for a^ to get alternative and equivalent ways of
calculating a^:
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SG 4.19

As you will see in Unit 2, there is another rotational motion that

has also been one of the central concerns of man throughout

recorded history: the orbiting of planets around the sun and of the

moon around the earth.

Since the kinematics and dynamics for any uniform circular

motion are the same, we can apply what you have learned so far to

the motion of artificial earth satellites in circular (or nearly

circular) paths. As an illustration, we will select the satellite

Alouette I, Canada's first satellite, which was launched into a

nearly circular orbit on September 29, 1962.

Tracking stations located in many places around the world

maintain a record of any satellite's position in the sky. From the

position data, the satellite's distance above the earth at any time

and its period of revolution are found. By means of such tracking,

we know that Alouette I moves at an average height of 630 miles

above sea level, and takes 105.4 minutes to complete one revolution.

We can now quickly calculate the orbital speed and the

centripetal acceleration of Alouette I. The relationship v = IttRIT

allows us to find the speed of any object moving uniformly in a

circle if we know its period T and its distance R from the center

of its path (in this case, the center of the earth). Adding 630 miles

to the earth's radius of 3963 miles, we get R = 4594 miles, and

IttR

277 X 4593 mi
105.4 min

28, 860 mi
105.4 min

= 274 mi/min

or roughly 16,400 mi/hr.

To calculate the centripetal acceleration of Alouette I, we can
use this value of v along with the relationship a^ = v'^IR. Thus

SG 4.20

SG 4.21

_ (274 mi/min)^

4,594 mi

= 16.3 mi/min^

which is equivalent to 7.3 m/secl (To get the same result, we could

just as well have used the values of R and T directly in the

relationship a^ = ^tt'^RIT^)

What is the origin of the force that gives rise to this

acceleration? Although we will not make a good case for it until

Chapter 8, you surely know already that it is due to the earth's

attraction. Evidently the centripetal acceleration a<. of the

satellite is just the gravitational acceleration a„ at that height,

which has a value 25% less than Qg very near the earth's surface.
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Earlier we asked the question, "What speed is required for an
object to stay in a circular orbit about the earth?" You can answer
this question now for an orbit 630 miles above the surface of the

earth. To get a general answer, you need to know how the

acceleration due to gravity changes with distance. In Chapter 8 we
will come back to the problem of injection speeds for orbits.

The same kind of analysis applies to an orbit around the moon.

For example, on the first manned orbit of the moon (Apollo 8, in

1968), the mission control group wanted to put the capsule into a

circular orbit 70 miles above the lunar surface. They believed that

the acceleration due to the moon's gravity at that height would be

ttg = 1.43 m/sec^. What direction and speed would they give the

capsule to "inject" it into lunar orbit?

The direction problem is fairly easy— to stay at a constant

height above the surface, the capsule would have to be moving

horizontally at the instant the orbit correction was completed. So

injection would have to occur just when the capsule was moving on

a tangent, 70 miles up, as shown in the sketch in the margin. What
speed (relative to the moon, of course) would the capsule have to

be given? The circular orbit has a radius 70 miles greater than the

radius of the moon, which is 1080 miles; so R = 1080 mi + 70 mi
= 1150 mi; this is equal to 1.85 x 10^ meters. The centripetal

acceleration is just the acceleration caused by gravity, which was

supposed to be 1.43 m/sec^, so

= x/(1.85x 10«m)x 1.43
sec'

= A/2.65mX 10«
m
sec^

= 1.63x 103
sec

The necessary speed for an orbit at 70 miles above the surface is

therefore 1630 m/sec (about 3600 mi/hr). Knowing the capsule's

speed, ground control could calculate the necessary speed changes

to reach 1630 m/sec. Knowing the thrust force of the engines and

the mass of the capsule, they could calculate the time of thrust

required to make this speed change.

SG 4.22

SG 4.23

SG 4.24

Q1 1 What information was necessary to calculate the speed for

an orbit 70 miles above the moon's surface?
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Table 4.2 Some information on selected artificial satellites.

NAME LAUNCH DATE WEIGHT (lb) PERIOD (min)

Sputnik 1

1957 (USSR)
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is called simple harmonic motion. The mathematics for describing

simple harmonic motion is relatively simple, and many phenomena,
from pendulum motion to the vibration of atoms, have aspects that

are very close to simple harmonic motion. Consequently, the

analysis of simple harmonic motion is used very widely in physics.

The Project Physics Handbook 1 describes a variety of activities you
can do to become familiar with oscillations and their description.

Either simply or in combination, the dynamics discussed in this

chapter will cover most of the motions that will interest us, and is a

good start toward understanding apparently very complicated

motions, whether those of water ripples on a pond, a person running,

the swaying of a tall building or bridge in the wind, a small

particle zig-zagging through still air, an amoeba seen under a

microscope, or a high-speed nuclear particle moving in the field of a

magnet. The methods we have developed in this and the preceding

chapters give us means for dealing with any kind of motion

whatsoever, on earth or anywhere in the universe.

When we considered the forces needed to produce motion,

Newton's laws supplied us with the answers. Later, when we shall

discuss other motions ranging from the elliptical motion of planets

to the hyperbolic motion of an alpha particle passing near a nucleus,

we shall continue to find in Newton's laws the tool for inferring the

magnitude and direction of the forces acting in each case.

Conversely, if we know the magnitude and direction of the

forces acting on an object, we can determine what its change in

motion will be. If in addition we know also the present position,

velocity and mass of an object, we can reconstruct how it moved

in the past, and we can predict how it will move in the future under

these forces. Thus Newton's laws provide a comprehensive view of

forces and motion. It is not surprising that Newtonian mechanics

became a model for many other sciences: here seemed to be a

method for understanding all motions, no matter how mysterious

they previously may have appeared to be.

SG 4.25

SG 4.26
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EPILOGUE The purpose of this Unit was to deal with the

fundamental concepts of nnotion. We decided to start by analyzing

particularly simple kinds of motion in the expectation that they are

indeed the "ABC's" of physics. These ideas would allow us to turn our

attention back to some of the more complex features of the world. To

what extent were these expectations fulfilled?

We did find that a relatively few basic concepts allowed us to gain

a considerable understanding of motion. First of all, we found that

useful descriptions of the motion of objects can be given using the

concepts of distance, displacement, time, speed, velocity, and

acceleration. If to these we add force and mass and the relationships

expressed in Newton's three laws of motion, it becomes possible to

account for observed motion in an effective way. The surprising thing is

that these concepts of motion, which were developed in extraordinarily

restricted circumstances, can in fact be so widely applied. For example,

our work in the laboratory centered around the use of sliding dry ice

pucks and steel balls rolling down inclined planes. These are not

objects found moving around ordinarily in the everyday "natural" world.

Even so, we found that the ideas obtained from those specialized

experiments could lead us to an understanding of objects falling near

the earth's surface, of projectiles, and of objects moving in circular

paths. We started by analyzing the motion of a disk of dry ice moving

across a smooth surface and ended up analyzing the motion of a space

capsule as it circles the moon and descends to its surface.

Thus, we have made substantial progress in analyzing complex

motions. On the other hand, we cannot be satisfied that we have here

all the intellectual tools needed to understand all of the phenomena that

interest us. In Unit 3 we shall add to our stock of fundamental concepts

a few additional ones, particularly those of momentum, work, and

energy. They will help us when we turn our attention away from

interactions involving a relatively few objects of easily discernible size,

and to interactions involving countless numbers of submicroscopic

objects-molecules and atoms.

In this Unit we have dealt primarily with concepts that owe their

greatest debts to Galileo, Newton, and their followers. If space had

permitted, we should also have included the contributions of Ren^

Descartes and the Dutch scientist Christian Huyghens. The
mathematician and philosopher, A. N. Whitehead has summarized the

role of these four men and the significance of the concepts we have

been dealing with in the following words:

This subject of the formation of the three laws of motion

and of the law of gravitation [which we shall take up in Unit 2]

deserves critical attention. The whole development of

thought occupied exactly two generations. It commenced
with Galileo and ended with Newton's Principia: and

Newton was born in the year that Galileo died. Also the

lives of Descartes and Huyghens fall within the period

occupied by these great terminal figures. The issue of the

combined labours of these four men has some right to be
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considered as the greatest single intellectual success which

mankind has achieved. (Science and the Modern World)

The laws of motion Whitehead speaks of, the subject of this Unit,

were important most of all because they suddenly allowed a new
understanding of celestial motion. For at least twenty centuries man
had been trying to reduce the complex motions of the stars, sun, moon,

and planets to an orderly system. The genius of Galileo and Newton

was in studying the nature of motion of objects as it occurs on earth,

and then to assume the same laws would apply to objects in the

heavens beyond man's reach.

Unit 2 is an account of the immense success of this idea. We shall

trace the line of thought, starting with the formulation of the problem of

planetary motion by the ancient Greeks, through the work of

Copernicus, Tycho Brahe, Kepler, and Galileo to provide a planetary

model and the laws for planetary motion, and finally to Newton's

magnificent synthesis of terrestrial and celestial physics in his Law of

Universal Gravitation.
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4.1 The Project Physics learning materials
particularly appropriate for Chapter 4 include
the following:
Experiments

Curves of Trajectories

Prediction of Trajectories
Centripetal Force
Centripetal Force on a Turntable

Activities

Projectile Motion Demonstration
Speed of a Stream of Water
Photographing a Waterdrop Parabola
Ballistic Cart Projectiles

Motion in a Rotating Reference Frame
Penny and Coat Hanger
Measuring Unknown Frequencies

Reader Articles

Galileo's Discussion of Projectile Motion
Newton's Laws of Dynamics
Rigid Body
Fun in Space

Film Loops
A Matter of Relative Motion
Galilean Relativity- Ball Dropped from Mast
of Ship
Galilean Relativity -Object Dropped
from Aircraft

Galilean Relativity — Projectile Fired
vertically

Analysis of Hurdle Race I

Analysis of Hurdle Race II

4.2 The thrust developed by a Saturn Apollo
rocket is 7,370,000 newtons (approximately
1,650,000 lbs.) and its mass is 540,000 kg. What is
the acceleration of the vehicle relative to the
earth's surface at lift off"? How long would it take
for the vehicle to rise 50 meters?

The acceleration of the vehicle increases
greatly with time (it is 47 m/sec^ at first stage
burnout) even though the thrust force does not
increase appreciably. Explain why the acceleration
increases.

4.H A hunter points his gun barrel directly at a
monkey in a distant palm tree. Will the bullet
follow the line of sight along the barrel? If the
animal, startled by the flash, drops out of the
branches at the very instant of firing, will it then
be hit by the bullet? Explain.

4.4 The displacement d'of an object is a vector
giving the straightline distance from the
beginning to the end of an actual path; ?can
be thought of as made up of a horizontal (x) and
a vesical (y) component of displacement; that is,
d = x + y (added vectorially).

In a trajectory, x, y, and the total
displacement d can be thought of as the
magnitudes of the sides of right triangles. So can
Vx, v^ and the magnitude of the velocity v.

(a) Find an expression for d in terms of jc

and y.
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(b) Find an expression for v in terms of Vj
and Vu

(c) Rewrite the expression for d and i^in

terms of v^, a„, and t.

4.5 If you like algebra, try this general proof.
If a body is launched with speed v at some

angle other than 0°. it will initially have both a
horizontal speed v^. and a vertical speed v^. The
equation for its horizontal displacement is x = v^t,
as before. But the equation for its vertical
displacement has an additional term: y = Vyt +
jayt'\ Show that the trajectory is still parabolic
in shape.

4.6 A lunch pail is accidently kicked off a steel
beam on a skyscraper under construction. Suppose
the initial horizontal speed v^ is 1.0 m/sec. Where
is the pail (displacement), and what is its speed
and direction (velocity) 0.5 sec after launching?

4.7 In Galileo's drawing on page 104. the
distances be, cd. de, etc. are equal. What is the
relationship among the distances ho. oq. ql, and
/n?

4.cS You are inside a van that is moving with a
constant velocity. You drop a ball.

(a) What would be the ball's path relative to
the van?

(b) Sketch its path relative to a person driving
past the van at a high uniform speed.

(c) Sketch its path relative to a person
standing on the road.

You are inside a moving van that is

accelerating uniformly in a straight line. When
the van is traveling at lOmph (and still

accelerating) you drop a ball from near the roof of
the van onto the floor.

(d) What would be the ball's path relative to
the van?

(e) Sketch its path relative to a person driving
past the van at a high uniform speed.

(f ) Sketch its path relative to a person
standing on the road.

4.9 Two persons watch the same object move.
One says it accelerates straight downward, but
the other claims it falls along a curved path.
Describe conditions under which each would be
reporting correctly what he sees.

4.10 An airplane has a gun that fires bullets
straight ahead at the speed of 600 mph when
tested on the ground while the plane is stationary.

I
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The plane takes off and flies due east at 600 mph.
Which of the following describes what the pilot

of the plane will see? In defending your answers,
refer to the Galilean relativity principle:

(a) When fired directly ahead the bullets

move eastward at a speed of 1200 mph.
(b) When fired in the opposite direction, the

bullets dropped vertically downward.
(c) If fired vertically downward, the bullets

move eastward at 600 mph. while they

fall.

Specify the frames of reference from which (a),

(b), and (c) are the correct observations.

1.11 Many commercial record turntables are

designed to rotate at frequencies of 16 2/3 rpm
(called transcription speed). 33 1/3 rpm (long

playing). 45 rpm (pop singles), and 78 rpm (old

fashioned). What is the period corresponding to

each of these frequencies?

4.12 Two blinkies are resting on a rotating

turntable and are photographed in a setup as
shown in the figure below. The outer blinky has a
frequency of 9.4 flashes/sec and is located 15.0

cm from the center. For the inner blinky, the

values are 9.1 flashes/sec and 10.6 cm.

(a) What is the period of the turntable?

(b) What is the frequency of rotation of the

turntable? Is this a standard phonograph
speed?

(c) What is the speed of the turntable at the

position of the outer blinky?

(d) What is the speed of the turntable at the

position of the inner blinky?

(e) What is the speed of the turntable at the

very center?

(f ) What is the angular speed of each
blinky — that is. the rate of rotation

measured in degrees/sec? Are they equal?

(g) What is the centripetal acceleration

experienced by the inner blinky?

(h) What is the centripetal acceleration

experienced by the outer blinky?

(i) If the turntable went faster and faster,

which would leave the turntable first, and
why?

4.1.3 Passengers on the right side of the car in

a left turn have the sensation of being "thrown

against the door." Explain what actually happens
to the passengers in terms of force and
acceleration.

4.14 The tires of the turning car in the example
on page 112 were being pushed sideways by the
road with a total force of 1800 lb. Of course the
tires would be pushing on the road with a total

force of 1800 lb also, (a) What happens if the road
is covered with loose sand or gravel? (b) How
would softer (lower pressure) tires help? (c) How
would banking the road (that is. tilting the
surface toward the center of the curve) help?
(Hint: consider the extreme case of banking in

the bob-sled photo on p. 110.)

4.15 Using a full sheet of paper, make and
complete a table like the one below.

NAME OF
CONCEPT
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4.16 Our sun is located at a point in our galaxy
about 30,000 light years (1 light year= 9.46 x
10'^ km) from the galactic center. It is thought
to be revolving around the center at a linear
speed of approximately 250 km/sec.

(a) What is the sun's centripetal acceleration
with respect to the center of the galaxy?

(b) The sun's mass can be taken to be 1.98
X 10*" kg; what centripetal force is

required to keep the sun moving in a
circular orbit about the galactic center?

(c) Compare the centripetal force in (b) with
that necessary to keep the earth in orbit

about the sun. (The earth's mass is

5.98 X 10^^ kg and its average distance
from the sun is 1.495 x 10* km.)

4.17 The hammer thrower in the photograph
below is exerting a large centripetal force to keep
the hammer moving fast in a circle, and applies
it to the hammer through a connecting wire. The
mass of the 16-pound hammer is 7.27 kg. (a)
Estimate the radius of the circle and the period,
and calculate a rough value for the amount of
force required just to keep it moving in a circle.

(b) What other components are there to the total
force he exerts on the hammer?

4.18 Contrast rectilinear motion, projectile
motion, and uniform circular motion by

(a) defining each
(b) giving examples.
(c) describing the relation between velocity

and acceleration in each case.
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4.19 These questions are asked with reference to

Table 4.2 on page 116.

(a) Which satellite has the most nearly
circular orbit?

(b) Which satellite has the most eccentric
orbit? How did you arrive at your answer?

(c) Which has the longest period?
(d) How does the position of Syncom 2

relative to a point on earth change over
one day?

4.20 If the earth had no atmosphere, what would
be the period of a satellite skimming just above
the earth's surface? What would its speed be?
4.21 Explain why it is impossible to have an earth
satelhte orbit the earth in 80 minutes. Does this
mean that it is impossible for any object to go
around the earth in less than 80 minutes?
4.22 What was the period of the "70 mi" Apollo 8
lunar orbit?

4.23 Knowing Ug near the moon's surface, and
the orbital speed in an orbit near the moon's
surface, we can now work an example of Part 8
of the earth-moon trip described in Sec 4.1. The
Apollo 8 capsule was orbiting about 100 kilometers
above the surface. The value of a^ near the
moon's surface is about 1.5 m/sec^.

If the capsule's rocket engines are fired in the
direction of its motion, it will slow down.
Consider the situation in which the rockets fire

long enough to reduce the capsule's horizontal
speed to 100 m/secl

(a) About how long will the fall to the moon's
surface take?

(b) About how far will it have moved
horizontally during the fall?

(c) About how far in advance of the landing
target might the "braking" maneuver be
performed?

4.24 Assume that a capsule is approaching the
moon along the right trajectory, so that it will be
moving tangent to the desired orbit. Given the
speed v„ necessary for orbit and the current speed
V, how long should the engine with thrust F fire to

give the capsule of mass m the right speed?
4.25 The intention of the first four chapters has
been to describe "simple" motions and to progress
to the description of more "complex" motions. Put
each of the following examples under the heading
"simplest motion." "more complex." or "very
complex." Be prepared to say why you place any
one example as you did and state any assumptions
you made.

(a) helicopter shown on p. 109
(b) "human cannon ball" in flight

(c) car going from 40 mph to a complete stop
(d) tree growing
(e) child riding a Ferris wheel
(f ) rock dropped 3 mi.

(g) person standing on a moving escalator
(h) climber ascending Mt. Everest
(i) person walking
( j ) leaf falling from a tree

4.26 Write a short essay on the physics involved
in the motions shown in one of the four pictures
on the opposite page, using the ideas on motion
from Unit 1.
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This Handbook is your guide to observa-

tions, experiments, activities, and explorations,

far and wide, in the realms of physics.

Prepare for challenging work, fun and
some surprises. One of the best ways to learn

physics is by doing physics, in the laboratory

and out. Do not rely on reading alone. Also,

this Handbook is different from laboratory

manuals you may have worked with before.

Far more projects are described here than you

alone can possibly do, so you will need to pick

and choose.

Although only a few of the experiments

and activities will be assigned, do any addi-

tional ones that interest you. Also, if an activity

occurs to you that is not described here, dis-

cuss with your teacher the possibility of doing

it. Some of the most interesting science you

will experience in this course will be the result

of the activities which you choose to pursue

beyond the regular assignments of the school

laboratory.

This Handbook contains a section corre-

sponding to each chapter of the Text. Usually

each section is divided further in the following

way:

The Experiments contain full in-

structions for the investigations you will

be doing with your class.

The Activities contain many sugges-

tions for construction projects, demon-

strations, and other activities you can do

by yourself.

The Film Loop notes give instruc-

tions for the use of the variety of film

loops that have been specially prepared

for the course.

In each section, do as many of these things

as you can. With each, you will gain a better

grasp of the physical principles and relation-

ships involved.
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Keeping Records

Your records of observations made in the lab-

oratory or at home can be kept in many ways.

Your teacher will show you how to write up
your records of observations. But regardless of

the procedure followed, the key question for

deciding what kind of record you need is this:

"Do I have a clear enough record so that I

could pick up my lab notebook a few months
from now and explain to myself or others what
I did?"

Here are some general rules to be followed

in every laboratory exercise. Your records

should be neatly written without being fussy.

You should organize all numerical readings in

tables, if possible, as in the sample lab write up
on pages 130 and 131. You should always iden-

tify the units (centimeters, kilograms, seconds,

etc.) for each set of data you record. Also, iden-

tify the equipment you are using, so that you

can find it again later if you need to recheck

your work.

In general, it is better to record more rather

than less data. Even details that may seem to

have little bearing on the experiment you are

doing—such as the temperature and whether

it varied during the observations, and the time

when the data were taken—may turn out to be

information that has a bearing on your analy-

sis of the results.

If you have some reason to suspect that a

particular datum may be less reliable than

other data—perhaps you had to make the read-

ing very hurriedly, or a line on a photograph

was very faint—make a note of the fact. But
don't erase a reading. When you think an entry

in your notes is in error, draw a single line

through it—don't scratch it out completely or

erase it. You may find it was significant after

all.

There is no "wrong" result in an experi-

ment, although results may be in considerable

error. If your observations and measurements
were carefully made, then your result will be

correct. What ever happens in nature, includ-

ing the laboratory, cannot be "wrong." It may
have nothing to do with your investigation. Or
it may be mixed up with so many other events

you did not expect that your report is not use-

ful. Therefore, you must think carefully about

the interpretation of your results.

Finally, the cardinal rule in a laboratory is

to choose in favor of "getting your hands dirty"

instead of "dry-labbing." In 380 B.C., the Greek

scientist, Archytas, summed this up pretty

well:
In subjects of which one has no l<nowledge,

one must obtain knowledge either by learning from

someone else, or by discovering it for oneself. That

which is learnt, therefore, comes from another and

by outside help; that which is discovered comes by

one's own efforts and independently. To discover

without seeking is difficult and rare, but if one

seeks, it is frequent and easy; if, however, one does

not know how to seek, discovery is impossible.
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Using the Polaroid Camera
You will find the Polaroid camera is a very use-

ful device for recording many of your labora-

tory observations. Section 1.3 of your textbook

shows how the camera is used to study moving

objects. In the experiments and activities

described in this Handbook, many suggestions

are made for photographing moving objects,

both with an electronic stroboscope (a rapidly

flashing xenon light) and with a mechanical

disk stroboscope (a slotted disk rotating in front

of the camera lens). Thi setup of the rotating

disk stroboscope with a Polaroid camera is

shown below.

Camera Cable Releasea LaoieKeiease -^

,ft'** X—^ Camera

Rotating Disc

^4S)

Electric Motor

Strobe Mounting

Platform

Tripod

In the opposite column is a check list of

operations to help you use the modified Polaroid

Land camera model 210. For other models,

your teacher will provide instructions. Check
list of operations for Polaroid Land camera
model 002

1. Make sure that there is film in the camera.

If no white tab shows in front of the door

marked "4" you must put in new film.

2. Fasten camera to tripod or disk strobe base.

If you are using the disk strobe technique, fix

the clip-on slit in front of the lens.

3. Check film (speed) selector. Set to suggested

position (75 for disk strobe or blinky; 3000 for

xenon strobe).

4. If you are taking a "bulb" exposure, cover

the electric eye.

5. Check distance from lens to plane of object

to be photographed. Adjust focus if necessary'.

Work at the distance that gives an image just

one-tenth the size of the object, if possible.

This distance is about 120 cm.

6. Look through viewer to be sure that what-

ever part of the event you are interested in will

be recorded. (At a distance of 120 cm the field

of view is just under 100 cm long.)

7. Make sure the shutter is cocked (by depress-

ing the number 3 button).

8. Run through the experiment a couple of

times without taking a photograph, to accus-

tom yourself to the timing needed to photo-

graph the event.

9. Take the picture: keep the cable release

depressed only as long as necessary to record

the event itself. Don't keep the shutter open

longer than necessary.

10. Pull the white tab all the way out of the

camera. Don't block the door (marked "4" on

the camera).

11. Pull the large yellow tab straight out— all

the way out of the camera. Begin timing de-

velopment.

12. Wait 10 to 15 seconds (for 3000-speed

black-and-white film).

13. Ten to 15 seconds after removing film from

the camera, strip the white print from the

negative.

14. Take measurements immediately. (The

magnifier may be helpful.)

15. After initial measurements have been

taken, coat your picture with the preservative

supplied with each pack of film. Let this dry

thoroughly, label it on the back for identifica-

tion and mount the picture in your (or a part-

ner's) lab report.

16. The negative can be used, too. Wash it

carefully with a wet sponge, and coat with

preservative.

17. Recock the shutter so it will be set for next

use.

18. Always be careful when moving around

the camera that you do not inadvertently kick

the tripod.

19. Always keep the electric eye covered when
the camera is not in use. Otherwise the batter-

ies inside the camera will run down quickly.
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The Physics Readers
Your teacher probably will not often assign

reading in the Project Physics Reader, but you

are encouraged to look through it for articles

of interest to you. In the Unit 1 Reader most

students enjoy the chapter from Fred Hoyle's

science fiction novel, The Black Cloud. This

chapter, "Close Reasoning," is fictional, but

nevertheless accurately reflects the real ex-

citement of scientists at work on a new and
important problem.

Since different people have very different

interests, nobody can tell you which articles

you will most enjoy. Those with interests in art

or the humanities will probably like Gyorgy

Kepes' article "Representation of Movement."
If you are interested in history and in the role

science plays in historical development, you

are urged to read the Butterfield and Willey

articles.

The Reader provides several alternative

treatments of mechanics which either supple-

ment or go beyond the Unit 1 Text. Thus Sawyer
gives a discussion of the concept of speed dif-

ferent from that used in the Text. Clifford's

approach is interesting because it uses geom-

etry rather than algebra in explaining funda-

mental ideas. For those seeking a deeper un-

derstanding of mechanics, we particularly

recommend the article from the Feynman
Lectures on Physics. For articles that deal

with applications of physics, you can turn to

Strong on "The Dynamics of the Golf Club,"

Kirkpatrick on "Bad Physics in Athletic Mea-
surements," and DuBridge on "Fun in Space."

Practice the art of browsing! Don't decide

from the titles alone whether you are inter-

ested, but read portions of articles here and
there, and you may well discover something
new and interesting.

Project Physics Reader

An Introduction to Physics Concepts of Motion
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EXPERIMENTS

EXPERIMENT 1

ASTRONOMY
NAKED EYE

The purpose of this first experiment is to fa-

miliarize you with the continually changing

appearance of the sky. By watching the heav-

enly bodies closely day and night over a period

of time, you wOl begin to understand what is

going on up there and gain the experience you

will need in working with Unit 2, Motion in

the Heavens.

Do you know how the sun and the stars,

the moon and the planets, appear to move
through the sky? Do you know how to tell a

planet from a star? Do you know when you can

expect to see the moon during the day? How do

the sun and planets move in relation to the

stars?

The Babylonians and Egyptians knew the

answers to these questions over 5000 years

ago. They found them simply by watching the

everchanging sky. Thus, astronomy began

with simple observations of the sort you can

make with your unaided eye.

You know that the earth appears to be at

rest while the sun, stars, moon, and planets are

seen to move in various paths through the sky.

Our problem, as it was for the Babylonians, is

to describe what these paths are and how they

change from day to day, from week to week,

and from season to season.

Some of these changes occur very slowly.

In fact, this is why you may not have noticed

them. You will need to watch the motions in

the sky carefully, measuring them against

fixed points of reference that you establish.

You will need to keep a record of your obser-

vations for at least four to six weeks.

Choosing References

To locate objects in the sky accurately, you
first need some fixed lines or planes to which
your measurements can be referred, just as

a map maker uses lines of latitude and longi-

tude to locate places on the earth.

For example, you can establish a north-

south line along the ground for your first refer-

ence. Then with a protractor held horizontally,

you can measure the position of an object in

the sky around the horizon from this north-

south line. The angle of an object around the

horizon from a north-south line is called the

object's azimuth. Azimuths are measured
from the north point (0°) through east (90°)

to south (180°) and west (270°) and around

to north again (360°or 0°).

To measure the height of an object in the

sky, you can measure the angle between the

object and a horizontal plane, such as the

horizon, for your second reference. This plane

can be used even when the true horizon is

hidden by trees or other obstructions. The
angle between the horizontal plane and the

line to an object in the sky is called the altitude

of the object.

J



angle of decimation and its rate of change per

year for your area from the map below.

At night you can use the North Star (Po-

laris) to establish the north-south line. Polaris

is the one fairly bright star in the sky that

moves least from hour to hour or with the

seasons. It is almost due north of an observer

anywhere in the Northern Hemisphere.

To locate Polaris, first find the "Big Dip-

per" which on a September evening is low in

the sky and a little west of north. (See the star

map, Fig. 1-1 page 136.) The two stars forming

the end of the dipper opposite the handle are

known as the "pointers," because they point to

the North Star. A line passing through them
and extended upward passes very close to a

bright star, the last star in the handle of the

"Little Dipper." This bright star is the Pole

Star, Polaris. On September 15 at 8:30 P.M.

these constellations are arranged about as

shown in the diagram below.

Experiment 1 135

B.C. by John Hart

TMC «ON ALWAYS lUSS*
IN THE NCirrM, AMD A
COMPASS ALWAYS PB«NT«
TD THE NOf*TH .

HOV>l OONCnj UKB THArl
TME MieERABt.6 THIN«^S
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5 November 20 a

Fig. 1-1. 02 ^^H

This chart of the stars will help you locate some of the bright stars and the constel-

lations. To use the map, face north and turn the chart until today's date is at the top.

Then move the map up nearly over your head. The stars will be in these positions at

8 P.M. For each hour ear//er than 8 p.m., rotate the chart 15 degrees (one sector) clock-

wise. For each hour later than 8 p.m., rotate the chart counter-clockwise. If you are

observing the sky outdoors with the map, cover the glass of a flashlight with fairly

transparent red paper to look at the map. This will prevent your eyes from losing their

adaptation to the dark when you look at the map.
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Imagine a line from Polaris straight down
to the horizon. The point where this line meets
the horizon is nearly due north of you.

Now that you have established a north-

south line, either with a compass or from the

North Star, note its position with respect to

fixed landmarks, so that you can use it day

or night.

You can establish the second reference,

the plane of the horizon, and measure the

altitude of objects in the sky from the horizon,

with an astrolabe, a simple instrument you can

obtain easily or make yourself, very similar to

those used by ancient viewers of the heavens.

Use the astrolabe in your hand or on a flat

table mounted on a tripod or on a permanent

post. A simple hand astrolabe you can make is

described in the Unit 2 Handbook, in the ex-

periment dealing with the size of the earth.

Sight along the surface of the flat table to

be sure it is horizontal, in line with the horizon

in all directions. If there are obstructions on

your horizon, a carpenter's level turned in all

directions on the table will tell you when the

table is level.

Turn the base of the astrolabe on the table

until the north-south line on the base points

along your north-south line. Or you can obtain

the north-south line by sighting on Polaris

through the astrolabe tube. Sight through the

tube of the astrolabe at objects in the sky you
wish to locate and obtain their altitude above

the horizon in degrees from the protractor on

the astrolabe. With some astrolabes, you can
also obtain the azimuth of the objects from the

base of the astrolabe.

To follow the position of the sun with the

astrolabe, slip a large piece of cardboard with

a hole in the middle over the sky-pointing end

of the tube. (Caution: Never look directly at

the sun. It can cause permanent eye damage!)

Standing beside the astrolabe, hold a small

piece of white paper in the shadow of the large

cardboard, several inches from the sighting

end of the tube. Move the tube about until the

bright image of the sun appears through the

tube on the paper. Then read the altitude of

the sun from the astrolabe, and the sun's azi-

muth, if your instrument permits.

Observations

Now that you know how to establish your ref-

erences for locating objects in the sky, here are

suggestions for observations you can make on

the sun, the moon, the stars, and the planets.

Choose at least one of these objects to observe.

Record the date and time of all your observa-
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tions. Later compare notes with classmates

who concentrated on other objects.

A. Sun
CAUTION: NEVER look directly at the sun;

it can cause permanent eye damage. Do not

depend on sun glasses or fogged photographic

film for protection. It is safest to make sun

observations on shadows.

1. Observe the direction in which the sun sets.

Always make your observation from the same
observing position. If you don't have an un-

obstructed view of the horizon, note where the

sun disappears behind the buildings or trees in

the evening.

2. Observe the time the sun sets or disappears

below your horizon.

3. Try to make these observations about once

a week. The first time, draw a simple sketch

on the horizon and the position of the setting

sun.

4. Repeat the observation a week later. Note

if the position or time of sunset has changed.

Note if they change during a month. Try to

continue these observations for at least two

months.

5. If you are up at sunrise, you can record the

time and position of the sun's rising. (Check

the weather forecast the night before to be

reasonably sure that the sky will be clear.)

6. Determine how the length of the day, from

sunrise to sunset, changes during a week;

during a month; or for the entire year. You
might like to check your own observations of

the times of sunrise and sunset against the

times as they are often reported in newspapers.

Also if the weather does not permit you to

observe the sun, the newspaper reports may
help you to complete your observations.

7. During a single day, observe the sun's azi-

muth at various times. Keep a record—of the

azimuth and the time of observation. Deter-

mine whether the azimuth changes at a con-

stant rate during the day, or whether the sun's

apparent motion is more rapid at some times

than at others. Find how fast the sun moves
in degrees per hour. See if you can make a

graph of the speed of the sun's change in azi-

muth.

Similarly, find out how the sun's angular

altitude changes during the day, and at what
time its altitude is greatest. Compare a graph

of the speed of the sun's change in altitude

with a graph of its speed of change in azimuth.

8. Over a period of several months—or even an

entire year—observe the altitude of the sun at

noon—or some other convenient hour. (Don't

worry if you miss some observations.) Deter-

mine the date on which the noon altitude of

the sun is a minimum. On what date would the

sun's altitude be a maximum?

B.C. by John Hart

By permission of John Hart and Field Enterprises, Inc.

B. Moon
1. Observe and record the altitude and azi-

muth of the moon and draw its shape on suc-

cessive evenings at the same hour. Carry your

observations through at least one cycle of

phases, or shapes, of the moon, recording in

your data the dates of any nights that you

missed.

For at least one night each week, make a

sketch showing the appearance of the moon
and another "overhead" sketch of the relative

positions of the earth, moon, and sun. If the

sun is below the horizon when you observe the

moon, you will have to estimate the sun's po-

sition.

2. Locate the moon against the background of
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the stars, and plot its position and phase on a

sky map suppHed by your teacher.

3. Find the full moon's maximum altitude.

Find how this compares with the sun's maxi-

mum altitude on the same day. Determine how
the moon's maximum altitude varies from
month to month.

4. There may be a total eclipse of the moon
this year. Consult Table 1 on page 140, or the

Celestial Calendar and Handbook, for the

dates of lunar eclipses. Observe one if you

possibly can.

C. Stars

1. On the first evening of star observation,

locate some bright stars that will be easy to

find on successive nights. Later you will iden-

tify some of these groups with constellations

that are named on the star map in Fig. 1-1,

which shows the constellations around the

North Star, or on another star map furnished

by your teacher. Record how much the stars

have changed their positions compared to your

horizon after an hour; after two hours.

2. Take a time exposure photograph of several

minutes of the night sky to show the motion

of the stars. Try to work well away from bright

street lights and on a moonless night. Include

some of the horizon in the picture for refer-

ence. Prop up your camera so it won't move
during the time exposures of an hour or more.

Use a small camera lens opening (large f-

number) to reduce fogging of your film by

stray light.

3. Viewing at the same time each night, find

This multiple exposure picture of the moon was taken

with a Polaroid Land camera by Rick Pearce, a twelfth-

grader in Wheat Ridge, Colorado. The time intervals

between successive exposures were 15 min, 30 min,

30 min, and 30 min. Each exposure was for 30 sec using

2000-speed film. Which way was the moon moving in

the sky?

A time exposure photograph of Ursa Major (The Big

Dipper) taken with a Polaroid Land camera on an au-

tumn evening in Cambridge, Massachusetts.

whether the positions of the star groups are

constant in the sky from month to month. Find

if any new constellations appear after one

month; after 3 or 6 months. Over the same
periods, find out if some constellations are no

longer visible. Determine in what direction and
how much the positions of the stars shift per

week and per month.

D. Planets and meteors

1. The planets are located within a rather

narrow band across the sky (called the ecliptic)

along which the sun and the moon also move.

For details on the location of planets, consult

Table 1 on page 140, or the Celestial Calendar

and Handbook, or the magazine Sky and Tele-

scope. Identify a planet and record its position

in the sky relative to the stars at two-week

intervals for several months.

2. On almost any clear, moonless night, go

outdoors away from bright lights and scan as

much of the sky as you can see for meteors.

Probably you will glimpse a number of fairly

bright streaks of meteors in an hour's time.

Note how many meteors you see. Try to locate

on a star map like Fig. 1-1 where you see them
in the sky.

Look for meteor showers each year around

November 5 and November 16, beginning

around midnight. Dates of other meteor show-

ers are given in Table 2 on page 141. Remem-
ber that bright moonlight will interfere with

meteor observation.

Additional sky observations you may wish

to make are described in the Unit 2 Handbook.
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TABLE 1

A GUIDE FOR PLANET AND ECLIPSE OBSERVATIONS

Check your local newspaper for eclipse times and extent of eclipse in your locality.

Mercury
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TABLE 2

FAVORABILITY OF OBSERVING METEOR SHOWERS
THE BEST TIME FOR VIEWING METEOR SHOWERS IS BETWEEN MIDNIGHT AND 6 A.M., IN PARTICULAR

DURING THE HOUR DIRECTLY PRECEDING DAWN.

Quadrantids

Jan. 3-5

Virgo
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EXPERIMENT 2 REGULARITY AND TIME
You will often encounter regularity in your

study of science. Many natural events occur

regularly—that is, over and over again at equal

time intervals. But if you had no clock, how
would you decide how regularly an event re-

curs? In fact, how can you decide how regular

a clock is?

The first part of this exercise is intended

merely to show you the regularity of a few

natural events. In the second part, you will try

to measure the regularity of an event against

a standard and to decide what is really meant
by the word "regularity."

Part A
You work with a partner in this part. Find

several recurring events that you can time in

the laboratory. You might use such events as a

dripping faucet, a human pulse, or the beat of

recorded music. Choose one of these events as

a "standard event." All the others are to be

compared to the standard by means of the

strip chart recorder.

One lab partner marks each "tick" of the

standard on one side of the strip chart recorder

tape while the other lab partner marks each

"tick" of the event being tested. After a long

run has been taken, inspect the tape to see how
the regularities of the two events compare.

Run for about 300 ticks of the standard. For

each 50 ticks of the standard, find on the tape

the number of ticks of the other phenomenon,
estimating to ^ of a tick. Record your results

in a table something like this:

STANDARD EVENT



ods of time, you will have to make three calls

to the time station, for example, 7 p.m., 7 a.m.,

and 7 p.m. again. Agreement should be reached

in class the day before on who will check wall

clocks, who will check wristwatches, and so

on. Watch your clock and wait for the record-

ing to announce the exact hour. Tabulate your

results something like this:

TIME STATION

Time

"7 P.M. exactly"!

"7 A.M. exactly"^

"7 P.M. exactly"

Period

12:00:00 hr

12:00:00 hr

ELECTRIC WALL CLOCK
7:

In Part I, you found that to test regularity you

need a standard that is consistent, varying as

little as possible. The standard is understood,

by definition, to be regular.

Q2 What is the standard against which the

time station signal is compared? Call to find

out what this standard is. Try to find the final

standard that is used to define regularity— the

time standard against which all other recur-

ring events are tested. How can we be sure of

the regularity of this standard?

BC
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By Johnny Hart
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EXPERIMENT 3 VARIATIONS IN DATA
If you count the number of chairs or people in

an ordinary sized room, you will probably get

exactly the right answer. But if you measure

the length of this page with a ruler, your an-

swer will have a small margin of uncertainty.

That is, numbers read from measuring in-

struments do not give the exact measure-

ments in the sense that one or two is exact

when you count objects. Every measurement

is to some extent uncertain.

Moreover, if your lab partner measures the

length of this page, he will probably get a dif-

ferent answer from yours. Does this mean that

the length of the page has changed? Hardly!

Then can you possibly find the length of the

page without any uncertainty in your measure-

ment? This lab exercise is intended to show

you why the answer is "no."

Various stations have been set up around

the room, and at each one you are to make
some measurement. Record each measure-

ment in a table like the one shown here. When
you have completed the series, write your

measurements on the board along with those

of your classmates. Some interesting patterns

should emerge if your measurements have not

been influenced by anyone else. Therefore, do

not talk about your results or how you got them
until everyone has finished.

TYPE OF
MEASUREMENT REMARKS MEASUREMENT
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1Chapter I The Language of Motion

EXPERIMENT 4 MEASURING
UNIFORM MOTION
If you roll a ball along a level floor or table,

eventually it stops. Wasn't it slowing down all

the time, from the moment you gave it a push?

Can you think of any things that have uniform

motion in which their speed remains constant

and unchanging? Could the dry-ice disk pic-

tured in Sec. 1-3 of the Text really be in uni-

form motion, even if the disk is called "friction-

less"? Would the disk just move on forever?

Doesn't everything eventually come to a stop?

In this experiment you check the answers

to these questions for yourself. You observe

very simple motion, like that pictured below,

and make a photo record of it, or work with

similar photos. You measure the speed of the

object as precisely as you can and record your

data in tables and draw graphs from these

data. From the graphs you can decide whether

the motion was uniform or not.

Your decision may be harder to make than

you would expect, since your experimental

measurements can never be exact. There are

likely to be ups and downs in your final results.

Your problem will be to decide whether the ups

and downs are due partly to real changes in

speed or due entirely to uncertainty in your

measurements.

If the speed of your object turns out to be

constant, does this mean that you have pro-

duced an example of uniform motion? Do you

think it is possible to do so?

Doing the Experiment

Various setups for the experiment are shown

on pages 145 and 146. It takes two people to

photograph a disk sliding on a table, or a glider
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Fig. 1-1. Stroboscopic photograph of a moving CO2 disk.

on an air track, or a steadily flashing light

(called a blinky) mounted on a small box which

is pushed by a toy tractor. Your teacher will

explain how to work with the set up you are

using. Excellent photographs can be made of

any of them.

If you do not use a camera at all, or if you

work alone, then you may measure a trans-

parency or a movie film projected on the chalk

board or a large piece of paper.

Or you may simply work from a previously

prepared photograph such as Fig. 1-1, above.

If there is time, you might try several of these

methods.

One setup uses for the moving object a disk

made of metal or plastic. A few plastic beads

sprinkled on a smooth, dust-free table top (or

a sheet of glass) provide a surface for the disk

to slide with almost no friction. Make sure the

surface is quite level, too, so that the disk will

not start to move once it is at rest.

Set up the Polaroid camera and the strobo-

scope equipment according to your teacher's

instructions. Instructions for operating the

Polaroid model 210, and a diagram for mount-
ing this camera with a rotating disk strobo-

scope is shown on page 132. A ruler need not be

included in your photograph as in the photo-

graph above. Instead, you can use a magnifier

with a scale that is more accurate than a ruler

for measuring the photograph.

Either your teacher or a few trials will

give you an idea of the camera settings and of

the speed at which to launch the disk, so that

the images of your disk are clear and well-

spaced in the photograph. One student launch-

es the disk while his companion operates the

camera. A "dry run" or two without taking a

picture will probably be needed for practice

before you get a good picture. A good picture

is one in which there are at least five sharp and

clear images of your disk far enough apart for

easy measuring on the photograph.

•A(borr\

\

"T~T"r !
'

' '

cro

Fig, 1-2. Estimating to tenths of a scale division.

Making Measurements
Whatever method you have used, your next

step is to measure the spaces between succes-

sive images of your moving object. For this,

use a ruler with millimeter divisions and esti-

mate the distances to the nearest tenth of a

millimeter, as shown in Fig. 1-2 above. If

you use a magnifier with a scale, rather than

a ruler, you may be able to estimate these quite

precisely. List each measurement in a table

like Table 1.

Since the intervals of time between one

image and the next are equal, you can use that

interval as a unit of time for analyzing the

event. If the speed is constant, the distances

of travel would turn out to be all the same, and

the motion would be uniform.

Ql How would you recognize motion that is

not uniform?

Q2 Why is it unnecessary for you to know the

time interval in seconds?
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TIME

INTERVAL

1st

2nd

3rd

4th

5th

6th

TABLE 1

DISTANCE TRAVELED IN

EACH TIME INTERVAL

0.48 cm
0.48

0.48

0.48

0.48

0.48

Table 1 has data that indicate uniform
motion. Since the object traveled 0.48 cm dur-

ing each time interval, the speed is 0.48 cm
per unit time.

It is more likely that your measurements
go up and down as in Table 2, particularly if

you measure with a ruler.
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Study your own data in the same way.

Q4 Do they lead you to the same conclusion?

If your data vary as in Table 2, can you think

of anything in your setup that could have been

making the speed actually change? Even if

you used a magnifier with a scale, do you still

come to the same conclusion?

Measuring More Precisely

A more precise measuring instrument than a

ruler or magnifier with a scale might show
that the speed in our example was not con-

stant. For example, if we used a measuring

microscope whose divisions are 0.001 cm apart

to measure the same picture again more pre-

cisely, we might arrive at the data in Table 3.

Such precise measurement reduces the uncer-

tainty greatly from ±0.05 cm to ±0.0005 cm.



ACTIVITIES

USING THE ELECTRONIC STROBOSCOPE

Examine some moving objects illuminated by

an electronic stroboscope. Put a piece of tape

on a fan blade or mark it with chalk and watch

the pattern as you turn the fan on and off.

How can you tell when there is exactly one

flash of light for each rotation of the fan blade?

Observe a stream of water from a faucet,

objects tossed into the air, or the needle of a

running sewing machine. If you can darken

the room completely, try catching a thrown

ball lighted only by a stroboscope. How many
flashes do you need during the flight of the ball

to be able to catch it reliably?

MAKING FRICTIONLESS PUCKS
Method 1. Use a flat piece of dry ice on a very

smooth surface, like glass or Formica. When
you push the piece of dry ice (frozen carbon

dioxide), it moves in a frictionless manner
because as the carbon dioxide changes to a

vapor it creates a layer of CO2 gas between

the solid and the glass. (CAUTION: Don't

touch dry ice with your bare hands; it can

give you a severe frost bite!)

Method 2. Make a balloon puck if your lab does

not have a supply. First cut a 4-inch diameter

disk of 1-inch-thick Masonite. Drill a y" diam-

eter hole part way through the center of the

disk so it will hold a rubber stopper. Then

drill a ^" diameter hole on the same center

the rest of the way through the disk. Drill a

iV" hole through the center of a stopper in the

hole in the masonite disk. Place the disk on

glass or Formica.

Method 3. Make a pressure pump puck. Make

a disk as described in Method 2. Instead of

using a balloon, attach a piece of flexible tub-

ing, attached at the other end to the exhaust

of a vacuum pump as shown in the diagram.

Run the tubing over an overhead support so

*ilth ViG* hole

Masonite I* thicJc

it does not interfere with the motion of the

puck.

Method 4. Drill a ^" hole in the bottom of a

smooth-bottomed cylindrical can, such as one

for a typewriter ribbon. Break up dry ice

(DON'T touch it with bare hands) and place

the pieces inside the can. Seal the can with

tape, and place it on a very smooth surface.
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Chapter £m Free Fall—Galileo Describes Motion

Accelerated motion goes on all around you
every day. You experience many accelerations
yourself, although not always as exciting as
those shown in the photographs. What accel-
erations have you experienced today?

When you get up from a chair, or start to

walk from a standstill, hundreds of sensations
are gathered from all over your body in your
brain, and you are aware of these normal ac-
celerations. Taking off in a jet or riding on an
express elevator, you experience much sharper
accelerations. Often this feeling is in the pit
of your stomach. These are very complex
motions.

Note how stripped down and simple the
accelerations are in the following experiments,
film loops, activities. As you do these, you will
learn to measure accelerations in a variety of
ways, both old and new, and become more
familiar with the fundamentals of accelera-
tion.

If you do either of the first two experiments
of this chapter, that is, numbers 5 and 6. you
will try to find, as Galileo did, whether dlt'

is a constant for motion down an inclined
plane. The remaining experiments are mea-
surements of the value of the acceleration due
to gravity which is represented by the sym-
bol a„.
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EXPERIMENT 5 A SEVENTEENTH-
CENTURY EXPERIMENT
This experiment is similar to the one discussed

by Galileo in the Two New Sciences. It will

give you firsthand experience in working with

tools similar to those of a seventeenth-century

scientist. You will make quantitative measure-

ments of the motion of a ball rolling down an

incline, as described by Galileo.

From these measurements you should be

able to decide for yourself whether Galileo's

definition of acceleration was appropriate

or not. Then you should be able to tell whether

it was Aristotle or Galileo who was correct

about his thinking concerning the acceleration

of objects of different sizes.

Reasoning Behind the Experiment

You have read in Sec. 2.6 of the Text how Gali-

leo expressed his belief that the speed of free-

falling objects increases in proportion to the

time of fall—in other words, that they accel-

erate uniformly. But since free fall was much
too rapid to measure, he assumed that the

speed of a ball rolling down an incline in-

creased in the same way as an object in free

fall did, only more slowly.

But even a ball rolling down a low incline

still moved too fast to measure the speed for

different parts of the descent accurately. So

Galileo worked out the relationship d oo t^ (or

dlt^ = constant), an expression in which speed

differences have been replaced by the total

time t and total distance d rolled by the ball.

Both these quantities can be measured.

Be sure to study Text Sec. 2.7 in which the

derivation of this relationship is described.

If Galileo's original assumptions were true,

this relationship would hold for both freely

falling objects and rolling balls. Since total

distance and total time are not difficult to mea-

sure, seventeenth-century scientists now had

a secondary hypothesis they could test by

experiment. And so have you. Sec. 2.8 of the

Text discusses much of this.

Apparatus

The apparatus that you will use is shown in

Fig. 2-1 below. It is similar to that described

by Galileo.

You will let a ball roll various distances

down a channel about six feet long and time

the motion with a water clock.

You use a water clock to time this experi-

Water clock, operat-ed by
openincj ai^ closing phe
top or the tobe wit^h

Stopping bbck

^--—^ tape, ciown €r\c{

CJhscM. Sibra^gHtneSS of

along lb ar)ci adju-^iri^

Support- "Stt^nd^

paper clip to
'l
/adjusL flow to

1^ a. convenient^

Fig. 2-1
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ment because that was the best timing device

available in Galileo's time. The way your own
clock works is very simple. Since the volume
of water is proportional to the time of flow, you

can measure time in milliliters of water. Start

and stop the flow with your fingers over the

upper end of the tube inside the funnel. When-
ever you refill the clock, let a little water run
through the tube to clear out the bubbles.

Compare your water clock with a stop

watch when the clock is full and when it is

nearly empty to determine how accurate it is.

Ql Does the clock's timing change? If so, by
how much?

It is almost impossible to release the ball

with your fingers without giving it a slight

push or pufl. Therefore, dam the ball up, with
a ruler or pencil, and release it by quickly
moving this dam away from it down the in-

clined plane. The end of the run is best marked
by the sound of the ball hitting the stopping
block.

Brief Comment on Recording Data

A good example of a way to record your data

appears on page 154. We should emphasize
again the need for neat, orderly work. Orderly
work looks better and is more pleasing to you
and everyone else. It may also save you from
extra work and confusion. If you have an or-

ganized table of data, you can easily record
and find your data. This will leave you free to

think about your experiment or calculations
rather than having to worry about which of
two numbers on a scrap of paper is the one you
want, or whether you made a certain measure-
ment or not. A few minutes' preparation before
you start work will often save you an hour or
two of checking in books and with friends.

Operating Suggestions
You should measure times of descent for

several diff"erent distances, keeping the in-

clination of the plane constant and using
the same bah. Repeat each descent about four
times, and average your results. Best results

are found for very small angles of inclination

(the top of the channel raised less than 30 cm).
At greater inclinations, the ball tends to slide

as well as to roll.

From Data to Calculations

Galileo's definition of uniform acceleration

(Text, page 49) was "equal increases in speed
in equal times." Galileo showed that if an
object actually moved in this way, the total

distance of travel should be directly propor-

tional to the square of the total time of fall,

or d » t^.

Q2 Show how this follows from Galileo's defi-

nition. (See Sec. 2.7 in the Text if you cannot
answer this.)

If two quantities are proportional, a graph
of one plotted against the other will be a
straight line. Thus, making a graph is a good
way to check whether two quantities are pro-

portional. Make a graph of d plotted against
t\

Q3 Does your graph support the hypothesis?
How accurate is the water clock you have been
using to time this experiment?

If you have not already done so, check your
water clock against a stopwatch or, better

yet, repeat several trials of your experiment
using a stopwatch for timing.

Q4 How many seconds is one milliliter of time
for your water clock? Can the inaccuracy of
your water clock explain the conclusion you
arrived at in Q2 above?

Going Further

1. In Sec. 2.7 of the Text you learned that

a = 2dlt'\ Use this relation to calculate the

actual acceleration of the ball in one of your
runs.

2. If you have time, go on to see whether Gali-

leo or Aristotle was right about the accelera-

tion of objects of various sizes. Measure dlt'^

for several diff"erent sizes of balls, all rolling

the same distance down a plane of the same
inclination.

Q5 Does the acceleration depend on the size

of the ball? In what way does your answer
refute or support Aristotle's ideas on falling

bodies.

Q6 Galileo claimed his results were accurate

to Jo of a pulse beat. Do you believe his results

were that accurate? Did you do that well? How
could you improve the design of the water
clock to increase its accuracy?
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EXPERIMENT 6 TWENTIETH-CENTURY
VERSION OF GALILEO'S EXPERIMENT
Galileo's seventeenth-century experiment had
its limitations, as you read in the Text, Sec. 2.9.

The measurement of time with a water clock

was imprecise and the extrapolation from ac-

celeration at a small angle of inclination to

that at a verticle angle (90°) was extreme.

With more modern equipment you can
verify Galileo's conclusions; further, you can
get an actual value for acceleration in free

fall (near the earth's surface). But remember
that the idea behind the improved experiment

is still Galileo's. More precise measurements
do not always lead to more significant con-

clusions.

Determine Ug as carefully as you can. This

is a fundamental measured value in modern
science. It is used in many ways—from the

determination of the shape of the earth and
the location of oil fields deep in the earth's

crust to the calculation of the orbits of earth

satellites and spacecrafts in today's impor-

tant space research programs.

Apparatus and Procedure

For an inclined plane use the air track. For

timing the air track glider use a stopwatch

instead of the water clock. Otherwise the pro-

cedure is the same as that used in Experiment

5. As you go to higher inclinations you should

stop the glider by hand before it is damaged
by hitting the stopping block.

Instead of a stopwatch, you may wish to

use the Polaroid camera to make a strobe

photo of the glider as it descends. A piece of

white tape on the glider will show up well in

the photograph. Or you can attach a small

light source to the glider. You can use a mag-
nifier with a scale attached to measure the

glider's motion recorded on the photograph.

Here the values of d will be millimeters on
the photograph and t will be measured in an
arbitrary unit, the "blink" of the stroboscope,

or the "slot" of the strobe disk.

Plot your data as before on a graph of d vs.

t^. Compare your plotted lines with graphs
of the preceding cruder seventeenth-century

experiment, if they are available. Explain

the differences between them.

Ql Is d/t^ constant for an air track glider?

Q2 What is the significance of your answer to

the question above?

As further challenge, if time permits, try

to predict the value of Ug, which the glider

approaches as the air track becomes vertical.

To do this, of course, you must express d and
t in famOiar units such as meters or feet, and
seconds. The accepted value of Ug is 9.8 m/sec^

or 32 ft/sec^ near the earth's surface.

Q3 What is the percentage error in your cal-

culated value? That is, what percent is your

error of the accepted value?

Percentage error

accepted value — calculated value= X 100
accepted value

so that if your value of Ug is 30 ft/sec^ your

percentage error

32 ft/sec^ - 30 ft/sec^

32 ft/sec^

= -^x 100 =6%

X 100

Notice that you cannot carry this 6% out

to 6.25% because you only know the 2 in the
9

fraction 32" to one digit. Hence, you can only

know one digit in the answer, 6%. A calculated

value like this is said to have one significant

digit. You cannot know the second digit in the

answer untO you know the digit following the

2. To be significant, this digit would require

a third digit in the calculated values of 30

and 32.

Q4 What are some of the sources of your error?
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EXPERIMENT 7 MEASURING THE
ACCELERATION OF GRAVITY a«

Aristotle's idea that falling bodies on earth

are seeking out their natural places sounds

strange to us today. After all, we know the

answer: It's gravity that makes things fall.

But just what is gravity? Newton tried to

give operational meaning to the idea of gravity

by seeking out the laws according to which
it acts. Bodies near the earth fall toward it

with a certain acceleration due to the gravita-

tional "attraction" of the earth. But how can
the earth make a body at a distance fall toward

it? How is the gravitational force transmitted?

Has the acceleration due to gravity always

remained the same? These and many other

questions about gravity have yet to be an-

swered satisfactorily.

Whether you do one or several parts of

this experiment, you will become more famil-

iar with the effects of gravity—you find the

acceleration of bodies in free fall yourself—

and you will learn more about gravity in later

chapters.

Part A: a^ by Direct Fall*

In this experiment you measure the accel-

eration of a falling object. Since the distance

and hence the speed of fall is too small for air

resistance to become important, and since

other sources of friction are very small, the

acceleration of the falling weight is very

nearly Ug.

Doing the Experiment

The falling object is an ordinary laboratory

hooked weight of at least 200 g mass. (The
drag on the paper strip has too great an effect

on the fall of lighter weights.) The weight
is suspended from about a meter of paper
tape as shown in the photograph. Reinforce

the tape by doubling a strip of masking tape

over one end and punch a hole in the rein-

forcement one centimeter from the end. With
careful handling, this can support at least

a kilogram weight.

Adapted from R. F. Brinckerhoff and D. S. Taft, Modern
Laboratory Experiments in Physics, by permission of
Science Electronics, Inc., Nashua, New Hampshire.

When the suspended weight is allowed to

fall, a vibrating tuning fork will mark equal

time intervals on the tape pulled down after

the weight.

The tuning fork must have a frequency

between about 100 vibrations/sec and about

400 vibrations/sec. In order to mark the tape,

the fork must have a tiny felt cone (cut from a

marking pen tip) glued to the side of one of its

prongs close to the end. Such a small mass
affects the fork frequency by much less than

1 vibration/sec. Saturate this felt tip with a

drop or two of marking pen ink, set the fork

in vibration, and hold the tip very gently

against the tape. The falling tape is most con-

veniently guided in its fall by two thumbtacks

in the edge of the table. The easiest procedure

is to have an assistant hold the weighted tape

straight up until you have touched the vi-

brating tip against it and said "Go." After a

few practice runs, you will become expert

enough to mark several feet of tape with a

wavy line as the tape is accelerated past the

stationary vibrating fork.

Instead of using the inked cone, you may
press a corner of the vibrating tuning fork



gently against a 1-inch square of carbon paper

which the thumbtacks hold ink surface in-

wards over the falling tape. With some prac-

tice, this method can be made to yield a series

of dots on the tape without seriously retarding

its fall.

Analyzing Your Tapes

Label with an A one of the first wave crests

(or dots) that is clearly formed near the begin-

ning of the pattern. Count 10 intervals be-

tween wave crests (or dots), and mark the end

of the tenth space with a B. Continue marking
every tenth crest with a letter throughout

the length of the record, which ought to be at

least 40 waves long.

At A, the tape already had a speed of v^.

From this point to B, the tape moved in a time

t, a distance we shall call dj. The distance

di is described by the equation of free fall:

di = -yot +
2

In covering the distance from A to C, the tape

took a time exactly twice as long, 2t, and fell

a distance d^ described (on substituting 2t for

t and simplifying) by the equation:

dz = 2vot +
4a„t2

In the same way the distances AB, AE, etc., are

described by the equations:

da — 3Vot H —

d^ = 4vot +
16a,t^

and so on.

All of these distances are measured from

A, the arbitrary starting point. To find the dis-

tances fallen in each 10-crest interval, you

must subtract each equation from the one

before it, getting:

2
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Of course the pendulum is not falling straight

down, but the time it takes for a round-trip

swing still depends on Ug. The time T it takes

for a round-trip swing is

T = 27rxff

In this formula I is the length of the pendulum.

If you measure I with a ruler and T with a

clock, you should be able to solve for a^.

You may learn in a later physics course

how to derive the formula. Scientists often use

formulas they have not derived themselves,

as long as they are confident of their validity.

Making the Measurements

The formula is derived for a pendulum with

all the mass concentrated in the weight at the

bottom, called the bob. Hence the best pen-

dulum to use is one whose bob is a metal

sphere hung by a fine thread. In this case you

can be sure that almost all the mass is in the

bob. The pendulum's length, I, is the distance

from the point of suspension to the center of

the bob.

Your suspension thread can have any con-

venient length. Measure / as accurately as

possible, either in feet or meters.

Set the pendulum swinging with small

swings. The formula doesn't work well for

large swings, as you can test for yourself later.

Time at least 20 complete round trips,

preferably more. By timing many round trips

instead of just one you make the error in start-

ing and stopping the clock a smaller fraction

of the total time being measured. (When you

divide by 20 to get the time for a single round
trip, the error in the calculated value for one
will be only jo as large as if you had measured
only one.)

Divide the total time by the number of

swings to find the time T of one swing.

Repeat the measurement at least once as

a check.

Finally, substitute your measured quan-

tities into the formula and solve it for a^.

If you measured I in meters, the accepted

value of ttg is 9.80 meters/sec^.

If you measured I in feet, the accepted

value of ttg is 32.1 ft/sec^.

Finding Errors

You probably did not get the accepted value.

Find your percentage error by dividing your

error by the accepted value and multiplying by

100:

Percentage error

_ accepted value — your value

accepted value
X 100

your error

accepted value
X 100

With care, your value of Op should agree within

about 1%.

Which of your measurements do you think

was the least accurate?

If you believe it was your measurement of

length and you think you might be off by as

much as 0.5 cm. change your value of / by 0.5

cm and calculate once more the value of ag.

Has Ug changed enough to account for your

error? (If a^ went up and your value of a, was
already too high, then you should have altered

your measured I in the opposite direction. Try

again!)

If your possible error in measuring is not

enough to explain your difference in Oy try

changing your total time by a few tenths of a

second—a possible error in timing. Then you

must recalculate T and hence a,.

If neither of these attempts work (nor

both taken together in the appropriate direc-

tion) then you almost certainly have made an

error in arithmetic or in reading your measur-

ing instruments. It is most unlikely that a„ in

your school differs from the accepted value by

more than one unit in the third digit.

Q2 How does the length of the pendulum af-

fect your value of T? of ag?

Q3 How long is a pendulum for which T = 2

seconds? This is a useful timekeeper.

Part C: a,, with Slow-Motion

Photography (Film Loop)

With a high speed movie camera you could

photograph an object falling along the edge of

a vertical measuring stick. Then you could
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determine a^ by projecting the film at standard

speed and measuring the time for the object

to fall specified distance intervals.

A somewhat similar method is used in

Film Loops 1 and 2. Detailed directions are

given for their use in the Film Loop notes on

pages 164-165.

Part D: a^ from Falling Water
Drops

You can measure the acceleration due to grav-

ity Ug simply with drops of water falling on a

pie plate.

Put the pie plate or a metal dish or tray on

the floor and set up a glass tube with a stop-

cock, valve, or spigot so that drops of water

from the valve will fall at least a meter to the

plate. Support the plate on three or four pen-

cils to hear each drop distinctly, like a drum
beat.

Adjust the valve carefully until one drop

strikes the plate at the same instant the next

drop from the valve begins to fall. You can do

this most easily by watching the drops on the

valve while listening for the drops hitting the

plate. When you have exactly set the valve,

the time it takes a drop to fall to the plate is

equal to the time interval between one drop

and the next.

With the drip rate adjusted, now find the

time interval t between drops. For greater

accuracy, you m.ay want to count the number
of drops that fall in half a minute or a minute,

or to time the number of seconds for 50 to 100

drops to fall.

Your results are likely to be more accurate

if you run a number of trials, adjusting drip

rate each time, and average your counts of

drops or seconds. The average of several trials

should be closer to actual drip rate, drop count,

and time intervals than one trial would be.

Now you have all the data you need. You
know the time t it takes a drop to fall a dis-

tance d from rest. From these you can calcu-

late Ug, since you know that d = 2^gt'^ for ob-

jects falling from rest. Rewrite this relationship

in the form ag=. . .

Q4 When you have calculated Ug by this meth-

od, what is your percentage error? How does

this compare with your percentage error by any

other methods you have used? What do you

think led to your error? Could it be leaking

connections, allowing more water to escape

sometimes? How would this affect your an-

swer?

Distance of fall lessened by a puddle form-

ing in the plate: How would this change your

results?

Less pressure of water in the tube after a

period of dripping: Would this increase or

decrease the rate of dripping? Do you get the

same counts when you refill the tube after

each trial?

Would the starting and stopping of your

counting against the watch or clock affect your

answer? What other things may have shown

up in your error?

Can you adapt this method of measuring

the acceleration of gravity so that you can do it

at home? Would it work in the kitchen sink?
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or if the water fell a greater distance, such as

down a stairwell?

Part E: a^ with Falling Ball and
Turntable

You can measure a^ with a record-player turn-

table, a ring stand and clamp, carbon paper,

two balls with holes in them, and thin thread.

Ball X and ball Y are draped across the

prongs of the clamp. Line up the balls along a

radius of the turntable, and make the lower

ball hang just above the paper.

With the table turning, the thread is burned

and each ball, as it hits the carbon paper, will

leave a mark on the paper under it.

Measure the vertical distance between the

balls and the angular distance between the

marks. With these measurements and the

speed of the turntable, determine the free-

fall time. Calculate your percentage error and

suggest its probable source.

White l=^per

Turntable

can be graphed and analyzed to give an aver-

age value of ttg. The 12-slot strobe disk gives

a very accurate 60 slots per second. (Or, a

neon bulb can be connected to the ac line out-

let in such a way that it will flash a precise 60

times per second, as determined by the line

frequency. Your teacher has a description of

the approximate circuit for doing this.)

Part F: a,, with Strobe Photography
Photographing a falling light source with the

Polaroid Land camera provides a record that
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WHEN IS AIR RESISTANCE IMPORTANT?
By taking strobe photos of various falling ob-

jects, you can find when air resistance begins

to play an important role. You can find the

actual value of the terminal speed for less

dense objects such as a Ping-Pong or styro-

foam ball by dropping them from greater and

greater heights until the measured speeds do

not change with further increases in height.

(A Ping-Pong ball achieves terminal speed

within 2 m.) Similarly, ball bearings and mar-

bles can be dropped in containers of liquid

shampoo or cooking oil to determine factors

affecting terminal speed in a liquid as shown

in the adjoining photograph.

-^v^IZrs

A magnet is a

handy aid in rais-

ing the steel ball

to the top of the

container.

MEASURING YOUR REACTION TIME

Your knowledge of physics can help you cal-

culate your reaction time. Have someone hold

the top of a wooden ruler while you space your

thumb and forefinger around the bottom (zero)

end of the ruler. As soon as the other person

releases the ruler, you catch it. You can com-

pute your reaction time from the relation

d = Ugt^

by solving for t. Compare your reaction time

with that of other people, both older and young-

er than yourself. Also try it under different con-

ditions—lighting, state of fatigue, distracting

noise, etc. Time can be saved by computing d

for Jo sec or shorter intervals, and then taping

reaction-time marks on the ruler.

A challenge is to try this with a one-dollar

bill, telling the other person that he can have

the dollar if he can catch it.

FALLING WEIGHTS
This demonstration shows that the time it

takes a body to fall is proportional to the square

root of the vertical distance (d °^ t^). Suspend

a string, down a stairwell or out of a window,

on which metal weights are attached at the

following heights above the ground: 3", 1',

2'3", 4', 6'3", 9', 12'3", 16'. Place a metal tray

or ashcan cover under the string and then drop

or cut the string at the point of suspension. The

weights will strike the tray at equal intervals

of time—about ,8
second.

Compare this result with that obtained

using a string on which the weights are sus-

pended at equal distance intervals.

EXTRAPOLATION
Many arguments regarding private and public

policies depend on how people choose to ex-

trapolate from data they have gathered. From

magazines, make a report on the problems of

extrapolating in various cases. For example:

1. The population explosion

2. The number of students in your high

school ten years from now
3. The number of people who will die in

traffic accidents over next holiday

weekend
4. The number of lung cancer cases that

will occur next year among cigarette

smokers

5. How many gallons of punch you

should order for your school's Junior

prom
To become more proficient in making statis-

tics support your pet theory—and more cautious

about common mistakes—read How to Lie

with Statistics by Darrell Huff, published by

W. W. Norton and Company.



FILM LOOPS
FILM LOOP 1 ACCELERATION DUE
TO GRAVITY -

1

A bowling ball in free fall was filmed in real

time and in slow motion. Using the slow-

motion sequence, you can measure the ac-

celeration of the ball due to gravity. This film

was exposed at 3900 frames/sec and is pro-

jected at about 18 frames/sec; therefore, the

slow-motion factor is 3900/18, or about 217.

However, your projector may not run at ex-

actly 18 frames/sec. To calibrate your pro-

jector, time the length of the entire film which

contains 3331 frames. (Use the yellow circle

as the zero frame.)

To find the acceleration of the falling body

using the definition

acceleration =
change in speed

time interval

you need to know the instantaneous speed at

two different times. You cannot directly mea-
sure instantaneous speed from the film, but

you can determine the average speed during

small intervals. Suppose the speed increases

steadily, as it does for freely falling bodies.

During the first half of any time interval, the

instantaneous speed is less than the average

speed; during the second half of the interval,

the speed is greater than average. Therefore,

for uniformly accelerated motion, the average

speed Vf,,. for the interval is the same as the

instantaneous speed at the mid-time of the

interval.

If you find the instantaneous speed at the

midtimes of each of two intervals, you can
calculate the acceleration a from

a =
V2-V,
tj ti

where v, and v.2 are the average speeds during

the two intervals, and where t, and ^2 are the

midtimes of these intervals.

Two intervals 0.5 meter in length are

shown in the film. The ball falls 1 meter be-

fore reaching the first marked interval, so it

has some initial speed when it crosses the first

line. Using a watch with a sweep second hand,

time the ball's motion and record the times at

which the ball crosses each of the four lines.

You can make measurements using either the

bottom edge of the ball or the top edge. With

this information, you can determine the time

(in apparent seconds) between the midtimes

of the two intervals and the time required for

the ball to move through each j-meter inter-

val. Repeat these measurements at least once

and then find the average times. Use the slow-

motion factor to convert these times to real

seconds; then, calculate the two values of

Va,,. Finally, calculate the acceleration a.

This film was made in Montreal, Canada,

where the acceleration due to gravity, rounded

off to ± 1%, is 9.8 m/sec^. Try to decide from

the internal consistency of your data (the re-

peatability of your time measurements) how
precisely you should write your result.
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FILM LOOP 2 ACCELERATION DUE
TO GRAVITY -II

A bowling ball in free fall was filmed in slow

motion. The film was exposed at 3415 frames/

sec and it is projected at about 18 frames/

sec. You can calibrate your projector by timing

the length of the entire film, 3753 frames.

(Use the yellow circle as a reference mark.)

If the ball starts from rest and steadily

acquires a speed v after falling through a

distance d, the change in speed A t; is x; — 0, or

V, and the average speed is Vgv =
O + i; = -9V. The

time required to fall this distance is given by

The acceleration a is given by

a =change of speed _ At;

time interval At 2dlv 2d

Thus, if you know the instantaneous speed v

of the falling body at a distance d below the

starting point, you can find the acceleration.

Of course you cannot directly measure the

instantaneous speed but only average speed

over the interval. For a small interval, how-
ever, you can make the approximation that

the average speed is the instantaneous speed

at the midpoint of the interval. (The average

speed is the instantaneous speed at the mid-

time, not the midpoint; but the error is small

if you use a short enough interval.)

In the film, small intervals of 20 cm are

centered on positions Im, 2m, 3m, and 4m
below the starting point. Determine four aver-

age speeds by timing the ball's motion across

the 20 cm intervals. Repeat the measurements
several times and average out errors of mea-
surement. Convert your measured times into

real times using the slow-motion factor. Com-
pute the speeds, in m/sec, and then compute

the value of v^l2d for each value of d.

Make a table of calculated values of a, in

order of increasing values of d. Is there any

evidence for a systematic trend in the values?

Would you expect any such trend? State the

results by giving an average value of the

acceleration and an estimate of the possible

error. This error estimate is a matter of judg-

ment based on the consistency of your four

measured values of the acceleration.

B.C. by John Hart

By permission of John Hart and Field Enterprises, Inc.
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Chapter O The Birth of Dynamics—Newton Explains Motion

EXPERIMENT 8 NEWTON'S SECOND
LAW
Newton's second law of motion is one of the

most important and useful laws of physics.

Review Text Sec. 3.7 on Newton's second law
to make sure you are familiar with it.

Newton's second law is part of a much
larger body of theory than can be proved by any

simple set of laboratory experiments. Our
experiment on the second law has two pur-

poses.

First, because the law is so important, it

is useful to get a feeling for the behavior of

objects in terms of force (F), mass (m), and
acceleration (a). You do this in the first part

of the experiment.

Second, the experiment permits you to

consider the uncertainties of your measure-

ments. This is the purpose of the latter part of

the experiment.

You will apply different forces to carts of

different masses and measure the accelera-

tion.

Fig. 3-1

How the Apparatus Works
You are about to find the mass of a loaded cart

on which you then exert a measurable force.

From Newton's second law you can predict

the resulting acceleration of the loaded cart.

Arrange the apparatus as shown in Fig.

3-1. A spring scale is firmly taped to a dynam-
ics cart. The cart, carrying a blinky, is pulled

along by a cord attached to the hook of the

spring scale. The scale therefore measures
the force exerted on the cart.

The cord runs over a pulley at the edge of

the lab table and from its end hangs a weight.

Fig. 3-2
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(Fig. 3-2.) The hanging weight can be changed
so as to produce various tensions in the cord

and hence various accelerating forces on the

cart.

Now You Are Ready to Go
Measure the total mass of the cart, the blinky,

the spring scale, and any other weights you

may want to include with it to vary the mass.

This is the mass m being accelerated.

Release the cart and allow it to accelerate.

Repeat the motion several times while watch-

ing the spring-scale pointer. You may notice

that the pointer has a range of positions. The
midpoint of this range is a fairly good measure-

ment of the average force Fav producing the

acceleration.

Record Fav in newtons.

Our faith in Newton's law is such that we
assume the acceleration is the same and is

constant every time this particular Fav acts on

the mass m.

Use Newton's law to predict what the aver-

age acceleration Uav was during the run.

Then find a directly to see how accurate

your prediction was.

To measure the average acceleration Uav

take a Polaroid photograph through a rotating

disk stroboscope of a light source mounted on

the cart. As alternatives you might use a liquid

surface accelerometer described in detail on

page 170, or a blinky. Analyze your results just

as in the experiments on uniform and accel-

erated motion 4, 5, and 6 to find Uav

This time, however, you must know the

distance traveled in meters and the time in-

terval in seconds, not just in blinks, flashes or

other arbitrary time units.

Ql Does Fav (as measured) equal maav (as com-

puted from measured values)?

You may wish to observe the following

effects without actually making numerical

measurements.

1. Keep the mass of the cart constant and ob-

serve how various forces affect the accelera-

tion.

2. Keep the force constant and observe how
various masses of the cart affect the accelera-

tion.

Q2 Do your observations support Newton's
second law? Explain.

Experimental Errors

It is unlikely that your values of Fav and maav
were equal.

Does this mean that you have done a poor

job of taking data? Not necessarily. As you
think about it, you will see that there are at

least two other possible reasons for the in-

equality. One may be that you have not yet

measured everything necessary in order to

get an accurate value for each of your three

quantities.

In particular, the force used in the calcu-

lation ought to be the net, or resultant, force

on the cart—not just the towing force that

you measured. Friction force also acts on your

cart, opposing the accelerating force. You can
measure it by reading the spring scale as you

tow the cart by hand at constant speed. Do it

several times and take an average, Ff. Since

Ff acts in a direction opposite to the towing

force Ft,

Piiel — Ft — Ff

If Ff is too small to measure, then F„e, = Ft.

which is simply the towing force that you

wrote as Far in the beginning of the experi-

ment.

Another reason for the inequality of Fav

and niav may be that your value for each of

these quantities is based on measurements
and every measurement is uncertain to some
extent.

You need to estimate the uncertainty of

each of your measurements.

Uncertainty in average force F„,. Your uncer-

tainty in the measurement of F„,. is the amount
by which your reading of your spring scale

varied above and below the average force,

Fav Thus if your scale reading ranged from 1.0

to 1.4N the average is 1.2N, and the range of

uncertainty is 0.2N. The value of F„,. would be

reported as 1.2 ± 0.2N.

Q3 What is your value of F„,. and its uncer-

tainty?

Uncertainty in mass m Your uncertainty in m
is roughly half the smallest scale reading of
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the balance with which you measured it. The
mass consisted of a cart, a bhnky, and a spring

scale (and possibly an additional mass). If the

smallest scale reading is 0.1 kg, your record of

the mass of each of these in kilograms might

be as follows:

m cart = 0.90 ± 0.05 kg

m blinky = 0.30 ± 0.05 kg

w scale =0.10 ±0.05 kg

The total mass being accelerated is the sum
of these masses. The uncertainty in the total

mass is the sum of the three uncertainties.

Thus, in our example, m — 1.30 ± 0.15 kg.

Q4 What is your value of m and its uncer-

tainty?

Uncertainty in average acceleration a„,. Finally,

consider a„^,. You found this by measuring

Ad/At for each of the intervals between the

points on your blinky photograph.

Adj—»|< Ld^|^Ad.-4^ Ad-

Fig. 3-3

Suppose the points in Fig. 3-3 represent

images of a light source photographed through

a single slot—giving 5 images per second.

Calculate Ad/At for several intervals.

If you assume the time between blinks to

have been measured very accurately, the

uncertainty in each value of Ad/At is due pri-

marily to the fact that the photographic images
are a bit fuzzy. Suppose that the uncertainty

in locating the distance between the centers

of the dots is 0.1 cm as shown in the first

column of the Table below.

Average speeds Average accelerations

Ad,/At = 2.5 ± 0.1 cm/sec

AdJM = 3.4 ± 0.1 cm/sec

AdJAt = 4.0 ± 0.1 cm/sec

AdJAt = 4.8 ± 0.1 cm/sec

Aj/,/At = 0.9 ± 0.2 cm/sec^

AyJM = 0.6 ± 0.2 cm/sec^

Ay,/At = 0.8 ± 0.2 cm/sec^

Average = 0.8 ± 0.2 cm/sec^

When you take the differences between
successive values of the speeds, Ad/At, you
get the accelerations, At;/At, which are re-

corded in the second column. When a differ-

ence in two measurements is involved, you

find the uncertainty of the differences (in this

case, AvIM) by adding the uncertainties of the

two measurements. This results in an uncer-

tainty in acceleration of (±0.1) + (±0.1) or ±0.2

cm/sec^ as recorded in the table.

Q5 What is your value of aav and its uncer-

tainty?

Comparing Your Results

You now have values of Far, Tn and aav, their

uncertainties, and you consider the uncer-

tainty of ma„,. When you have a value for the

uncertainty of this product of two quantities,

you will then compare the value of ma„,. with

the value of Fav and draw your final conclu-

sions. For convenience, we have dropped the

"av" from the symbols in the equations in the

following discussion. When two quantities are

multiplied, the percentage uncertainty in

the product never exceeds the sum of the

percentage uncertainties in each of the fac-

tors. In our example, m x a = 1.30 kg x 0.8

cm/sec^ = 1.04 newtons. The uncertainty in

a (0.8 ± 0.2 cm/sec") is 25% (since 0.2 is 25%
of 0.8). The uncertainty in m is 11%. Thus the

uncertainty in ma is 25% + 11% = 36% and we
can write our product as ma = 1.04 N +0.36%
which is, to two significant figures,

ma = 1.04 ±0.36 N
(The error is so large here that it really isn't

appropriate to use the two decimal places;

we could round off to 1.0 ± 0.4 N.) In our ex-

ample we found from direct measurement
that Fnet = 1.2 ± 0.2 N. Are these the same
quantity?

Although 1.0 does not equal 1.2, the range

of 1.0 ± 0.4 overlaps the range of 1.2 + 0.2, so

we can say that "the two numbers agree within

the range of uncertainty of measurement.
'

An example of lack of agreement would
be 1.0 ± 0.2 and 1.4 ±0.1. These are presum-

ably not the same quantity since there is no

overlap of expected uncertainties.

In a similar way, work out your own values

of F„e, and maa,-

Q6 Do your own values agree within the range

of uncertainty of your measurement?

Q7 Is the relationship F„p, ^maav consistent

with your observations?
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EXPERIMENT 9 MASS AND WEIGHT
You know from your own experience that an
object that is pulled strongly toward the earth

(like, say, an automobile) is difficult to ac-

celerate by pushing. In other words, objects

with great weight also have great inertia. But

is there some simple, exact relationship be-

tween the masses of objects and the gravita-

tional forces acting on them? For example,

if one object has twice the mass of another,

does it also weigh twice as much?

Measuring Mass
The masses of two objects can be compared
by observing the accelerations they each ex-

perience when acted on by the same force.

Accelerating an object in one direction with a

constant force for long enough to take mea-
surements is often not practical in the labora-

tory. Fortunately there is an easier way. If

you rig up a puck and springs between two

rigid supports as shown in the diagram, you
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can attach objects to the puck and have the

springs accelerate the object back and forth.

The greater the mass of the object, the less

the magnitude of acceleration will be, and the

longer it will take to oscillate back and forth.

To "calibrate" your oscillator, first time

the oscillations. The time required for 5 com-

plete round trips is a convenient measure.

Tape pucks on top of the first one, and time

the period for each new mass. (The units of

mass are not essential here, for we will be

interested only in the ratio of masses.) Then

plot a graph of mass against the oscillation

period, drawing a smooth curve through your

experimental plot points. Do not leave the

pucks stuck together.

Ql Does there seem to be a simple relation-

ship between mass and period? Could you

write an algebraic expression for the relation-

ship?

Weight

To compare the gravitational forces on two

objects, they can be hung on a spring scale.

In this investigation the units on the scale

are not important, because we are interested

only in the ratio of the weights.

Comparing Mass and Weight

Use the puck and spring oscillator and calibra-

tion graph to find the masses of two objects

(say, a dry cell and a stapler). Find the gravi-

tational pulls on these two objects by hanging
each from a spring scale.

Q2 How does the ratio of the gravitational

forces compare to the ratio of the masses?
Q3 Describe a similar experiment that would
compare the masses of two iron objects to the

magnetic forces exerted on them by a large

magnet.

You probably will not be surprised to find

that, to within your uncertainty of measure-

ment, the ratio of gravitational forces is the

same as the ratio of masses. Is this really worth

doing an experiment to find out, or is the an-

swer obvious to begin with? Newton didn't

think it was obvious. He did a series of very

precise experiments using many different

substances to find out whether gravitational

force was always proportional to inertial mass.

To the limits of his precision, he found the

proportionality to hold exactly. (Newton's

results have been confirmed to a precision of

±0.000000001%, and extended to gravitational

attraction to bodies other than the earth).

Newton could offer no explanation from

his physics as to why the attraction of the

earth for an object should increase in exact

proportion to the object's inertia. No other

forces bear such a simple relation to inertia,

and this remained a complete puzzle for two

centuries until Einstein related inertia and

gravitation theoretically. (See "Outside and

Inside the Elevator" in the Unit 5 Reader.)

Even before Einstein, Ernst Mach made the

ingenious suggestion that inertia is not the

property of an object by itself, but is the re-

sult of the gravitational forces exerted on an

object by everything else in the universe.
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CHECKER SNAPPING
Stack several checkers. Put another checker

on the table and snap it into the stack. On the

basis of Newton's first law, can you explain

what happened?

BEAKER AND HAMMER
One teacher suggests placing a glass beaker

half full ofwater on top of a pile of three wooden

blocks. Three quick back-and-forth swipes

(NOT FOUR!) of a hammer leave the beaker

sitting on the table.

PULLS AND JERKS
Hang a weight (such as a

heavy wooden block that

just barely supports it,

and tie another identical

string below the weight. A
slow, steady pull on the

string below the weight

breaks the string above

the weight. A quick jerk

breaks it below the weight.

Why?

EXPERIENCING NEWTON'S SECOND LAW
One way for you to get the feel of Newton's

second law is actually to pull an object with a

constant force. Load a cart with a mass of

several kilograms. Attach one end of a long

rubber band to the cart and, pulling on the

other end, move along at such a speed that the

rubber band is maintained at a constant length

—say 70 cm. Holding a meter stick above the

band with its 0-cm end in your hand will help

you to keep the length constant.

The acceleration will be very apparent to

the person applying the force. Vary the mass
on the cart and the number of rubber bands

(in parallel) to investigate the relationship

between F, m, and a.

MAKE ONE OF THESE
ACCELEROMETERS
An accelerometer is a device that measures

acceleration. Actually, anything that has mass
could be used for an accelerometer. Because

you have mass, you were acting as an accelero-

meter the last time you lurched forward in the

seat of your car as the brakes were applied.

With a knowledge of Newton's laws and cer-

tain information about you, anybody who
measured how far you leaned forward and how
tense your muscles were would get a good

idea of the magnitude and direction of the

acceleration that you were undergoing. But

it would be complicated.

Here are two accelerometers of a much
simpler kind. With a little practice, you can

learn to read accelerations from them directly,

without making any difficult calculations.

A. The Liquid-Surface

Accelerometer

This device is a hollow, fiat plastic container

B.C. By John Hart

By permission of John Hart and Fteld Enterprises, Inc.
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partly filled with a colored liquid. When it is

not being accelerated, the liquid surface is

horizontal, as shown by the dotted line in Fig.

3-4. But when it is accelerated toward the left

(as shown) with a uniform acceleration a, the

surface becomes tilted, with the level of the

liquid rising a distance h above its normal

position at one end of the accelerometer and

falling the same distance at the other end.

The greater the acceleration, the more steeply

the surface of the liquid is slanted. This means
that the slope of the surface is a measure of

the magnitude of the acceleration a.

acceleration

Fig. 3-4

The length of the accelerometer is 11, as

shown in Fig. 3-4 above. So the slope of the

surface may be found by

_ vertical distance

horizontal distance

21

=h
I

Theory gives you a very simple relation-

ship between this slope and the acceleration

h a
slope ^ 7 =—

Notice what this equation tells you. It says

that if the instrument is accelerating in the

direction shown with just a^ (one common way
to say this is that it has a "one-G acceleration"),

the acceleration of gravity, then the slope of

the surface is just 1 ; that is, h = I and the sur-

face makes a 45° angle with its normal, hori-

zontal direction. If it is accelerating with j
flg, then the slope will be 2"; that is fi = |- /. In

the same way, if h = j I, then a'=\ Uy^ and so

on with any acceleration you care to measure.

To measure h, stick a piece of centimeter

tape on the front surface of the accelerometer

as shown in Fig. 3-5 below. Then stick a piece

of white paper or tape to the back of the in-

strument to make it easier to read the level

of the liquid. Solving the equation above for

a gives

ha^ UaX

wWit^ p&pe.r on
back, of c^eJI

y
\ 'M^

Onacc-eieratcei liquid Level

Accelerate licjoid sur-face

Fig. 3-5

cm soale on

front of eel

B.C. By John Hart

By permission of John Hart and Field Enterprises, Inc.



172 Activities

This shows that if you place a scale 10 scale

units away from the center you can read accel-

arations directly in joth's of "G's." Since ay

is very close to 9.8m/sec^ at the earth's surface

if you place the scale 9.8 scale units from the

center you can read accelerations directly in

m/sec^. For example, if you stick a centimeter

tape just 9.8 cm from the center of the liquid

surface, one cm on the scale is equivalent to

an acceleration of one m/sec^.

Calibration of the Accelerometer

You do not have to trust blindly the theory

mentioned above. You can test it for yourself.

Does the accelerometer really measure accel-

erations directly in m/sec^? Stroboscopic meth-

ods give you an independent check on the

correctness of the theoretical prediction.

Set the accelerometer on a dynamics cart

and arrange strings, pulleys, and masses as

you did in Experiment 9 to give the cart a uni-

form acceleration on a long tabletop. Don't

forget to put a block of wood at the end of the

cart's path to stop it. Make sure that the ac-

celerometer is fastened firmly enough so that

it will not fly off" the cart when it stops sud-

denly. Make the string as long as you can, so

that you use the entire length of the table.

Give the cart a wide range of accelerations

by hanging different weights from the string.

Use a stroboscope to record each motion. To
measure the accelerations from your strobe

records, plot t'^ against d, as you did in Experi-

ment 5. (What relationship did Galileo dis-

cover between dlt^ and the acceleration?) Or
use the method of analysis you need in Experi-

ment 9.

Compare your stroboscopic measurements
with the readings on the accelerometer during

each motion. It takes some cleverness to read

the accelerometer accurately, particularly

near the end of a high-acceleration run. One
way is to have several students along the table

observe the reading as the cart goes by; use

the average of their reports. If you are using

a xenon strobe, of course, the readings on the

accelerometer will be visible in the photograph;

this is probably the most accurate method.

Plot the accelerometer readings against

the stroboscopically measured accelerations.

This graph is called a "calibration curve." If

the two methods agree perfectly, the graph

will be a straight line through the origin at a
45° angle to each axis. If your curve turns out

to have some other shape, you can use it to

convert "accelerometer readings" to "accel-

erations"—if you are willing to assume that

your strobe measurements are more accurate

than the accelerometer. (If you are not willing,

what can you do?)

B. Automobile Accelerometer-I

With a liquid-surface accelerometer mounted
on the front-back line of a car, you can measure
the magnitude of acceleration along its path.

Here is a modification of the liquid-surface

design that you can build for yourself. Bend a

small glass tube (about 30 cm long) into a

U-shape, as shown in Fig. 3-6 below.

1

0-4-
i
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the scale (and the arm by it) with cloth or card-

board, but leave both ends open. It is essential

that the accelerometer be horizontal if its

readings are to be accurate. When you are

measuring acceleration in a car, be sure the

road is level. Otherwise, you will be reading

the tilt of the car as well as its acceleration.

When a car accelerates— in any direction— it

tends to tilt on the suspension. This will in-

troduce error in the accelerometer readings.

Can you think of a way to avoid this kind of

error?

C. Automobile Accelerometer-ll

An accelerometer that is more directly related

to F = ma can be made from a 1-kg cart and a

spring scale marked in newtons. The spring

scale is attached between a wood frame and
the cart as in the sketch below. If the frame is

kept level, the acceleration of the system can

sc<xle

U)ood J*;
-Frame

Ikg cart \0^^

:-^;wv^::^-^^:rs^X

be read directly from the spring scale, since

one newton of force on the 1-kg mass indicates

an acceleration of one m/sec'. (Instead of a

cart, any 1-kg object can be used on a layer

of low-friction plastic beads.)

A damped-pendulum accelerometer, on

the other hand, indicates the direction of any
horizontal acceleration; it also gives the mag-
nitude, although less directly than the pre-

vious instruments do.

Hang a smaU metal pendulum bob by a

short string fastened to the middle of the lid

of a one-quart mason jar as shown on the left

hand side of the sketch at the bottom of the

page. Fill the jar with water and screw the

lid on tight. For any position of the pendulum,
the angle that it makes with the vertical de-

pends upon your position. What would you

see, for example, if the bottle were accelerating

straight toward you? Away from you? Along
a table with you standing at the side? (Careful:

this last question is trickier than it looks.

To make a fascinating variation on the

damped-pendulum accelerometer, simply re-

place the pendulum bob with a cork and turn

the bottle upside down as shown on the right

hand side of the sketch at the bottom of the

page. If you have punched a hole in the bottle

lid to fasten the string, you can prevent leakage

with the use of sealing wax, parafin, or tape.

This accelerometer will do just the opposite

from what you would expect. The explanation

of this odd behavior is a little beyond the scope

of this course: it is thoroughly explained in

The Physics Teacher, vol. 2, no. 4 (April 1964)

page 176.

D. Damped-Pendulum Accelerometer

One advantage of liquid-surface acceler-

ometers is that it is easy to put a scale on them

and read accelerations directly from the instru-

ment. They have a drawback, though; they

give only the component of acceleration that

is parallel to their horizontal side. If you ac-

celerate one at right angles to its axis, it doesn't

register any acceleration at all. And if you don't

know the direction of the acceleration, you

have to use trial-and-error methods to find it

with the accelerometers we have discussed up

to this point.
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FILM LOOP 3 VECTOR ADDITION-
VELOCITY OF A BOAT
A motorboat was photographed from a bridge

in this film. The boat heads upstream, then

downstream, then directly across stream, and

at an angle across the stream. The operator

of the boat tried to keep the throttle at a con-

stant setting to maintain a steady speed rela-

tive to the water. The task before you is to

find out if he succeeded.

This photograph was taken from one bank of the stream.

It shows the motorboat heading across the stream and

the camera filming this loop fixed on the scaffolding on

the bridge.

First project the film on graph paper and
mark the lines along which the boat's image
moves. You may need to use the reference

crosses on the markers. Then measure speeds

by timing the motion through some predeter-

mined number of squares. Repeat each mea-
surement several times, and use the average

times to calculate speeds. Express all speeds

in the same unit, such as "squares per second"

(or "squares per cm" where cm refers to mea-
sured separations between marks on the mov-
ing paper of a dragstrip recorder). Why is there

no need to convert the speeds to meters per

second? Why is it a good idea to use a large

distance between the timing marks on the

graph paper?

Ar-*-s '.^

Fig. 3-7

The head-to-tail method of adding vectors. For a review

of vector addition see Project Physics Programmed
instruction Booklet entitled Vectors II.

The head-to-tail method of adding vectors

is illustrated in Fig. 3-7. Since velocity is a

vector with both magnitude and direction, you

can study vector addition by using velocity

vectors. An easy way of keeping track of the

velocity vectors is by using subscripts:

v^E velocity of boat relative to earth

Vb» velocity of boat relative to water

VnE velocity of water relative to earth

Then^ _^ _^

For each heading of the boat, a vector

diagram can be drawn by laying off the ve-

locities to scale. A suggested procedure is to

record data (direction and speed) for each of

the five scenes in the film, and then draw the

vector diagram for each.

Scene 1 : Two blocks of wood are dropped over-

board. Time the blocks. Find the speed of the

river, the magnitude of v,, £•
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Scene 2: The boat heads upstream. Measure

Vbe^ then find Vbw using a vector diagram simi-

lar to Fig. 3-8.

BW

WE.

^E

Fig. 3-8

Scene 3: The boat heads downstream. Measure

Vbe^ then find Vb» using a vector diagram.

90*

270"

Scene 4: The boat heads across stream and

drifts downstream. Measure the speed of the

boat and the direction of its path to find v^be-

Also measure the direction of Vbw, the direc-

tion the boat points. One way to record data is

to use a set of axes with the 0° - 180° axis pass-

ing through the markers anchored in the

river. A diagram, such as Fig. 3-9, will help

you record and analyze your measurements.

(Note that the numbers in the diagram are

deliberately not correct.) Your vector diagram

should be something like Fig. 3-10.

Fig. 3-10

Scene 5: The boat heads upstream at an angle,

but moves directly across stream. Again find

a value for Vbw-

Checking your work: (a) How well do the four

values of the magnitude of Vbh agree with

each other? Can you suggest reasons for any

discrepancies? (b) From scene 4, you can cal-

culate the heading of the boat. How well does

this angle agree with the observed boat head-

ing? (c) In scene 5. you determine a direction

for 7^1,. Does this angle agree with the ob-

served boat heading?

Fig. 3-9
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Chapter 4 Understanding Motion

EXPERIMENT 10 CURVES OF
TRAJECTORIES
Imagine you are a ski-jumper. You lean for-

ward at the top of the sHde, grasp the raihng

on each side, and yank yourself out into the

track. You streak down the trestle, crouch and
give a mighty leap at the takeoff lip, and soar

up and out, looking down at tiny fields far

below. The hill flashes into view and you thump
on its steep incline, bobbing to absorb the

impact.

This exciting experience involves a more
complex set of forces and motions than you

can deal with in the laboratory at one time.

Let's concentrate therefore on just one aspect:

your flight through the air. What kind of a path,

or trajectory, would your flight follow?

At the moment of projection into the air a

skier has a certain velocity (that is, a certain

speed in a given direction), and throughout

his flight he must experience the downward
acceleration due to gravity. These are circum-

stances that we can duplicate in the laboratory.

To be sure, the flight path of an actual ski-

jumper is probably aff"ected by other factors,

such as air, velocity and friction; but we now
know that it usually pays to begin experiments
with a simplified approximation that allows

us to study the effects of a few factors at a

time. Thus, in this experiment you will launch
a steel ball from a ramp into the air and try to

determine the path it follows.

How to Use the Equipment
If you are assembling the equipment for this

experiment for the first time, follow the manu-
facturer's instructions.

The apparatus being used by the students

in the photograph on page 177 consists of two
ramps down which you can roll a steel ball.

Adjust one of the ramps (perhaps with the help

of a level) so that the ball leaves it horizontally.

Tape a piece of squared graph paper to the

plotting board with its left-hand edge behind
the end of the launching ramp.

To find a path that extends all across the

graph paper, release the ball from various

points up the ramp until you find one from
which the ball falls close to the bottom right-

hand corner of the plotting board. Mark the

point of release on the ramp and release the

ball each time from this point.

Attach a piece of carbon paper to the im-

pact board, with the carbon side facing the

ramp. Then tape a piece of thin onionskin

paper over the carbon paper.

Now when you put the impact board in its

way, the ball hits it and leaves a mark that you

can see through the onionskin paper, auto-

matically recording the point of impact be-

tween ball and board. (Make sure that the

impact board doesn't move when the ball hits

it; steady the board with your hand if neces-

sary.) Transfer the point to the plotting board

by making a mark on it just next to the point

on the impact board.

Do not hold the ball in your fingers to re-

lease it— it is impossible to let go of it in the

same way every time. Instead, dam it up with
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a ruler held at a mark on the ramp and release

the ball by moving the ruler quickly away from

it down the ramp.

Try releasing the ball several times (always

from the same point) for the same setting of

the impact board. Do all the impact points

exactly coincide?

Repeat this for several positions of the

impact board to record a number of points on

the ball's path. Move the board equal dis-

tances every time and always release the ball

from the same spot on the ramp. Continue

until the ball does not hit the impact board

any longer.

Now remove the impact board, release the

ball once more, and watch carefully to see that

the ball moves along the points marked on the

plotting board.

The curve traced out by your plotted points

represents the trajectory of the ball. By ob-

serving the path the ball follows, you have

completed the first phase of the experiment.

If you have time, you will find it worth

while to go further and explore some of the

properties of your trajectory.

Analyzing Your Data

To help you analyze the trajectory, draw a

horizontal line on the paper at the level of the

end of the launching ramp. Then remove the

paper from the plotting board and draw a

smooth continuous curve through the points

as shown in the figure at the bottom of the

page.

You already know that a moving object

on which there is no net force acting will move
at constant speed. There is no appreciable

horizontal force acting on the ball during its

fall, so we can make an assumption that its

horizontal progress is at a constant speed.

Then equally spaced hnes will indicate equal

time intervals.

Draw vertical hnes through the points on

your graph. Make the first line coincide with

the end of the launching ramp. Because of

your plotting procedure these lines should

be equally spaced. If the horizontal speed of

the ball is uniform, these vertical lines are

drawn through positions of the ball separated

by equal time intervals.

Now consider the vertical distances fallen

in each time interval. Measure down from your

horizontal line the vertical fall to each of your
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plotted points. Record your measurements in a

column. Alongside them record the corre-

sponding horizontal distances measured from

the first vertical line. A sample of results as

recorded in a student notebook is shown on

the right.

Ql What would a graph look like on which you

plot horizontal distance against time?

Earlier in your work with accelerated

motion you learned how to recognize uniform

acceleration (see Sees. 2.5-2.8 in the Text and

Experiment 5). Use the data you have just

collected to decide whether the vertical motion

of the ball was uniformly accelerated motion.

Q2 What do you find?

Q3 Do the horizontal and the vertical motions

affect each other in any way?

Q4 Write an equation that describes the hori-

zontal motion in terms of horizontal speed v,

the horizontal distance, Ax, and the time of

travel, At.

Q5 What is the equation that describes the

vertical motion in terms of the distance fallen

vertically, At/, the vertical acceleration, Uy,

and the time of travel, At?

7 Vtxluti

.
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EXPERIMENT 11 PREDICTION OF
TRAJECTORIES
You can predict the landing point of a ball

launched horizontally from a tabletop at any

speed. If you know the speed, Vq, of the ball as

it leaves the table, the height of the table above

the floor and a^, you can then use the equation

for projectile motion to predict where on the

floor the ball will land.

You know an equation for horizontal mo-
tion:

^x = v At

and you know an equation for free-fall from
rest:

The time interval is difficult to measure. Be-

sides, in talking about the shape of the path,

all we really need to know is how Ay relates to

Ax. Since, as you found in the previous experi-

ment, these two equations still work when an

object is moving horizontally and falling at

the same time, we can combine them to get an

equation relating Ay and Ax, without At ap-

pearing at all. We can rewrite the equation for

horizontal motion as:

Then we can substitute this expression for t

into the equation for fall:

At =
Ax

_ 1Ay = ^a
(Axy

Thus the equation we have derived should

describe how Ay changes with Ax— that is,

it should give us the shape of the trajectory.

If we want to know how far out from the edge

of the table the ball will land (Ax), we can
calculate if from the height of the table (Ay),

Ug, and the ball's speed v along the table.

Doing the Experiment

Find V by measuring with a stopwatch the

time t that the ball takes to roll a distance d

along the tabletop. (See Fig. 4-1 below.) Be sure

to have the ball caught as it comes off the end

of the table. Repeat the measurement a few
times, always releasing the ball from the same
place on the ramp, and take the average value

of V.

Measure Ay and then use equation for Ai/

to calculate Ax. Place a target, a paper cup,

perhaps, on the floor at your predicted landing

spot as shown below. How confident are you of

your prediction? Since it is based on measure-

ment, some uncertainty is involved. Mark an

area around the spot to indicate your uncer-

tainty.

bal I mu^'t' be

e)tiTl in air

Support
Stand

Fig. 4-1
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EXPERIMENT 12 CENTRIPETAL FORCE
The motion of an earth sateUite and of a weight

swung around your head on the end of a string

are described by the same laws of motion.

Both are accelerating toward the center of

their orbit due to the action of an unbalanced

force.

In the following experiment you can dis-

cover for yourself how this centripetal force

depends on the mass of the satellite and on its

speed and distance from the center.

How the Apparatus Works
Your "satellite" is one or more rubber stop-

pers. When you hold the apparatus in both

hands, as shown in the photo above, and swing

the stopper around your head, you can measure

the centripetal force on it with a spring scale

at the base of the stick. The scale should read

in newtons or else its readings should be con-

verted to newtons.

You can change the length of the string

so as to vary the radius R of the circular orbit,

and you can tie on more stoppers to vary the

satellite mass m.

The best way to set the frequency / is to

swing the apparatus in time with some peri-

odic sound from a metronome or an earphone

attachment to a blinky. You keep the rate con-

stant by adjusting the swinging until you see

the stopper cross the same point in the room at

every tick.

Hold the stick vertically and have as little

motion at the top as possible, since this would

change the radius. Because the stretch of the

spring scale also alters the radius, it is helpful

to have a marker (knot or piece of tape) on the

string. You can move the spring scale up or

down slightly to keep the marker in the same

place.

Doing the Experiment

The object of the experiment is to find out how
the force F read on the spring scale varies with

m, with /, and with R.

You should only change one of these three

quantities at a time so that you can investigate

the effect of each quantity independently of

the others. It's easiest to either double or triple

m, f, and R (or halve them, and so on, if you

started with large values).

Two or three different values should be

enough in each case. Make a table and clearly

record your numbers in it.

Ql How do changes in m affect F when R and

/ are kept constant? Write a formula that

states this relationship.

Q2 How do changes in / affect F when m and

R are kept constant? Write a formula to ex-

press this too.

Q3 What is the effect of R on F?

Q4 Can you put m, f, and R all together in a

single formula for centripetal force, R?
How does your formula compare with the

expression derived in Sec. 4.7 of the Text.
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EXPERIMENT 13 CENTRIPETAL FORCE
ON A TURNTABLE
You may have had the experience of spinning
around on an amusement park contraption
known as the Whirhng Platter. The riders seat

themselves at various places on a large flat

polished wooden turntable about 40 feet in

diameter. The turntable gradually rotates

faster and faster until everyone (except for the
person at the center of the table) has slid off.

The people at the edge are the first to go. Why
do the people slide off?

Unfortunately you probably do not have a
Whirling Platter in your classroom, but you do
have a Masonite disk that fits on a turntable.

The object of this experiment is to predict the
maximum radius at which an object can be
placed on the rotating turntable without slid-

ing off.

If you do this under a variety of conditions,
you will see for yourself how forces act in cir-

cular motion.

Before you begin, be sure you have studied
Sec. 4.6 in your Text where you learned that
the centripetal force needed to hold a rider in a
circular path is given by F = mv-jR.

Studying Centripetal Force
For these experiments it is more convenient
to write the formula F = mvVR in terms of the
frequency/. This is because/can be measured
more easily than v. We can rewrite the form-
ula as follows:

^ ^ distance traveled ^ number of revolu-
in one revolution tions per sec

= 2ttR xf

Substituting this expression for v in the form-
ula gives:

P _ 7nx {2TrRfy
R

Friction on a Rotating Disk
For objects on a rotating disk, the centripetal
force is provided by friction. On a frictionless

disk there could be no such centripetal force.

As you can see from the equation we have
just derived, the centripetal acceleration is

proportional to R and to/"-^. Since the frequency

/ is the same for any object moving around
with a turntable, the centripetal acceleration
is directly proportional to R, the distance from
the center. The further an object is from the
center of the turntable, therefore, the greater
the centripetal force must be to keep it in a
circular path.

You can measure the maximum force
F,„„j, that friction can provide on the object,

measure the mass of the object, and then cal-

culate the maximum distance from the center

R,„ax that the object can be without sliding off.

Solving the centripetal force equation for R
gives

_ 4ir^mR^P

R

= AttZ4Tr^mRp

You can measure all the quantities in this
equation.

4n^mP

Use a spring scale to measure the force needed
to make some object (of mass m from 0.2 to

1.0 kg) start to slide across the motionless
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disk. This will be a measure of the maximum
friction force that the disk can exert on the

object.

Then make a chalk mark on the turntable

and time it (say, for 100 sec)—or accept the

marked value of rpm—and calculate the fre-

quency in rev/sec.

Make your predictions of R,„ax for turn-

table frequencies of 33 revolutions per minute

(rpm), 45 rpm, and 78 rpm.

Then try it!

Ql How great is the percentage difference

between prediction and experiment for each

turntable frequency? Is this reasonable agree-

ment?
Q2 What efTect would decreasing the mass
have on the predicted value of R? Careful!

Decreasing the mass has an effect on F also.

Check your answer by doing an experiment.

Q3 What is the smallest radius in which you

can turn a car if you are moving 60 miles an

hour and the friction force between tires and

road is one-third the weight of the car? (Care-

ful! Remember that weight is equal to a, x m.)

B.C. by John Hart

NO,MO, srURP... THE
OTHER ENP.

By permission of John Hart and Field Enterprises, Inc.
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PROJECTILE MOTION DEMONSTRATION
Here is a simple way to demonstrate projectile

motion. Place one coin near the edge of a table.

Place an identical coin on the table and snap
it with your finger so that it flies off" the table,

just ticking the first coin enough that it falls

almost straight down from the edge of the

table. The fact that you hear only a single

ring as both coins hit shows that both coins
took the same time to fall to the floor from the
table. Incidentally, do the coins have to be
identical? Try different ones.

SPEED OF A STREAM OF WATER
You can use the principles of projectile motion
to calculate the speed of a stream of water
issuing from a horizontal nozzle. Measure the
vertical distance Ay from the nozzle to the
ground, and the horizontal distance Ax from
the nozzle to where the water hits the ground.

Use the equation relating Ax and Ay that
was derived in Experiment 11, solving it for

v:

so

and
y

V = Ax
QAy

The quantities on the right can all be measured
and used to compute v.

PHOTOGRAPHING A WATERDROP
PARABOLA
Using an electronic strobe light, a doorbell
timer, and water from a faucet, you can photo-
graph a water drop parabola. The principle of
independence of vertical and horizontal mo-
tions will be clearly evident in your picture.

Remove the wooden block from the timer.
Fit an "eye dropper" barrel in one end of some
tubing and fit the other end of the tubing onto
a water faucet. (Instead of the timer you can
use a doorbell without the bell.) Place the tube
through which the water runs under the clap-
per so that the tube is given a steady series of
sharp taps. This has the effect of breaking the
stream of water into separate, equally spaced
drops (see photo on previous page).

To get more striking power, run the vibra-
tor from a variable transformer (Variac) con-
nected to the 110 volt a.c, gradually increasing
the Variac from zero just to the place where
the striker vibrates against the tubing. Adjust
the water flow through the tube and eye drop-
per nozzle. By viewing the drops with the
xenon strobe set at the same frequency as the
timer, a parabola of motionless drops is seen.
A spot-light and disk strobe can be used in-

stead of the electronic strobe light, but it is

more difficult to match the frequencies of
vibrator and strobe. The best photos are made
by lighting the parabola from the side (that is.

putting the light source in the plane of the
parabola). The photo above was made in that
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way. With front lighting, the shadow of the

parabola can be projected onto graph paper

for more precise measurement.

Some heating of the doorbell coil results,

so the striker should not be run continuously

for long periods of time.

Of course projectile trajectories can be

photographed of any object thrown into the

air using the electronic strobe and Polaroid

Land camera. By fastening the camera (se-

curely!) to a pair of carts, you can photograph

the action from a moving frame of reference.

BALLISTIC CART PROJECTILES
Fire a projectile straight up from a cart or toy

locomotive as shown in the photo below that is

rolling across the floor with nearly uniform

velocity. You can use a commercial device

called a ballistic cart or make one yourself. A
spring-loaded piston fires a steel ball when you

pull a string attached to a trigger pin. Use the

electronic strobe to photograph the path of the

ball.

MOTION IN A ROTATING REFERENCE
FRAME
Here are three ways you can show how a mov-

ing object would appear in a rotating reference

frame.

Method I Attach a piece of paper to a phono-

graph turntable. Draw a line across the paper

as a turntable is turning (see Fig. 4-2 below),

using as a guide a meter stick supported on

books at either side of the turntable. The line

should be drawn at a constant speed.

'tutrnfai^^

Fig. 4-2
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Method II Place a Polaroid camera on the turn-

table on the floor and let a tractor run along

the edge of a table, with a flashlight bulb on a

pencil taped to the tractor so that it sticks out

over the edge of the table.

I j'flljtsource ^— Couv»"te»r- uitiqKt

V^OtSIb pf=** ^tov -tractor

caiTMerck

furnfftble"^

Method III How would an elliptical path appear
if you were to view it from a rotating reference
system? You can find out by placing a Polaroid
camera on a turntable on the floor, with the
camera aimed upwards. (See Fig. 4-3 below.)
For a pendulum, hang a flashhght bulb and
anAA dry cell. Make the pendulum long enough
so that the light is about 4 feet from the cam-
era lens.

/i^Vit Source

on 5*"i

different points in its swing by using a motor
strobe in front of the camera, or by hanging
a blinky.

PENNY AND COAT HANGER
Bend a coat hanger into the shape shown in
the sketch below in this right-hand column.
Bend the end of the hook slightly with a pair of
pliers so that it points to where the finger sup-
ports the hanger. File the end of the hook flat.

Balance a penny on the hook. Move your finger
back and forth so that the hanger (and bal-

anced penny) starts swinging Uke a pendulum.
Some practice will enable you to swing the
hanger in a vertical circle, or around your head
and still keep the penny on the hook. The cen-
tripetal force provided by the hanger keeps the
penny from flying off" on a straight-line path.
Some people have done this demonstration
successfully with a pile of as many as five

pennies at once.

Turns On -firiacr- here.

Camtra.

turntoUe

Fig. 4-3

With the hghts out, give the pendulum a
swing so that it swings in an elliptical path.
Hold the shutter open while the turntable
makes one revolution. You can get an indi-

cation of how fast the pendulum moves at

MEASURING UNKNOWN FREQUENCIES
Use a calibrated electronic stroboscope or a
hand-stroboscope and stopwatch to measure
the frequencies of various motions. Look for

such examples as an electric fan, a doorbell
clapper, and a banjo string.

On page 108 of the Text you will find tables
of frequencies of rotating objects. Notice the
enormous range of frequencies listed, from the
electron in the hydrogen atom to the rotation

of our Milky Way galaxy.
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FILM LOOPS
FILM LOOP 4 A MATTER OF RELATIVE
MOTION
Two carts of equal mass collide in this film.

Three sequences labeled Event A, Event B, and
Event C are shown. Stop the projector after

each event and describe these events in words,

as they appear to you. View the loop now, be-

fore reading further.

Even though Events A, B, and C are visibly

different to the observer, in each the carts

interact similarly. The laws of motion apply

for each case. Thus, these events could be the

same event observed from different reference

frames. They are closely similar events photo-

graphed from different frames of reference, as

you see after the initial sequence of the film.

The three events are photographed by a

camera on a cart which is on a second ramp
parallel to the one on which the colliding carts

move. The camera is your frame of reference,

your coordinate system. This frame of refer-

ence may or may not be in motion with respect

to the ramp. As photographed, the three events

appear to be quite different. Do such concepts

as position and velocity have a meaning inde-

pendently of a frame of reference, or do they

take on a precise meaning only when a frame

of reference is specified? Are these three events

really similar events, viewed from different

frames of reference?

You might think that the question of which

cart is in motion is resolved by sequences at

B.C. by John Hart

the end of the film in which an experimenter,

Franklin Miller of Kenyon College, stands

near the ramp to provide a reference object.

Other visual clues may already have provided

this information. The events may appear dif-

ferent when this reference object is present.

But is this fixed frame of reference any more
fundamental than one of the moving frames
of reference? fixed relative to what? Or is

there a "completely" fixed frame of reference?

If you have studied the concept of momen-
tum, you can also consider each of these three

events from the standpoint of momentum
conservation. Does the total momentum de-

pend on the frame of reference? Does it seem
reasonable to assume that the carts would
have the same mass in all the frames of refer-

ence used in the film?

By permission of John Hart and Field Enterprises, Inc.
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FILM LOOP 5 GALILEAN RELATIVITY-
BALL DROPPED FROM MAST OF SHIP
This film is a partial actualization of an ex-

periment described by Sagredo in Galileo's

Two New Sciences:

If it be true that the impetus with which
the ship moves remains indelibly im-
pressed in the stone after it is let fall from
the mast; and if it be further true that

this motion brings no impediment or

retardment to the motion directly down-
wards natural to the stone, then there

ought to ensue an effect of a very won-
drous nature. Suppose a ship stands still,

and the time of the falling of a stone
from the mast's round top to the deck is

two beats of the pulse. Then afterwards
have the ship under sail and let the same
stone depart from the same place. Ac-
cording to what has been premised, it

shall take up the time of two pulses in its

fall, in which time the ship will have
gone, say, twenty yards. The true motion
of the stone will then be a transverse
line (i.e., a curved line in the vertical

plane), considerably longer than the first

straight and perpendicular line, the
height of the mast, and yet nevertheless
the stone will have passed it in the same
time. Increase the ship's velocity as much
as you will, the falling stone shall des-
cribe its transverse hnes still longer and
longer and yet shall pass them all in those
selfsame two pulses.

In the film a ball is dropped three times:

Scene 1 : The ball is dropped from the
mast. As in Galileo's discussion, the ball

continues to move horizontally with the
boat's velocity, and also it falls vertically

relative to the mast.

Scene 2: The ball is tipped off a stationary
support as the boat goes by. It has no
forward velocity, and it falls vertically

relative to the water surface.

Scene 3: The ball is picked up and held
briefly before being released.

t

The ship and earth are frames of reference
in constant relative motion. Each of the three
events can be described as viewed in either

frame of reference. The laws of motion apply
for all six descriptions. The fact that the laws
of motion work for both frames of reference,

one moving at constant velocity with respect
to the other, is what is meant by "Galilean
relativity." (The positions and velocities are
relative to the frame of reference, but the laws
of motion are not. A "relativity" principle also

states what is not relative.)

Scene 1 can be described from the boat
frame as follows: "A ball, initially at rest, is

released. It accelerates downward at 9.8 m/
sec- and strikes a point directly beneath the

starting point." Scene 1 described differently

from the earth frame is: "A ball is projected
horizontally toward the left; its path is a par-

abola and it strikes a point below and to the
left of the starting point."

To test your understanding of Galilean
relativity, you should describe the following:

Scene 2 from the boat frame; Scene 2 in earth
frame; Scene 3 from the boat frame; Scene 3
from the earth frame.
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FILM LOOP 6 GALILEAN RELATIVITY-
OBJECT DROPPED FROM AIRCRAFT
A Cessna 150 aircraft 23 feet long is moving

about 100 ft/sec at an altitude of about 200

feet. The action is filmed from the ground as

a flare is dropped from the aircraft. Scene 1

shows part of the flare's motion; Scene 2, shot

from a greater distance, shows several flares

dropping into a lake; Scene 3 shows the ver-

tical motion viewed head-on. Certain frames

of the film are "frozen" to allow measure-

ments. The time interval between freeze

frames is always the same.

Seen from the earth's frame of reference,

the motion is that of a projectile whose original

velocity is the plane's velocity. If gravity is the

only force acting on the flare, its motion should

be a parabola. (Can you check this?) Relative

to the airplane, the motion is that of a body

falling freely from rest. In the frame of refer-

ence of the plane, the motion is vertically

downward.

The plane is flying approximately at uni-

form speed in a straight line, but its path is not

necessarily a horizontal line. The flare starts

with the plane's velocity, in both magnitude

and in direction. Since it also falls freely under

the action of gravity, you expect the flare's

downward displacement below the plane to be

d = -g-at^. But the trouble is that you cannot

be sure that the first freeze frame occurs at

the very instant the flare is dropped. However,

there is a way of getting around this difficulty.

Suppose a time B has elapsed between the

release of the flare and the first freeze frame.

This time must be added to each of the freeze

frame times (conveniently measured from the

first freeze frame) and so you would have

d = ^a(t + By

To see if the flare follows an equation such as

this, take the square root of each side:

Vd = (constant) (t + B)

Now if we plot Vd against t, we expect a

straight line. Moreover, if B = 0, this straight

line will also pass through the origin.

Suggested Measurements
(a) Vertical motion. Project Scene 1 on paper.

At each freeze frame, when the motion on the

screen is stopped briefly, mark the positions

of the flare and of the aircraft cockpit. Measure

the displacement d of the flare below the plane.

Use any convenient units. The times can be

taken as integers, t = 0, 1, 2, . . .,designating

successive freeze frames. Plot Vd versus t.

Is the graph a straight line? What would be

the effect of air resistance, and how would this

show up in your graph? Can you detect any

signs of this? Does the graph pass through

the origin?

(b) Analyze Scene 2 In the same way.

(c) Horizontal motion. Use another piece of

graph paper with time (in intervals) plotted

horizontally and displacements (in squares)

plotted vertically. Using measurements from

your record of the flare's path, make a graph

of the two motions in Scene 2. What are the

effects of air resistance in the horizontal

motion? the vertical motion? Explain your

findings between the effect of air friction on

the horizontal and vertical motions.

(d) Acceleration due to gravity. The "constant"

in your equation, d = (constant) (t + B), is

ja; this is the slope of the straight-line graph

obtained in part (a). The square of the slope

gives 2^ so the acceleration is twice the
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square of the slope. In this way you can obtain

the acceleration in squares/(interval)^ To
convert your acceleration into ft/sec- or m/
sec^, you can estimate the size of a "square"

from the fact that the length of the plane is

23 ft (7 m). The time interval in seconds be-

tween freeze frames can be found from the

slow-motion factor.

FILM LOOP 7 GALILEAN RELATIVITY-
PROJECTILE FIRED VERTICALLY
A rocket tube is mounted on bearings that
leave the tube free to turn in any direction.

When the tube is hauled along the snow-
covered surface of a frozen lake by a "ski-doo,"

the bearings allow the tube to remain pointing
vertically upward in spite of some roughness
of path. Equally spaced lamps along the path
allow you to judge whether the ski-doo has
constant velocity or whether it is accelerating.

A preliminary run shows the entire scene; the
setting is in the Laurentian Mountains in the
Province of Quebec at dusk.

Four scenes are photographed. In each
case a rocket flare is fired vertically upward.
With care you can trace a record of the tra-

jectories.

Scene 1: The ski-doo is stationary relative to

the earth. How does the flare move?

Scene 2: The ski-doo moves at uniform velocity

relative to the earth. Describe the motion of

the flare relative to the earth; describe the
motion of the flare relative to the ski-doo.

Scenes 3 and 4: The ski-doo's speed changes
after the shot is fired. In each case describe
the motion of the ski-doo and describe the
flare's motion relative to the earth and relative

to the ski-doo. In which cases are the motions
a parabola?

How do the events shown in this film illus-

trate the principle of Galilean relativity? In
which frames of reference does the rocket
flare behave the way you would expect it to

behave in all four scenes knowing that the
force is constant, and assuming Newton's laws
of motion? In which systems do Newton's laws
fail to predict the correct motion in some of
the scenes?

FILM LOOP 8 ANALYSIS OF A HURDLE
RACE-I
The initial scenes in this film show a regula-
tion hurdle race, with 1-meter-high hurdles
spaced 9 meters apart. (Judging from the
number of hurdles knocked over, the com-
petitors were of something less than Olympic
caliber!) Next, a runner, Frank White, a 75-

kg student at McGill University, is shown in

medium slow-motion (slow-motion factor 3)
during a 50-meter run. His time was 8.1 sec-

onds. Finally, the beginning of the run is

shown in extreme slow motion (slow-motion
factor of 80). "Analysis of a Hurdle Race 11"

has two more extreme slow-motion sequences.
To study the runner's motion, measure

the average speed for each of the 1-meter
intervals in the slow-motion scene. A "drag-

strip" chart recorder is particularly convenient
for recording the data on a single viewing of
the loop. Whatever method you use for measur-
ing time, the small but significant variations

in speed will be lost in experimental uncer-
tainty unless you work very carefully. Repeat
each measurement several times.

The extreme slow-motion sequence shows
the runner from m to 6 m. The seat of the

runner's white shorts might serve as a refer-

ence mark. (What are other reference points
on the runner that could be used? Are all ref-
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erence points equally useful?) Measure the

time to cover each of the distances, 0-1, 1-2,

2-3, 3-4, 4-5, and 5-6 m. Repeat the measure-

ments several times, viewing the film over

again, and average your results for each in-

terval. Your accuracy might be improved by

forming a grand average that combines your

average with others in the class. (Should you

use all the measurements in the class?) Cal-

culate the average speed for each interval,

and plot a graph of speed versus displacement.

Draw a smooth graph through the points.

Discuss any interesting features of the graph.

You might assume that the runner's legs

push between the time when a foot is directly

beneath his hip and the time when that foot

is off the ground. Is there any relationship

between your graph of speed and the way the

runner's feet push on the track?

The initial acceleration of the runner can

be estimated from the time to move from the

starting point to the 1-meter mark. You can

use a watch with a sweep second hand. Calcu-

late the average acceleration, in m/sec^ during

this initial interval. How does this forward

acceleration compare with the magnitude of

the acceleration of a falling body? How much
force was required to give the runner this

acceleration? What was the origin of this

force?

FILM LOOP 9 ANALYSIS OF A HURDLE
RACE-II

This film loop, which is a continuation of "An-

alysis of a Hurdle Race I," shows two scenes

of a hurdle race which was photographed at a

slow-motion factor of 80.

In Scene 1 the hurdler moves from 20 m to

26 m, clearing a hurdle at 23 m. (See photo-

graph.) In Scene 2 the runner moves from

40 m to 50 m, clearing a hurdle at 41 m and

sprinting to the finish line at 50 m. Plot graphs

of these motions, and discuss any interesting

features. The seat of the runner's pants fur-

nishes a convenient reference point for mea-

surements. (See the film-notes about the

"Analysis of a Hurdle Race I" for further de-

tails.)

No measurement is entirely precise; mea-

surement error is always present, and it cannot

be ignored. Thus it may be difficult to teU if

the small changes in the runner's speed are

significant, or are only the result of measure-

ment uncertainties. You are in the best tradi-

tion of experimental science when you pay

close attention to errors.

It is often useful to display the experimen-

tal uncertainty graphically, along with the

measured or computed values.

For example, say that the dragstrip timer

was used to make three different measure-

ments of the time required for the first meter

of the run: 13.7 units, 12.9 units, and 13.5

units, which give an average time of 13.28
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units. (If you wish to convert the dragstrip units

to seconds, it will be easier to wait until the

graph has been plotted using just units, and
then add a seconds scale to the graph.) The
lowest and highest values are about 0.4 units

on either side of the average, so we could report

the time as 13.3 + 0.4 units. The uncertainty

0.4 is about 3% of 13.3, therefore the percent-

age uncertainty in the time is 3%. If we assume
that the distance was exactly one meter, so

that all the uncertainty is in the time, then the

percentage uncertainty in the speed will be
the same as for the time—3%. The slow-motion
speed is 100 cm/ 13.3 time units, which equals

7.53 cm/unit. Since 3% of 7.53 is 0.23, the

speed can be reported as 7.53 + 0.23 cm/unit.

In graphing this speed value, you plot a point

at 7.53 and draw an "error bar" extending
0.23 above and below the point. Now estimate
the limit of error for a typical point on your
graph and add error bars showing the range
to each plotted point.

Your graph for this experiment may well

look like some commonly obtained in scientific

research. For example, in the figure at the right

a research team has plotted its experimental
data; they published their results in spite of

3.:5- 3.\i, S.17 3.)g 3.19 B.2C 5.2.1 3.2Z

the considerable scattering of plotted points
and even though some of the plotted points

have errors as large as 5%.
How would you represent the uncertainty

in measuring distance, if there were signifi-

cant errors here also?
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Two New Sciences (Galileo), 43-49,
53, 56-57, 60, 104

Unbalanced force, 79
Uniform motion, 68. 70
U.S. Bureau of Standards. 82

Vacuum. 45-46

Van Goph, Vincent, 42
Vector, 73-75

defined, 75

direction of, 74

displacement, 73
magnitude of, 74
resultant, 74

sum of forces, 72
Velocity, 98, 106
average, 108

circular motion, 107-108
constant. 76
distinguished from speed, 25
frames of reference, 105-106
instantaneous, 25
two ways of changing. 75-78
unchanging. 76, 77
uniform, 70

Verne, Jules, 99
Violent motion, 69

Water clock, 56-57
Weight, 83-86

compared with mass, 80, 84-85
defined, 84
measuring. 84

Weightlessness. 84
World of Enrico Fermi, The (docu-

mentary film), 5
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Accelerated motion, 152
Acceleration

centripetal, 181

due to gravity—I (film loop), 164
due to gravity—II (film loop), 165

Acceleration (of gravity)

from falling water drops, 161

from a pendulum, 159-60
measurement by direct fall,

158-59
measurement by slow-motion

photography, 160-61

with falling ball and turntable,

162
with strobe photography, 162

Accelerometers (activity), 170-73
automobile, 172-73
calibration of , 172
damped-pendulum, 173
liquid-surface, 170-71

Activities

ballistic cart projectile, 185-86

beaker and hammer, 170
checker snapping, 170
experiencing Newton's second

law, 170
extrapolation, 163
falling weights, 163
make one of these accelerometers,

170-73
making a frictionless puck, 151

measuring unknown frequencies,

186
measuring your reaction time,

163
motion in a rotating reference

frame, 185-86

penny and coat hanger, 186
photographing a waterdrop

parabola, 184-85

projectile motion demonstration,

184
pulls and jerks, 170
speed of a stream of water, 184

using the electronic stroboscope,

151
when is air resistance important,

163
Air resistance

importance of (activity), 163
Altitude

of object, 134
Archytas, 129
Astrolabe, 137
Astronomy
naked eye (experiment), 134-41

references in 6-7, 134-35

Azimuth, 134, 137

Ballistic cart projectiles (activity),

185
Beaker and hammer (activity), 170

Black Cloud, The, 133
Big Dipper, 135

Camera, Polaroid, 132

Celestial Calendar and Handbook,
139

Centripetal acceleration, 182
Centripetal force (experiment), 181

on a turntable (experiment),
182-83

Checker snapping (activity), 170
Compass, magnetic, 134
Constant speed, 167
Constellations, 135, 136

Data
recording of, 156
variations in (experiment), 144

Direct fall

acceleration by, 158-59

Earth satellite, 181
Einstein, Albert, 169
Experimental errors, 167
Experiments
a seventeenth century experiment

153-56
centripetal force, 181
centripetal force on a turntable,

182-83
curves of trajectories, 176-78

mass and weight, 169
measuring the acceleration of

gravity, 158-62
measuring uniform motion, 145-

150
naked eye astronomy, 134-41

Newton's second law, 166-68

prediction of trajectories, 179-80

regularity and time, 142-43

twentieth-century version of

Galileo's experiment, 157
variations in data, 144

Extrapolation (activity), 163

Falling weights (activity), 163
Film loops

a matter of relative motion, 187
acceleration due to gravity I and

II, 164-65

analysis of a hurdle race I and II,

190-92
Galilean relativity, 188-90

vector addition, 174-75

Free Fall

approximation of, 152-56

Frequency
measuringunknown(activity),186
of test event, 142

Friction

on a rotating disc, 182-83

Galilean relativity (film loop),189-91

Galileo, 153, 156, 157
his relativity (film loops), 189-91

his Two New Sciences, 153, 189

Graphs
drawing, 150
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Gravity
acceleration of , 158-62
measuring acceleration of

(experiment), 158-62

How to Lie with Statistics, 163
Hurdle race
analysis of (film loops), 190-192

Inertia, 169
Instantaneous speed, 164

Laboratory exercises

keeping records of, 129, 130-31

Little Dipper, 135

Mach, Ernst, 169
Magentic declination

angle of, 134
Mass
and weight (comparison), 169
and weight (experiment), 169
measuring, 169

Measurement, precise, 150
Meteors
observation of, 139

Meteor showers
observation of (table), 141

Moon
eclipse of, 139
observation of, 138-39

Motion
accelerated, 152
in rotating reference frame

(activity), 185-86
relative (film loop), 187
uniform measurement of

(experiment), 145-50

Newton, Isaac
experiencing his second law

(activity), 170
his second law of motion

(experiment), 166-68
North-south line, 134-35, 137
North Star (Polaris), 134-35

Parabola, waterdrop
photograph of (activity), 184-85

Pendulum
acceleration from a, 159-60

Penny and coat hanger (activity),

186
Photography
of waterdrop parabola, 184-85
slow-motion, 160-61

stroboscopic, 132, 146, 162
Physics Teacher, The, 173
Planets

and eclipse observations (table),

140
observation of, 139

Polaris (North Star), 134-35

Polaroid camera
use of, 132

Project Physics Reader, 133



Projectiles

ballistic cart (activity), 185-86
motion demonstration (activity),

184
Puck
Making a frictionless (activity),

151
Pulls and jerks (activity), 170

Reaction time
measurement of (activity), 163

References
in astronomy, 134-35
North-south line, 134-135, 137

Regularity
and time (experiment), 142-43
of an event, 142

Satellite, earth, 181
Seventeenth-century experiment,
153-56

Sky and Telescope, 139

Speed
and measurement of motion,

146-147
constant, 166
instantaneous, 164

Standard event, 142
Stars

chart of, 136
observation of, 139

Stroboscope, electronic (activity),

151
Stroboscopic photography, 132,

146, 162
Sun
observation of, 138

Table(s)

favorability of observing meteor
showers, 141

guide for planet and eclipse

observations, 140

Time
and regularity (experiment),

142-43
Trajectories
curves of (experiment), 176-78
prediction of (experiment),

179-80
Twentieth-century version
of Galileo's experiment, 157

Two New Sciences, 153, 188

Ufano
drawing by, 180

Vectors
addition of (film loop), 174-75
diagrams, 174, 175

Water clock, 153-56
Weight
and mass (experiment), 169
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Answers to End of Section Question

Chapter 1

Q1 We have no way of knowing the lengths of time

involved in going the observed distances.

Q2 No; the time between stroboscope flashes is

constant and the distance intervals shown are not

equal.

Q3 An object has a uniform speed if it travels

equal distances in equal time intervals; or, if the

distance traveled = constant, regardless of the

particular distances and times chosen.

Q4 Average speed is equal to the distance travelled

divided by the elapsed time while going that

distance.

Q5

(entries in brackets are those

already given in the text)

Q6 Hint: to determine location of left edge of puck
relative to readings on the meter stick, line up a

straight edge with the edge of puck and both marks
on meter stick corresponding to a given reading.

At



Q5 An object is uniformly accelerated if its speed

increases by equal amounts during equal time

intervals. Av/At = constant

Q6 The definition should (1) be mathematically

simple and (2) correspond to actual free fall motion.

07 (b)

Q8 Distances are relatively easy to measure as

compared with speeds; measuring short time

intervals remained a problem, however.

Q9 The expression d = v t can only be used if v is

constant. The second equation refers to accelerated

motion in which v is not constant. Therefore the two

equations cannot be applied to the same event.

Q10 (c) and (e)

Oil (d)

Q12 (a), (c) and (d)

Chapter 3

Q1 kinematic— (a), (b), (d)

dynamic — (c), (e)

Q2 A continuously applied force

Q3 The air pushed aside by the puck moves around
to fill the space left behind the puck as it moves
along and so provides the propelling force needed.

Q4 The force of gravity downward and an upward
force of equal size exerted by the table.

The sum of the forces must be zero because the

vase is not accelerating.

Q5 The first three.

Q6 No, in many cases equilibrium involves

frictional forces which depend on the fact that the

object is in motion.

Q7 Vector quantities (1) have magnitude and
direction

(2) can be represented graphically by arrows

(3) can be combined to form a single resultant vector

by using either the head to tail or the parallelogram

method. (Note: only vectors of the same kind are

combined in this way; that is, we add force vectors

to force vectors, not force vectors to velocity

vectors, for example.)

Q8 Direction is now taken into account, (we must
now consider a change of direction to be as valid a
case of acceleration as speeding up or slowing
down.)

Q9 W downward, 0,0,0

Q10 Galileo's "straight line forever " motion may
have meant at a constant height above the earth

whereas Newton's meant moving in a straight line

through empty space.

Q11 Meter, Kilogram and Second

Q12
10 N= L =

a 4m/sec^
2.5 kg

Q13 False; (frictional forces must be taken into

account in determining the actual net force

exerted.)

Q14 Acceleration =
— 10 m/sec

5 sec
= —2 m/sec'^

Force = ma = 2 kg x (-2 m/sec^) = -4 Newtons

198

(the minus sign arises because the force and the

acceleration are opposite in direction to the original

motion. Since the question asks only for the

magnitude of the force it may be disregarded.)

Q15 10 m/sec^

150 m/sec-

60 m/sec^

0.67 m/seC
10 m
0.4 m
Q16 (c) and (f)

Q17 (e) and (f)

Q18 (1) appear in pairs

(2) are equal in magnitude

(3) opposite in direction

(4) act on two different objects

Q19 The horse pushes against the earth, the earth

pushes against the horse causing the horse to

accelerate forward. (The earth accelerates also but

can you measure it?) The swimmer pushes backward
against the water; the water, according to the third

law, pushes forward against the swimmer; however,

there is also a backward frictional force of drag

exerted by the water on the swimmer. The two

forces acting on the swimmer add up to zero, since

he is not accelerating.

Q20 No, the force "pulling the string apart " is still

only 300 N; the 500 N would have to be exerted at

both ends to break the line.

Q21 See text p. 68

Chapter 4

Q1 The same acceleration a^, its initial horizontal

speed has no effect on its vertical accelerated

motion.

Q2 (a), (c) and (e)

Q3 They must be moving with a uniform speed
relative to each other.

Q4 (a) T = 1/f = 1/45 = 2.2 X 10-= minutes

(b) 2.2 X ^0~^ minutes x 60 seconds/minute
= 1.32 sec.

(c) f = 45 rpm x 1/60 minutes/sec = 0.75 rps

Q5 T = 1 hour = 60 minutes

277-R _ 2 X 3.14 X3
T 60

= .31 cm/minute

Q6 f = 80 vibrations/minute = 1.3 vib/sec

T = 1/f = 1/1.3 = .75 sec

Q7 (a) and (b)

Q8 Along a tangent to the wheel at the point where
the piece broke loose.

Q9
R

Q10 A-rrmR

Q11 The value of the gravitational acceleration and

the radius of the moon (to which 70 miles is added

to determine R).



Brief Answers to Study Guide

Chapter 1

1.1 Information

1.2 (a) discussion (b) 58.3 mph (c)

discussion (d) discussion (e)

discussion
1.3 (a) 6 cm/sec (b) 15 mi. (c) 0.25

min. (d) 3 cm/sec 24 cm (e) 30 mi/hr

(f) 30 mi/hr? 120 mi? (g) 5.5 sec (h)

8.8 m
1.4 22xl03mi
1.5 (a) 9.5 X 10'-^ m (b) 2.7 x 10" sec

or 8.5 years

1.6 1.988 mph or 2 mph
1.7 (a) 1.7 m/sec (b) 3.0 m/sec
1.8 discussion

1.9 discussion

.10 discussion

1.11 (a) 0.5, 1.0, 1.5, and 2.0 (b)

graph
1.12 Answer
1.13 25.6 meters; 4:00 for men, 4:30

for women
1.14 discussion

1.15 graph
1.16 graphs

d vs f: d = 0,9,22,39,5,60.5,86cm

(approx) at intervals of 0.2 sec

vwst:v = 45,65,87.5,105,127 cm/sec

(approx) at intervals of 0.2 sec

1.17 (a) Between 1 and 4.5 sec; 1.3

m/sec (b) 0.13 m/sec (c) 0.75 m/sec

(d) 1.0 m/sec (e) 0.4 m (approx)

1.18 (a) 14.1 m/sec (b) 6.3 m/sec^

1.19 315,000 in/sec

1.20 discussion

1.21 discussion

Chapter 2

2.1 Information

2.2 discussion

2.3 discussion

2.4 discussion

2.5 discussion

2.6 discussion

2.7 proof

2.8 (a), (b), (c)

2.9 discussion

2.10 discussion

2.11 proof

2.12 17 years $7000
2.13 discussion

2.14 (a) 57 m/sec- (b) 710 m (c)

-190 m/sec^
2.15 proof

2.16 discussion

2.17 (a) true (b) true (based on

measurements of 6 lower positions)

(c) true (d) true (e) true

2.18 proof

2.19 (a) Position

A
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