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Science is an adventure of the whole human race to learn to live in and

perhaps to love the universe in which they are. To be a part of it is to

understand, to understand oneself, to begin tofeel that there is a capacity

v^thin man far beyond what he felt he had, of an infinite extension of

human possibilities. . .

.

I propose that science be taught at whatever level, from the lowest to

the highest, in the humanistic way. It should be taught with a certain his-

torical understanding, with a certain philosophical understanding, with a

social understanding and a human understanding in the sense of the biog-

raphy, the nature ofthe people who made this construction, the triumphs,

the trials, the tribulations.

I.I.RABI

Nobel Laureate in Physics

The Project Physics Course is based on the ideas and research of a national

curriculum development project that woriced for eight years.

Preliminary results led to major grants from the U.S. Office of Education and the

National Science Foundation. Invaluable additional financial support was also

provided by the Ford Foundation, the Alfred P. Sloan Foundation, the Carnegie

Corporation, and Harvard University. A large number of collaborators were

brou^t together from all parts of the nation, and the group worked together in-

tensively for over four years under the title Harvard Project Physics. The instruc-

tors serving as field consultants and the students in the trial classes were also of

vital importance to the success of Harvard Project Physics. As each successive ex-

perimental version of the course was developed, it was tried out in schools

throughout the United States and Canada. The instructors and students in those

schools reported their criticisms and suggestions to the staflFin Cambridge. These

reports became the basis for the subsequent revisions of the course materials. In

the Preface to the Text you will find a list of the major aims of the course.

Unhappily, it is not feasible to list in detail the contributions of each person

who participated in some part of Harvard Project Physics .
Previous editions of the

Text have included a partial list of the contributors. We take particular pleasure in

acknowledging the assistance of Dr. Andrew Ahlgren of the University of Min-

nesota. Dr. Ahlgren was invaluable because of his skill as a physics instructor, his

editorial talent, his versatility and enei^, and above all, his commitment to the

goals of Harvard Project Physics.

We would also especially like to thank Ms. Joan Laws, utiose administrative

skills, dependability, and thoughtfulness contributed so much to our work. Holt,

Rinehart and Winston, Publishers of New York, provided the coordination, edito-

rial support, and general backing necessary to the large undertaking of preparing

the final version of all components of the Project Physics Course. Damon-

Educational Division, located in Westwood, Massachusetts, worked closely with

us to improve the engineering design of the laboratory apparatus and to see that

it was property integrated into the program.

In the years ahead, the learning materials of the Project Physics Course will be

revised as often as is necessary to remove remaining ambiguities, to clarify in-

structions, and to continue to make the materials more interesting and relevant

to students.

Gerald Holton

F. James Rutherford

Fletcher G. Watson iU
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INTRODUCTION
This Handbook is your guide to observations,

experiments, activities, and explorations, far

and wide, in the n;alms of physics

Prepare for challenging work, fun, and some

surjjrises. One of the best ways to ieam physics

is by doing physics, in the laboratory and out.

Do not rely on reading alone.

This Han(Ux)ok is different from laboratoiy

manuals you may have worked with before. Far

more projects are described here than you

alone can possibly do, so you will need to pick

and choose.

Although only a few of the experiments and

activities will be assigned, do any additional

ones that interest you . Also, if an activity occurs

to you that is not described here, discuss with

your instructor the possibility of doing it. Some
of the most interesting science you will experi-

ence in this course will be the result of the

activities you choose to pursue beyond the

regular laboratory assignments.

The many projects in this Handbook are

divided into the following sections:

The Experiments contain full instructions

for the investigations you can do alone or with

others in the laboratory.

The Acrdvities contain many suggestions for

construction projects, demonstrations, and
other activities you can do by yourself in the

laboratory or at home.

The Film Loop Notes gi\-e instructions for

the use of the variety of film loops that have

been specially prepared for the course.

Do as many of these projects as you can.

Each one will give you a better grasp of the

physical principles involved.
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INTRODUCTION

Keeping Records

Your records of observations made in the

laboratory or at home can be kept in many
ways. Regardless of the procedure followed, the

key question for deciding what kind of record

you need is: "Do I have a clear enough record

so that I could pick up my lab notebook a few

months from now and explain to myself or

others what I did?"

Here are some general rules to be followed in

every laboratory exercise. Your records should

be neatly uritten without being fussy. You
should organize all numerical readings in

tables, if possible, as in the sample lab write up
on pages 6 and 7. You should always identify

the units (centimeters, kilograms, seconds, etc.)

for each set of data you record. Also, identify

the equipment you are using, so that you can

find it again later if you need to recheck your

work.

In general, it is better to record more rather

than less data. Even details that may seem to

have little bearing on the experiment you are

doing — such as the temperature and whether

it varied during the observations, and the time

when the data were taken — may turn out to be

information that has a bearing on your analysis

of the results.

You may have some reason to suspect that a

particular datum is less reliable than other

data. Perhaps you had to make the reading very

hurriedly, or a line on a photograph was very

faint. If so, make a note of that fact. Never erase

a reading. When you think an entry in your

notes is in error, draw a single line through it;

do not scratch it out completely or erase it. You
may find it was significant after all.

There is no "wrong" result in an experiment,

although results may be in considerable error.

If your observations and measurements were

carefully made, then your result will be reliable.

Whatever happens in nature, including the

laboratory, cannot be "wrong." It may have

nothing to do with your investigation, or it may
be mixed up with so many other events you did

not expect, that your report is not useful.

Therefore, you must think carefully about the

interpretation of your results.

Finally, the cardinal rule in a laboratory is to

choose in favor of "getting your hands dirty"

instead of "dry-labbing." In 380 Bc, the Greek

scientist, Archytas, summed it up this way:

In subjects of which one has no knowledge,

one must obtain knowledge either by learning

from someone else, or by discovering it for

oneself. That which is learnt, therefore, comes
from another and by outside help; that which is

discovered comes by one's own efforts and
independently. To discover without seeking is

difficult and rare, but ifone seeks, it is frequent

and easy; if, however, one does not know how to

seek, discovery is impossible.

Using the Polaroid Land Camera

You will find the Polaroid Land camera a very

useful device for recording many of your
laboratory observations. Your textbook shows
how the camera is used to study moving
objects. In the experiments and activities

described in this Handbook, many suggestions

are made for photographing moving objects,

both with an electronic stroboscope (a rapidly

flashing xenon light! and uath a mechanical

disk stroboscope (a slotted disk rotating in front

of the camera lens). The setup of the rotating

disk stroboscope with a Polaroid Land camera

is shown below.

Shotb&r

button

Cable r«ieQ6e Rim Selector

socket
I
«• .c IDistance scale

Lighten/COf ken

To ciexc >€ t-amtm :

r-cleaM or pr«Mdowvii on

Below is a checklist of operations to help you

use the modified Polaroid Land camera model

210. For other models, your instructor will

provide instructions.

1. Make sure that there is film in the camera.

If no white tab shows in the front of the door

marked "4," you must put in new film.

2. Fasten camera to tripod or disk strobe

base. Ifyou are using the disk strobe technique,

fix the clip-on slit in front of the lens.



UNIT 1 / INTRODLCTION

3. Check film (speed) selector. Set to

suggested position (75 for disk strobe or blinky;

3000 for xenon strobe).

4. If you are taking a "bulb" exposure, cover

the electric eye.

5. Check distance from lens to plane of object

to be photographed. Adjust focus if necessary.

Work at the distance that gives an image just

one-tenth the size of the object, if possible This

distance is about 120 cm.

6. Ixjok through viewer to be sure that

whatever pai1 of the event you are interested in

will be recorded. (At a distance of 120 cm, the

field of view is just under 100 cm long.

I

7. Make sure the shutter is cocked (by

depressing the number 3 button).

8. Run thmugh the experiment a couple of

times without taking a photograph, to accus-

tom yourself to the timing needed to photo-

gra|)h the event.

9. lake the picture; keep the cable release

depressed only as long as necessary to record

the event itself. Do not keep the shutter open

longer than necessary.

10. inill the white tab all the way out of the

camera. Do not block the door (marked 4" on

the camera).

11. Pull the large yellow tab straight out, all the

way out of the camera. Begin timing develop-

ment.

12. Wait 10 to 15 sec (for 3,000-speed black-

and-white film).

13. Ten to 15 sec after removing the film from

the camera, strip the white print from the

negative.

14. Take measurements immediately. (The

magnifier may be helpful.)

15. After initial measurements have been

taken, coat your picture with the preservative

supplied with each pack of film Let the

preservative drv' thoroughly. Label the picture

on the back for identification and mount the

picture in your (or a partner si lab report.

16. The negative can be used, too Wash it

carefully with a wet sponge, and coat with

preservative.

17. Recock the shutter so it will be set for the

next use.

18. Always be careful when moving around the

camera that you do not inadvertently kick the

tripod.

19. Always keep the electric eye covered when

the camera is not in use. Otherwise the

batteries inside the camera will run down.





LMT I / CONCEPTS OF MOTION

Alt.tude30'

(180°) and west (270°) and around to north

again (360° or 0°). See Fig 1-1.

To measure the height of an object in the sky,

you can measure the angle between the object

and the horizon. When your horizon is

obscured by trees or buildings, you can mea-

sure from the zenith overhead 'altitude 90°)

down to the object; its altitude is then 90°

minus its zenith distance, for your second

Fifl. 1-1

abet
xj November 20 d^^

*«&-

Fig. 1-2 This chart of the stars will help you locate some
of the bright stars and the constellations To use the
map. face north and turn the chart until today's date is at

the top. Then move the map up nearly over your head
The stars will be in these positions at 8 P M. For each
\\o\it earlier than 8 P.M., rotate the chart 15 degrees (one

sector) clockwise For each hour/arer than 8 P M.. rotate

the chart counterclockwise If you are observing the sky
outdoors with the map, cover the glass of a flashlight

with fairly transparent red paper to look at the map This
will prevent your eyes from losing their adaptation to

the dark when you look at the map



EXPERIMENTS

coordinate. The angle between the horizontal

plane and the line to an object in the sky is

called the altitude of the object.

At night, you can use the North Star (Polaris)

to establish the north- south line. Polaris is the

one fairly bright star in the sky that moves least

from hour to hour or with the seasons. It is

almost due north of an obser\'er anywhere in

the northern hemisphere.

To locate Polaris, first find the "Big Dipper"

which on a September evening is low in the sky

and a little west of north. (See the star map, Fig.

1-2.1 The two stars forming the end of the

dipper opposite the handle are known as the

"pointers," because they point to the North

Star. A line passing through them passes very

close to a bright star, the last star in the handle

of the "Little Dipper." This bright star is the Pole

Star, Polaris.

Imagine a line from Polaris straight down to

the horizon. The point where this line meets

the horizon is nearly due north of you. See Fig.

1-3.

Fig. 1-3

Now that you have established a north

-

south line, note its position with respect to

fixed landmarks, so that you can use it day or

night.

You can establish the second reference, the

plane of the horizon, and measure the altitude

of objects in the sky from the horizon, with an

astrolabe. An astrolabe is a simple instrument

you can obtain easily or make yourself, very

similar to those used by ancient viewers of the

heavens. Use the astrolabe in your hand or on a

flat table mounted on a tripod or on a

permanent post. A simple hand astrolabe you
can make is described in this Handbook, in the

experiment dealing uith the size of the earth.

Sight along the surface of the flat table to be

sure it is horizontal, in line with the horizon in

all directions. If there are obstructions on your
horizon, a carpenter's level turned in all

directions on the table will show when the

table is level.

Fig. 1-4

Turn the base of the astrolabe on the table

until the north- south line on the base points

along your north- south line. You can also

obtain the north- south line by sighting on
Polaris through the astrolabe tube. Sight

through the tube of the astrolabe at objects in

the sky you wish to locate and obtain their

altitude above the horizon in degrees from the

protractor on the astrolabe. With some as-

trolabes, you can also obtain the azimuth of the

objects fixDm a scale around the base of the

astrolabe.

To follow the position of the sun with the

astrolabe, slip a lai^ge piece of cardboard with a

hole in the middle over the sky-pointing end of

the tube. (CAUTION: NEVER look directly at the

sun; it can cause permanent eye damage.)

Standing beside the astrolabe, hold a small

piece of white paper in the shadow of the large

cardboard, several centimeters from the sight-

ing end of the tube. Move the tube about until

the bright image of the sun appears through

the tube on the paper. (See Fig. 1-5.) Then read

Fig. 1-5
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the altitude of the sun from the astrolahe, and

the sun's azimuth, if your instrument permits.

Also record the date and time of your observa-

tion.

Observations

Now that you know how to establish your

references for locating objects in the sky, here

are suggestions for observations you can make
on the sun, the moon, the stars, and the

|)lanets. Choose at lease one of these objects to

obseive. Record the date and time of all your

observations. Later, compare notes with

classmates who observed other objects.

A. Sun
CAUTION: NEVER look directly at the sun; it

can cause permanent eye damage. Do not

depend on sunglasses or fogged photographic

film for protection. It is safest to make sun
observations on projected images.

1. Observe the dii-ection in which the sun sets.

Always make your observation from the same
observing position. If you do not have an

unobstructed view of the horizon, note where
the sun disappears behind the buildings or

trees in the evening.

2. Observe the time the sun sets or disappears

below your horizon.

3. Try to make these observations about once a

week. The first time, draw a simple sketch of

the horizon and the position of the setting sun.

4. Repeat the observations a week later. Note if

the position or time of sunset has changed.
Note if they change during a month. Try to

continue these observations for at least two
months.

5. If you are up at sunrise, you can record the

time and position of the sun's rising. (Check the

weather forecast the night before to be reason-
ably suri! that tin- sky will be clear.)

6. Determine how the length of the day, from
sunrise to sunset, changes during a week;
during a month; or for the entire year. You
might like to check your own observations of
tlie times of sunrise and sunset against the
times that an- often ivportrd in newspapers.
Also, if the weather does not permit vou to

observe the sun, the newspaper reports may
help you to complete your records.

7. During a single day, observe the suns
azimuth at various times. Keep a HToitl of the
a/.inuuh and the time of ()l)servation Deter-

mine whether the a/.imutli changes at a

constant rate during the day. or whether the

B.C. By John H«rt

r p«rmliiLon o( Jotaa Sarc aad ft«ld tfii«rprl««f, lac.

sun's apparent motion is more rapid at some
times than at others. Find how fast the sun
moves in degrees per hour. See if you can
make a graph of the speed of the sun's change
in azimuth.

Similariy, find out how the sun's angular

altitude changes during the day, and at what
time its altitude is greatest. Compare a graph
of the speed of the sun's change in altitude

with a graph of its speed of change in azimuth.

8. Over a period of several months, or exen an
entire year, observe the altitude of the sun at

noon or some other convenient hour. (Do not

worTN' if you miss some observations.) Deter-

mine the date on which the altitude of the

sun is at a minimum. On what date would
the sun's altitude be at a maximum?

B. Moon
1. Observe and record the altitude and

azimuth of the moon and draw its shape on
successive evenings at the same hour. Carry
your observations through at least one cycle of

phases, or shapes, of the moon, recording in

your data the dates of any nights that you
missed.

For at least one week, make a daily sketch
showing the appearance of the moon and
another "overhead sketch of the relative posi-

tions of the earth, moon, and sun. If the sun is

below the horizon when \ou observe the moon,
you will have to estimate the sun s position

2. Ixuate the moon against the background of
the stai-s. and plot its position and phase on a
sky map supplied by your instructor.
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3. Find the full moon's maximum altitude.

Find how this compares with the sun's

maximum altitude on the same day. Determine
how the moon's maximum altitude varies from
month to month.

4. There may be a total eclipse of the moon
this year. Consult Table 1-1 on page 12, or the

Celestial Calendar and Handbook , for the dates

of lunar eclipses. Observe one if you possibly

can.

Fig. 1-6 This multiple-exposure picture of the moon was
taken with a Polaroid Land camera. Each exposure was
for 30 sec using 3,000-speed film. The time intervals

between successive exposures were 15 min, 30 min, 30
min, and 30 min.

C. Stars
1. On the first evening of star observation,

locate some bright stars that will be easy to find

on successive nights. Later you will identify

some of those groups with constellations that

are named on the star map (Fig. 1-2), which
shows the constellations around the North

Star, or on another star map furnished by your

instructor. Record how much the stars have

changed their positions compared to your

horizon after an hour; after 2 hours.

2. Take a time exposure photograph of several

minutes of the night sky to show the motion of

the stars. Try to work well away from bright

street lights and on a moonless night. Include

some of the horizon in the picture for refer-

ence. Prop up your camera so it will not move

Fig. 1-7 A time-exposure photograph of Ursa Major (The
Big Dipper) taken with a Polaroid Land camera on an
autumn evening.

during the time exposures of an hour or more.

Use a small camera lens opening (large

/-number) to reduce fogging of your film by
stray light.

3. Viewing at the same time each night, find

whether the positions of the star groups are

constant in the sky from month to month. Find

if any new constellations appear in the eastern

sky after one month; after 3 or 6 months.

Over the same periods, find out if some
constellations are no longer visible. Determine

in what direction and by how^ much the

positions of the stars shift per week and per

month.

D. Planets

The planets are located within a rather

narrow band across the sky (called the zodiac)

within which the sun and the moon also move.

For detaUs on the location of planets, consult

Table 1-1 on page 12, the Celestial Calendar and

Handbook, or the magazine Sky and Telescope.

Identify a planet and record its position in the

sky relative to the stars at 2-week intervals for

several months.

Additional sky observations you may wish to

make are described in Unit 2 of this Handbook.
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Mercury

Venus

Mars

Jupiter

Saturn

TABLE 1.1 A GUIDE FOR PLANET AND ECLIPSE OBSCTVATIONS.'

1980 1981 1982 1983
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8

,
\0 .

1.2 2 4 6 . 8 10 12

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I12 3 4 5 6

S LpS L L L SLp

1984 1985 1986 1987
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

L = lunar eclipse S = total solar eclipse # = planetary notes

Mercury

Venus

Mars

Jupiter



EXPERIMENTS 13

Experiment 1-2

REGULARITY AXD TIME
You will often encounter regularity in your

study of science. Many natural events occur

regularly, that is, o\er cind o\er again at equal

time intervals. If you had no clock, how would
you decide how regularly an event recurs? In

fact, how can you decide how regular a clock

is?

Working with a partner, find several recur-

ring events that you can time in the laboratorv'.

You might use such events as a dripping faucet,

a human pulse, or the beat of recorded music.

(Do not use a clock or watch.) Select pairs of

these events to compare.

One lab partner marks each "tick" of Event A
on one side of the strip chart recorder tape

while the other partner marks each "tick" of

Event B. After a long run has been taken,

inspect the tape to see how the regularities

compare. Record about 300 ticks of Event A. For

each 50 ticks of that event, find on the tape the

number of ticks of Event B; estimate to 1/10 of a,

tick. Record \our results in a table something

like this:

EVENT A EVENT B

1. What do you conclude about the regularity of
Event B? If you think that the difference between A
and B is larger than you would expect from
measurement error, which of the two events is

not regular? Explain.

2. Which is more regular, Event B or Event C? In

answering, what assumptions were you making
about Event A?
3. Now compare the regularity of one of your
events to some device specifically designed to be
regular, for example, an electric wall clock. What
results do you get? How do you know the clock is

regular? What standard could the clock be com-
pared to? What about that standard?

Experiment 1-3

\'ARIATIOXS IN DATA
If you count the number of chairs or people in

an ordinary' sized room, you will probably get

exactly the right answer. But ifyou measure the

length of this page \Nith a ruler, your answer
will have a small margin of uncertainty. That is,

numbers read from measuring instruments do

not give the e^act measurements. Every mea-

surement is to some extent uncertain.

First 50 ticks

Second 50 ticks

Third 50 ticks

Fourth 50 ticks

. ticks

. ticks

ticks

ticks

B.C. By John Hart

Now repeat the procedure, compeiring \'Our

Event A to at least one other periodic phenom-
enon. Event C, and prepare a similar table.

IN T>C NOWTM, KrtD ».

TO TME NOftTii .

^mr.

F* <BE<»>tX« EVE C»« Tj«*T

lULCVEBTMeBC TXe I

4sON ^inul. BE KjSi>4^
I

AM»-V11M<JTE '"CXV. I

MOW DO>C5U Li»ce THAT'.
TNE MI&eKABt-E TNIN*>'S

BUSTBO already!

Fig. 1-8

By perslsslon of John Hart and Field Cncerprlses. Inc.

Moreover, if your lab partner edso measures

the length of this page, the two answers uill

probably be different. Does this mean that the

length of the page has changed? Hardly! Then

can \'ou possibly find the length of the page

without any uncertainty in your measurement?
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This lab exercise is intended to show you why

the answer is "no."

Various stations have been set up around the

room, and at each one you are to make some

measurement Record each measurement in a

table lilte the one shown here. When you have

completed the series, write your measurements

on tlie board along with those of your

classmates. Some interesting patterns should

emerge if your measurements have not been

influenced by anyone else. Therefore, do not

talk about your results or how you got them

until everyone has finished.

STATION
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Fig. 1-9

Fig. 1-10
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Fig 1-11 Stroboscopic photograph of a moving CO2 disk.

One setup uses for the moving object a disk

made of metal or plastic. A few plastic beads

sprinkled on a smooth, dust-free table top (or a

sheet of glass) provide a surface on which the

disk slides with almost no friction. Make sure

the surface is quite level, so that the disk will

not start to move once it is at rest.

Set up the Polaroid I^nd camera and the

stroboscope equipment according to your in-

structor's directions. See the Introduction for

instructions on operating the Polaroid Land

model 210, and for a diagram for mounting this

camera uith a rotating disk stroboscope. A

iTjler need not be included in your photograph

as in Fig. 1-11. Instead, you can use a magnifier

with a scale that is more accurate than a ruler

for measuring the photograph.

Either your instructor or a few trials will give

you an idea of the camera settings and of the

speed at which to launch the disk, so that the

images of your disk are clear and well-spaced

in the photograph. One student launches the

disk while a second student operates the

camera. A "dry run" or two without taking a

pictuif will probably be needed for practice

l)('f()n' you get a good picture. A good picture is

one in which there are at least five sharp and
clear images of your disk far enough apart for

easy measuring on the photograph.

Making Measurements

Uliati'ver method you have used, your ne.xt

step is to measuiv the spaces between succes-

sive images of your moving object. For this, use

a ruler with millimeter di\isions and estimate

the distances to the nearest tenth of a millime-

ter, as shown in Fig. 1-12. Ifyou use a magnifier

with a scale, rather than a ruler, you may be

able to estimate these distances more precisely.

List each measurement in a table like Table 1-2.

Since the intervals of time between one

image and the next are equcil, you can use that

interval as a unit of time for analyzing the event.

If the speed is constant, the distances of travel

will be all the same, and the motion would be

uniform.

How would you recognize motion that is not

uniform?

Why is it unnecessaiy for you to know the

time interval in seconds?
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half a division, which is 0.0005 cm. Thus, the

best estimate of the true value is 0.4804 ± 0.0005

cm.

Draining a Graph

If you have read Sec. 1.5 in the text, you have

seen how speed data can be graphed. Your data

provide an easy example to use in drawing a

graph.

Just as in the example on text page 19, mark

off time intervals along the horizontal axis of

the graph. Your units are probably not seconds;

they are "blinks" if you used a stroboscope or

simply "arbitrary time units" which mean here

the equal time intervals between positions of

the moving object.

Next, mark off the total distances traveled

along the vertical axis. The beginning of each

scale is in the lower left-hand comer of the

graph.

Choose the spacing of your scale division so

that your data will, if possible, spread across

most of the graph paper.

1. Does your graph show uniform motion? Ex-

plain.

2. If the motion in your experiment was not

uniform, review Sec. 1.5 of the Text. Then from

your graph find the average speed of your object

over the whole trip. Is the average speed for the

whole trip the same as the average of the speeds
between successive measurements?
3. Could you use the same methods you used in

this experiment to measure the speed of a

bicycle? a car? a person running? (Assume they

are moving uniformly.)

4. The divisions on the speedometer scale of

many cars are 5 km/hr in size. You can estimate
the reading to the nearest 1 km/hr. (a) What is the

uncertainty in a speed measurement by such a

speedometer? (b) Could you reliably measure
speed changes as small as 2 km/hr? 1 km/hr? 0.5

km/hr? 0.3 km/hr?

Experiment 1-5

A SEVENTEEIVTH-CEIVrrRY
EXPERIMENT
This exptMinuMit is similar to the one discussed

by Galileo in the TVvo New Sciences. It \\i\\ give

you fii-sthand experii'nre in working with tools

similar to those of a sovrntpenth-crnturv scien-

tist. You will mak«' quantitative nieasun*ments

of the motion of a ball rolling dowii an incline,

as described by Galileo.

From these measurements, you should be

able to decide for yourself whether Galileo's

definition of acceleration was appropriate or

not. You should then be able to tell whether

Aristotle or Galileo was correct in his conclu-

sion about the acceleration of objects of

different sizes.

Reasoning

Behind the Experiment

You have read in Sec. 2.6 of the Text how
Galileo expressed his belief that the speed of

free-falling objects increases in proportion to

the time of fall, in other words, that they

accelerate uniformly. But since free fadl was

much too rapid to measure, Galileo assumed

that the speed of a ball rolling down an incline

increased in the same way as an object in free

fall did, only more slowly.

However, even a ball rolling down a low

incline moved too fast to measure the speed

cilong different parts of the descent accurately.

So Galileo used the relationship d <^ t^ (or d/t^

- constant), an expression in which speed

differences have been replaced by the total

time t and total distance d rolled by the ball.

Both these quantities can be measured.

Be sure to study Text Sec. 2.7 in which the

derivation of this relationship is described. If

Galileo's original assumptions were true, this

relationship would hold for both freely falling

objects and rolling balls. Since total distance

and total time are not difficult to measure,

seventeenth-century scientists had a secondary

hypothesis they could test by experiment: and

so have you. Sec. 2.8 of the text discusses much
of this material.

Apparatus

The apparatus that you will use is shown in Fig.

1-13. It is similar to that described by Galileo.

You will let a ball roll various distances down
a channel about 2 m long and time the motion

with a water clock.

You will use a water clock to time this

experiment because that was the best timing

device available in Galileos time. The way your

water clock works is very simple. Since the

volume of water is proportional to the time of

flow, you can measure daMime in milliliters of

water Start and stop the flow with your fingers

o\fr the upper end of the tube inside the

funnel Whenewr you refill the clock, let a little

water run through the tube to clear out the

bubbles.



EXPERIMENTS 19

Fig. 1-13
openinq arv:A Cloiinq Phc
tc>p or the. "tube wit-h
'^our -finder*

Stopping block

paper cJip to
adjusL -now to
a. cor-)ve»-iicnt-

tdpc ciown end

0>ec>k efcr-aightneSS of
cinannci fcy siqhtinq
<>lonq ifc Sr)ci ddju-^ng
Sopport "st-andSj

Compare your water clock with a stopwatch

when the clock is full and when it is nearly

empty to determine how accurate it is. Does

the clock's timing change? If so, by how much?
Record this information in your notebook.

It is almost impossible to release the ball with

your fingers without giving it a slight push or

pull. Therefore, restrain the ball with a ruler or

pencil, and release it by quickly moving this

barrier down the inclined plane. The end of the

run is best marked by the sound of the ball

hitting the stopping block.

Brief Comment on Recording Data

You should always keep neat, orderly records.

Orderly work looks better and is more pleasing

to you and everyone else. It may also save you
fix)m extra work and confusion. If you have an

oiiganized table of data, you can easily record

and find your data. This will leave you free to

think about your experiment or calculations

rather than having to worry about which of two

numbers on a scrap of paper is the one you
want, or whether you made a certain mea-

surement or not. A few minutes' preparation

before you start work will often save you an

hour or two of checking in books emd with

friends.

Operating Suggestions

You should measure times of descent for

several different distances, keeping the inclina-

tion of the plcme constant and using the same

bcdl. Repeat each descent about four times, and

average your results. Best results are found for

very small angles of inclination (the top of the

channel raised less than 30 cm). At steeper

inclinations, the ball tends to slide as well as to

roll.

From Data to Calculations

Galileo's definition of uniform acceleration

(text, page 531 was "equal increases in speed in

equcd times " Galileo showed that if an object

actually moved in this way, the totail distance of

travel should be directly proportional to the

square of the total time of fall, or d cc t^.

If two quantities are proportional, a graph of

one plotted against the other wUl be a straight

line. Thus, making a graph is a good way to

check whether two quantities ctre proportioned.

Make a graph of d plotted against f^ in your

notebook using your data.

1. Does your graph support the hypothesis?

Explain.

2. How accurate is the water clock you have been
using to time this experiment? If you have not

already done so, check your water clock against a

stopwatch for timing. In your judgment, how does
the inaccuracy of your water clock affect your

conclusion to Question 1 above?

Going Further

1. In Sec. 2.7 of the text, you learned that

a = 2d/t^. Use this relation to calculate the
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actual acceleration of the ball in one of your

runs.

2. Ifyou have time, find out whether Galileo or

Aristotle was right about the acceleration of

objects of various sizes. Measure d/t^ for several

different sizes of balls, all rolling the same

distance down a plane of the same inclination.

Does the acceleration depend on the size of the

ball? In what way does your answer refute or

support Aristotle's ideas on falling bodies?

3. Galileo claimed his results were accurate to

1/10 of a pulse beat. Do you believe his results

were that accurate? Did you do that well? How
could you improve the design of the water

clock to increase its accuracy?

4. When Galileo first did the experiments with

balls rolling down an incline he determined

how far they went during equal time intervals.

You can do this at least roughly by putting thin

rubber bands or a similar small obstacle on the

track, and listening for the bumps as the ball

rolls down the track. Adjust the position of the

rubber bands until the bumps all come at equal

times. You might try to keep a regular rhythm

by tapping on the table, or by listening to the

drip of a faucet or other spigot (as in Method D
of Experiment 1-7). Adjust the rubber bands

until the bumps are at the same time intervals

as the taps or drips. First try a few runs without

the rubber bands, making chalk marks at the

position of the ball, so that you have a good
idea of where to put the rubber bands.

When the rubber bands are properly spaced,

measure the distance between them. Are these

distances from the start in the ratio of

1:3:5:7...? (There are several ways you can
check. You could, for example, divide all the

distances by the shortest one and see how
close the ratios are to the odd integers. You
could also divide each interval by the appro-

priate odd integer and see how similar the

ratios an».)

This version of Galileo's experiments is

described by Stillman Drake in his article 'The

Role of Music in Galileo s Experiments," Scien-

tific American. Vol. 232. No. 6 (June, 1975). pp.
98- 104.

Experiment l-(i

tut:j>rriETn-CEivriTRv \xrsioiv
or <;alilf:o*s exfi:rimeivt

Galileo's seventeenth-rentun «'.\periment had
its limitations, as you n«ad in the text, Sec. 2.9.

Ihe measurement of time with a water clock

was imprecise and the extrapolation fitxim

acceleration at a small angle of inclination to

that at a verticiil angle (90°) was extreme.

With more modern equipment, you can

verily Galileo's conclusions; further, you can get

an actual value for acceleration in finee fall (near

the earth's surface). Remember that the idea

behind the improved experiment is still

Galileo's. More precise measurements do not

always lead to more significant conclusions.

Determine a g as carefully as you can. This is a

fundamental measured value in modem sci-

ence. It is used in mciny ways, from the

determination of the shape of the earth and the

location of oil fields deep in the earth's crust to

the calculation of the orbits of earth satellites

and spacecraft in space research programs.

Apparatus and Procedure

For an inclined plane use the air track. For

timing the air track glider use a stopwatch

instead of the water clock; otherwise, the

procedure is the same as that used in Experi-

ment 1-5. As you go to higher inclinations, you
should stop the glider by hand before it is

damaged by hitting the stopping block.

Instead of a stopwatch, you may wish to use

the Polaroid Land camera to make a strobe

photo of the glider as it descends. A piece of

white tape on the glider will show up well in

the photograph; or you can attach a small light

source to the glider. You can use a magnifier

with a scale attached to it to measure the

glider's motion as recorded on the photograph.

Here the values of d will be millimeters on the

photograph and ( will be measured in an

arbitrary unit, the "blink" of the stroboscope, or

the "slot" of the strobe disk.

1. Plot your data as before on a graph of d versus

t^. Compare your plotted lines with graphs of the

preceding cruder seventeenth-century experi-

ment, if they are available. Are there differences

between them? Explain.

2. Is dit^ constant for your air track glider? What is

the significance of your answer?
3. As a further challenge, if time permits, try to

predict the value of a,, which the glider ap-

proaches as the air track becomes vertical. What
values do you get? The accepted value of a, is 9.8

m/sec' near the earth's surface.

4. What is the percentage error in your calculated
value? That is, what percent of the accepted value
is your error?

percentage error

accepted value calculated value ^ ^qq
accepted value
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Therefore, if your value of a^ is 9.5m/sec^ your
percentage error is

9.8 m/sec^ - 9.5 m/sec ' „ mno/
9.8 nMsec^

"" ^°°/°

(3/98) X 100% = 3%
Notice that you cannot carry this 3% out to

3.06% because you only know the 3 in the fraction

3/98 to one digit. Therefore, you can only know
one digit in the answer, 3%. A calculated value
like this is said to have one significant digit. You
cannot know the second digit in the answer until

you know the digit following the 3. To be
significant, this digit would require a third digit in

the calculated values of 9.5 and 9.8.

5. What are some of the sources of your error?

Experiment 1-7

MEASURING THE
ACCELERATION OF GRAVITYg*

Aristotle's idea that bodies falling to the earth

are seeking out their natural places sounds

strange today. After all, you know that gravity

makes things fall.

But just what is gravity? Newton tried to give

operational meaning to the idea of gravity by

seeking out the laws according to which it acts.

Bodies near the earth fall toward it with a

certain acceleration due to the gravitational

"attraction" of the earth. How can the earth

make a body at a distance fall toward it? How is

the gravitational force transmitted? Has the

acceleration due to gravity always remained the

same? These and many other questions about

gravity have yet to be answered satisfactorily.

Whether you do one or several parts of this

experiment, you will become more familiar

with the effects of gravity by finding the

acceleration of bodies in free fall yourself. You
will learn more about gravity in later chapters.

METHOD A: a^ bv Direct FaU*

In this experiment, you will measure the

acceleration of a falling object. Since the

distance and therefore the speed of fall is too

small for air resistance to become important,

and since other sources of friction are very

small, the acceleration of the falling weight is

very nearly a^.

'Adapted from R. F. Brinckerhoff and D. S. Taft,

Modern Laboratory E^cperiments in Physics, by

permission of Science Electronics, Inc., Nashua, New
Hampshire.

Doing the Experiment

The falling object is an ordinary laboratory

hooked weight of at least 200 g mass. (The drag

on the paper tape has too great an effect on the

fall of lighter weights.) The weight is suspended
from about 1 m of paper tape. Reinforce the

tape by doubling a strip of masking tape over

one end and punch a hole in the reinforcement

1 cm from the end. With careful handling, this

tape can support at least 1 kg.

Fig. 1-14

When the suspended weight is allowed to

fall, a vibrating tuning fork wall mark equal time

intervals on the tape pulled down after the

weight.

The tuning fork must have a frequency

between about 100 Hz (vibrations/second) and
about 400 Hz. In order to mark the tape, the foric

must have a tiny felt cone (cut from a marking

pen tip) glued to the side of one of its prongs

close to the end. Such a small mass affects the

fork frequency by much less than 1 Hz. Saturate

this felt tip with a drop or two of marking pen
ink, set the fork in vibration, and hold the tip

very gently against the tape. The falling tape is

conveniently guided in its fall by two

thumbtacks in the edge of the table. The easiest

procedure is to have an assistant hold the

weighted tape straight up until you have

touched the vibrating tip against it and said
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"Go " After a few practice runs, you will become

expert enough to mark many centimeters of

tape with a wavy line as the tape is accelerated

past the stationary vibrating fork.

Instead of using the inked cone, you may

press a comer of the vibrating tuning fork

gently against a 2-cm square of carbon paper

which the thumbtacks hold ink-surface-

inwards over the falling tape. With some

practice, this method can be made to yield a

series of dots on the tape without seriously

retarding its fall.

Analyzing Your Tapes

Label with an A one of the first wave crests (or

dots) that is clearly formed near the beginning

of the pattern. Count 10 intervals between wave

crests (or dots), and mark the end of the tenth

space with a B. Continue marking every tenth

crest with a letter throughout the length of the

record, which ought to be at least 40 waves

long.

At A, the tape already had a speed of v,,. From
this point to B, the tape moved a distance d, in

a time t. The distance d, is described by the

equation for free fall:

In covering the distance from A to C, the tape

took a time exactly twice as long, 2f, and fell a

distance dz described (by substituting 2f for f

and simplifying) by the equation:

d^ - 2v„f -t- ^
2̂

In the same way, the distances AD, AE, etc., are

described by the equations:

9a,r2
dg = 3vof -t-

d, = 4v„f -I-

2

16a „r-

and so on.

All of these distances are measured from A,

the arbitrary starting point. To find the dis-

tances fallen in each 10-rrest interval, you must
subtract each equation from the one before it,

getting:

2
AB = vj +

BC = v„f +

CD = v„f + 5£jiL
2

DE = v„f + ^^*^

From these equations, you can see that the

weight falls farther during each later time

interval. Moreover, when you subtract each of

these distances, AB, BC, CD, . . . from the

subsequent distance, you find that the increase

in distance fallen is a constant. That is, each

difference BC - AB = CD - BC = DE - CD =

agf^. This quantity is the increase in the

distance fallen in each successive 10-wave

interval and thus is an acceleration. TTie

formula describes a body falling with a con-

stant acceleration.

From your measurements of AB, AC, AD, etc.,

make a column of AB, BC, CD, DE, etc., and in

the next column record the resulting values of

a^f^. The values of a^t^ should all be equal

(within the accuracy of your measurements).

Why? Make all your measurements £is precisely

as you can with the equipment you are using.

Find the average of all your values of a^r^, the

acceleration in centimeters/(10-vvave interval)*.

You want to find the acceleration in cm/sec^. If

you call the frequency of the tuning fork n per

second, then the length of the time intervjil t is

10/n sec. Replacing t of 10 waves by 10/n sec

gives you the acceleration a^ in cm/sec^.

1. What value do you get for aj What is the

percentage error? (The ideal value of a^ is close to

9.8 m/sec2.)

METHOD B: a« from a Pendulum
You can easily measure the acceleration due to

gravity by timing the swinging of a pendulum.

Of course, the pendulum is not falling straight

down, but the time it takes for a round-trip

swing still depends on a^. The time T it takes

for a round-trip swing is

r = 2Tr

In this formula, / is the length of the pendulum.
Ifyou measure / with a ruler and T with a clock,

you should he able to solve for a,.

You may learn in a later physics course how-

to derive the formula. Scientists often use

formulas they hax-e not deri\-ed themselves, as

long as they are confident of their \alidit>'

Making the Measurements

Tlie fonnula is derixed for a pendulum with all

the mass concentrated in the weight at the
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bottom, caUed the bob. Therefore, the best

pendulum to use is one whose bob is a metal

sphere hung by a fine thread. In this case, you
can be sure that almost all the mass is in the

bob. The pendulum's length, /, is the distance

from the point of suspension to the center of

the bob.

Your suspension thread can have any con-

venient length. Measure / as accurately as

possible in meters.

Set the pendulum swinging with small

sudngs. The formula does not work well for

large swings, as you can test for yourself later.

Time at least 20 complete round trips,

preferably more. By timing many round trips

instead of just one, you make the error in

starting and stopping the clock a smaller

fraction of the total time being measured.

(When you divide by 20 to get the time for a

single round trip, the error in the calculated

value for one trip will be only 1/20 as large as if

you had measured only one trip.)

Divide the total time by the number of swings

to find the time T of one swing.

Repeat the measurement at least once as a

check.

Finally, substitute your measured quantities

into the formula and solve for a^.

If you measured / in meters, the accepted

value of a„ is 9.80 m/sec^.

1. What value did you get for aj
2. What was your percentage error? You find

percentage error by dividing your error by the
accepted value and multiplying by 100:

accepted value - your value ^ ,qq
accepted value

= YO^'"er'"o^ X 100
accepted value

With care, your value of a^ should agree within

about 1%.
3. Which of your measurements do you think was
the least accurate?

If you believe the answer to question 3 was

your measurement of length and you think you

might be ofi'by as much as 0.5 cm, change your

value of/ by 0.5 cm and calculate once more the

value of ag. Has ag changed enough to account

for your error? Ilf ag went up and your value of

ag was already too high, then you should have

altered your measured / in the opposite

direction. Try again!)

If your possible error in measuring is not

enough to explain your difference in ag, try

changing your total time by a few tenths of a

second; there may be a possible error in timing.

Then you must recalculate T and therefore a^.

If neither of these attempts works (nor both
taken together in the appropriate direction),

then you almost certainly have made an error

in arithmetic or in reading your measuring
instruments. It is most unlikely that ag in your
school differs from 9.80 m/sec' by more than
±0.01.

METHOD C: Og v^ith Slow-Motion
Photography (Fihn Loop)

With a high-speed movie camera you could

photograph an object falling along the edge of a

vertical measuring stick. Then you could de-

termine ag by projecting the film at standard

speed and measuring the time for the object to

fall specified distance intervals.

A somewhat similar method is used in Film

Loops 4 and 5. Detailed directions are given for

their use in the Film Loop Notes on pages 59

and 60.

METHOD D: Og from Falling

Water Drops

You can measure the acceleration due to

gravity ag simply with drops of water falling on

a pie plate.

Put the pie plate or a metal dish or tray on

the floor. Set up a glass tube vvath a stopcock,

valve, or spigot so that drops of water from the

valve will fall at least 1 m to the plate. Support

the plate on three or four pencils so that each

drop sounds distinctly, like a drum beat.

Adjust the valve carefully until one drop

strikes the plate at the same instant the next

drop from the valve begins to fall. You can do

this most easily by watching the drops on the

valve while listening for the drops hitting the

plate. When you have exactly set the valve, the

time it takes a drop to fall to the plate is equal to

the time interval between one drop and the

next.

With the drip rate adjusted, find the time

interval t between drops. For greater accuracy,

you may want to count the number of drops

that fall in 30 sec or 60 sec, or to time the

number of seconds for 50 to 100 drops to fall.

Your results are likely to be more accurate if

you run a number of trials, adjusting drip rate

each time, and average your counts of drops or

seconds. The average of several trials should be

closer to actual drip rate, drop count, and time

intervals than one trial would be.
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Now you have all the data you need. You

know the time t it takes a drop to fall a distance

d from rest. From these data you can calculate

a„ since you know that d = Vaflgf ^ for objects

falling from rest.

1. What value did you get for aJ
2. What is your percentage error? How does this

compare with your percentage error by any other

methods you have used?
3. What do you think led to your error? Could it be

leaking connections, allowing more water to

escape sometimes? How does this affect your

answer?
Suppose the distance of fall was lessened by a

puddle forming in the plate; how would this

change your results?

There is less water pressure in the tube after a

period of dripping; would this increase or de-

crease the rate of dripping? Do you get the same
counts when you refill the tube after each trial?

Would the starting and stopping of your count-

ing against the watch or clock affect your answer?
What else may have added to your error?

4. Can you adapt this method of measuring the

acceleration of gravity so that you can do it at

home? Would it work in the kitchen sink? Would
your results be more accurate if the water fell a

greater distance, such as down a stairwell?

With the table turning, the thread is burned

and each ball, as it hits the carbon paper, will

leave a mark on the paper under it.

Measure the vertical distance between the

balls and the angular distance between the

marks. With these measurements and the

speed of the turntable, determine the free-fall

time.

1. What value do you get for a,?

2. What was your percentage error?

3. What is the most probable source of error?

Explain.

METHOD F: Og uith Strobe

Photography

Photographing a falling light source with the

Polaroid Land camera provides a record that

can be graphed and analyzed to give an average

value of a^. The 12-slot strobe disk gives a very

accurate 60 slots per second. (A neon bulb can

also be connected to the ac line outlet in such a

way that it will flash a precise 60 times per

second, as determined by the line frequency.

Your instructor has a description of the approx-

imate circuit for doing this.

I

METHOD E: a« with Falling Ball

and Turntable

You can measure a^ with a record-player

turntable, a ring stand and clamp, carbon

paper, two balls with holes in them, and thin

thread.

Ball X and ball Y are draped across the

prongs of the clamp. Line up the balls along a

radius of the turntable, and make the lower ball

hang just above the paper, as shown in Fig.

1-15.

White Raper

Turntable

Fig 1-15

1. What value do you get for aJ
2. What was your percentage error?

3. What is the most probable source of error?

Explain.

Fig 1-16
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Experiment 1-8

NEWTON'S SECOND LAW
Newton's second law of motion is one of the

most important and useful laws of physics.

Re\iew text Sec. 3.7 on Xewton's second law to

make sure you are familiar with it.

Newton's second law is part of a much larger

body of theory than can be studied with a

simple set of laboratory experiments. Our
experiment on the second law has two pur-

poses.

First, because the law is so important, it is

useful to get a feeling for the behaxior of objects

in terms of force (Fl, mass (ml, and acceleration

(a). You will do this in the first part of the

experiment.

Second, the experiment permits you to

consider the uncertainties of your mea-
surements. This is the purpose of the latter part

of the experiment.

You will apply different forces to carts of

different masses and measure the acceleration.

Hou' the Apparatus Works

You are about to find the mass of a loaded cart

on which you then exert a measurable force.

From Xewton's second law you can predict the

resulting acceleration of the loaded cart.

Arrange the apparatus as shown in Fig. 1-17.

A spring scale is firmly taped to a dynamics
cart. The cart, carrying a blinky, is puUed along

by a cord attached to the hook of the spring

scale. The scale therefore measures the force

exerted on the cart.

Fig. 1-17

The cord runs over a pulley at the edge of the

lab table, and from its end hangs a weight. The
hanging weight can be changed so as to

produce various tensions in the cord and thus

various accelerating forces on the cart.

Now You Are Ready to Go
Measure the total mass of the cart, the blinky,

the spring scale, and any other weights you

Fig. 1-18
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may want to include with it to vary the mass m
of the cart being accelerated.

Release the cart and allow it to accelerate.

Repeat the motion several times while watch-

ing the spring-scale pointer. You may notice

that the pointer has a range of positions. The

niidfjoint of this range is a fairly good mea-

surement of the average force F^,, producing

the acceleration. Record Fav '" newlons OV).

Faith in Newton's law is such that you can

assume the acceleration is the same and is

constant every time this particultir Fgv acts on

the mass m.
Substituting your known values of F and m,

use Newton's law to predict what the average

acceleration a^v vvas during the run.

Then, from your record of the cart's motion,

find a directly to see how accurate your

prediction was.

To measure the average acceleration a.^^, take

a Polaroid photograph through a rotating disk

stroboscope of a light source mounted on the

cart. As alternatives, you might use a liquid

surface accelerometer, described in detail on
page 42, or a blinky. Analyze your results just as

in the experiments on uniform and accelerated

motion (1-4 and 1-5) to find a^^.

This time, however, you must know the

distance traveled in meters and the time

interval in seconds, not just in blinks, flashes,

or other arbitrary time units.

You may wish to observe the following effects

without actually making numerical mea-
surements: (a) Keep the mass of the cart

constant and observe how various forces affect

the acceleration, (b) Keep the force constant

and observe how various masses of the cart

affect the acceleration.

1. Does f .,, (as measured) equal ma,„ (as com-
puted from measured values)?
2. Do your other observations support Newton's
second law? Explain.

Experimental Errors

It is unlikely that your values of F„^ and ma,,^

wen' equal.

Does this mean that you ha\«' done a poor
job of taking data? Not necessarily. As you think

about it, you will see that there are at least two
other possible reasons for the inequality. One
niJiv bj' that you have not yet moasunnl
everything neressarv in ortier to get an accu-

rate value for each of your three quantities

In particular, the force used in the calcula-

tion ought to be the net, or resultant, force on
the cart, not just the towing force that you
measured. Friction force also acts on your cart,

opposing the accelerating force. You can mea-
sure it by reading (he spring scale as you tow

the cart by hand at constant speed. Do it se\'eral

times and take an average, F,. Since F, acts in a

direction opposite to the towing force Fj,

If Ff is too small to measure, then Fnpt = F^, and
no correction for friction is needed.

Another reason for the inequality of Fgv and

maav rnay be that your value for each of these

quantities is based on measurements and eveiy

measurement is uncertain to some extent.

You need to estimate the uncertainty of each

of your measurements.

Uncertainty' in Average Force F^v
Your uncertainty in the measurement of Fav

is the amount by which your reading of your
spring scale varied above and below the average

force, Fav- Thus, if your scale reading ranged

from 1.0 to 1.4 N, the average is 12 N, and the

range of uncertainty is 02 N. The value of F^^

would be reported as 12 ±02 N. Record your
value of Fav and its uncertainty.

Uncertainty in Mass m
Your uncertainty' in m is roughly half the

smallest scale reading of the balance with

which you measured it. The mass consisted of

a cart, a blinky, and a spring scale land possibly

an additional mass). If the smallest scale

reading is 0.1 kg, your record of the mass of

each of these in kilograms might be as follows:

mean = 0.90 ± 0.05 kg

"^blinky = 0.30 ±0.05 kg

"Ijcale = 0.10 ± 0.05 kg

The total mass being accelerated is the sum of

these masses. The uncertaintv' in the total mass
is the sum of the three uncertainties. Thus, in

this example, m = 1.30 ± 0.15 kg. Record your
value of m and its uncertainty.

Uncertaint}' in

Average Acceleration a.,^

Finally, consider 3,,- You found this by

measuring Ad/ At for each of the intervals

between the points on your blinky photograph
Suppose the points in Fig. 1-19 reprt'sent

images of a light sourt^e photographed through
a single slot, giviiig 5 images per second.

Calculate Ad/ Af for sex'eral intervals.
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j^ Ad^-*|<— /vd^-^-« 6^3—>1< L d^

Fig. 1-19

If you assume the time between blinks to

have been equal, the uncertainty in each value

of Ad/ Af is due primarily to the fact that the

photographic images are a bit fuzzy. Suppose

that the uncertainty in locating the distance

between the centers of the dots is 0.1 cm as

shown in the first column of Table 1-5.

TABLE 1-5

Average Speeds Average Accelerations

At/,/M = 2.5 ± 0. 1 cm/sec

Ac/j/Af = 3.4 ±0.1 cm/sec

Id^l Af = 4.0 ± 0. 1 cm/sec

IdJ Af = 4.8 ± 0. 1 cm/sec

A\^^/ Af = 0.9 ± 0.2 cm/sec2

AvJ Af = 0.6 ± 0.2 cm/sec2

AVj/ Af = 0.8 ± 0.2 cm/sec2

Average = 0.8 ± 0.2 cm/sec^

When you take the differences between suc-

cessive values of the speeds, Ad/ At, you get

the accelerations, Av/ At, which are recorded

in the second column. When a difference in

two measurements is involved, you find the un-

certainty of the differences (in this case, Av/ Af

)

by adding the uncertainties of the two measure-

ments. This results in an uncertainty in accel-

eration of (±0.1) + (±0.1) or ± 0.2 cm/sec^ as

recorded in the table. Determine and record

your value of agv and its uncertainty.

Comparing Your Results

You now have the values of Fav< rn, and a^y,

their uncertainties, and you considered the

uncertainty of ma^y. When you have a value for

the uncertainty of this product of two quan-

tities, you will then compare the value of ma^y

wath the value of F^^ and draw your final

conclusions. For convenience, the "av" has

been dropped from the symbols in the

equations in the following discussion. When
two quantities are multiplied, the percentage

uncertainty in the product never exceeds the

sum of the percentage uncertainties in each of

the factors. In the example, m x a = 1.30 kg x

0.8 cm/sec^ = 1.04 N. The uncertainty in a

(0.8 ± 0.2 cm/sec^) is 25% (since 0.2 is 25% of 0.8).

The uncertainty in m is 11%. Thus, the

uncertainty in ma is 25% + 11% = 36%. The

product can be written as ma — 1.04 N ± 36%

which is, to two significant figures,

ma = 1.04 ± 0.36 N

(The error is so large here that it really is not

appropriate to use the two decimal places;

round off to 1.0 ± 0.4 N.) In the example, from
direct measurement, F„^i = 1.2 ± 02 N. Are
these two results equal within their uncertain-

ties?

Although 1.0 does not equal 1.2, the range of

1.0 ± 0.4 overlaps the range of 1.2 ± 0.2. There-

fore, the two numbers agree within the range

of uncertainty of measurement.
An example of the lack of agreement would

be 1.0 ± 0.2 and 1.4 ± 0.1. These are presumably
not the same quantity since there is no overlap

of expected uncertainties.

In a similar way, work out your own values of

Fnet and ma^^.

3. Do your own values agree within the range of

uncertainty of your measurement?
4. Is the relationship f „,.,

= ma^, consistent with
your observations?

Experiment 1-9

MASS AND WTIIGHT

You know from your own experience that an

object that is pulled strongly toward the earth

(for example, an automobile) is difficult to

accelerate by pushing. In other words, objects

with great weight also have great inertia. Is

there some simple, exact relationship between

the masses of objects and the gravitational

forces acting on them? For example, if one

object has twice the mass of another, does it

also weigh twice as much?

Measuring Mass

The masses of two objects can be compared by

obsendng the accelerations each experiences

when acted on by the same force. Accelerating

an object in one direction with a constant force

for long enough to take measurements is often

not practical in the laboratory. Fortunately

there is an easier way. Ifyou rig up a puck and

springs between two rigid supports as shown

in Fig. 1-20, you can attach objects to the puck

nnnnsTpmnnnnnmTri-o _9-STraTJ-5 **"« "3 6 6 SUT/^

Fig. 1-20
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and have the springs accelerate the object back

and forth. The greater the inertial mass of the

object, the less the magnitude of acceleration

will be, and the longer it will take to oscillate

back and forth.

To "calibrate" your oscillator, first time the

oscillations. The time required for five complete

n)und trips is a convenient measure. Next tape

pucks on top of the first one, and time the

period for each new mass. (The units of mass

an." not essential here; you will be interested

only in the ratio of masses.) Then plot a graph

of mass against the oscillation period, drawing

a smooth curve through your experimental plot

points. Do not leave the pucks stuck together.

From your results, try to determine the

relationship between inertial mass and the

oscillation period. If possible, write an algebraic

expression for the relationship.

Weight

To compare the gravitational forces on two

objects, they can be hung on a spring scale. In

this investigation, the units on the scale are not

important because you are interested only in

the ratio of the weights.

Comparing Mass and Weight

Use the puck and spring oscillator, and the

calibration graph to find the masses of two
objects (say, a dry cell and a stapler). Find the

gravitational pulls on these two objects by
hanging each from a spring scale.

1. How does the ratio of the gravitational forces
compare to the ratio of the masses?
2. How would you conduct a similar experiment
to compare the masses of two iron objects to the
magnetic forces exerted on them by a large
magnet?

Comment
You probabl\ will not be surprised to find that,

to within your uik rrtainty of measuifment, the
ratio of gravitational loixcs is the same as the
ratit) of masses is this n-alK worth doing an
e.vpcriment to find out, oris the answer obvious
to begin with? Newton did not think it was
obvious. He did a series of very precise
experiments using many dilTeivnt substances
to find out whether gravitational forte was
alvvavs pnipjjrtional to inertial mass I'o the
limits of his pnuision, Nev\1on found tin-

proportionality,' to hold exactly. (Newlon's re-

sults have been confirmed to a precision of

±0.000000001% I

Newton could offer no explanation from his

physics as to why the attraction of the earth for

an object should increase in exact proportion

to the object's inertial mass. No other forces

bear such a simple relation to inertia, and this

remained a complete puzzle for two centuries

until Einstein related inertia and gravitation

theoretically. Even before Einstein, Ernst Mach
made the ingenious suggestion tiiat inertia is

not the property of an object by itself, but is the

result of the gravitational forces exerted on an
object by eveiything else in the universe.

Experiment 1-10

CUR\TS OF TRy^JECTORIES

Picture a ski jumper. He leans forward at the

top of the slide, grasps the railing on each side,

and propels himself out onto the track. Streak-

ing down the trestle, he crouches and gives a

mighrv' leap at the takeoff lip, soaring up and
out, over the snow-covered fields far below. The
hill flashes into view and he lands on its steep

incline, bobbing to absorb the impact.

Like so many interesting events, this one
involves a more complex set of forces and
motions than you can conveniently deal with in

the laboratory' at one time. Therefore, concen-

trate on just one aspect: the fliglit through the

air. What kind of a path, or trajectory', would a

ski-jumping flight follow?

At the moment of projection into the air a

skier has a certain velocity (that is, a certain
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speed in a given direction i, and throughout the

flight must experience the downward accelera-

tion due to gra\ity. These are circumstances
that can be duplicated in the laboratory. To be
sure, the flight path of an actual ski jumper is

probably affected by other factors, such as air

velocity and friction; but you now know that it

usually pays to begin experiments with a

simplified approximation that allows you to

study the effects of a few factors at a time. Thus,

in this experiment you will launch a steel ball

from a ramp into the air and try to determine

the path it follows.

How to Use

the Equipment

If you are assembling the equipment for this

experiment for the first time, follow the man-
ufacturer's instructions.

The apparatus consists primarily of two

ramps down which you can roll a steel ball.

Adjust one of the ramps (perhaps with the help

of a levell so that the ball leaves it horizontalK'.

Tape a piece of squared graph paper to the

plotting board with its left-hand edge behind

the end of the launching ramp.

To find a path that extends fully across the

graph paper, release the ball from veirious

points up the ramp until you find one from

which the ball falls close to the bottom

right-hand comer of the plotting board. Mark
the point of release on the ramp and release the

ball each time from this point.

Attach a piece of carbon paper to the impact

board, with the carbon side facing the ramp.

Then tape a piece of thin onionskin paper over

the carbon paper.

Now when you put the impact board in its

way, the ball hits it and lea\es a mark that you
can see through the onionskin paper, and
automatically records the point of impact

between ball and board. (Make sure that the

impact board does not mo\e when the ball hits

it; steady the board with your hand if neces-

sary.) Transfer the point to the plotting board

by making a mark on it just next to the point on

the impact board.

Do not hold the ball in your fingers to release

it; it is impossible to let go of the ball in the

same way every time. Instead, restrain it with a

ruler held at a mark on the ramp and release

the ball by moving the ruler quickly away from

it down the ramp.

Try releasing the ball several times (always

from the same point) for the same setting of the

Fig. 1-21

impact board. Do all the impact points exactly

coincide?

Repeat this for several positions of the impact
board to record a number of points on the ball's

path. Move the board equal distances every

time and always release the ball from the same
spot on the ramp. Continue until the ball does

not hit the impact board any longer.

Now remove the impact board, release the

ball once more, and watch carefully to see that

the ball moves along the points marked on the

plotting board.

The curve traced out by your plotted points

represents the trajectory of the ball. By observ-

ing the path the ball follows, you have com-
pleted the first phase of the experiment.

If you have time, you will find it worthwhile

to go further and explore some of the proper-

ties of your trajectory.

Anal\'zing Your Data

To help you analyze the trajectory, draw a

horizontal line on the paper at the level of the

end of the launching ramp. Then remove the

paper from the plotting board and draw a

smooth continuous cu^^'e through the points

as shown in Fig. 1-22.
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Fig 1-22

You already know that a moving object on
which no net force is acting will move at

constant speed. There is no appreciable hori-

zontal fort:e acting on the ball during its fall, so

you can make an assumption that its horizontal

motion is at a constant speed. Then, equally

spaced vertical lines will indicate equal time

intervals.

Draw vertical lines through the points on
your graph. Make the first line coincide with

the end of the launching ramp. Because ofvour
plotting procedure, these lines should be
equally spac^ed. If the horizontal speed of the

ball is unifoim, these vertical lines are drav\Ti

thit)ugli positions of the ball separated by equal

litnc inli'ivals.

Now consider the vertical distances fallen in

each timer interval. Measure down from your
horizontal line the vertical fall to each of your
plotted points Record your measurements in a

column Alongside them rtu-oixl the corre-

sponding hori/.ontal distances measured from

the tliM vertical line.

tion (see Sees. 2.5-2.8 in the Text and Experiment

1-4). Use the data you have just collected to

decide whether the vertical motion of the ball was
uniformly accelerated motion. What do you con-

clude?

3. Do the horizontal and the vertical motions

affect each other in any way?
4. What equation describes the horizontal motion

in terms of horizontal speed, v. the horizontal

distance, Ax, and the time of travel, Ar?

5. What equation describes the vertical motion in

terms of the distance fallen vertically. A/, the

vertical acceleration, a„, and the time of travel,

Ar?

Try These Yourself

There are many other things you can do with

this apparatus. Some of them are suggested by

the following questions:

1. What do you expect would happen if you

repeated the experiment with a glass marble of

the same size instead of a steel ball?

2. What will happen if you next tr>' to repeat

the experiment starting the ball from a different

point on the ramp?

3. What do you expect if you use a smaller or

larger ball, starting always from the same
reference point on the ramp?

4. Plot the trajectorv' that results when you use

a ramp that launches the ball at an angle to the

horizontal. In what way is this curve similar to

your first trajectory?

Experiment l-ll

PREDICTIOX OF TRAJECTTORIES

You can predict the landing point of a ball

launched horizontally from a tabletop at any

speed. If you know the speed v of the ball as it

leaves the table, the height of the table above

the floor, Ay, and a^. you can then use the

equation for projectile motion to predict where

on the floor the ball will land.

You know an equation for horizontal motion:

A,x = V Af

and you know an equation for free fall from

rest:

Av = ViaJAt)'

1. What would a graph look like on which you
plot horizontal distance against time?
2. Earlier in your work with accelerated motion,
you learned how to recognize uniform accelera-

rhe time interval is difficult to measure.

Besides, in talking about the shape of the path,

all vou irallv need to know is how A>- n*lates to

A,v. Since, as you found in the previous
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bal I must be
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e>t\Ti in air
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I
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Fig. 1-23

experiment, these two equations still apply

when an object is moving horizontally and

falling at the same time, you can combine them
to get an equation relating Ay and Ax. without

Af appearing at all. You can rewrite the

equation for horizontal motion as:

At = Ax

Then you can substitute this expression for At

into the equation for free fall, obtaining:

Ay = 1/23^
Ax)'

Thus, the derived equation should describe

how Ay changes with Ax that is, it should give

the shape of the trajectory. If you want to know
how far out from the edge of the table the ball

will land (Ax), you can calculate it from the

height of the table ( Ayl, a^, and the balls speed

V along the table.

Doing the Experiment

Find V by measuring with a stopwatch the time

t that the ball takes to roll a distance d along the

tabletop. (See Fig. 1-23.1 Be sure to have the ball

caught as it comes off the end of the table.

Repeat the measurement a few times, always

releasing the ball from the same place on the

ramp, and take the average value of v.

Measure Ay and then use the equation for

Ay to calculate Ax. Place a target, a paper cup,

for example, on the floor at your predicted

landing spot as shown in Fig. 1-24. How
confident are you ofyour prediction? Since it is

based on measurement, some uncertainty is

involved. Mark an area around the spot to

indicate your uncertainty.

\ow release the ball once more. This time, let

it roll off the table: if your measurements were

accurate, it should land on the target as shown
in Fig. 1-24.

If the ball actuedly does fall within the range

of values you have estimated for x. then you
have supported the assumption on which your

calculation was based, that vertical cind hori-

zontal motion are not affected by each other.

Measuring A x

/

•^^---Z-:^^
/

-^y

~7 c^o

Fig. 1-24
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V^

Fig. 1-25 The path taken by a cannon ball according to a

drawing by Ufano (1621). He shows that the same
horizontal distance can be obtained by two different

firing angles. Gunners had previously found this by

experience. What angles give the maximum range?

What is wrong with the way Ufano drew the trajec-

tories?

1. How could you determine the range of a ball

launched horizontally by a slingshot?

2. Assume you can throw a baseball 40 m on the
earth's surface. How far could you throw the same
ball on the surface of the moon, where the
acceleration of gravity is one-sixth what it is on
the surface of the earth?

3. Will the assumptions made in the equations
Ax vM and ly %a,(Ar)' hold for a ping-
pong ball? If the table were 1,000 m above the
floor, could you still use these equations? Why or
why not?

Experiment 1-12

CEiXTRIFETAL FORCE
Tin' inotioii of an earth satellite and ol a weight

swijn^ ai-Mund your head on the end of a string

are descrihed by the same laws of motion. Both

aix' acrceleratiiig lowaril the center of their oriiit

due to the action of ati unhalanced force.

In the follouing experiment, you can dis-

cover for yourself how this centripetal force

depends on the mass of the satellite and on its

speed and distance from the center.

Hou- the Apparatus Works

Your "satellite" is one or more rubber stoppers.

When you hold the apparatus in both hands

and swing the stopper around your head, you
can measure the centripetal force on it with a

spring scale at the base of the stick. The scale

should ivatl in newlons; otherwise its readings

should be conx-erted to newlons.

You can change the length of the string to

vai^' the radius fl of the circular orbit. Tie on

more stoppers to varv the satellite mass m.
The best way to set the frequencN- / is to

swing the apparatus in time with some
periodic sound from a metronome or an

earphone attached to a blinky. Keep the rate

constant by adjusting the swinging until you
see the stopper cross the same point in the

n)om e\erv tick.
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Fig. 1-26

Hold the stick vertically and have as little

motion at the top as possible, since this would
change the radius. Because the stretch of the

spring scale also alters the radius, it is helpful

to have a maricer (knot or piece of tape) on the

string. You can move the spring scale up or

down slightly to keep the marker in the same
place.

Doing the Experiment

The object of the experiment is to find out how
the force F, read on the spring scale, varies with

m, with /, and with R

.

You should only change one of these three

quantities at a time so that you can investigate

the effect of each quantity independently of the

others. Either double or triple m, f, and R (or

halve them, and so on, if you started with large

values).

Two or three different values should be

enough in each case. Make a table and clearly

record your numbers in it.

Experiment 1-13

CENTRIPETAL FORCE ON A
TURNTABLE
You may have had the experience of spinning
around on an amusement park contraption

knov\Ti as the Whirling Platter. The riders seat

themselves at various places on a large, flat,

polished wooden turntable about 12 m in

diameter. The turntable gradually rotates faster

and faster until everyone (except for the person
at the center of the table) has slid off. The
people at the edge are the first to go. Why do
the people slide off?

Unfortunately, you probably do not have a

Whirling Platter in your classroom, but vou do
have a Masonite disk that fits on a turntable.

The object of this experiment is to predict the

maximum radius at which an object can be

placed on the rotating turntable without sliding

off.

If you do this under a vciriety of conditions,

you will see for yourself how forces act in

circular motion.

Before you begin, be sure you have studied

Sec. 4-6 in your text where you learned that the

centripetal force needed to hold a rider in a

circular path is given by F = mv^/R

.

Studying

Centripetal Force

For these experiments, it is more convenient to

rewrite the formula F = mv^/R in terms of the

frequency/. This is because/ can be measured

more easily than v. You can rewrite the formula

as follows:

distance traveled number of revolutions

in one revolution

2nR x/

per second

Substituting this expression for v in the formula

for centripetal force gives:

1. How do changes in m affect f when R and f are

kept constant? Write a formula that states this

relationship.

2. How do changes in f affect F when m and /? are

kept constant? Write a formula to express this

relationship.

3. What is the effect of R on f ?

4. Now, put m, f, and R all together in a single

formula for centripetal force, F. How does your

formula compare with the expression derived in

Sec. 4-6 of the Text?

R

_ 4iT^mRj^

R

= ATT^mRp

You can measure all the quantities in this

equation.
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Fig 1-27

Friction on a Rotating Disk

For objects on a rotating disk, the centripetal

foix;e is provided by friction. On a frictionless

disk, there could be no such centripetal force.

As you can see from the equation just derived,

the centripetal acceleration is proportional to fl

and to p. Since the frequency of/ is the same
for any object moving around on a turntable,

then the c(!ntripetal acceleration is directly

proportional to R, the distance from the center.

The further an object is from the center of the

turntable, therefore, the greater the centripetal

forc:e must be to keep it in a circular path.

You can measure the maximum force F^ax

that friction can provide on the object, measure

the mass of the object, and then calculate the

maximum distance from the center flmax that

the object can be without sliding off. Solving the

centripetal force equation for R gives:

ATT^mp

Use a spring scale to measure the force needed

to make some object (of mass m from 02 kg to

1.0 kg) start to slide across the motionless disk.

This will be a measure of the maximum friction

force that the disk can exert on the object.

Make a chalk marie on the turntable and time

it (say, for 100 sec) or accept the marked value

of revolutions per minute and calculate the

frequency in hertz (Hz).

Make your predictions of Rmax for turntable

frequencies of 33 revolutions per minute (rpm),

45 rpm, and 78 rpm.

Then try the experiment!

1. How great is the percentage difference be-

tween prediction and experiment for each turn-

table frequency? Is this reasonable agreement?
2. What effect would decreasing the mass have
on the predicted value of /?? Careful! Decreasing
the mass has an effect on F also. Check your
answer by doing an experiment.
3. What is the smallest radius in which you can
turn a car if you are moving 100 kmtir and the

friction force between tires and road is one-third

the weight of the car? (Remember that weight is

equal to a^ x m.)

by John Hart

NO, MO, STliPiD- . THE
OTHEff ENP.

nl Ji4wi Had tmt ri«U lalatrcl***. !>• .
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ACTIVITIES
CHECKER SNAPPING
Stack several checkers. Put another checker on
the table and snap it into the stack. On the basis

of Newton's first law, can you explain what
happened?

BEAKER AND HAMMER
Place a glass beaker half full of water on top of a

pile of three wooden blocks. Three quick back-

and-forth swipes (NOT FOUR!! of a hammer on
the blocks leave the beaker sitting on the table.

PULLS ANDJERKS

~r::^t~^

Fig. 1-28

Hang a weight (such as

a heavy wooden block)

by a string that just

barely supports it, and
tie another identical

string below the weight.

A slow, steady pull on
the string below the

weight breaks the string

above the weight. A
quick jerk breaks it

below the weight. Why?

EXPERIENCING NEWTON'S
SECOND LAW
One way for you to get the feel of Newton's

second law is actually to pull an object with a

constant force. Load a cart with a mass of

several kilograms. Attach one end of a long

rubber band to the cart and, pulling on the

other end, move at such a speed that the

rubber band is maintained at a constant length,

for example, 70 cm. Holding a meter stick above
the band with its 0-cm end in your hand uill

help you to keep the length constant.

The acceleration vvill be very apparent to the

person applying the force. Vary the mass on the

cart and the number of rubber bands (in

parallel) to investigate the relationship between
F, m, and a.

MAKE ONE OF THESE
ACCELEROMETERS
An accelerometer is a device that measures
acceleration. Actually, anything that has mass
could be used for an accelerometer. Because
you have mass, you were acting as an acceler-

ometer the last time you lurched forward in the

seat of a car as the brakes were applied.

With a knowledge of Newton's laws and certain

information about yourself, anybody who mea-
sured how far you leaned forward and how
tense your muscles were would get a good idea

of the magnitude and direction of the accelera-

tion that you were undergoing; but it would be

complicated.

Here are four accelerometers of a much
simpler kind. With a little practice, you can
leam to read accelerations from them directly,

without making any difficult calculations.

A. The Liquid-Surface

Accelerometer

This dexice is a hollow, flat plastic container

partly filled with a colored liquid. When it is not

being accelerated, the liquid surface is horizon-

tal, as shovvn by the dotted line in Fig. 1-29. But

when it is accelerated toward the left (as

B.C. by John Hart

By permission o£ John Hart and Field Enterprises, Inc
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acccler-atJon

Fig 1-29

shown) with a uniform acceleration a, the

surface becomes tilted. The level of the liquid

rises a distance h above its normal position at

one end of the accelerometer and falls the same

distance at the other end. The greater the

acceleration, the more steeply the surface of

the liquid is slanted. This means that the slope

of the surface is a measure of the magnitude of

the acceleration a.

The length of the accelerometer is 2/, as

shown in Fig 1-29. So the slope of the surface

may be found by:

,
vertical distance

slope =
horizontal distance

2/

I

Theory gives you a very simple relationship

between this slope and the acceleration a;

, h a
slope = — = —

/ a«

Notice what this equation tells you. It says

that if the instrument is accelerating in the

direction shown with just a, (one common way
to say this is that it has a "one-G acceleration"

— the acceleration of gravity), then the slope of

the surface is just 1; that is, /i = / and the

whit^ f»per on
bacJt of oeJI -,

J V

y^^^rie^ , I'l-ont of eel— — - ^-••^SU — '

E.
i-1 Ac^

Atc^ler^tcel liquid aurfAcc

Fig 1-30

surface makes a 45° angle with its normal,

horizontal direction. If it is accelerating with

Viag, then the slope will be Vz; that ish = V2I. In

the same way, if /j = V4/, then a = Via,, and so

on with any acceleration you care to measure.

To measure h, stick a piece of centimeter

tape on the front surface of the accelerometer

as shown in Fig. 1-30. Then stick a piece of

white paper or tape to the back of the

instrument to make it easier to read the level of

the liquid. Solving the equation abo\'e for a

gives:

a =ag X -

Since a^ is very close to 9.8 m/sec^ at the

earth's surface, if you place the scale 9^ scale

units fiDm the center, you can read accelera-

tions directly in meters per second-. For

example, if you stick a centimeter tape just 9^
cm from the center of the liquid surface, 1 cm
on the scale is equivalent to an acceleration of 1

m/sec^.

Calibration of the Accelerometer
You do not have to trust blindly the theoiy

just mentioned. You can test it for yourself.

Does the accelerometer really measure acceler-

ations directly in meters per second-? Strobo-

scopic methods give you an independent

check on the correctness of the prediction.

Set the accelerometer on a dynamics cart

and arrange strings, pulleys, and masses as you

did in Experiment 1-9 to give the cart a uniform

acceleration on a long tabletop. Put a block of

wood at the end of the cart's path to stop it.

Make sure that the accelerometer is fastened

firmly enough so that it will not fly off the cart

when it stops suddenly. Make the string as long

as you can, so that you use the entire length of

the table.

Give the cart a wide range of accelerations by

hanging different weights from the string. Use a

stroboscope to record each motion. To mea-

sure the accelerations from your stixjbe rec-

ords, plot t^ against d, as you did in Elxperiment

1-5. (What relationship did Galileo disco\-er

between d/t'- and the acceleration?) Or use the

method of analysis you used in Experiment 1-9.

Compare your stroboscopic measurements
with the readings on the accelerometer during

each motion. It takes some cleverness to read

the accelerometer accurately, particulariy near

the end of a high-acceleration run One way is

to Ua\f se\-eral students along the table observe

the reading as the cart goes by: use the ax-erage
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B.C

of their reports. Ifyou are using a xenon strobe,

of course, the readings on the accelerometer

will be visible in the photograph; this is

probably the most accurate method.

Plot the accelerometer readings against the

stroboscopicaUy measured accelerations. This

graph is called a calibration curve. If the two

methods agree perfectly, the graph uill be a

straight line through the origin at a 45° angle to

each axis. If your curve has some other shape,

you can use it to convert "accelerometer

readings" to "accelerations" ifyou are udlling to

assume that your strobe measurements are

more accurate than the accelerometer. (If you

are not willing, what can you do?)

B. Automobile Accelerometer. I

With a liquid-surface accelerometer mounted
on the front-to-back line of a car, you can

measure the magnitude of acceleration along

its path. Here is a modification of the liquid-

surface design that you can build for yourself.

Bend a small glass tube (about 30 cm long) into

a U-shape, as shown in Fig. 1-31.

same reasoning as before. The tvvo vertical arms
should be at least three-fourths as long as the

horizontal arm (to avoid splashing out the

liquid during a quick stop). Attach a scale to

one of the vertical arms, as shown. Holding the

long arm horizontally, pour colored water into

the tube until the water level in the arm comes
up to the zero mark. How can you be sure the

long arm is horizontal?

To mount your accelerometer in a car, fasten

the tube with staples (carefully) to a piece of

plywood or cardboard a little bigger than the

U-tube. To reduce the hazard from broken glass

while you do this, cover all but the scale (and

the arm by it) with cloth or cardboard, but leave

both ends open. It is essential that the acceler-

ometer be horizontal if its readings cire to be

accurate. When you are measuring acceleration

in a car, be sure the road is level. Otherwise,

you will be reading the tilt of the car as well as

its acceleration. When a car accelerates, in any

direction, it tends to tilt on the suspension.

This will introduce error in the accelerometer

readings. Can you think of a way to avoid this

kind of error?

0-4-

oi
o-z

-0-2
f..'

-o.5_|:;

-O 4 ."^^

^

acxz^^r^ttcx^

Fig. 1-31

jv.;^:^:-;;^!::;^

Calibration is easiest if you make the long

horizontal section of the tube just 10 cm long;

then each 5 mm on a vertical arm represents an

acceleration of O.lg - (about) 1 m/sec^, by the

C. Automobile Accelerometer. II

An accelerometer that is more directly related

to F = ma can be made from a 1-kg cart and a

spring scale marked in newtons. The spring

scale is attached between a wood frame and

the cart as shown in Fig. 1-32. If the frame is

kept level, the acceleration of the system can be

read directly from the spring scale, since 1 N

Fig. 1-32
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of foixre on the 1-kg mass indicates an accelera-

tion of 1 m/sec^ (Instead of a cart, any 1-kg

object can be used on a layer of low-friction

plastic beads.)

D. Damped-Pendulum
Acceleroineter

One advantage of liquid-surface accelerometers

is that it is easy to put a scale on them and read

accelerations directly frtjm the instrument.

They have a drawback, though; they give only

the component of acceleration that is parallel

to their horizontal side. Ifyou accelerate one at

right angles to its axis, it does not register any

acceleration at all. Also, if you do not know the

direction of the acceleration, you have to use

trial-and-error methods to find it with the

accelerometers discussed up to this point.

A damped-pendulum accelerometer, on the

other hand, indicates the direction of any

horizontal acceleration; it also gives the mag-

nitude, although less directly than the previous

instajnients do

Hang a small metal pendulum bob by a short

string fastened to the middle of the lid of a 1-L

wide-mouthed jar as shown on the left-hand

side of the sketch in Fig. 1-33. Fill the jar with

water and screw the lid on tight. For any

position of the pendulum, the angle that it

makes with the vertical depends upon your

position. What would you see, for example, if

the bottle were accelerating straight toward

you? Away from you? Along a table with you
standing at the side? (Careful: This last ques-

tion is trickier than it looks.)

Fig 1 33

To make a fascinating \ariation on the

damped-pendulum accelerometer, simplv re-

place Ihr prnduUiin bob with a <()ik aiul tuni

the bottle upside down as shown on the

right-hand side of the sketch. If you have

punched a hole in the bottle lid to fasten the

string, you can prevent leakage with the use of

sealing wax, paraffin, or tape.

This accelerometer will do just the opposite

from what you would expect. The explanation

of this odd behavior is a little be\'ond the scope

of this course; it is thoroughly explained in

The Physics Teacher, Vol. 2, No. 4 (April, 1964),

p. 176.

PROJECTILE MOTION
DEMONSTRATION
Here is a simple way to demonstrate projectile

motion. Place one coin near the edge of a table.

Place an identical coin on the table and snap it

with your finger so that it flies off the table, just

ticking the first coin enough that it falls almost

straight down from the edge of the table. The

fact that you hear only a single ring as both

coins hit shows that both coins took the same

time to fall to the floor from the table.

Incidentally, do the coins have to be identical?

Trv different ones.

Fig. 1-34

SPEED OF A STRE/iM
OF WATER
You can use the principles of projectile motion

to calculate the speed of a stream of water

issuing from a horizontal nozzle. Measure the

vertical distance Ay from the nozzle to the

ground, and the horizontal distance A,v from

the nozzle to where the water hits the ground

I'se the equation relating A.v and A\ that

was deri\'ed in Experiment 1-11, soKing it forv:

y = V2a,



ACTIVITIES 39

and

v2 = V3a,LM!
y

V = A;c
2 Ay

The quantities on the right can all be measured
and used to compute v.

Fig. 1-35

PHOTOGRAPHING A
WATERDROP PARABOLA
Using an electronic strobe light, a doorbell

timer, and water from a faucet, you can

photograph a waterdrop parabola. The princi-

ple of independence of vertical and horizontal

motions will be clearly evident in your picture.

Remove the wooden block from the timer. Fit

an "eye dropper" barrel in one end of some

tubing and fit the other end of the tubing onto a

water faucet. (Instead of the timeryou can use a

doorbell uathout the bell.) Place the tube

through which the water runs under the

clapper so that the tube is given a steady series

of sharp taps. This has the effect of breaking the

stream of water into separate, equally spaced

drops (see Fig. 1-36).

To get more striking power, run the vibrator

from a variable transformer (Variac) connected

to the 110-volt ac, gradually increasing the

Variac from zero just to the place where the

striker vibrates against the tubing. Adjust the

water flow through the tube and eye dropper

nozzle. By \aevvang the drops uath the xenon

strobe set at the same frequency as the timer, a

parabola of motionless drops is seen. A spot-

light and disk strobe can be used instead of the

Fig. 1-36

electronic strobe light, but it is more difficult to

match the frequencies of vibrator and strobe.

The best photos are made by lighting the

parabola from the side (that is, putting the light

source in the plane of the parabola). Figure 1-36

was made in that way. With firont lighting, the

shadow of the parabola can be projected onto

graph paper for more precise measurement.

Some heating of the doorbell coil results, so

the striker should not be run continuously for

long periods of time.

BALLISTIC CART
PROJECTILES

Fire a projectile straight up from a cart or toy

locomotive (as shouTi in Fig. 1-37) that is rolling

across the floor with nearly uniform velocity.

You can use a commercial device called a

ballistic cart or make one yourself. A spring-

loaded piston fires a steel ball when you pull a

string attached to a trigger pin. Use the

electronic strobe to photograph the path of the

ball.

Fig. 1-37
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Fig. 1-38

Projectile trajectories of any object thrown

into the air can be photographed using the

electronic strobe and Polaroid Land camera. By

fastening the camera (securely!) to a pair of

carts, you can photograph the action from a

moving frame of reference.

MOTIOX IX A ROTATING
RKFKKENCK FR^IME

Here are three ways you can show how a

moving object would appear in a rotating

reference frame.

METHOD I

Attach a piece of paper to a phonograph
turntable. Draw a line across the paper as the

turntable is turning (see Fig. 1-39), using as a

guide a meter stick supported on books at

either side of the turntable. The line should be

drawn at a constant speed.

/

Fig 1-39

METHOD U
Place a Polai'oid I^and camera on the turn-

table on the floor and let a Unifonn Motor

Device (UMD) mn along the edge of ;i table.

with a fliishlight bulb on a pencil taped to the

UMD so that it sticks out over the edge of the

table. (See Fig. 1-40.)

light 50urc«
r-counter-weighf

uniform
motion d»vic*

turntoble-

Fig 1-40

METHOD HI
How would an elliptical path appear if you

were to view it fix)m a rotating reference

system? You can find out by placing a Polaroid

Land camera on a turntable on the floor, with

the camera aimed upwards. (See Fig. 1-41.) For

a pendulum, hang a flashlight bulb and an AA
dry cell. Make the pendulum long enough so

that the light is about 120 cm from the camera

lens.

"V-^yjiV^

i"ur»>rot)e

d^^-

Fig 1-41

With the lights out, give the pendulum a

swing so that it swings in an elliptical path

Hold the shutter open while the turntable

makes one rex-olution. You can get an indica-

tion of how fast the pendulum mox-es at

different points in its swing by using a motor
strob«> in fixrnt of the camera, or by hangiiig a

blink\
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PENNY AND COAT HANGER
Bend a coat hanger into the shape shown in

Fig. 1-42. Bend the end of the hook sHghtly with

a pair of pliers so that it points to where the

fmger supports the hanger. File the end of the

hook flat. Balance a penny on the hook. Move
your finger back and forth so that the hanger

•Turns O" -firiQCr here

Fig. 1-42

(and balanced penny) starts swinging like a

pendulum. Some practice vAW enable you to

swing the hanger in a vertical circle, or around

your head, and still keep the penny on the

hook. The centripetal force provided by the

hanger keeps the penny from flying off on a

straight-line path. Some people have done this

demonstration successfully with a pile of as

many as five pennies at once.

MEASURING UNKNOWN
FREQUENCIES
Use a calibrated electronic stroboscope or a

hand stroboscope and stopwatch to measure

the frequencies of various motions. Look for

such examples as an electric fan, a doorbell

clapper, and a banjo string.

On page 111 of the text you will find tables of

frequencies of rotating objects. Notice the

enormous range of frequencies listed, from the

electron in the hydrogen atom to the rotation of

the Milky Way galaxy.
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FILM LOOP NOTES
Film lyoop 1

ACCELERATION CAUSED BY
GRAVTI'V. I

A bowling ball in free fall was filmed in real time

and in slow motion. Using the slow-motion se-

quence, you can measure the acceleration of

the ball as caused by gravity. This film was

exposed at 3,900 frames/sec and is projected at

about 18 frames/sec; therefore, the slow-motion

factor is 3,900/18, or about 217. However, your

projector may not run at exactly 18 frames/sec.

To calibrate your projector, time the length of

the entire film containing 3,331 frames. (Use the

yellow circle as the zero frame.)

To find the acceleration of the falling body
using the definition

, .. change in speed
acceleration = ° *-

time interval

you need to know the instantaneous speed at

two different times. You cannot directly mea-

sure instantaneous speed from the film, but

you can determine the average speed during

small intervals. Suppose the speed increases

steadily, as it does for freely falling bodies.

During the fir-st half of any time interval, the

instantaneous speed is less than the a\erage

speed; during the second half of the interval,

the speed is greater than average. Therefore, for

uniformly accelerated motion, the average

speed V;,^ for the interval is the same as the

instantaneous speed at the midtime of the

interval.

If you find the instantaneous speed at the

midtimes of each of two intervals, you can
calculate the acceleration a from

to move through each 0.5-m interval. Repeat

these measurements at least once and then

find the average times. Use the slow-motion

factor to convert these times to real seconds;

then, calculate the two values of v^^. Finally,

calculate the acceleration a^.

This film was made in Montreal, Canada,

wliere the acceleration caused by gravity,

rounded off to ±1%, is 9.8 m/sec^. Try to decide

from the internal consistency of your data (the

repeatability of your time measurements) how
precisely you should write your result.

Fig 1-43

t, -t,

where v
,
and v. are the average speeds during

the two intervals, and where /, and /^ are the

midtimes of these intervals.

I\vo inteivals 0.5 m in length are shov\-n in

the film I he ball falls 1 m before reaching the
first marked interval, so it has some initial

speed when it crosses the first line. Using a

watch or clock with a sweep second hand, time
the balls motion and n-cord the times at which
the ball ctx)sses each of the four lines. You can
make measurements using either the bottom
edge of the ball or the top edge. With this

information, you can detemiine the time (in

apparent seconds! between the midtimes of the
two intenals and the lime HMjuirfd for the ball

Film Loop 2

ACCELERATIOX CAUSED BV
C;RA\1TV. II

A bowling ball in free fall was filmed in slow

motion. The film was exposed at 3,415 frames/

sec and it is projected at about 18 frames/sec.

You can calibrate your projector by timing the

length of the entire film. 3.753 frames. (Use the

yellow circle as a reference mark.)

If the ball starts from rest and steadily

acquires a speed v after falling through a

distance d. the change in speed A\ is \ - 0. or

v. and the average s{)eed is:

- + V ,

,



The time required to fall this distance is:
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2d

The acceleration a is given by:

_ change of speed _ Av _ v

time interval Af 2d/v 2d

Thus, ifyou know the instantaneous speed v of

the falling body at a distance d below the

starting point, you can find the acceleration. Of
course, you cannot directly measure the in-

stantaneous speed but only a\'erage speed over

the interval. For a small interval, however, vou
can make the approximation that the average

speed is the instantaneous speed at the

midpoint of the interval. (The average speed is

the instantaneous speed at the midtzme, not

the midpoint; but the error is small ifyou use a

short enough interval.)

In the film, small intervals of 20 cm are

centered on positions 1 m, 2 m, 3 m, and 4 m
below the starting point. Determine four aver-

age speeds by timing the ball's motion across

the 20-cm intervals. Repeat the measurements
several times and axerage out errors of mea-
surement. Convert your measured times into

real times using the slow-motion factor. Com-
pute the speeds, in meters per second, and
compute the value of vV2d for each value of d.

Make a table of calculated values of a, in

order of increasing values of d. Is there any

evidence for a systematic trend in the \alues?

Would you expect any such trend? State the

results by giving an average value of the

acceleration and an estimate of the possible

error. This error estimate is a matter of

judgment based on the consistency of your

four measured values of the acceleration.

Film Loop 3
\TCTOR ADDITIOX:
\TLOCITY OF A BOAT
A motorboat was photographed from a bridge

in this film. The boat heads upstream, then

downstream, then directly across stream, and

at an angle across the stream. The operator of

the boat tried to keep the throttle at a constant

setting to maintain a steady speed relative to

the water. Your task is to find out if he

succeeded.

First project the film on graph paper and

mark the lines along which the boat's image

Fig. 1-44 This photograph was tal<en from one bank of
the stream. It shows the motorboat heading across the
stream and the camera filming this loop fixed on the
scaffolding on the bridge.

moves. You may need to use the reference

crosses on the maricers. Then measure speeds

by timing the motion through some predeter-

mined number of squares. Repeat each mea-
surement several times, and use the average

times to calculate speeds. Express all speeds in

the same unit, such as "squares per second " (or

"squares per centimeter " where centimeter

refers to measured separations between marks

on the moving paper of a dragstrip recorder).

Why is there no need to convert the speeds to

meters per second? Why is it a good idea to use

a large distance between the timing marks on

the graph paper?

The head-to-taU method of adding vectors is

illustrated in Fig. 1-45. Since velocity is a vector

with both magnitude and direction, you can

study vector addition by using velocity vectors.

An easy way of keeping track of the velocity

vectors is by using subscripts:

v^ velocity of boat relative to earth

Vb'v velocity of boat relative to water

V\vE velocity of water relative to earth

Then, , ,

^'be =Vbw +Vwe

Fig. 1-45 The head-to-tail method of adding vectors.
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For each heading of the boat, a vector

diagram can he drawn by drawing the velocities

to scale. A suggested procedure is to record

data (direction and speed) for each of the five

scenes in the film, and then draw the vector

diagram for each.

Scene 1

Two blocks of wood are dropped overboard.

Time the blocks. Find the speed of the river, the

magnitude of vJTk-

Scene 2
The boat heads upstream. Measure TJ^K' then

find v^v using a vector diagram similar to Fig.

1-46.

BW

WE.

S:

Fig 1-46 ^3E = ^BW ^ V
Scene 3

The boat heads downstream. Measure v^k-

then find v^^ using a vector diagram.

Scene 4
The boat heads across stream and drifts

downstr-eam. Measure the speed of the boat

and the direction of its path to find v^y. Also

measui-e the direction of vj^v the direction the

boat points. One way to record data is to use a

9o*

heading a-' -5 _^

ISO

Fig 1 47

set of axes with the 0°- 180° axis passing

through the markers anchored in the river. A
diagram, such as Fig. 1-47, will help you record

and analyze your measurements. i.N'ote that the

numbers in the diagram are deliberately not

correct.) Your vector diagram should be some-

thing like Fig. 1-48.

270*

Fig. 1-48

Scene 5
The boat heads upstream at an angle, but

moves directly across stream. Again find a value

for v^v.

Checking Your Work
(a) How well do the four \alues of the

magnitude of V^^,^, agree with each other? Can
you suggest reasons for any discrepancies?

(b) From Scene 4, you can calculate the heading

of the boat. How well does this angle agree v\ith

the observed boat heading? (c) In Scene 5, you
determined a direction for v^^. Does this angle

agree with the observed boat heading?

Film Loop 4

A .MATTER or RELATI\X
MOTION
Two carts of equal mass collide in this film.

Three sequences labeled E\ent A, E\ent B, and

Event C are shown. Stop the projector after

each event and describe these ex-ents in words,

as they appear to you. View the loop now,

before reading further.

Even though Ewnts ,\. B, and C are visibly

difterent to the observer, in each the carls

interact similarly. The laws of motion apply for

each case. Thus, these e\'ents could be the

same event observed fixim different reference

frames. They are closely similar exents photo-

graphed from difTen'iH frames of reference, as

you see after the initial s«'(}uence of the film.

The three extents are photographed by a

camera on a cart, which is on a second ramp
parallel to the one on which the colliding carts

move, rhe camera is \'our frame of reference,
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your coordinate system. This frame of reference

may or may not be in motion with respect to

the ramp. As photographed, the three events

appear to be quite different. Do such concepts

as position and velocity have a meaning
independently of a frame of reference, or do
they take on a precise meaning only when a

frame of reference is specified? Are these three

events really similar events, viewed from dif-

ferent frames of reference?

You might think that the question of which
cart is in motion is resolved by sequences at the

end of the film in which an experimenter,

Franklin Miller of Kenyon College, stands near

the ramp to provide a reference object. Other

visual clues may already have provided this

information. The events may appear different

when this reference object is present. But is

this fi^ed frame of reference any more funda-

mental than one of the moving frames of

reference? Fixed relative to what? Is there a

"completely" fixed frame of reference?

If you have studied the concept of

momentum, you can also consider each of

these three events from the standpoint of

momentum conservation. Does the total

momentum depend on the frame of reference?

Does it seem reasonable to assume that the

carts would have the same mass in all the

frames of reference used in the film?

If it be true that the impetus with which the

ship moves remains indelibly impressed in the

stone after it is let fallfrom the mast; and ifit be

fijrther true that this motion brings no impedi-

ment or retardment to the motion directly

downwards natural to the stone, then there

ought to ensue an effect of a very wondrous
nature. Suppose a ship stands still, and the time

of the falling of a stone from the mast's round
top to the deck is two beats of the pulse. Then
afterwards have the ship under sail and let the

same stone departfrom the same place. Accord-
ing to what has been premised, it shall take up
the time of two pulses in its fall, in which time
the ship m// have gone, say, twenty yards. The
true motion of the stone will then be a

transverse line (i.e., a curved line in the vertical

plane), considerably longer than the ftrst

straight and perpendicular line, the height ofthe

mast, and yet nevertheless the stone will have

passed it in the same time. Increase the ship's

velocity as much as you will, the falling stone

shall describe its transverse lines still longer

and longer and yet shall pass them all in those

selfsame two pulses.

In the film a ball is dropped three times:

7

Film Loop 5
GALILEAN RELATinTY: BALL
DROPPED FROM MAST OF SHIP

This film is a partial actualization of an

experiment described by Sagredo in Galileo's

Two New Sciences:

Fig. 1-49

Scene 1

The ball is dropped from the mast. As in

Galileo's discussion, the ball continues to move

horizontally with the boat's velocity, and also it

falls vertically relative to the mast.
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Scene 2
Ihc ball is tipped off a stationary support as

the boat goes by. It has no forward velocity, and

it falls vertically relative to the water surface.

Scene 3
Ihe ball is picked up and held briefly before

being rtjieased.

Ihe ship and earth are frames of reference in

constant relative motion. Each of the three

events can be described as viewed in either

frame of reference. The laws of motion apply for

all six descriptions. The fact that the laws of

motion work for both frames of reference, one

moving at constant velocity with respect to the

other, is what is meant by Galilean relativity.

(The positions and velocities are relative to the

frame of reference, but the laws of motion are

not. A "relativity" principle also states what is

not relative.)

Scene 1 can be described from the boat frame

as follows: "A ball, initially at rest, is released. It

accelerates downward at 9.8 m/sec^ and strikes

a point directly beneath the starting point."

Scene 1 described differently from the earth

frame is: "A ball is projected horizontally

toward the left; its path is a jiarabola and it

strikes a point below and to the left of the

starting point.'

To test your understanding of Galilean rela-

tivity, you should describe the following: Scene

2 from the boat frame; Scene 2 from the earth

frame; Scene 3 from the boat frame; Scene 3

from th(; earth frame.

Film Loop 6
C;ALILE/1N RELATI\^TV: OiyECT
»KOI*I>i:i> FROM AIRCRAFT

A Cessna 150 air-craft 7 m long is mo\ing about

30 m/sec at an altitude of about 60 m. The
action is filmed from the ground as a flare is

dn)pped fn)m the ainTaft. Scene 1 shows part

of the flare's motion; Scene 2, shot fi-om a

gn>ater distance, shows several flaivs di-oppiiig

into a lake; Scene 3 shows the \erlical motion
viewed head-on. Certain frames of the film are

"fix)zen" to allow measurtMuents. The time

interval between frt*eze frames is always the

same.

Seen fn)ni the earth's frame of reference, tin-

motion is that of a projectile whose oiiginal

velocity is the plane's velocity. If gravity is Ihe

only force acting on the flan', its motion should
he a parabola (('an \'ou check this 'i Relati\t' to

the airplane, the motion is that of a body falling

freely from rest. In the frame of reference of the

plane, the motion is vertically downward.

Fig 1-50

The plane is flying approximately at uniform

speed in a straight line, but its path is not

necessarily a horizontal line. The flare starts

with the plane's velocity, in both magnitude

and in direction. Since it also falls freely under
the action of gravity, you expect the flare's

downward displacement below the plane to be

d = Vzat'. The trouble is that \ou cannot be

sure that the first freeze frame occurs at the

very instant the flare is dropped. However,

ther« is a way of getting around this difficulty.

Suppose a time B has elapsed bet\veen the

release of the flare and the first freeze frame.

This time must be added to each of the freeze

frame times (conveniently measured from the

first freeze frame) and so you would have

d = '/zai/ -t-Bi-

To see if the flare follows an equation such as

this, take the square root of each side:

\/d~= (constantly -t-Bl

U you plot Vdagainst f, you expect a straight

line. Moreover, if B = 0, this straight line will

also pass thix)ugh the 0-0 point

Suggested Measurements

(a) Verticiil Motion
Project S(«MU' 1 on paper .At each freeze

frame, when the motion on the screen is

slopped brietlx , mark the positions of the flare

and of the aircraft cockpit. Measure the dis-

placement d of the flare below the plane. I'se

any conx-enient units. The limes can be taken as

inlegei-s, t = 0. 1. 2 designating successive
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freeze frames. Plot Vd~versus t. Is the graph a

straight line? What would be the effect of air

resistance, and how would this show up in

your graph? Can you detect any signs of this?

Does the graph pass through the 0-0 point?

Analyze Scene 2 in the same way.

(b) Horizontal Motion
Use another piece of graph paper with time

(in intervals) plotted horizontally and dis-

placement (in squares) plotted vertically. Using

measurements from your record of the flare's

path, make a graph of the two motions in Scene

2. What are the effects of air resistance on the

horizontal motion? the vertical motion? Ex-

plain your findings between the effect of air

friction on the horizontal and vertical motions.

(c) Acceleration Caused by Gravity

The "constant" in your equation, d =

(constant) (f -f- B)^ is Via; this is the slope of

the straight-line graph obtained in part (a). The
square of the slope gives Vza. Therefore, the

acceleration is twice the square of the slope. In

this way you can obtain the acceleration in

squares per (interval)^. To convert your accel-

eration into meters per second^, you can esti-

mate the size of a "square" from the fact that

the length of the plane is 7 m. The time interval

in seconds between freeze frames can be found

from the slow-motion factor.

Film Loop 7
GALILEAN RELATinXY:
PROJECTILE FIRED \nERTICALLY

A rocket tube is mounted on bearings that leave

the tube free to turn in any direction.

When the tube is hauled along the snow-

covered surface of a frozen lake by a "ski-doo,

'

the bearings allow the tube to remain pointing

vertically upward in spite of some roughness of

path. Equally spaced lamps along the path

allow you to judge whether the ski-doo has

constant velocity or whether it is accelerating. A
preliminary run shows the entire scene; the

setting is in the Laurentian Mountains in the

Province of Quebec at dusk.

Four scenes are photographed. In each case

a rocket flare is fired vertically upward. With

care you can trace a record of the trajectories.

Scene 1

The ski-doo is stationary relative to the earth.

How does the flare move?

Scene 2
The ski-doo moves at uniform velocity rela-

tive to the earth. Describe the motion of the

flare to the earth; describe the motion of the

flare relative to the ski-doo.

Scenes 3 and 4
The ski-doo's speed changes jifter the shot is

fired. In each case describe the motion of the

ski-doo and describe the flare's motion relative

to the earth and relative to the ski-doo. In

which cases are the motions a parabola?

Fig. 1-51

How do the events shown in this film

illustrate the principle of Galilean relativity? In

which frames of reference does the rocket flare

behave the way you would expect it to behave

in all four scenes, knouing that the force is

constant, and assuming Newton's laws of

motion? In which systems do Newton's laws

fail to predict the correct motion in some of the

scenes?

Film Loop 8
ANALYSIS OF A HURDLE RACE. I

The initial scenes in this film show a regulation

hurdle race, with 1-m high hurdles spaced 9 m
apart. (Judging from the number of hurdles

knocked over, the competitors were of some-

thing less than Olympic caliber!) Next, a runner,

Frank White, a 75-kg student at McGill Univer-

sity, is shouTi in medium slow motion islow-

motion factor 3) during a 50-m run. His time

was 8.1 sec. Finally, the beginning of the run is

shown in extreme slow motion islow-motion

factor 80). "Analysis of a Hurdle Race. 11 " has

two more extreme slow-motion sequences.
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Fig 1-52

To study the* runner's motion, measure the

average speed for each of the 1-m intervals in

the slow-motion scene. A "drag-strip" chart

recorder is particularly convenient for record-

ing the data on a single viewing of the loop.

VVliatc;v(!r method you use for measuring time,

the small hut significant variations in speed \%ill

be lost in experimental uncertainty unless you
work very carefully. Repeat each measurement

several times.

The extreme slow-motion sequence shows

the runner from m to 6 m. The seat of the

runner's white shorts might serve as a refer-

ence mark. (What are other reference points on

the runner that could be used? Are all the

reference points equally useful?) Measure the

time to cover each of the distances: 0-1, 1-2,

2-3, 3-4, 4-5, and 5-6 m. Repeat the

measurements several times, view the film over

again, and average your results for each inter-

val. Your accuracy might be improved by

forming a grand average that combines your

average with others in the class. (Should you
use a// the measurements in the class?) Calcu-

late the average speed for each interval, and
plot a graph of speed versus displacement

Draw a smooth graph through the points.

Discuss any interesting features of the graph.

You might assume that the runner's legs

push between the time when a foot is directlv

beneath his hip and the time when that foot

leaves the ground Is there any n»lationship

between your graph of speed and the way the

runner's fcH>t push on the track?

The initial acceleration of the nmner can be

estimated fn)m the time to move fn)m the

starting point to the 1-m mark You can use a

wat<h with a sw«'ep second hand C'alrulate the

averagt' acceleration, in meters per second*,

during this initial interval ilow does this

forward acceleration compare with the mag-

nitude of the acceleration of a falling body?

How much force was required to give the

runner this acceleration? What was the origin

of this force?

I'ilni Loop 9
ANALYSIS OF A HURDLE RACE. II

This film loop, which is a continuation of

"Analvsis of a Hurdle Race. I, " shows two scenes

of a hurdle race photographed at a slow-

motion factor of 80.

In Scene 1, the hurdler moves from 20 m to 26

m, clearing a hurdle at 23 m. In Scene 2, the

runner moves from 40 m to 50 m, clearing a

hurdle at 41 m and sprinting to the finish line at

50 m. Plot graphs of these motions, and discuss

any interesting features. The seat of the run-

ner's pants furnishes a convenient reference

point for measurements. (See the film notes

about "Analysis of a Hurdle Race. I
" for further

details.)

No measurement is entirely precise; mea-

surement error is always present, and it cannot

be ignored. Thus, it may be difficult to tell if the

small changes in the runner's speed are

significant, or are only the result of measure-

ment uncertainties. You are in the best tradi-

tion of experimental science when you pay

close attention to errors.

It is often useful to display the experimental

uncertainty graphically, along \%ith the mea-

sured or computed values.

For example, say that the dragstrip timer was
used to make three different measurements of

the time required for the first meter of the run:

13.7 units, 12.9 units, and 13.5 units, which
gives an average time of 13.28 units. (Ifyou wish

to convert these dragstrip units to seconds, it

will he easier to wait until the graph has been

plotted using \our units, and then add a

seconds scale to the graph. I TTie lou-est and
highest values are about 0.4 units on either side

of the average, so you could report the time as

13.3 ± 0.4 units. The uncertaint>' 0.4 is about 3*'b

of 13.3: therefore, the percentage uncertainty in

the time is 3*^. If you assume that the distance

was exactly 1 m, so that all the uncertaintv is in

the time, then the percentage uncertainty in

the speed will be the same as for the time, 3%.

The slow-motion speed is 100 cm/13.3 time

imits. which equals 7 53 cm/unit Since 3*^ of

7.53 is 0.23, the speed can be rt-ported as

7.53 ± 0.23 cm/unit In graphing this sjwed
value, plot a point at 7.53 and draw an error bar
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Motion in the Heavens

EXPERIMENTS

50

Experiment 2<1

1VAKEI>.EYE
ASTKOxXOMY
Weather permitting, you have been watching

events in the day and night sky since this

course started. Perhaps you have followed the

sun's path, or viewed the moon, planets, or

stars.

From observations much like your own,
scientists in the past developed a remarkable

sequence of theories. The more aware you are

of the motions in the sky and the more vou
interijret them yourself, the more easily you
can follow the development of these theories. If

you do not have your own data, you can use the

results ptT)\'id('d in the following sections.

A. Oiu- l)a\ of

Siui Olist'inatioiis

A studjMit made the obsei-valions of the suns
posit ion on September 23 as shown in fable 2-1

If you plot altitude Iverticallyi against

azimuth (horizontally) on a graph and mark the

hours lor each point it will help sou to answer
thr (|iicsti()iis that follow

TABLE 2-1

Eastern Standard
Time (EST)

Sun's
Altitude

Sun's

Azimuth

7:00 am.
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B. A Year of Sun Observations

A student made the follouing monthly observa-

tions of the sun through a full year.

Dates

Sun's

Noon
Altitude

TABLE 2-2

Sunset
Azimuth

Time Between
Noon and
Sunset

Jan 1

Feb 1

Mar 1

Apr 1

May 1

Jun 1

Jul 1

Aug 1

Sept 1

Oct 1

Nov 1

Dec 1

20°

26

35

47

58

65

66

61

52

40

31

21

238°

245

259

276

291

300

303

295

282

267

250

239

4''25''

4 50

5 27

6 15

6 55

7 30

7 40

7 13

6 35

5 50

5 00

4 30

9. If the longitude was 71°W, what city was the
observer near?
10. Through what range (in degrees) did the
sunset point change during the year?
11. By how much did the observer's time of
sunset change during the year?
12. If the time from sunrise to noon was always
the same as the time between noon and sunset,
how long was the sun above the horizon on the
shortest day? on the longest day?

C. Moon Observations

During October, a student in Las Vegas made
the following observations of the moon at sun-

set when the sun had an azimuth of about 255°.

TABLE 2-3

Date
Angle from
Sun to Moon

Moon
Altitude

Moon
Azimuth

'h = hours, m = minutes.

Use these data to make three plots (different

colors or marks on the same sheet of graph

paper) of the sun's noon altitude, direction at

sunset, and time of sunset after noon. Place

these data on the vertical axis and the dates on

the horizontal axis.

Oct 16

18

20

22

24

26

28

?_

032°

057

081

104

126

147

169

17°

25

28

30

25

16

05

230°

205

180

157

130

106

083

7. What was the sun's noon altitude at

equinoxes (March 21 and September 23)?

8. What was the observer's latitude?

40°

the

13. Plot these positions of the moon on a chart

similar to Fig. 2-1.

14. From the data and your plot, estimate the

dates of new moon, first quarter moon, and full

moon.
15. For each of the points you plotted, sketch the

shape of the lighted area of the moon.

_i ^ : .
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TABLE 2-4 PLANETARY LONGITUOES AT TEN-DAY INTERVALS

im u*v

ivri AM

im MMi

itn iw'

l»l HA>

Ml* ra «<

V7 >14 114

m ><} a<

OCT
OCT
OCT

tno ao m
r« MO ai

TXg HI «•

mo
11*0

•arr

««rT

in* HMi a
1*7* am
IW* »»• II

i*r* <Mi r
l*>* MOT I

1*7* IMT 11

1*7* HAT r
1*7* MAY II

1*71 AM 10

••7* A* B
1*7* AM »

1*1* Ail I*

l«7i JUL a
1*7* Ail a
1*7* MIO •
1(7* MM I*

1*7* MIO a
1*7* » •

IT*
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B.C. By John Hart

THINK lU ASK B.C
WHAT THE MOON IS

D. Locating the Planets

Table 2-4, "Planetary Longitudes," lists the

position of each major planet along the ecliptic.

The positions are given, accurate to the nearest

degree, for every 10-day interval. By interpola-

tion, you can find a planet's position on any
given day.

The column headed "J.D." shows the corre-

sponding Julian Day calendar date for each

entry. This calendar is simply a consecutive

numbering of days that have passed since an
arbitrary "Julian Day 1" in 4713 BC: September

22, 1983, for example, is the same as J.D.

2,445,600.

Julian dates are used by astronomers for

convenience. For example, the number of days

between March 8 and September 26 of this year

is troublesome to figure out, but it is easy to

find by simple subtraction if the Julian Days are

used instead.

Look up the sun's present longitude in the

table. Locate the sun on your SC-1 Constella-

tion Chart. The sun's path, the ecliptic, is the

curved line marked off in 360 degrees of

longitude.

A planet that is just to the west of the sun's

position (to the right on the chart) is "ahead of

the sun," that is, it rises and sets just before the

sun does. One that is 180° from the sun rises

near sundown and is in the sky all night.

When you have decided which planets may
be visible, locate them along the ecliptic shown

on your sky map SC-1. Unlike the sun, they are
not exactly ecliptic, but they are never more
than 8° Iham it. Once you have located the
ecliptic on the Constellation Chart, you know
where to look for a planet among the fixed

stars.

E. Graphing the Position of
the Planets

Here is a useful way to display the information
in Table 2-4, "Planetary Longitudes." On ordi-

nary graph paper, plot the suns longitude

versus time. Use Julian Day numbers along the

horizontal axis, beginning close to the present

date. The plotted points should fall on a nearly

straight line, sloping up toward the right until

they reach 360° and then starting again at zero.

Ifn
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The graph contains a good deaJ of useful

information For example, when will Mercury

and Venus next be close enough to each other

so that you can use bright Venus to help you

find Mercury? Where are the planets, relative to

the sun, when they go through their retrograde

motions?

Experiment 2-2

SIZE OF THE EARTH
You probably know that the earth has a

diameter of about 12,800 km and a circumfer-

ence of about 40,000 km. Suppose someone
challenged you to prove W* How would you go

about it?

The first recorded calculation of the size of

the earth was made a long time ago, in the third

century BC , by Eratosthenes. He compared the

lengths of shadows cast by the sun at two

different jjoints in Egypt. The points were

rather far apart, but were nearly on a north

-

south line on the earth's surface. The experi-

ment you will do here uses a similar method.

Instead of measuring the length of a shadow,

you will measure the angle between the vertical

and the sight line to a star.

You will need a colleague at least 300 km
away, due north or south of your position, to

take simultaneous measurements. The two of

you will need to agree in advance on the star,

the date, and the time for your observations.

See how close you can come to calculating the

actual size of the earth.

Assumptions and Theon' of

the Experiment

Ihe experiment is based on the following

assumptions:

1. The earth is a perfect sphere.

3. A plumb line points toward the center of the

earth.

3. The distance from the earth to the stars and
sun is very gi^at compared with, the «\ulh s

diameter.

The two observers must be located at points

nearly north and south of each other. Suppose
they are at points A and B. separated by a

distance .s, as shown in lig 2-4 Ihe observer at

A and the observer at H l)otb siglit on the same
star at Ihe pii'arran^ed time, when the star is

on or near their meridian, and measure the

angle between the vertical of the plumb line

and the sight line to the st.ii

Fig 2-4

Light rays ftx)m the star reaching locations A
and B are parallel (this is implied by assump-

tion 3).

The difference between the angle ©^ at \ and

the angle Q^ at B, is the angle <^ between the two

radii, as shown in Fig. 2-5.

Fig. 2-5

In the triangle ABO

«* = '^A - ^B> '!>

If C is the circumference of the earth, and s is

an arc of the meridian, you can make the

proportion

^ =A (21
C 360°

Combining equations ill and (2), you have

C- 360°
r

where fl^ and ^b are measured in degrees.

Doing the Experiment

For best nvsults the two locations \ and B

should be directl\- north and south of each
other, and the observations should be made
when the star is near its highest point in the

sky.
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You will need some kind of instrument to

measure the angle 6. Such an instrument is

called an astrolabe. If your instructor does not

have an astrolabe, you can make one fairly

easily from a protractor, a small sighting tube,

and a weighted string assembled according to

the design in Fig. 2-6.

siraw

-p-wood

block.

<-—protr aCtor

-^fbread

^•-washer

An estimate of the uncertainty in your
measurement of d is important. Take several

measurements on the same star and take the

average value of d. Use the spread in values

oi d to estimate the uncertainty of your obser-

vations and of your result.

Your value for the earth's circumference

depends on the over-the-earth distance be-

tween the two points of observation. You
should get this distance from a map, using its

scale.

1. How does the uncertainty of the over-the-earth

distances compare with the uncertainty in your
value for 67

2. What is your calculated value for the circum-
ference of the earth and what is the uncertainty of

your value?

3. Astronomers have found that the average
circumference of the earth is about 40,000 km.
What is the percentage error of your result?

4. Is this acceptable, in terms of the uncertainty of

your measurement?

Rg. 2-6

Aim your astrolabe along the north -south
line and measure the angle from the vertical to

the star as it crosses the north -south line.

If the astrolabe is not aimed along the

north -south line or meridian, the star will be

observed before or after it is highest in the sky.

An error of a few minutes from the time of

crossing the meridian will make little difference

in the angle measured.

B.C. By John Hart

of John Hare and Field Enterprl

The Size of the Earth;

Simplified Version

Perhaps, for lack of a distant colleague, you
were unable to determine the size of the earth

as described above. You may still do so if you
measure the maximum altitude of one of the

objects on the following list and then use the

attached data as described below.

In Santiago, Chile, Maritza Campusano Reyes

made the following obserx'ations of the

maximum altitude of stars and of the sun (all

were observed north of her zenith):

Antares (Alpha Scorpio) 83.0°

Vega (Alpha Lyra) 17.5

Deneb (Alpha Cygnus) 11.5

Altair (Alpha Aquila) 47.5

Fomalhaut (Alpha Pisces Austr.) 86.5

Sun: October 1 59.4°

15 64.8°

November 1 70.7°

15 74.8°

Since Ms. Reyes made her observations when
the objects were highest in the sky, the values

depend only upon her latitude and not upon
her longitude or the time at which the observa-

tions were made.

From a world atlas, find how far north you

are from Santiago. Next, measure the maximum
altitude of one or more of these objects at your

location. Then calculate a value for the circum-

ference of the earth.
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Fig. 2-7 Photographed by Kenneth R Policy, 6:00 P M
CST on December 27, 1973, at Finley Air Force Station,

North Dakota (Lat. 47.5''N, Long. 97.9°W). Exposure: 4

sec at f5.6, 135 mm.

Fig. 2-8 Photographori by David Farley. 6 00 P M CST on
Decomlier 27, 1973, at Starkville. Mississippi (Lat.

33 5 N, Long 88 7 W). Exposure 4 soc at f6.6. 105 mm
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Experiment 2>3

THE DISTANCE TO THE MOON
The moon is so near the earth that two widely
separated observers see the moon in different

positions against the background of fixed stars.

(If you hold your thumb at arm's length and
view it first with one eye and then the other, the

apparent position of your thumb will also shift

against the distant background! This shift in

apparent position from the two ends of the

baseline is an angle called paralla^c

.

1. If the object is moved farther away, will the
parallax angle become larger or smaller?
2. How will the parallax angle change if the
baseline is made longer? shorter?

On December 27. 1973, the moon and the

planets \'enus and Jupiter were close together

in the sky. Simultaneous photographs of the

objects were taken bv two amateur astrono-

mers in North Dakota and Mississippi iFigs.

2-7 and 2-8). The photographers were 1,857 km
apart.

The moon was a thin crescent facing the sun;

the remainder of the moon's disk was illumi-

nated by earthshine. The "star points" of \'enus

were caused by internal reflections in the

camera.

At first glance the two pictures appear

identical, but notice the difference in the

moon's position relative to the nearby star

located between two short vertical lines. The
apparent shift of the moon's position for these

two observers can be found by tracing on thin

paper or plastic the image of the moon, the

centers of the images of Venus and Jupiter, and

a star or two. Then match the tracing over the

second picture.

*?

3. Why should you measure the displacement of

several matching points on the two pictures of the

moon?
4. How do you know that the apparent position of

the moon has changed and not the positions of

Venus and Jupiter?

Record the parallax angle in decimal degrees

from the scale. Now you can use your own
measurements of the parallax angle to obtain

your distance to the moon in kilometers. How
do your results compare with those of others?

The linear diameter of the moon can also be
found from measurements of its angular diam-
eter on the photographs. In this geometrical

relation, the moons diameter is now the

baseline.

TABLE 2-5 TABLE FOR CONVERTING
SMALL ANGLES TO LENGTMS

r Sin 9

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.00000

.00087

.00175

.00262

.00349

.00436

.00524

.00611

.00698

.00785

.00873

AO.or 0.000175

5. What value do you compute for the diameter of

the moon?
6. How many significant figures should you
report?

7. If another object, such as the sun, a comet, or a

star shows only a very small or no parallax, what
may you conclude about its distance?
8. Several approximations have been made in

this analysis. How does each of the following
affect your estimate of the distance to the moon?
a. The baseline is not quite perpendicular to the

direction of the moon.
b. The over-land distance between observers is

not the shortest distance between the observ-
ers.

c. The moon's lighted crescent was overexposed.
d. The observer in Mississippi saw the moon

several degrees higher in the sky than did the

observer in North Dakota.

Experiment 2-4

THE HEIGHT OF PITOX, A
MOUNTAIN ON THE MOON
Closeup photographs of the moon's surface

have been brought back to earth by the Apollo

astronauts IFig. 2-9). Scientists are discovering a

great deal about the moon from such photo-

graphs, as well as from the landings made by

astronauts in Apollo spacecraft.

But long before the Space Age, indeed since

Galileo s time, astronomers have been learning

about the moon's surface. In this experiment,

you will use a photograph iFig. 2-10) taken v\ith

a large telescope in Ccilifomia to estimate the
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Fig. 2-9

height of a mountain on the moon. You will use

a method similar to that used by Galileo,

although you should be able to get a more
accurate value than he could working with his

small telescop>e (and without photographs!).

The photograph of the moon in Fig. 2-9 was

taken at the Lick Observatory very near the time

of the third quarter. Tlie photograph does not

show the moon as you see it in the sky at third

quarter because an astronomical telescoj>e

gives an inverted image, reversing top-and-

bottom and left-and-right. iThus, north is at the

bottom.) Figure 2-18 is a lOx enlai^ement of

the area within the white rectangle in Fig. 2-9.

Why Choose Piton?

Piton, a mountain in the moon's northern

hemisphere, is a slab-like pinnacle in a fairly

flat area. When the photograph was made, with

the moon near third-quarter phase, Piton was
quite close to the line separating the lighted

portion from the darkened portion of the

moon. (This line is called the terminator, i

Assumptions and Relations

Figure 2-11 represents the third-quarter moon
of radius r, with Piton P, its shadow of length /,

at a distance d from the terminator.

Fig. 2-10

The ra\'s of light fmm the sun ran be

considered to be parallel l>erau.se the motin is a

great distance from the sun. Therefore, the

angle at w+iich the sun's rev's strike Piton will

not change if. in imagination, you rotate the

moon on an axis that points toward the sun hi
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Fig. 2-12, the moon has been rotated to put

Piton on the lower edge. In this position, it is

easier to work out the geometiy of the shadow.

JUIyt-I^MT-

Rg. 2-12

Figure 2-13 shows how the height of Piton

can be found from similar triangles; h repre-

sents the height of the mountain, / is the

apparent length of its shadow, d is the distance

of the mountain from the terminator, r is a

radius of the moon (drawn from Piton at P to

the center of the moon's outline at O).

It can be proven geometrically land you can

see from the drawingi that the small triangle

BPA is similar to the large triangle PCO. The
corresponding sides of similar triangles are

proportional, so you can write

h d ., , / X d- = - then, n =
/ r r

All of the quantities on the right can be

measured from the photograph.

The curvature of the moon's surface intro-

duces some error into the calculations, but as

long as the height and shadow are small

compared to the size of the moon, the error is

not great.

Fig. 2-14 A ISO-km^ area of the moon's surface near the

large crater, Goclenius. An unusual feature of this crater

is the prominent rille that crosses the crater rim.

Rg. 2-13

Fig. 2-15 A 10-cm rock photographed on the lunar

surface.
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Measurements and Calculations

Unless you are instructed otherwise, you
should work on a tracing of the moon picture

rather than in the book itself. Trace the outline

of the moon and the location of Piton. If the

photograph was made when the moon was
exactly at third-quarter phase, then the moon
was divided exactly in half by the terminator.

The terminator appears ragged because high-

lands cast shadows across the lighted side and
peaks stick up out of the shadow side. Estimate

the best overall straight line for the terminator

and draw it on your tracing. Use a millimeter

scale to measure the length of Piton's shadow
and the distance from the terminator to Eton's

peak.

It probably will be easiest foryou to do all the

calculations in the scale of the photograph.

Find the height of Piton in centimeters, and
then change to the real scale of the moon.

1. How high is Piton in centimeters on the

photograph scale?

2. The diameter of the moon is 3,476 km. What is

the scale of the photograph?
3. What value do you get for the actual height of

Piton?

4. Which of your measurements is the least

certain? What is your estimate of the uncertainty

of your height for Piton?

5. Astronomers, using more complicated
methods than you used, find Piton to be about 2.3

km high (and about 22 km across at its base).

Does your value differ from the accepted value by

more than your experimental uncertainty? If so,

can you suggest why?

Experiment 2-S

KETKOGK^IDE MOTION
The fllmstrip you will use in this experiment

presents photographs of the positions of Mars,

fmm the lllrs of the Manard College Observa-

torv, for thive oppositions of Mai's, in 1941,

1943, and 1946. Ihe first scries of 12 fraiiuvs

shows the positions of Mars before and after

tin? opposition of October 10, 1941. The series

begins with a photograph on August 3, 1941,

and ends willi onr on Dim rinlx'r H, 1941 The

second scric's shows positions of Mai-s beloiv

and after the opposition of DcciMiiber 5. 1943

This second seiies of sj'ven photographs l)egins

on October 28, 1943, and ends on Febmaiy 19.

1944 Tin* Ihiixl set of 11 picluifs, which shows

Mai-s during nM.")-!**. an)und tin' opposition

ol laiUMiA 14. 194(v begins with ()t tobcr Hi

1945, and ends with Februaiy 23, 1946. Jupiter

also shows in the second and third series.

The photographs were taken by the routine

Harvard Sky Patrol with a camera of 15-cm focal

length and a field of 55'. During each expo-

sure, the camera was driven by a clockwork to

follow the daily western motion of the stars and

hold their images fixed on the photographic

plate. Mars was never in the center of the field

and was sometimes almost at the edge because

the photographs were not made especially to

show Mars. The planet just happened to be in

the star fields being photographed.

The images of the stars and planets are not of

equal brightness on all pictures because the sky

was less clear on some nights and the expo-

sures varied somewhat in duration. Also, the

star images show distortions from limitations of

the camera's lens. Despite these limitations,

however, the pictures are adequate for the uses

described below.

Some of the frames show beautiful pictures

of the Milky Way in Taurus (1943) and Gemini

(1945).

Using the Filmstrip

1. The star fields for each series of frames have

been carefully positioned so that the star

positions are nearly identical, if the frames of

each series are shoun in rapid succession, the

stars will be seen as stationary' on the screen,

while the motion of Mars among the stars is

quite apparent. This would be like viewing a

flip-book. Run the frames through quickly and

notice the changing positions of Mars and

Jupiter.

2. Project the frames on a paper scn>en where

the positions of various stars and of Mars can

be marked. If the star pattern for each frame is

adjusted to match that plotted from the first

frame of that series, the positions of Mars can

be marked accuratelv for the various dates. A
continuous line through these points will be a

track for .Mars. Kstimate the dates of the turning

points. v\1ien Mars l)egins and ends its retro-

grade motion. By using the scale (10°l shown

on one frame, also find the angular size of the

n'trograde loop (Compare your results with the

average vahn^s in the lext. fiage 140, Unit 2.

During 1943- 1944 and again in 1945- 1946.

Jupiter came to opposition several months later

than Mars did. .As a result. Jupiter appears in

the frames and also shows its retrograde

motion Jupiter's opjwsitions wvn* Januarv 11.

1943; Fel>niar> 11. 1944 Manh 13. 1945; and

.April 13. 1946
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Track Jupiter's position and find the dura-

tion and size of its retrograde loop. Compare
your results with the average values listed in

the Text. This is the type of observational

information that Ptolemy, Copernicus, and
Kepler attempted to explain by their theories.

Experiment 2-6

THE SHAPE OF THE EARTH'S
ORBIT
Ptolemy and most of the Greeks thought that

the sun revolved around the earth. But after the

time of Copernicus, the idea gradually became
accepted that the earth and other planets

revolve around the sun. Although you probably

believe the Copemican model, the evidence of

your senses gives you no reason to prefer one
model over the other.

With your unaided eyes you see the sun

going around the sky each day in what appears

to be a circle. This apparent motion of the sun

is easily accounted for by imagining that it is

the ear^h that rotates once a day. But the sun

also has a yearly motion with respect to the

stars. Even ifyou argue that the daily motion of

objects in the sky is due to the turning of the

earth, it is stUl possible to think of the earth as

being at the center of the universe, and to

imagine the sun moving in a year-long orbit

around the earth. Simple measurements show
that the sun's angular size increases and
decreases slightly during the year as if it were

alternately changing its distance from the

earth. An interpretation that fits these observa-

tions is that the sun travels around the earth in

a slightly off-center circle.

During this laboratory exercise you will plot

the sun's apparent orbit with as much accuracy

as possible.

Plotting the Orbit

You know the sun's direction among the stars

on each date that the sun is observed. From its

observed diameter on that date, you can find its

relative distance from the earth. So, date by

date, you can plot the sun's direction and
relative distance. When you connect your

plotted points by a smooth curve, you will have

drawn the sun's apparent orbit.

Fig. 2-16 Frame 4 of the Sun Filmstrip.

For observations you will use a series of sun

photographs taken by the U.S. Naval Observa-

tory at approximately one-month intervals and
printed on a filmstrip. Frame 4, in which the

images of the sun in January and in July are

placed adjacent to each other, has been

reproduced in Fig 2-16 so you can see how
much the apparent size of the sun changes

during the year. Note also how the apparent

size of an object is related to its distance from

you.

By John H»rt

By permission of John H«rc and Field Enterpri
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draw accurately a fan of lines radiating from the

earth in these different directions.

Fig. 2-17 As shown in the diagram, the angular size is

inversely proportional to the distance — the farther

away, the smaller the image.

Procedure

On a large sheet of graph paper (40 cm x 50 cm)

make a dot at the center to represent the earth.

It is particularly important that the graph paper

be veiy large ifyou later plot the orbit of Mars in

Experiments 2-8 and 2-9, which use the results

of the present experiment.

Take the 0° direction (toward a reference

point among the stars) to be along the graph-

paper lines toward the right. This will be the

direction of the sun as seen fixim the earth

on March 21 (Fig. 2-18). The dates of all the

photographs and the directions to the sun,

measured counterclockwise from this 0° direc-

tion, are given in Table 2-6. Use a protractor to

O'
.-l\r*.cttof

of Vm*^/
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1. Is the orbit a circle? If so, where is the center of

the circle? If the orbit is not a circle, what shape is

it?

2. Locate the major axis of the orbit through the

points where the sun passes closest to and
farthest from the earth. What are the approximate
dates of closest approach and greatest distance?

What is the ratio of the largest distance to the

smallest distance?

earth's apparent direction from the sun on the

13 dates, just by changing all the directions 180°

and then making a new sun-centered plot.

Another way is to rotate your plot until top and
bottom cire reversed; this will change all of the

directions by 180°. Relabel the 0° direction;

since it is toward a reference point among the

distant stars, it will still be towcird the right. You
can now label the center as the sun, and the

orbit as the earth's.

A Heliocentric System

Copernicus and his followers adopted the

sun-centered model because they believed that

the solar system could be described more

simply that way. They had no new data that

could not be accounted for by the old model.

Therefore, you should be able to use the

same data to turn things around and plot the

earth's orbit around the sun. Clearly, the two

plots will be similar.

You already have a table of the relative

distances between the sun and the earth. The

dates of largest and smallest distances from the

earth wiU not change, and your table of relative

distances is still valid because it was not based

on wtiich body was moving, only on the

distance between them. Only the directions

used in your plotting will change.

To determine how the angles will change,

remember that when the earth was at the

center of the plot, the sun was in the direction

0°
I to the right) on March 21.

3. This being so, what is the direction of the earth

as seen from the sun on that date? (Figure 2-20

will help explain how to change directions for

a sun-centered diagram.)

\
direction

Experiment 2-7

USING LEXSES TO .MAKE
A TELESCOPE
In this experiment, you will first examine some
of the properties of single lenses. Then, you wiU

combine these lenses to form a telescope,

which you can use to observe the moon, the

planets, and other heaxenh' las well as earth-

bound) objects.

The Simple Magnifier

You know something about lenses already, for

instance, that the best way to use a magnifier is

to hold it immediately in front of the eye and
then move the object you want to examine until

its image appears in sharp focus.

Examine some objects through several differ-

ent lenses. Try lenses of various shapes and
sizes. Separate the lenses that magnify from

those that do not. What is the difference

between lenses that magnify and those that do

not?

1. Arrange the lenses in order of their magnifying
powers. Which lens has the highest magnifying
power?
2. What physical feature of a lens seems to

determine its power or ability to magnify; is it

diameter, thickness, shape, or the curvature of its

surface? To vary the diameter, simply put pieces

of paper or cardboard with various sizes of holes

in them over the lens.

Sketch side views of a high-power lens, of a

low-power lens, and of the highest-power and
lowest-power lenses you can imagine.

If the sun is in the 0° direction from the earth,

then from the sun the earth will appear to be in

just the opposite direction, 180° away from 0°.

You could make a new table of data giving the

Real Images

VV^th one of the lenses you have used, project

an image of a ceiling light or an outdoor scene

on a sheet of paper. Describe all the properties



64 UNIT 2 / MOTION IN THE HEAVENS

of the image that you can observe. An image

that can be projected is called a real image.

3. Do all your lenses from real images?
4. How does the size of the image depend on the

lens?

5. If you want to look 3t a real image without

using the paper, where cJo you have to put your
eye?
6. The image (or an interesting part of it) may be
quite small. How can you use a second lens to

inspect it more closely? Try it.

7. Try using other combinations of lenses. Which
combination gives the greatest magnification?

Making a Telescope

With two lenses properly arranged, you can

magnify distant objects. Figure 2-21 shows a

simple assembly of two lenses to form a

telescope. It consists of a large lens (called the

objective) through which light enters and either

of two interchangeable lenses for eyepieces.

The following notes will help you assemble

your telescope.

1. Ifyou lay the objective down on a flat clean

surface, you will see that one surface is more
curved than the other. The more curved surface

should face the front of the telescope.

2. Clean and dust off the lenses (using lens

tissue or a clean handkerchief) before assembl-

ing and try to keep fingerprints off of it during

assembly.

3. Wrap rubber bands around the slotted end
of the main tube to give a convenient amount of

friction with the draw tube, tight enough so as

not to move once adjusted, but loose enough to

adjust without sticking. Focus by sliding the

draw tube with a rotating motion, not by

moving the eyepiece in the tube.

4. To use high power satisfactorily, a steady

support (a tripod) is essential.

5. Be sure that the lens lies flat in the

high-power eyepiece.

Use your telescope to observe objects inside

and outside the lab. Low power gives about

12 X magnification. High power gives about 30

x

magnification, like Galileo's best telescope.

Mounting the Telescope

If no tripod mount is available, the teiescop>e

can be held in your hands fui low-power
observations. Grasp the telescop>e as far forward

and as far back as possible and brace both arms
firmly against a car roof, telephone pole, or

other rigid support.

With the higher power you must use a

mounting. If a swivel-head camera tripod is

available, the telescop>e can be held in a

wooden saddle by rubber bands, and the

saddle attached to the tripod head by the

head's standard mounting screw. Because

camera tripods are usually too short for

comfortable viewing while you are standing,

you should be seated in a reasonably comfort-

able chair.

Aiming and Focusing

You may have trouble finding objects, esp>e-

cially with the high-power e>'epiece. One tech-

nique is to sight over the tube, aiming slightly

below the object, and then to tilt the tube up
slowly while looking through it and sweeping
left and right. To do this well, you will need
some practice.

Focusing by pulling or pushing the sliding

tube tends to mo\"e the whole telescop>e. To
avoid this, rotate the sliding tube as if it were a

screw.

Eyeglasses will keep your eye farther from

the eyepiece than the best distance. Far-sighted

or near-sighted observers are generally able to

view more satisfactorily by remo\ing their

glasses and refocusing Obserxfrs with astig-

matism ha\-e to decide whether or not the

distorted image (without glasses) is more
annoving than the reduced field of \iew (with

glasses).

i
/>"--' ' n./ff

Fig. 2-21
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Many observers find that they can keep their

eye in line with the telescope while aiming and

focusing if the brow and cheek rest lightly

against the forefinger and thumb.

To minimize shaking the instrument when
using a tripod mounting, remove your hands

from the telescope while actually viewing.

Limitations of Your Telescope

You can get some idea of how much fine detail

to expect when observing the planets by

comparing the angular sizes of the planets uith

the resolving power of the telescope. For a

telescope with a 2.5-cm diameter object lens, to

distinguish between two details, they must be

at least 0.001° apart as seen fix)m the location of

the telescope. The low-power Project Physics

eyepiece may not quite show this much detail,

but the high power will be more than sufficient.

The angular sizes of the planets as viewed

from the earth are:

Venus
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Fig. 2-24 Jupiter photographed with the 500-cm tele-

scope at Mount Palomar

Jupiter is so large that some of the detail on

its disk, like a broad, dark, equatorial cloud belt

(Fig. 2-24), can be detected (especially if you
know it should be there!).

Moon
Moon features stand out mostly because of

shadows. The best observations are made
around the first and third quarters. Make

sketches of your observations, and compare
them to Galileo's sketch on page 194 of your

Text. Look carefully for walls, mountains in the

centers of craters, bright peaks on the dark side

beyond the terminator, and craters within

other craters.

The Pleiades

The Pleiades, a beautiful little star cluster, is

located on the right shoulder of the bull in the

constellation Taurus. These stars are almost

directly overhead in the evening sky in De-

cember. The Pleiades were among the objects

Galileo studied with his first telescope. He
counted 36 stars, which the poet Tennyson

described as "a swarm of fireflies tangled in a

silver braid."

The Hyades
Ibis duster of stars is also in Taun.is, near

the star Aldebaran, which foniis the bull's eye.

The Hyades look like a v The high power may
show that several stars are double.

77ie Gretit Xehulti in Orion
Look about halfway down the row of stars

that fonii the sword of Orion. It is in the

southeastern sky during December and
January Use low power. f'g 2-25

Algol

I'his famous variable star is in the constella-

tion Perseus, south of Cassiopeia. Algol is high

in the eastern sky in December, and nearly

overhead during January. Generally, it is a

second-magnitude star, like the Pole Star. After

remaining bright for more than ZVz days, Algol

fades for 5 hours and becomes a fourth-

magnitude star, like the faint stars of the Little

Dipper. Then, the variable star brightens during

the next 5 hours to its normal brightness. From
one minimum to the next, the period is 2 days,

20 hours, 49 minutes.

Great Nebula in Andromeda
Look high in the western sky in the early

evening in December for this nebula, for by

Januaiy it is low on the horizon. It will app>ear

as a fuzzy patch of light, and is best viewed v\ith

low power. Ihe light you see from this galaxv

has been on its way for neariy 2 million years.

The Milky Way
This is pariicularly rich in Cassiopeia and
Cygnus (if air pollution in your area allows it to

be seen at all).

Obserxir^ Sunspots
CAUTION: Do not look at the sun through the

telescope. The sunlight will injure your eyes.

Figure 2-25 shows an arrangement of a tripod,

the low-power telescope, and a sheet of paper

for projecting sunspots. Cut a hole in a piece of

cardboard so it fits snugly over the object end

of the telescope. This acts as a shield so there is

a shadow area where you can view the

sunspots. First focus the telescopje. using the

high-power eyepiece, on some distant object.

Then, project the image of the sun on a piece of
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B.C.

I TMINK THE ^V»N
AND TUB CLWnI AftS.

&OIH^ To CKASH .

By John Hart

By permission of John Hare and Field Enterprises, Inc.

w^te paper about 60 cm behind the eyepiece.

Focus the image by moving the draw tube

slightly further out. When the image is in focus,

you may see some small dark spots on the

paper. To distinguish marks on the paper from

sunspots, jiggle the paper back and forth. How
can you tell that the spots are not on the

lenses?

Fig. 2-26 The sunspots of April 7, 1947.

By focusing the image farther from the

telescope, you can make the image larger and

not so bright. It may be easier to get the best

focus by moving the paper rather than the

eyepiece tube.

Experiment 2-8

THE ORBIT OF MARS
In this laboratory activity you will derive an

orbit for Mars around the sun by the same
method that Kepler used in discovering that

planetary orbits are ellipticcd. Since the obser-

vations are made from the earth, you will need

the orbit of the earth that you developed in

Experiment 2-6, "The Shape of the Earth's

Orbit. " Make sure that the plot you use for this

experiment represents the orbit of the earth

around the sun, not the sun around the earth.

If you did not do the earth-orbit experiment,

you may use, for an approximate orbit, a circle

of 10-cm radius drawn in the center of a large

sheet of graph paper. Because the eccentricity

of the earth's orbit is very small 10.0171, you can

place the sun at the center of a circular orbit

without introducing a significant error in this

experiment.

From the sun (at the center), draw a line to

the right, parallel to the grid of the graph paper

(Fig. 2-271. Label the line 0°. This line is directed

toward a point on the celestial sphere called

the vernal equinox and is the reference direc-

tion from which angles in the plane of the

earth's orbit (the ecliptic plane) are measured.

The earth crosses this line on September 23.

When the eeirth is on the other side of its orbit

on March 21, the sun is between the earth and

the vernal equinox.

Inarch
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Photographic Observarions of Mars

You will use a booklet containing 16 enlai^ed

sections of photographs of the sky showing

Mars among the stars at various dates between

1931 and 1950. All were made with a small

camera used for the Harvard Observatory Sky

Patrol. In some of the photographs, Mars was

near the center of the field. In many other

photographs Mars was near the edge of the

field where the star images are distorted by the

camera lens. Despite these distortions the

photographs can be used to provide positions

of Mars that are satisfactory for this study.

Photograph Pisa double exposure, but it is still

quite satisfactory.

Changes in the positions of the stars relative

to each other are extremely slow. Only a few

stars near the sun have motions large enough

to be detected after many years observations

with the largest telescopes. Thus, you can

consider the pattern of stars as fixed.

Finding Mars' Location

Mcirs is continually moving among the stars but

is always near the ecliptic. From several

hundred thousand photographs at the Harvard

Observatory, 16 were selected, with the aid of a

computer, to provide pairs of photographs

separated by 687 days, the period of Mars'

journey around the sun as determined by

Copernicus. Thus, each pair of photographs

shows Mars at one place in its orbit.

During these 687 days, the earth makes
nearly two full cycles of its orbit, but the

interval is short of two full years by 43 days.

Therefore, the position of the earth, from which

you can observe Mars, will not be the same for

the two observations of each pair. If you can

determine the direction from the earth towards

Mars for each of the pairs of observations, the

two sight lines must cross at a point on the

orbit of Mars. (See Fig. 2-28.1

Coordinate System Used

When you look into the sky you see no

coordinate system. Coordinate systems are

created for various purposes. The one used

here centers on the ecliptic. Remember that the

ecliptic is the imaginarv' line on the celestial

sphere along wtiich the sun app>ears to mov-e.

Along the ecliptic, longitudes are alwav-s

measured eastward from the O' point ithe

vernal equinox). This is toward the left on star

maps. Latitudes are measured perpendicular to

the ecliptic north or south to 90°. The small

movement of Mars above and below the ecliptic

is considered in Exfjeriment 2-9, "Inclination of

Mars' Orbit
"

To find the coordinates of a star or of Mars,

you must project the coordinate SN-stem upon
the sky. To do this you ar^ provided with

transparent overlays that show the coordinate

system of the ecliptic for each frame. A to P. The

positions of various stars are circled Adjust the

overlay until it fits the star positions. Then you

can read off the longitude and latitude of the

position of Mars. Figure 2-29 shows how you

can interpolate between marked coordinate

lines. Because you are interested in only a small

section of the sky on each photograph, you can

draw each small section of the ecliptic as a

straight line. For plotting, an accuracy of 0.5° is

satisfactory.

Fig. 2-28 Point 2 is the p>osition of the earth 687 days
after leaving point 1 In 687 days. Mars has made exactly

one revolution and so has returned to the same point on
the orbit. The intersection of the sight lines from the

earth determines that point on Mars' orbit.

Fig. 2-29 Interpolation between coordinate lines In the

sketch. Mars (Ml. is at a distance y from the 170 line

Take a piece of paper or card at least 10 cm long Make a

scale divided into 10 equal parts and lat>el alternate

marks 0. 1.2. 3. 4. 5 This gives a scale in 5 steps

Notice that the numbering goes from right to left on this

scale Place the scale so that the edge passes through

the position of Mars Now tilt the scale so that tfw and
5 marks each fall on a grid line Read off the value of y
from the scale In the sketch y 1 ^ so tftat the

longitude of M is 171.5'.
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TABLE 2-7. OBSERVED POSITIONS OF MARS

Geocentric

Long. Let.

Mars-to- Mars-to-

Earth Sun Heliocentric

Distance Distance Long. Lat.

A
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point on Mars' orbit obtained from the data of

the first pair of photographs. By drawing the

intersecting lines from the eight pairs of

positions, you establish eight points on Mars'

orbit.

3. You will notice that there are no points in

one section of the orbit. You can fill in the

missing part because the orbit is symmetrical

about its major axis. Use a compass and, by trial

and error, find a circle that best fits the plotted

points.

Now that you have plotted the orbit, you have

achieved what you set out to do: You have used

Kepler's method to determine the path of Mars

around the sun.

Kepler's Law from Your Plot

If you have time to go on, it is worthwhile to

see how well your plot agrees with Kepler's

generalization about planetary orbits.

1. Does your plot agree with Kepler's conclusion

that the orbit is an ellipse?

2. What is the average sun-to-Mars distance in

astronomical units (AU)?

3. As seen from the sun, what is the direction

(longitude) of Mars' nearest and farthest posi-

tions?

4. During what month is the earth closest to the

orbit of Mars? What would be the minimum
separation between the earth and Mars?
5. What is the eccentricity of the orbit of Mars?
6. Does your plot of Mars' orbit agree with

Kepler's law of areas, which states that a line

drawn from the sun to the planet sweeps out

areas proportional to the time intervals? From
your orbit, you see that Mars was at point B' on
February 5, 1933, and at point C on April 20, 1933,

as shown in Fig. 2-32. There are eight such pairs

of dates in your data. The time intervals are

different for each pair.

Connect these pairs of positions with a line

to the sun, Fig. 2-32. Find the areas of squares

on the graph paper (count a square when more

than half of it lies within the arc^al. Di\ide the

area (in squares) by the number of days in the

interval to find an "area per day" value. Are

these values nearly the same?

7. How much (by what percentage) do they

vary?

8. What is the uncertainty in your area mea-
surements?
9. Is the uncertainty the same for large areas as

for small?

10. Do your results bear out Kepler's law of

areas?

n^l*^
oRBiT

fA*rr«'s c*6'^

APKiL 33 \°.i3

Fig. 2-32 In this example, the time interval is 74 days.

Experiment 2-9

INCLINATION OF MARS' ORBIT

When you plotted the orbit of .Mars in t.xperi-

ment 2-8, you ignored the slight mo\-ement of

the planet above and below the ecliptic This

movement of Mars north and south of the

ecliptic shows that the plane of its orbit is

slightly inclined to the plane of the earth's

orbit. Now you may use the table of values for

Mars' latitude i which you made in Experiment

2-81 to determine the inclination of .Mars' orbit

First make a three-dimensional model of twx>

orbits to see what is meant by the inclination of

orbits. You can do this quickly with two small

pieces of cardboard (or index cards). On each

card draw a circle or ellipse, but hax-e one larger

than the other Mark clearly the position of the

focus I sun I on each card Make a straight cut to

the sun. on one card from the left, on the other

from the right. Slip the cards together until the

sun-points coincide. Tilt the two cards (orbit

planes) at various angles (Fig. 2-331.

>\#V^ >
y-

Rg. 2-33
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Theoiy

From each of the photographs in the set of 16

that you used in Experiment 2-8, you can find

the observed latitude (angle from the ecliptic) of

Mars at a particular point in its orbital plane.

Each of these angles is measured on a photo-

graph taken from the earth. As you can see

from Fig. 2-33, however, it is the sun, not the

earth, that is at the center of the orbit. The

inclination of Mars' orbit must, therefore, be an

angle measured at the sun. It is this angle (the

heliocentric latitude) that you wish to find.

Figure 2-34 shows that Mcirs can be repre-

sented by the head of a pin whose point is

stuck into the ecliptic plane. Mars is seen fix)m

the earth to be north or south of the ecliptic,

but you want the north - south angle of Mars as

seen from the sun. The following example

shows how you can derive the angles as if you
were seeing them irom the sun.

V
KMS tc:u9T\c v>u».\ie \

AlAftS

3.3"

3.3'

Fig. 2-34
1.71 AU

d -- lA

In plate A (March 21, 1933), Mars was about

3.2° north of the ecliptic as seenfrom the earth.

But the earth was considerably closer to Mars

on this date than the sun was. The angular

elevation of Mars above the ecliptic plane as

seen from the sun will therefore be considera-

bly less than 3.2°.

For very small angles, the apparent angular

sizes are inversely proportional to the dis-

tances. For example, if the sun were twice as far

from Mars as the earth, the angle at the sun

would be one-half the angle at the earth.

Measurement on the plot of Mars' orbit

(Elxperiment 2-8) gives the earth- Mars dis-

tance as 9.7 cm (0.97 AU) and the sun- Mars

distance as 17.1 cm (1.71 AU) on the date of the

photograph. The heliocentric latitude of Mars
is, therefore.

9.7 X 3.2°N = 1.8°N
17.1

You can check this value by finding the

heliocentric latitude of this same point in Mars'

orbit on photograph B (February 5, 1933). The
earth was in a different place on this date so the

geocentric latitude and the earth- Mars dis-

tance wiU both be different, but the heliocentric

latitude should be the same to within your
experimental uncertainty (Fig. 2-35).

Fig. 2-35 On February 5, the heliocentric longitude (X^) of

point B on Mars' orbit is 150°; the geocentric longitude

(\g) measured from the earth's position is 169°.

Making the Measurements

Turn to the table of data you made for

Experiment 2-8, on which you recorded the

geocentric latitudes A.g of Mars. On your Mars'

orbit plot from Experiment 2-8, measure the

corresponding earth- Mars and sun- Mars
distances and note them in the same table.

From these two sets of values, calculate the

heliocentric latitudes as explained above. The
values of heliocentric latitude calculated from

the two plates in each pair (A and B, C and D,

etc.) should agree within the limits of your
experimental procedure.

On the plot of Mars' orbit, measure the

heliocentric longitude \h for each of the eight

Mars positions. Heliocentric longitude is mea-
sured from the sun, counterclockwise from the

0° direction (direction toward vernal equinox).

Complete the table given in Experiment 2-8

by entering the earth- Mars and sun- Mars
distances, the geocentric and heliocentric

latitudes, and the geocentric and heliocentric

longitudes for all 16 plates.

Draw a graph that shows how the heliocen-

tric latitude of Mars changes with its heliocen-

tric longitude (see Fig. 2-36).
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Lovciruoe
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Fig. 2-36 Change of Mars' heliocentric latitude with

heliocentric longitude. Label the ecliptic, latitude, as-

cending node, descending node, and inclination of the

orbit in this drawing.

From this graph, you can find two of the

elements that describe the orbit of Mars with

respect to the ecliptic. The point at which Mars

crosses the ecliptic from south to north is

called the ascending node. (The descending

node, on the other side of the orbit, is the point

at which Mars crosses the ecliptic ftxim north

to south.)

The angle between the plane of the earth's

orbit and the plane of Mars' orbit is the

inclination of Mars' orbit /. When Mars reaches

its maximum latitude above the ecliptic, which

occurs at 90° beyond the ascending node, the

planet's maximum latitude equals the inclina-

tion of the orbit /.

Elements of an Orbit

Two angles, the longitude of the ascending

node, 11, and the inclination i, locate the plane

of Mars' ori)it with rt\spect to the plane of the

ecliptic. One mon* angle is needed to orient the

ortiit of Mars in its ort)ital plane. This is the

argument of perihelion a>, shown in Fig. 2-37,

which is the angle in the orbit plane between

the ascending node and perihelion point. On

your plot of Mars' orbit, measure the angle

firom the ascending node il to the direction of

the perihelion to obtain the argument of the

perihelion a».

If you have worked along this far, you have

determined five of the six elements that define

any orbit:

a: semimajor cixis, or average distance (which

determines the period

i

e : eccentricity ( shapie of orbit as given by c/a in

Fig. 2-37)

i: inclination (tilt of orbital plane)

O: longitude of ascending node (wtiere orbital

plane crosses ecliptic)

a»: argument of perihelion (which orients the

orbit in its plane)

These five elements (shown in Fig. 2-37) fix

the orbital plane of any planet or comet in

space, tell the size and shape of the orbit, and

also give its orientation within the orbital

plane. To compute a complete timetable, or

ephemeris , for the body, you need only to know
T, a zero date when the body was at a particular

place in the orbit. Generally, T is gix'en as the

date of a perihelion passage. Photograph G was
made on September 16, 1933. From this you can

estimate a date of perihelion passage for Mars.

Experiment 2-10
THE ORBIT OF MERCITIY
Mercury, the innermost planet, is never very far

from the sun in the sky. It can be seen only

close to the horizon, just before sunrise or just

after sunset, and \iewing is made difficult by

the glare of the sun.

Except for Pluto, which differs in sev-eral

respects from the other planets. Mercuiy has

the most eccentric planetary orbit in the solar

Pkin« of orbi*

Plort«c^ecliptic

Fig. 2-37 The five elements of an orbit. You can
familiarize yourself with these elements of an orbit by
adding them to the three-dimensional model of two
orbits, assuming that the earth's orbit is in the plane of

the ecliptic.

V yf -̂ to vttrr<alequi'«OX
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system (e = 0.206). The large eccentricity of

Mercury's orbit has been of particular impor-

tance, since it has led to one of the tests for

Einstein's general theory of relativity. For a

planet with an orbit inside the earth's, there is a

simpler way to plot the orbit than by the pair

observations you used for Mars. In this experi-

ment, you will use this simpler method to get

the approximate shape of Mercury's orbit.

Mercur\''s Elongations

Assume a heliocentric model for the solcir

system. Mercury's orbit can be found from

Mercury's maximum angles of elongation east

and west from the sun as seen from the earth

on various known dates.

The angle (Fig. 2-38) between the sun and
Mercury, as seen from the earth, is called the

elongation. Note that when the elongation

reaches its maximum value, the sight lines from

the earth are tangent to Mercury's orbit.

Since the orbits of Mercury and the earth are

both elliptical, the greatest value of the elonga-

tion varies from revolution to revolution. The
28° elongation given for Mercury in the Text

refers to the maximum value. Table 2-8 gives

the angles of a number of these greatest

elongations.

Fig. 2-38 The greatest western elongation of Mercury,
May 25, 1964. The elongation had a value of 25' West.

TABLE 2-8. SOME DATES AND ANGLES
OF GREATEST ELONGATION FOR MERCURY*

Date

January 4, 1963

February 14

April 26

June 13

August 24

October 6

December 18

January 27, 1964

April 8

May 25

Elongation
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Plotting the Orbit

Vou can work from the plot of the earth's orbit

that you established in Experiment 2-6. Make
sure that the plot you use for this experiment
represents the orbit of the earth around the

sun, not of the sun around the earth.

If you did not do the earth s orbit experi-

ment, you may use, for an approximate earth

orbit, a circle of 10-cm radius drawn in the

center of a sheet of graph paper. Because the

eccentricity of the earth's orbit is very small

(0.017), you can place the sun at the center of

the orbit without introducing a significant error

in the experiment.

Draw a reference line horizontally from the

center of the circle to the right. Label the line 0°.

This line points toward the vernal equinox and

is the reference from which the earth's position

in its orbit on different dates can be estab-

lished. The point where the 0° line from the sun

crosses the earth's orbit is the earth's position

in its orbit on September 23.

The earth takes about 365 days to move once

around its orbit (360°). Use the rate of approxi-

mately 1° per day, or 30° per month, to establish

the position of the earth on each of the dates

given in Table 2-8. Remember that the earth

moves around this orbit in a counterclockwise

direction, as viewed from the north celestial

pole. Draw radial lines from the sun to each of

the earth positions you have located.

From these positions for the earth, draw

sight lines for the elongation angles. Be sure to

note, fixjm Fig. 2-38, that for an eastern

elongation, Mercury is to the left of the sun as

seen from the earth. F"or a western elongation.

Mercury is to the right of the sun.

You know that on a date of greatest elonga-

tion Mercuiy is somewhere along the sight line,

but you do not know exactly where on the line

to place the planet. You also know that the

sight line is tangent to the orbit. A reasonable

assumption is to put Mercury at the point

along the sight \mv closest to the sun.

You can now find the orl)it of Mercury' b\'

drawing a smooth curve through, or close to,

these points. Remember that the orbit must
touch each sight line without crossing any of

them.

Finding R,,,

The average distance of a planet in an elliptical

orbit is equal to one-half the long diameter of

the ellipse, the semimajor a.xis.

To find the size of the semimajor axis a of

Mercury s ori)it (Fig. 2-40), relatix-e to the earth s

Fig 2-40

semimajor axis,you must first find the aphelion

and perihelion points of the orbit. You can use

a drawing compass to find these points on the

orbit farthest from and closest to the sun.

Measure the greatest diameter of the orbit

along the line perihelion- sun- aphelion.

Since 10 cm corresponds to 1 AU (the

semimajor axis of the earth's orbit), you can

now obtain the semimajor axis of Mercury's

orbit in astronomical units.

Calculating Orbital EccentriciU'

Eccentricitv' is defined as e =c/a (Fig. 2-411.

Since c, the distance from the center of

Mercury's ellipse to the sun, is small on your
plot, you lose accuracy ifyou liy to measure it

directly.

- -^

Fig 2-41

From Fig 2-41, you can see that c is the

difference between Mercury's f>erihelion dis-

tance Ap and the semimajor axis a That is:

c =a - R^

Therefore,
c

e = -
a

a-n.

e = 1 -
.̂1
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You can measure flp and a with reasonable

accuracy fix)m your plotted orbit. Compute e,

and compare your value with the accepted

value, e == 0.206.

Kepler's Second Law
You can test Kepler's equal-area law on your
Mercury orbit in the same way as that de-

scribed in Experiment 2-8, "The Orbit of Mars."

By counting squares, you can find the area

swept out by the radial line fiDm the sun to

Mercury between successive dates of observa-

tion, such as January 4 to February 14, and June

13 to August 24. Divide the area by the number
of days in the interval to get the "area per day."

This should be constant, if Kepler's law holds

for your plot. Is it constant?

Experiment 2-11

STEPfllSE APPROXIMATION
TO AN ORBIT^

You have seen in the Text how Newton
analyzed the motions of bodies in orbit, using

the concept of a centrally directed force. On the

basis of the discussion in the Text Sec. 8.4, you
are now ready to apply Newton's method to

develop an approximate orbit of a satellite or a

comet around the sun. You can also, from your
orbit, check Kepler's law of areas and other

relationships discussed in the Text.

Imagine a ball rolling over a smooth level

surface such as a piece of plate glass.

1. What would you predict for the path of the

ball, based on your knowledge of Newton's laws
of motion?
2. Suppose you were to strike the ball from one

side. Would the path direction change?
3. Would the speed change? Suppose you gave

the ball a series of "sideways" blows of equal

force as it moves along. What do you predict

its path might be?

Reread Sec. 8.4 of the Text if you have

difficulties answering these questions.

"This experiment is based on a similar one de-

veloped by Dr. Leo Lavatelli, University of Illinois,

American Journal of Physics, Vol. 33, p. 605.

Fig. 2-42 Photograph of the comet Cunningham made at

Mount Wilson and Palomar Observatories December 21,

1940. Why do the stars leave trails and the comet does
not?

Your Assumptions

A planet or satellite in orbit has a continuous

force acting on it. As the body moves, the

magnitude and direction of this force change.

To predict exactly the orbit under the applica-

tion of this continually changing force requires

advanced mathematics. However, you can get a

reasonable approximation of the orbit by break-

ing the continuous attraction into many small

steps, in which the force acts as a sharp "blow"

toward the sun once every 60 days. (See Fig.

2-43.)

Fig. 2-43 A body, such as a comet, moving in the vicinity

of the sun will be deflected from its straight-line path by
a gravitational force. The force acts continuously but

Newton has shown that we can think about the orbit as
though it were produced by a series of sharp blows.
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Fig. 2-44

The application of repeated steps is known
as iteration; it is a powerful technique for

solving problems. Modem high-speed digital

computers use repeated steps to solve complex

problems, such as the best path (or paths) for a

space probe to follow between earth and

another planet. \t^
You can now proceed to plot an approximate

comet orbit if you make these additional

assumptions:

1. The force on the comet is an attraction

toward the sun.

2. The force of the blow varies inversely with

the square of the comet's distance from the

sun.

3. The blows occur regularly at equal time •JjV'

intervcds — in this case, 60 days. The mag-

nitude of each brief blow is assumed to equal

the total effect of the continuous attraction of

the sun throughout a 60-day intervjil.

Rg. 2-45

i:

Effect of the Central Force

From Newton's second law you know that the

gravitational force will cause the comet to

accelerate toward the sun. If a force F acts for a

time interval Af on a body of mass m, you
know that

F = ma = m
Af

and, therefore, Ar=^ Ar

This equation relates the change in the

body's velocity to its mass, the force, and the

time for which it acts. The mass m is constant;

so is Af (assumption 3 abovel. The change in

velocity is therefore proportional to the force,

Av^oc p. But remember that the force is not

constant in magnitude: it varies in\ersely with

the square of the distance from comet to sun.

<r
Fig 2-46

<lr

Fig. 2-47

V

4. Is the force of a blow given to the comet when
it is near the sun grerater or smaller than one
given when the comet is far from the sun?
5. Which blow causes the greatest velocity

change?

In Fig. 2-44. the vector v^ represents the

comet's velocity at tin- point .A During tin* finit

60 days, the comet moves from A to B (Fig. 2-451

At B a blow causes a velocity change AvplFig
2-461. The new velocity after the blow is v7= v^

+ Av7, and is found by coinplrting the \'ector

triangle (Fig. 2-47).

A

Fig. 2-48

The comet therefore leax^es point B with

xelocity v^ and continues to mo\f with this

velocity for another 60-day interval Because the

time intervals l>etw?>en blows are always the

same (60 days), the displacement along the

path is proporiional to the velocity, v* You
therefore use a length proportional to the
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comet's velocity to represent its displacement

during each time interval (Fig. 2-48).

Each new velocity is found, as above, by

adding to the previous velocity the Av^ven by

the blow. In this way, step by step, the comet's

orbit is built up.

Scale of the Plot

The shape of the orbit depends on the initial

position and velocity, and on the acting force.

Assume that the comet is first spotted at a

distance of 4 AU from the sun. Also assume that

the comet's velocity at this point is v*= 2 AU/yr

at right angles to the sun- comet distance R.

The following scale factors will reduce the

orbit to a scale that fits conveniently on a 40 x

50 cm piece of graph paper.

1. Let 1 AU be scaled to 6.3 cm so that 4 AU
becomes about 25 cm.

2. Since the comet is hit every 60 days, it is

convenient to express the velocity in astronom-

ical units per 60 days. Adopt a scale factor in

which a velocity vector of 1 AU/60 days is

represented by an arrow 6.3 cm long.

The comet's initial velocity of 2 AU/yr can be

given as 2/365 AU per day, or 2/365 x 60 = 0.33

AU/60 days. This scales to an arrow 2.14 cm
long. This is the displacement A to B of the

comet in the first 60 days.

Computing Av

On the scale, and with the 60-day iteration

interval that has been chosen, the force field of

the sun is such that the Av^given by a blow
when the comet is 1 AU fhjm the sun is 1 AU/60
days.

To avoid computing Av for each value of fl,

you can plot Av against fl on a graph. Then for

any value of fl, you can immediately find the

veilue of Av.

Table 2-9 gives values of fl in astronomiciil

units and in centimeters to fit the scale of your

orbit plot. The table also gives for each value of

fl the corresponding value of Av in AU/60 days

and in centimeters to fit the scale of your orbit

plot.

TABLE 2-9. SCALES FOR R AND Iv

Distance from
the Sun, R

AU cm
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t-^

B in Fig. 2-50). With dividers or a drawing
compass, measure the value of Av correspond-

ing to this R and plot this distance along the

radius line toward the sun (see Fig. 2-50).

Making the Plot

1. Mark the position of the sun S hal^vay up
the large graph paper (held horizontallyl and 30

cm from the right edge.

2. Locate a point 25 cm (4 AU) to the right

from the sun S. This is point A where you first

find the comet (Fig. 2-51).

Fig. 2-S2

^^t^
Ro

Fig. 2-51

3. To represent the comets initial \elocity,

draw vector AB perpendicular to SA (Fig. 2-52).

B is the comet's position at the end of the first

60-dav interval. At B a blow is struck that causes

a change in velocity A\ ,.

4. Use your Av graph to measure the dis-

tance of B from the sun at S, and to find Av, for

this distance (Fig. 2-50).

5. The fon-e. and therefon* the change in

velocity, is always directed towarti the sun.

i A

From B lay off Av, toward S. Call the end of this

short line M (Fig 2-52).

6. Draw the line BC', which is a continuation

of AB and has the same length as AB. That is

where the comet would have gone in the next

60 days if there had been no blow at B

7. The new velocity after the blow is the

vector sum of the old wlocity i represented by

BC') and Av (represented b\ BM' To find the

new velocity v, draw the line C'C parallel to BM
and of equal length (Fig. 2-53). The line BC
represents the new \-elocit>' x-ector v,, the

velocity with which the comet leax'es point B.

8. .-Vgain the comet moves with uniform

\-elocity for 60 da^-s, arriving at point C. Its

displacement in that time is Ad, = v, x 60

da\'s. ami Ix'cause of the scale factor chosen,

the displacement is n'presented by the line BC
(Fig. 2-54).
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«lr^'

Fig. 2-53

Fig. 2-54

9. Repeat steps 1 through 8 to establish point

D, and so forth, for at least 14 or 15 steps (25

steps gives the complete orbit).

10. Connect points A, B, C . . . with a smooth
curve. Your plot is finished.

Prepare for Discussion

6. From your plot, find the perihelion distance.

7. Find the center of the orbit and calculate the

eccentricity of the orbit.

8. What is the period of revolution of your
comet? (Refer to Text, Sec. 7.3.)

9. How does the comet's speed change with its

distance from the sun?
It is interesting to go on to see how well the

orbit obtained by iteration obeys Kepler's laws.

10. Is Kepler's law of ellipses confirmed? (Can
you think of a way to test your curve to see how
nearly it is an ellipse?)

11. Is Kepler's law of equal areas confirmed?

To answer question 11, remember that the

time interval between blovv^ is 60 days, so the

comet is at positions B, C, D . . . , etc., after equal

time intervals. Draw a line from the sun to each

of these points (include A), and you have a set

of triangles.

Find the area of each triangle. The area A of a

triangle is given hyA = Vzafa, where a and b are

altitude and base, respectively. You can also

count squares to find the areas.

More Things to Do
1. The graphical technique you have prac-

ticed can be used for many problems. You can

use it to find out what happens if different

Initial speeds and/or directions are used. You
may wish to use the 1/fl^ graph, or you may
construct a new graph. To do this, use a

different law (for example, force proportional to

1/fl^, to 1/fl, or to fl ) to produce different paths;

actual gravitational forces are not represented

by such force laws.

2. Ifyou use the same force graph but reverse

the direction of the force to make it a repulsion,

you can examine how bodies move under such
a force. Do you know of the existence of any
such repulsive force?

Experiment 3-12

MODEL OF THE ORBIT OF
HALLEyS COMET
Halley's comet is referred to several times in

your Text. If you construct a model of it, you
will find that its orbit has a number of

interesting features.

Since the orbit of the earth around the sun
lies in one plane and the orbit of Halley's comet
lies in another plane intersecting it, you will

need two large pieces of stiff cardboard for

planes on which to plot these orbits.

The Earth's Orbit

Draw the ecirth's orbit first. In the center of one
piece of cardboard, draw a circle with a radius

of 5 cm (1 AU) for the orbit of the earth. On the

same piece of cardboard, also draw approxi-

mate (circular) orbits for Mercury (radius 0.4

AU) and Venus (radius 0.7 AU). For this plot, you
can consider that all of the planet orbits lie in

the same plane. Draw a line from the sun at the

center and mark this line as 0° longitude.

The table on page 4 of this Handbook lists the

apparent position of the sun in the sky on 12

dates. By adding 180° to each of the tabled

values, you can get the positions of the earth in

its orbit as seen from the sun. Mark these

positions on your drawing of the ecirth's orbit.

(If you wish to mark more than those 12

positions, you can do so by using the technique

described on page 4.)

The Comet's Orbit

Figure 2-55 shows the positions of Halley's

comet near the sun in its orbit, which is very
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nearly a parabola. You will construct your own
ori)it of Halley's comet by tracing Fig. 2-55 and

mounting tbe tracing on stiff cardboard.

Combining the Two Orbits

Now you have the two orl)its, the comets anil

the earth's, in their planes, each of which

contains the sun. You need only to fit the two

together in accordance with the elements of

ort)its that you may have used in the experi-

ment on the Inclination of Mars' Orliit

'

The line along which the comet's ortiital

plane cuts the ecliptic plane is called the line of

nodes. Since you have the major axis drawn,

you can locate the ascending node, in the

orbital plane, by measuring a;, the angle from

perihelion in a direction opposite to the

comet's motion (see Fig. 2-551.

To fit the two orbits together, cut a narrow

slit in the ecliptic plane i earth s oriiili along the

line of the ascvnciin^ node in as far as the sun.

The longitude of the comet s ascending mule II

was at 57° as shown in Fig. 2-56. Tlien slit the

comet's orbital plane on the side of the

descendinfi node in as far as the sun (see Fig

2-551 Slip one plane into the other along the

cuts until the sun-points on the twx) planes

come together

To establish the model in three dimensions

you must now fit the twt) planes together at the
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Fig. 2-56

^ / /iSCtAJOINfr
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Rg. 2-57 t[lov£>

correct angle. Remember that the inclination i,

162°, is measured upward (northward) from the

ecliptic in the direction of fl + 90° (see Fig.

2-57). When you fit the two planes together, you
will find that the comet's orbit is on the

underside of the cardboard. The simplest way
to transfer the orbit to the top of the cardboard

is to prick through with a pin at enough points

so that you can draw a smooth curve through

them. Also, you can construct a small tab to

support the orbital plane at the correct angle of

18° (180° - 162°) as shown in Fig. 2-57.

Halley's comet moves in the opposite sense

to the earth and other planets. Whereas the

earth and planets move counterclockwise
when viewed from above (north of) the ecliptic,

Halley's comet moves clockwise.

Fig. 2-58

If you have persevered this far, and your

model is a fairly accurate one, it should be easy

to explain the comet's motion through the sky

shown in Fig. 2-59. The dotted line in the figure

is the ecliptic.

With your model of the comet orbit you can

now answer some very puzzling questions

about the behavior of Halley's comet in 1910.

I
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1. Why did the comet appear to move westward
for many months?
2. How could the comet hold nearly a stationary

place in the sky during the month of April 1910?

3. After remaining nearly stationary for a month,
why did the comet move nearly halfway across

the sky during the month of May 1910?

4. What was the position of the comet in space
relative to the earth on May 19th?

5. If the comet's tail was many millions of miles

long on May 19th, is it likely that the earth passed
through part of the tail?

6. Were people worried about the effect a com-
et's tail might have on life on the earth? (See

newspapers and magazines of 1910!)

7. Did anything unusual happen? How dense is

the material in a comet's tail? Would you expect

anything to have happened?

The elements of Halley's comet are, ap-

proximately:

a (semi-major axis) 17.9 AU
e (eccentricity) 0.967

I (inclination of orbit plane) 162°

fl (longitude of ascending

node) 057°

io (angle to perihelion) 112°

Most recent perihelion date April 20, 1910

From these data, you can calculate that the

period is 76 years, and the perihelion distance

is 0.59 AL'. Halley's comet is again expected at

perihelion on Februaiy 9, 1986.

1986 Comet Return

The three-dimensional model for the orbits of

the earth and Halley's comet in 1909- 1910 can

be used to establish the positions of the earth

and the comet in 1986. The comet will come to

perihelion again on February 9, 1986. If you
locate the earih in its orf)it on that date and

change the dates of the comet's position before

and after perihelion, you will find that at

perihelion the comet is almost directly behind

the sun, far away and difficult to observe.

Since the tail will trail outward behind the

comet, you can also determine how the tail will

be viewed from the earth at various dates:

sideways, foreshortened, or almost head-on.

Consider also the effects of moonlight on the

visibility of the tail; a full moon will occur on

January 25 and Februaiy 22 in 1986 When do
you expect the comet and its tail to be most

readily observed?
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ACTIVITIES
MAKING ANGULAR
MEASUREMENTS
For astronomical observations, and often for

other purposes, you need to estimate the angle

between two objects. You have several instant

measuring devices handy once you calibrate

them. Held out at arm's length in front of you,

they include:

1. your thumb;

2. your fist, not including thumb knuckle;

3. two of your knuckles; and
4. the span ofyour hand from thumb-tip to tip

of little finger when your hand is opened wide.

For a first approximation, your fist is about 8°

and thumb-tip to little finger is between 15° and
20°.

However, since the lengths of people's arms
<md the sizes of their hands vary, you can

calibrate yours using the follovvdng method.
To find the angular size of your thumb, fist,

and hand spem at your arm's length, you can
make use of one simple relationship. An object

viewed from a distance that is 57.4 times its

diameter covers an angle of 1°. For example, a

1-cm circle viewed from 57.4 cm away has an

angular size of 1°.

Set a 10-cm scale on the blackboard chalk

tray. Stand with your eye at a distance of 5.74 m
from the scale. From there, observe how many
centimeters of the scale are covered by your
thumb, etc. Make sure that you have your arm
straight out in front of your nose. Each 10 cm
covered corresponds to 1°. Find some conven-

ient measuring dimensions on your hand.

A Mechanical Aid

You can use an index card and a meter stick

to make a simple instrument for measuring

angles. Remember that when an object with

a given diameter is placed at a distance fiDm

your eye equal to 57.4 times its diameter, it

forms an angle of 1°. This means that a 1-cm
object placed at a distance of 57.4 cm from

your eye would form an angle of 1°. If a 1-cm
diameter object placed at a distance of 57.4 cm
from your eye covers an angle of 1°, at this same
distance, a 2-cm diameter object would cover

2°, and a 5-cm object 5°.

Now you can make a simple device that you
can use to estimate angles of a few degrees.

Cut a series of stepwise slots (as shown in

Fig. 2-60) in the index card. Mount the card

~2.C.rr)

Fig. 2-60

vertically at the 57-cm mark on a meter stick.

Cut flaps in the bottom of the card, fold them to

fit along the stick, and tape the card to the stick

(Fig. 2-61). Hold the zero end of the stick against

your upper lip and observe. (Keep a stiff upper
lip!)

Fig. 2-61

Things to Observe

1. what is the visual angle between the point-

ers of the Big Dipper (see Fig. 2-62)?

J{

Rg. 2-62

2. What is the angular length of Orion's belt?

3. How many degrees away from the sun is the

moon? Observe on several nights at sunset.

4. What is the angular diameter of the moon?
Does it change between the time the moon
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B.C. Bjr John Hart

By p<rali«lon o( John Hart and Field Entrrprlici, I

rises and the time when it is highest in the sky

on a given night? To most people, the moon
seems larger when near the horizon. Is it? See

"The Moon Illusion," Scientific American , July,

1962, p. 120.

EPICYCLES AND RETROGRADE
MOTION
The hand-operated epicycle machine allows

you to explore the motion produced by two

circular motions. You can vary both the ratio of

the turning rates and the ratio of the radii to

find the forms of the different curves that may
be traced out.

The epicycle machine has three possible gear

ratios: 2 to 1 (producing two loops per revolu-

tion), 1 to 1 (one loop per revolutionl, and 1 to 2

(one loop per two revolutions). To change the

ratio, simply slip the drive band to another set

of pulleys. The belt .should be twisted in a figun*

8 so the deferent arm (the long arm) and the

epicycle arm (the short arm) rotate in the same
direction.

AniS

3g^
u n

Fig. 2-63

Tape a light source (penlight cell, holder, and

bulb) securely to one end of the short, epicycle

arm and counterweight the other end of the

arm with another (unlit) light source iFig. 2-63)

If you use a fairiy high rate of rotation in a

darkened room, you and other observers

should be able to see the light source mox-e in

an epic%'cle.

The form of the curve traced depends not

only on the gear ratio but also on the relative

lengths of the arms. As the light is moved closer

to the center of the epicycle arm, the epicycle

loop decreases in size until it becomes a cusp

(Fig. 2-64). UTien the light is \-er>' close to the

center of the epicycle arm, as it would be for

Rg 2-«4
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the motion of the moon around the earth, the

curve will be a slightly distorted circle, as

shown in Fig. 2-65.

Fig. 2-65

To relate this machine to the Ptolemaic

model, in which planets move in epicycles

iiround the earth as a center, you should really

stand at the center of the deferent arm (earth)

and view the lamp against a distant fixed

background. The size of the machine, however,

does not allow you to do this, so you must view

the motion from the side. (Or, you can glue a

spherical glass Christmas-tree ornament at the

center of the machine; the reflection you see in

the bulb is just what you would see if you were

at the center.) The lamp then goes into

retrograde motion each time an observer in

front of the machine sees a loop. The retro-

grade motion is most pronounced when the

light source is far ftxjm the center of the

epicycle axis.

Photographing Epicycles

The motion of the light source can be photo-

graphed by mounting the epicycle machine on
a turntable and holding the center pulley

stationary with a clamp iFig. 2-661. Alternatively,

the machine c£in be held in a burette clamp on
a ringstand and turned by hand.

Fig. 2-67

Fig. 2-68

Fig. 2-69

Fig. 2-66 An epicycle demonstrator connected to a

turntable. Fig. 2-70
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Running the turntable for more than one

revolution may show that the traces do not

exactly overlap. (This prcjbably occurs because

the drive band is not of uniform thickness,

particularly at its joint, or because the pulley

diameters are not in exact proportion.) As the

joining seam in the band runs over either

pulley, the ratio of speeds changes
momentarily and a slight displacement of the

axes takes place. By letting the turntable rotate

for some time, the pattern wall eventually begin

to overlap.

A time photograph of this motion can reveal

very interesting geometric patterns. You might

enjoy taking such pictures as an after-class

activity. Figures 2-67 to 2-70 show four exam-
ples of the many different patterns that can be

produced.

'zOjCiiot

Fig. 2-71

CELESTIAL SPHERE MODEL*
You can make a model of the celestial sphere

with a round-bottom flask. With it, you can see

how the appearance of the sky changes as you
go northward or southward and how the stars

appear to rise and set.

To make this model, you will need, in

addition to the round-bottom flask, a one-hole

rubber stopper to fit its neck, a piece of glass

tubing, paint, a fine brush (or grease pencil), a

star map or a table of star positions, and
considerable patience.

On the bottom of the flask, locate the point

opposite the center of the neck. Mark this point

and label it N for north celestial pole (Fig. 2-711.

With a string or tape, determine the circumfer-

ence of the flask, the greatest distance around

it. This wall be 360° in your model. TTien,

starting at the north celestial pole, mark points

that are one-quarter of the circumference, or

90°, from the North Pole point. These points lie

around the flask on a line that is the celestial

equator. You can mark the equator with a

grease pencil (china marking pencill, or with

paint.

To locate the stars accurately on your "globe

of the sky," you will need a coonlinate system. If

you do not wish to have the coordinate system

marked pennanently on your model, put on
the lines with a grease pencil.

'Adaptod from Ymi and Srirncr. by Paul F. Brand-

vvi-in. rl ;il . llaiTourl Brace. Jo\an(i\icti

Mark a point 23.5° from the North Pole labout

one-quarter of 90°). This will be the pole of the

ecliptic, marked E.P. in Fig. 2-71. The ecliptic

(path of the sunt will be a great circle 90° from

the ecliptic pole Tlie point where the ecliptic

crosses the equator from south to north is

called the vernal equinos. the position of the

sun on March 21. All positions in the sk\' are

located eastward fiDm this point, and north or

south from the equator.

To set up the north- south scale, measure

off eight circles, 10° apart, that run east and
west in the northern hemisphere parallel to the

equator. These lines are like latitude on the

earth but are called declination in the sky.

Repeat the construction of these lines of

declination for the southern hemisphere.

A star's east- west position, called its right

ascension, is recorded in hours eastward from

the vernal tK^uinox. To set up the east- w^est

scale, mark intervals of l/24th of the total

circumference starting at the x'enial {*quinox

Tliese marks are 15° apart i rather than 10°)

since the sky turns through 15° each hour.

From a table of star positions or a star map,
you can locate a star's coordinates, then mark
the star on \our globe ,-MI east - WTst positions

are rxpnvssed eastward or to the nght of the

XTnial equinox as you face \our globe

lo finish the model, put the glass tube into

the stopper so that it almost reaches across the

flask and points to your North Pole point. Then
put enough ink\ water in the flask so that wlien

you hohl the neck straight down, the water just

comes up to the line of the equator. For safety.
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B.C. By John Hart

Piciceo A LOO&c

THE COMSTEUATiOMS

wrap wire around the neck of the flask and over

the stopper so it will not fall out (Fig. 2-72).

eauo^'ci^

CoHK

Fig. 2-72

Now, as you tip the flask, you have a model of

the sky as you would see it from different

latitudes in the Northern Hemisphere. If you
were at the earth's North Pole, the north

celestial pole would be directly overhead and
you would see only the stars in the northern

half of the sky. Ifyou were at latitude 45° N, the

north celestial pole would be halfway between

the horizon and the point directly overhead.

You can simulate the appearance of the sky at

45° N by tipping the axis of your globe to 45°

and rotating it. If you hold your globe with the

tixis horizontal, you would be able to see how
the sky would appear if you were at the

equator.

HOW LONG IS A SIDEREAL DAY?

A sidereal day is the time interval in which a

star travels completely around the sky. To

measure a sidereal day you need an electric

clock and a screw eye.

Choose a neighboring roof or fence towards

the west. Then fix a screw eye as an eyepiece in

some rigid support such as a post or a tree so

that a bright star, when viewed through the

screw eye, wall be a little above the roof (Fig.

2-73).

Fig. 2-73

Record the time when the star viewed

through the screw eye just disappears behind

the roof, then record the time again on the next

night. How long did it take to go around? What

is the uncertainty in your measurement? If you

doubt your result, you can record times for

several nights in a row and average the time

intervals; this should give you a very accurate

measure of a sidereal day. (If your result is not

exactly 24 hours, calculate how many days

would be needed for the difference to add up to

24 hours.)
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SCALE MODEL
OF rHE SOLAK SYSTEM

Most drawings of the solar system £ire badly out

of scale, because it is impossible to show both

the sizes of the sun and planets and their

relative distances on an ordinary-sized piece of

paper. Constructing a simple scale model will

help you develop a better picture of the real

dimensions of the solar system.

Let a tennis ball about 7 cm in diameter

represent the sun. The distance of the earth

from the sun is 107 times the sun's diameter or,

for this model, about 7.5 m. (You can confirm

this easily. In the sky the sun has a diameter of

0.5°, about half the width of your thumb when
held upright at arm's length in front of your

nose. Check this, if you wish, by comparing

your thumb to the angular diameter of the

moon, which is nearly equal to that of the sun;

both have diameters of 0.5°. Now hold your

thumb in the same upright position and walk

away from the tennis ball until its diameter is

about half the wndth of your thumb. You will be

between 7 and 8 m from the ball!) Since the

diameter of the sun is about 1,400,000 km, in

the model 1 cm represents about 200,000 km.

From this scale, the proper scaled distances

and sizes of all the other planets can be

derived.

The moon has an average distance of 384,000

km from the earth and has a diameter of 3,476

km. Wliere is it on the scale model? How large

is it? Completion of the column for the

scale-model distances in Table 2-101 will yield

some surprising results.

TABLE 2-10.

Obl«ct

A SCALE MODEL OF
THE SOLAR SYSTEM

Solar

Distance Diameter
Sample
Object

AU Model km Model
(cm) (approx.) (cm)

Sun 1,400,000 7 tennis ball

Mercury 0.39 4,600

Venus 0.72 12,000

Earth 1.00 750 13,000 pinhead
Mars 152 6 600
Jupiter 5.20 140,000

Saturn 9.45 120,000

Uranus 19.2 48,000

Neptune 30.0 45,000

Pluto 39.5 6,000

Nearest

star 2 7 x 10»

The average distance betwriMi tlu* «Mrlh and
sun is callrd tin* astronomicjil unit (Ain. This

unit is used to describe distance within the

solar system.

BUILD A SUNDLIL

Ifyou are interested in building a sundial, there

are numerous articles in the 'Amateur Scien-

tist" section of Scientific American that you will

find helpful. See particularly the article in the

issue of August 1959. Also see the issues of

September 1953, October 1954, October 1959, or

March 1964. The book Sundials by Mayall and

Mayall ICharles T. Branford Co., pjublishers,

Boston) gives theory and building instructions

for a wide variety of sundials. Encyclop>edias

also have helpful articles.

PLOT AN ANALEM.\1A

Have you seen an analemma? Elxamine a globe

of the earth, and you will usually find a

graduated scale in the shapje of a figure 8. with

dates on it. This figure is called an analemma. It

is used to summarize the changing positions of

the sun during the year.

You can plot your own analemma. Place a

small mirror on a horizontal surface so that the

reflection of the sun at noon falls on a

south-facing wall. Make observations each day

at e-xactly the same time, such as noon and
mark the position of the reflection on a sheet of

paper fastened to the wall. If you remo\-e the

paper each day, you must be sure to replace it

in exactly the same position. Record the date

beside the point The north- south motion is

most e\ident during Septemlxr- October and
March -April You can find more atxiut the

east -west migration of the marks in as-

tronomy texts and encyclopedias under the

subject "equation of time
"

STONEHENGE
Stonehenge (s«h» Text p 130) has been a mvster>'

for centuries Some scientists haw thought that

it was a pagan temple, others that it was a

monument to slaughteretl chieftains I-egends

invoked the powvr of Merlin to explain how the

stones were brought to their present location.

Recent studies indicate that Stonehenge may
haw been an astronomical olwervator^' and
eclipse computer.
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Read "Stonehenge Physics," in the April, 1966

issue of Phvsics Today; Stonehenge Decoded,

by G.S. Hawkins and J.B. White (Dell, 1966); or

see Scientific American, June, 1953. Make a

report and/or a model of Stonehenge for your

clftss.

MOON CRATER NAMES
Prepare a report about how some of the moon
craters were named. See Isaac Asimov's Bio-

graphical Encyclopedia ofScience and Technol-

ogy for material about some of the scientists

whose names were used for craters.

LITERATURE
The astronomical models that you read about

in Chapters 5 and 6, Unit 2, of the Text strongly

influenced the Elizabethan \iew of the world

and the uni\erse. In spite of the ideas of Galileo

and Copernicus, vvriters, philosophers, and

theologians continued to use Aristotelian and

Ptolemaic ideas in their worics. In fact, there are

many references to the crystal-sphere model of

the universe in the writings of Shakespeare,

Donne, and Milton. The references often are

subtle because the ideas were commonly
accepted by the people for whom the works

were written.

For a quick overview of this idea, with

reference to many authors of the period, read

the paperbacks The Elizabethan World Picture,

by E.M.W. Tillyard (Vintage Press) or Basil

VVilley, Seventeenth Century Background
(Doubledayi.

An interesting specific example of the prevail-

ing view, as expressed in literature, is found in

Christopher Marlowe's Doctor Faustus, when
Faustus sells his soul in return for the secrets of

the universe. Speaking to the devil, Faustus

says:

FRAiMES OF REFERENCE
1. Two students, A and B, take hold of opposite

ends of a meter stick or a piece of string one or

two meters long. IfA rotates about on one fixed

spot so that A is always facing B while B walks

around A in a circle, A vvdll see B against a

background of walls and furniture. How does A
appear to B? Ask B to describe how A appears

against the background of walls and furniture.

How do the reports compare? In what direction

did A see B move, toward the left or right? In

which direction did B see A move, toward the

left or right?

2. A second demonstration invokes a camera,

tripod, blinky, and turntable. Mount the camera

on the tripod (using a motor-strobe bracket if

the camera has no tripod connection) and put

the blinky on a turntable. Aim the camera

straight down (Fig. 2-74).

\

Fig. 2-74 *

Take a time exposure with the camera at rest

and the blinky mo\ing one revolution in a circle

(Fig. 2-75). Ifyou do not use the turntable, move

"...Come, Mephistophilis, let us

dispute again

And argue of divine astrology.

Tell me, are there many heavens

above the moon?
Are all celestial bodies but one

globe

As is the substance of this centric

earth? . .

." Fig. 2-75
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the blinky by hand around a circle drawn

faintly on the background. Then take a second

print with the blinky at rest and the camera, on

time exposure, moved steadily by hand about

the axis of the tripod. Try to move the camera at

the same rotational speed as the blinky moved
in the first photo.

Can you tell, just by looking at the photos,

whether the camera or the blinky was moving?

DEMONSTRATING SATELLITE
ORBITS
A piece of thin plastic or a rubber sheet can be

stretched tight and clamped in an embroidery

hoop about 55 cm in diameter. Place the hoop
on some books and put a heavy ball, for

example, a 5-cm-diameter steel ball bearing, in

the middle of the plastic IFig. 2-76). The plastic

will sag so that there is a greater force toward

the center on the ball when it is closer to the

center than when it is farther away.

r/»;^c''//VA'y //•r^/

Fig. 2-76

You can use a smaller hoop on the stage of an

overhead projector. Use small ball bearings,

marbles, or heads as "satellites." Then you will

have a shadow prf)jection of the large central

mass, with the small satellites racing around it.

Be careful not to drop the hall through the

glass.

If you take strolw photos of the motion, you

can check whether Kepler's three laws are

satisfied; you can see where satellites travel

fastest in their ortiits, and how the orbits

themselves turn in space. To take the picture,

set up the hoop on llir floor with black pap«>r

under it.

You can use eitlier the electninic stn)b«' liglit

or the slotted disk stroboscope to take the

pictures. In either case, place the camera
directly over the hoop and the light source at

the side, slightly enough above the [ilane of the

hoop so that the floor under the h(»op i.s not

Rg. 2-77

well lighted (Fig. 2-77). A ball bearing or marble

will make the best pictures.

Here are some questions to think about:

1. Does your model gi\e a true representation

of the gravitational force around the earth? In

what ways does the model fail?

2. Is it more difficult to put a satellite into a

perfectly circular orbit than into an elliptical

one? What conditions must be satisfied for a

circular orbit?

3. Are Kepler's three laws really v-erified?

Should they be?

For additional detail and ideas see "Satellite

Orbit Simulator," Scientific American. October.

1958.

GALILEO
Read Bertolt Brecht's play, Galileo and pre-

sent a part of it for the class There is some
controx-ersy about whether the play truly

reflects what historians believe were Galileo's

feelings. For comparison, \x>u could read The

Crime of Galileo, by Giorgio de Santillana:

Galileo and the Scientific Revolution. Itv I>aura

Fermi: The Galileo Quadricentennial Supple-

ment in Sky and Telescope. Februar>- 1964: or

articles in the April, 1966 issue of The Physics

Teacher, "Galileo: Antagonist." and Galileo

Galilei: An Outline of His Life
"

conic: SEcmoNs models
Obtain from a mathematics teacher a demon-
stration cone thas has l>een cut along se\-eral

difTenMit planes so that when it is taken apart

the planes fonn the four conic sections.
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If such a cone is not available, tape a cone of

paper to the front of a small light source, such

as a flashlight bulb. Shine the light on the wall

and tilt the cone at different angles with respect

to the wall. You can make cill the conic sections

shown in Sec. 7.3 of the Text.

Ifyou have a wall lamp with a circular shade,

the shadows cast on the wall above and below

the lamp are usually hyperbolas. You can check

this by tracing the curve on a Icirge piece of

paper, and seeing whether the points satisfy

the definition of a hyperbola.

CHALLENGING PROBLEM:
FINDING EARTH - SUN
DISTANCE FROM VENUS PHOTOS
Here's a teaser: Assume that Venus has the

same diameter as the earth. Also assume that

the scale of the pictures on page 196 of the Text

is 1.5 seconds of arc per millimeter.

Determine the distance from the earth to the

sun in kilometers.

MEASTOEVG
IRREGIXAR AREAS
Are you tired of counting squares to measure

the area of irregular figures? A device called a

planimeter can save you much drudgery. There

cire several styles, ranging from a simple pocket

knife to a complex arrangement of worm gears

and pivoted arms. See the "Amateur Scientist"

section of ScientificAmerican, August, 1958 and

February, 1959.

Fig. 2-78 M. Babinet prevenu par sa portiere de la visite

de la comete. A lithograph by the French artist Honore
Daumier (1808-1879), Museum of Fine Arts, Boston.

From these data you can calculate that the

perihelion distance flp is 0.33 AU and the

aphelion distance Rg is 4.11 AU.

The comet of 1680 is discussed extensively in

Newton's Principia, where approximate orbital

elements are given. The best parabolic orbital

elements known are:

T = Dec. 18, 1680 / = 60.16°

oj = 350.7° Rp = 0.00626 AU
n = 272.2°

Note that this comet passed veiy close to the

sun. At perihelion, it must have been exposed

to intense destructive forces like the comet of

1965.

Comet Candy had the following parabolic

orbital elements:

T = Feb. 8, 1961 / ^ 150.9°

w = 136.3° Rp = 1.06 AU
n = 176.6°

OTHER COMET ORBITS

If you enjoyed making a model of the orbit of

Hcdley's comet, you may want to make models

of some other comet orbits. Data are given

below for several other comets of interest.

Encke's comet is interesting because it has

the shortest period known for a comet, only 3.3

years. In many ways, it is representative of aill

short-period comets that have orbits of low

inclination and pass near the orbit of Jupiter,

where they are often strongly deviated. The full

ellipse can be drawn at the scale of 10 cm for 1

AU. The orbital elements for Encke's comet are:

n = 335°a = 222 AU
e = 0.85

I = 15°

(t) = 185°

DRAWING A PARABOLIC ORBIT

The parabola is an unusual conic section

whose eccentricity is exactly 1. Geometrically, it

has the interesting property that aR points on a

parabola are equidistant both from the focus

and from a line perpendicular to the major axis

and twice the perihelion distance from the

focus. This construction line is called the

directrix. The geometrical property permits a

quick development of points on a parabola, as

Fig. 2-79 indicates.

Along the major axis, locate a point that is

twice the distance to the perihelion. At that

point draw a line perpendicular to the major

axis. Then with a drawing compass swing an

arc of any length from the focus. Without
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Fig. 2-79 Parabola for orbit with perihelion distance q
0.20 AU.

changing the size of the arc, locate on the

directrix a point such that an arc drawn from

there will intersect the first arc as far as

possible from the directrix; the line from the

directrix to that intersection will be parallel to

the major axis. By changing the size of the arc,

you can establish a series of points on the

parabola. Then draw a smooth curve through

the points.

The number of days for a body mox-ing

around the sun in a pcirabolic orbit to move
from a given solar distance to perihelion is

given in the accompanying table (Table 2-11).

With it, and the date of perihelion, you can

establish the dates at which a comet was at any

point on its parabolic orbit.
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Fig. 2-82

In the case of the planets, the force varies

inversely with the square of the distance

between the sun and the planet. From your

photograph, you can find how the restoring

force on the pendulum changes with distance

R from the rest point (Fig. 2-82). Find Av
between strobe flashes for two sections of the

orbit, one near and one far from the rest point.

How do the accelerations as indicated by the

Av's compare with the distances R? Does the

restoring force depend on distance in the same
way as it does for a planet? If you have a copy

of Newton's Principia available, read Prop-

osition X.

TRIAL OF COPERXICUS
Hold a mock trial for Copernicus. Have two

groups of students represent the prosecution

and the defense. If possible, ha\e English, social

studies, and language instructors serve as the

jury for your trial.
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FILM LOOP NOTES
Film Loop 10
RETROGRADE MOTION:
GEOCEISTTRIC MODEL
The film illustrates the motion of a planet such

as Mars, as seen from the earth. It was made
using a large "epicycle machine" as a model of

the Ptolemaic system (Fig. 2-83).

First, from above, you see the characteristic

retrograde motion during the "loop" when the

planet is closest to the earth. Then the studio

lights go up and you see that the motion is due
to the combination of two circular motions.

One arm of the model rotates at the end of the

other.

The earth, at the center of the model, is then

replaced by a camera that points in a fixed

direction in space. The camera views the

motion of the planet relative to the fixed stars

(the rotation of the earth on its ^lxis is being

ignored). This is the same as ifyou were looking

at the stars and planets from the earth toward

one constellation of the zodiac, such as Sagit-

tarius.

The plcmet, represented by a white globe, is

seen along the plane of motion. The direct

motion of the planet, relative to the fixed stars,

is eastward, toward the left (as it would be if

you were facing south). A planet's retrograde

motion does not always occur at the same
place in the sky, so some retrograde motions

are not visible in the chosen direction of

observation. To simulate obser\'ations of

planets better, an additional three retrograde

loops were photographed using smaller bulbs

and slower speeds.

Note the changes in apparent brightness and
angular size of the globe as it sweeps close to

the camera. Actual planets app>ear only as

points of light to the eye, but a marked change
in brightness can be observed. This was not

considered in the Ptolemaic system, which
focused only on positions in the sky. Film Loop
11 shows a similar model based on a heliocen-

tric theoiy.

Film Loop 11

RETROGRADE MOTION:
HELIOCENTRIC MODEL
This film is based on a lai^e heliocentric

mechanical model. Globes represent the earth

and a planet mo\ing in concentric circles

around the sun (represented by a yellow globe).

The earth (represented by a light blue globe)

passes inside a slower mo\ing outer planet

such as Mars (represented by an orange globe).

Then the earth is replaced by a camera

ha\ing a 25° field of view. TTie camera points in

a fixed direction in space, indicated by an

arrow, thus ignoring the daily rotation of the

earth and concentrating on the motion of the

earth relative to the sun.

The view from the moving earth is shown for

more than one year. First the sun is seen in

direct motion, then Mars comes to opp>osition

and undergoes a retrograde motion loop, and
finally you see the sun again in direct motion

Scenes are viewed from above and along the

plane of motion. Retrograde motion occurs

whenever Mars is in opposition, that is

Fig. 2-«3
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v\'hene\'er Mars is opp>osite the sun as \iev\ed

from the earth. Not ah these oppositions take

place when Mars is in the sector the camera

sees. The time between oppositions a\'erages

about 2.1 years. The film shows that the earth

mo\«s about 2.1 times around its orbit between

opjxjsitions of Mau^.

You can calculate this value. The earth makes

one c^'cle around the sun per year and Mars

makes one cycle around the sun every 1,88

years. So the frequencies of orbital motion are:

/«artt = 1 cvcAt and/^^an = 1 cyc/1.88yr

= 0-532 cyc/yr

The frequency' of the earth relati\-e to Mars is

JtarOi ~Jmnn-

ftat^ -fmm = 1-00 cyc/yT - 0,532 cyc/yr

= 0.468 c\cAt

That is, the earth catches up with and passes

Mars once every

= 2.14 years.
0.468

Note the increase Ln apparent size and

brightness of the globe representing Mars when
it is nearest the earth Mewed with the naked

eye, Mars shows a lai^e variation In brightness

(ratio erf cibout 50:1 1 but always apf>ears to be

only a pwint of light. Through a telescop>e, the

angular size also \'aries as predicted b\' the

model.

The heliocentric model is in some ways

simpler than the geocentric model of Ptolemy,

and gi^-es the general features observed for the

planets: angular p>osition, retrograde motion,

and \ariation in brightness. Howe\-er detailed

numerical agreement between theon.- and oh>-

serva^tion cannot be obtained using circular

orbits.

Fflm Loop 12

JtTITER SATELLITE ORBIT

This time-Lapse stud\' of the orbit of Jupiter's

satellite, lo, was filmed at the Lowell Observat-

ory in Flagstaflf, Arizona, using a 60-cm refractor

t^escope.

Exposures were made at 1-min intervals

during 5e\«n nights. ,An almost complete orbit

of lo is reconstructed using all these exposures.

The film first shows a segment of the orbit as

photographed at the telescop>e a clock shows

the p>a&sage of time Due to smaD errors in

guidiing the telescopje arid atmospheric turbu-

lence, the highly inagni6ed images of Jupiter

and its satellites dance abouL To remove this

Rg. 2-84 Business end of :.' e .'.:' 'efractor at Lowell

Observatory.

unsteadiness, each irruige lover 2100) was

optically centered in the frame. The stabilized

images were joined to giv-e a continuous record

of the motion of lo. Some variation in bright-

ness was caused by haze or cloudiness.

The four Galilean satellites are listed in Table

2-12. On Feb. 3, 1967, the>' had the configuration

shown in Fig. 2-85. The satellites mo\e nearly in

a plane viewed almost edge-on; thus, the\' seem

Rg. 2-«5
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(There are 3.969 frames in the loop.) How does

your result for the period compare with the

value given in Table 2-12?

2. Radius of orbit. Project on paper and mark
the two extreme positions of the satellite,

farthest to the right (at A) and farthest to the left

(at C). To find the radius in kilometers, use

Jupiter's equatorial diameter for a scale.

3. Mass ofJupiter. You can use your values for

the orbit radius and period to calculate the

mass of Jupiter relative to that of the sun (a

similcir calculation based on the satellite Cal-

listo is given in the Text). How does your

experimental result compare with the accepted

value, which is mjm^ — 1/1,048?

Film Loop 13
PROGRAM ORBIT I

A student (Fig. 2-88, right) is plotting the orbit of

a planet, using a stepwise approximation. His

instructor (left) is preparing the computer
program for the same problem. The computer
and the student follow a similar procedure.

Fig. 2-88

Then the program instructs the computer to

calculate the force on the planet from the sun
from the inverse-square law of gravitation.

Newton's laws of motion are used to calculate

how far and in what direction the planet moves
after each blow.

The computer's calculations can be dis-

played in several ways. A table of X and Y values

can be typed or printed. An X- Y plotter can

draw a graph from the values, similar to the

hand-constructed graph made by the student.

The computer results can also be shown on a

cathode-ray tube (CRT), similar to that in a

television set, in the form of a visual trace. In

this film, the X-Y plotter was the mode of

display used.

The dialogue between the computer and the

operator for Trial 1 is as follows. The numerical

values are entered at the computer typewriter

by the operator after the computer types the

message requesting them.

Computer: GIVE ME INITIAL POSITION IN

AU . . .

Operator: X = 4

Y =

Computer: GIVE ME INITIAL VELOCITY IN

AU/YR . . .

Operator: XVEL =
YVEL = 2

Computer: GIVE ME CALCULATION STEP IN

DAYS . . .

Operator: 60

Computer: GIVE ME NUMBER OF STEPS FOR
EACH POINT PLOTTED . . .

Operator: 1

Computer: GIVE ME DISPLAY MODE . . .

Operator: X-Y PLOTTER

The computer 'language" used was Fortran.

The FORTRAN program (on a stack of punched

cards) consists of the "rules of the game": the

laws of motion and of gravitation. These rules

describe precisely how the calculation is to be

done. The program is translated and stored in

the computer's memory.
The calculation begins with the choice of

initial position and velocity of the planet. The
initial position values of X and Y are selected

and also the initial components of velocity

XVEL and YVEL (XVEL is the name of a single

variable, not a product of four variables).

You can see that the orbit displayed on the

X-Y plotter, like the student's graph, does not

close. This is surprising, as you know that the

orbits of planets are closed. Both orbits fail to

close exactly. Perhaps too much error is

introduced by using such large steps in the

step-by-step approximation. The blows may be

too infrequent near perihelion, where the force

is largest, to be a good approximation to a

continuously acting force. In Film Loop 14,

"Program Orbit II," the calculations ai"e based

upon smaller steps, and you can see if this

explanation is reasonable.
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Film lAHtp 14
PROGRAM ORBIT II

In this continuation of the film "Program Orbit

I," a computer is again used to plot a planetary

orbit with a force inversely proportional to the

square of the distance. The computer program

adopts Newton's laws of motion. At equal

intervals, blows act on the body. The orbit

calculated in the previous film probably failed

to close because the blows were spaced too far

apart. You could calculate the orbit using many
more blows, but to do this by hand would

require much more time and effort. In the

computer calculation, you need only specify a

smaller time interval between the calculated

points. The laws of motion are the same as

before, so the same program is used.

A portion of the "dialogue" between the

computer and the operator for Trial 2 is as

follows:

Computer: GIVE ME CALCULATION STEP IN

DAYS . . .

Operator: 3

Computer: GIVE ME NUMBER OF STEPS FOR
EACH POINT PLOTTED . .

Operator 7

Computer: GIVE ME DISPLAY MODE . . .

Operator: X- Y PLOTTER

Points are now calculated every three days (20

times as many calculations as for Trial 1 on the

"Program Orbit I" film), but to avoid a graph

with too many points, only one out of seven of

the calculated points is plotted.

The computer output in this film can also be

displayed on the face of a cathode-ray tube

(CRT). The CRT display has the ad\'antage of

speed and flexibility and is used in the other

loops in this series, Film Loops 15, 16, and 17

On the other hand, the permanent record

produced by the X- Y plotter is sometimes veiy

convenient.

Orbit Program

The computer program for orbits is written in

FORTRAN II and includes "ACCEPT" (data) state-

ments used on an IBM 1620 input txpewriter

(Fig. 2-89).

With slight modification, the program
worketi on a CDC 3100 and CDC: 3200, as shown
in Film I^xips 13 and 14, "Pn)grani Orbit I and

"Program Orbit II," With additional slight

modifications (in statement 16 and the three

sucrmling statiMurnt.s in Fig 2-89) it ran I>e
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used for other force laws. A similar program is

presented and explained in FORTK\.\for Physics

by Alfred M Bork (Addison-V\"esley, 19671

Note that it is necessary' to ha\¥ a subroutine

MARK. In this case, it is used to plot the points

on an X-Y plotter, but MARK could be

replaced by a PRINT statement to print the X

and Y coordinates.

Film Loop tS
CENTRAL FORCEkS:
ITERATED BLOH'S

In Chapter 8 and in Experiment 2-11 and Film

Loop 13 on the stepwise approximation of

orbits. Kepler's law of areas applies to objects

acted on b\ a central force The force in each

case was attrarti\f and was either constant or

varied smootWy according to some pattern. But

suppose the central force is repulsiw; that is.

directed awav from the center' Suppose it is

sometimes attractiw and sometimes repulsix-e?

Wliat if the amount of force applied each time

varies unsvstrmatically' Under these circum-

stances, would the law of areas still hold? You
can use this film to find out.

The film was made by photographing the

face of a cathode-ray tube (CRT) that displayetl
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the output of a computer. It is important to

realize the role of the computer program in this

film. It controlled the change in direction and

change in speed of the "object" as a result of a

"blow." This is how the computer program uses

Newton's laws of motion to predict the result of

applying a brief impulsive force, or blow. The

program remained the same for all parts of the

loop, just as Newton's laws remain the same

during all experiments in a laboratory. How-

ever, at one place in the program, the operator

had to specify how he wanted the force to vary.

Random Blows

Figure 2-90 shows part of the motion of the

body as blows are repeatedly applied at equal

time intervals. No one decided in advance how
great each blow was to be. The computer was

programmed to select a number at random to

represent the magnitude of the blow. The

directions toward or away from the center were

also selected at random, although a slight

preference for attractive blows was built in so

that the pattern would be likely to stay on the

face of the CRT. The dots appear at equal time

intervals. The intensity and direction of each

blow is represented by the length of line at the

point of the blow.

Study the photograph. How many blows

were attractive? How many were repulsive?

Were any blows so small as to be negligible?

Rg. 2-90

You can see if the law of areas applies to this

random motion. Project the film on a piece of

paper, mark the center, and mark the points

where the blows were applied. Now measure

the areas of the triangles. Does the moving body

sweep over equal areas in equal time intervals?

Force Proportional to Distance

If a weight on a string is pulled back and

released with a sideways shove, it moves in an

elliptical orbit with the force center (lowest

point) at the center of the ellipse. A similar path

is traced on the CRT in this segment of the film.

Notice how the force varies at different dis-

tances firom the center. A smooth orbit is

approximated by the computer by having the

blows come at shorter time intervals. In frame

2(a), four blov^ are used for a full orbit; in 2(b)

there are nine blows, and in 2(c), 20 blows,

which give a good approximation of the ellipse

that is observed with this force. Geometrically,

how does this orbit differ from planetaiy orbits?

How is it different physically?

Inverse-Square Force

A similar program is used wath two pl<inets

simultaneously, but udth a force on each

varying inversely as the square of the distance

from a force center. Unlike the real situation,

the program assumes that the planets do not

exert forces on one another. For the resulting

ellipses, the force center is at one focus

(Kepler's first law), not at the center of the

ellipse as in the previous case.

In this film, the computer has done

thousands of times faster what you could do if

you had enormous patience and time. With the

computer you can change conditions easily,

and thus investigate many different cases and

display the results. Once told what to do, the

computer makes fewer calculation errors than

a person.

Film Loop 16
KEPLER'S LAWS
A computer program similar to that used in the

film "Central Forces: Iterated Blows ' causes the

computer to display the motion of two planets.

Blows directed toward a center (the sun), act on

each planet in equal time intervals. The force

exerted by the planets on one another is

ignored in the program; each is attracted only

by the sun, by a force that varies inversely as the

square of the distance from the sun.
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Initial positions and initial velocities for the

planets were selected. The positions of the

planets are shown as dots on the face of the

cathode-ray tube at regular intervals. (Many
more points were calculated between those

displayed.)

You can check Kepler's three laws by project-

ing on paper and marking successive positions

of the planets. The law of areas can be verified

by drawang triangles and measuring areas. Find

the areas swept out in at least three places:

near perihelion, near aphelion, and at a point

approximately midway between perihelion and
aphelion.

Kepler's third law holds that in any given

planetary system the squares of the periods of

the planets are proportional to the cubes of

their average distances from the object around

which they are orbiting. In symbols,

where T is the period and flav is the average

distance. Thus, in any one system, the value of

TVflav^ ought to be the same for all planets.

You can use this film to check Kepler's law of

periods by measuring T for each of the two

orbits shown, and then computing T^/R^y^ for

each. To measure the periods of revolution, use

a clock or watch with a sweep second hand.

Another way is to count the number of plotted

points in each orbit. To find flav for each orbit,

measure the perihelion and aphelion distances

(flp and fla) and take their average (Fig 2-91).

Fig. 2-91 The mean distance R^, of a planet P orbiting

about the sun is (/?,. + R,)l2

How close is the iigrccmeiit luMween \our

two values of TVfl.v'? Which is the greater

souH'e of em)r, the measurement of T or of fl „ :*

To check Kepler's first law, see if the orbit is

an ellipse with the sun at a focus. You can use

string and thumbtacks to draw an ellipse.

Locate the empty focus, svmmetrical with

respect to the sun's position. Place tacks in a

board at these two points. Make a loop of string

as shown in Fig. 2-92.

Rg. 2-92

Put your pencil in the string loop and draw
the ellipse, keeping the string taut. Does the

ellipse match the observed orbit of the planet?

What other methods can be used to find

whether a curve is a good approximation of an
ellipse?

You might ask whether checking Kepler's

laws for these orbits is just busy-work, since the

computer already "knew " Kepler's laws and
used them in calculating the orbits. But the

computer was not given instructions for

Kepler's laws. V\'hat you are checking is

whether Newton's laws lead to motions that fit

Kepler's descriptive laws. The computer
"knew" (through the program gi\"en it) only

Newlon's laws of motion and the in\-erse-

square law of gra\itation. This compulation is

exactly w+»at Nev\1on did, but without the aid of

a computer to do the routine work.

Film Loop 17
UNl^SrAL ORBITS
In this film, a modification of the computer
program described in "Central Forres: Iterated

Blows' is used. There are two sequences: The
first shows the eflr€»ct of a disturbing force on an

ortiit prtMluretl by a central inwrse-square

force: the second shows an orbit produced by

an in\'erse-cul>e force.

The word prrturbation refers to a small

variation in the motion of a celestial bod\'
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Fig. 2-93 Fig. 2-94

caused by the gravitational attraction of

another body. For example, the planet Neptune
was discovered because of the perturbation it

caused in the orbit of Uranus. The main force

on Uranus is the gravitational pull of the sun,

and the force exerted on it by Neptune causes

a perturbation that changes the orbit of Uranus

very slightly. By working backward, astrono-

mers were able to predict the position and
mass of the unknown planet from its small

effect on the orbit of Uranus. This spectacular

"astronomy of the invisible" was rightly re-

garded as a triumph for the Newtonian law of

universal gravitation.

Typically, a planet's entire orbit rotates

slowly, because of the smedl pulls of other

planets and the retarding force of friction due
to dust in space. This effect is called advance of

perihelion . Mercury's perihelion advances

about 500 seconds of eirc (0.14°) per century.

Most of this was explained by perturbations

due to the other planets. However, about 43

seconds per century remained unexplained.

When Einstein reexamined the nature of space

and time in developing the theory of relativity,

he developed a new gravitational theory that

modified Newton's theory in crucial ways.

Relativity theory is important for bodies moving

at high speeds or near massive bodies. Mer-

cury's orbit is closest to the sun and therefore

most affected by Einstein's extension of the law

of gravitation. Relativity was successful in

explaining the extra 43 seconds per century of

advance of Mercury's perihelion.

The first sequence shows the advance of

perihelion due to a small force proportional to

the distance fl, added to the usual inverse-

square force. The "dialogue " between operator

and computer sttirts as follows:

PRECESSION PROGRAM WILL USE
ACCEL = G/(R'R} + P'R

GIVE ME PERTURBATION P
P = 0.66666

GIVE ME INITIAL POSITION IN AU
X = 2

Y =
GIVE ME INITIAL VELOCITY IN AUATl
XVEL =
YVEL = 3

The symbol * means multiplication in the

FORTRA.\ language used in the program. Thus,

G/tfl'fl) is the inverse-square force, and P'R is

the perturbing force, proportional to R

.

In the second part of the film, the force is an

inverse-cube force. The orbit resulting from the

inverse-cube attractive force, as from most force

laws, is not closed. The planet spirals into the

sun in a "catastrophic " orbit. As the planet

approaches the sun, it speeds up, so points are

separated by a large firaction of a revolution.

Different initial positions and velocities would
lead to quite different orbits.
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Experiment 3-1

COLLISIOXS
IN OXE UIMEIVSIOX. I

In this experiment, you will investigate the

motion of two objects interacting in one
dimension. The interactions (explosions and
collisions in the cases treated here) are called

one-diiiuMisional because the objects move
along a single straight line. Your purpose is to

look for quantities or combinations of quan-

tities that remain unchanged before and after

the interaction, that is, quantities that are

conserved.

Your experimental explosions and collisions

may seem not only lame but also artificial and
unlike the ones you see around you in eveiyday

life. But this is tyjiical of many scientific

experiments, which simplifv the situation so as

to make it easier to makj* meaningful mea-
sun'MU-nls and to tlisctner patterns in the

obseivetl behavior. The underlying laws an* the

same for all phenomena, whether or not they

an» in a laboratory.

Two clifTenMit ways of observing interactions

an» described hen* land two others in Kx|M'ri-

ment 3-21. You will probably use only one of

them. In each method, the friction between the

interacting objects and their surroundings is

kept as small as possible, so that the objects are

a nearly isolated system Whichev-er method
you do follow, you should handle your results

in the way described in the final section.

"Analysis of Data."

METHOD A. Dxnamics Carts

"Explosions are easily studied using the

low-friction dvTiamics carts. Squee«' the loop

of spring steel flat and slip a loop of thn»ad over

it to hold il compn'ssed Wi\ the compressetl

loop between two carts on the floor or on a

smooth table (Fig 3-11 \Mien you release the

spring by burning the thread, the carts fly apart

with wlocities that \ou can measure from a

strobe (ihotograph or b\ ain of the techniques

you learned in eariier exjK'riments

U)ad the carts with a variety of weights to

create simple ratios of masses, for example. 2 to

1 or 3 to 2. Take data for as great a x-ariety of

mass ratios as time permits Because friction

will gradualK slow the carts down, vou should
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Fig. 3-1

make measurements on the speeds im-

mediately after the explosion is over (that is,

when the spring stops pushing).

Since you are interested only in comparing

the speeds of the two carts, you can express

those speeds in any units you wish, without

worrying about the exact scale of the photo-

graph and the exact strobe rate. For example,

you can use distance units measured directly

from the photograph I in millimeters) and use

time units equal to the time interval between

strobe images. Ifyou follow that procedure, the

speeds recorded in your notes will be in

millimeters per interval.

Remember that you can get data &x)m the

negative of a Polaroid picture as well as from

the positive print.

METHOD B. Air Track

The air track allows you to observe collisions

between objects, "gliders," that move with

almost no friction. You can take stroboscopic

photographs of the gliders either with the

xenon strobe or by using a rotating slotted disk

in front of the camera.

The air track has three gliders: two small

ones with the same mass, and a larger one with

just twice the mass of a small one. A small and a

large glider can be coupled together to make
one glider so that you can have collisions

between gliders whose masses are in the ratio

of 1:1, 2:1, and 3:1. (If you add light sources to

the gliders, their masses will no longer be in the

same simple ratios. You can find the masses
from the measured weights of the glider and
light source.)

You can arrange to have the gliders bounce
apart after they collide (elastic collision) or stick

together (inelastic collision). Good technique is

important if you are to get consistent results.

Before tciking any pictures, try both elastic and
inelastic collisions with a variety of mass ratios.

Then, when you have chosen one type to

analyze, rehearse each step of your procedure
with your partners before you go ahead.

You can use a good photograph to find the

speeds of both carts, before and after they

collide. Since you are interested only in com-
paring the speeds before and after each colli-

sion, you can express speeds in any unit you
wish, without worrying about the exact scale of

the photograph or the exact strobe rate. For

example, if you use distance units measured
directly ftxjm the photograph (in millimeters)

and time units equal to the time interval

between strobe images, the speeds recorded in

your notes will be in millimeters per interval.

Remember that you can get data from the

negative of your Polaroid picture as well as

ftx)m your positive print.

^ -^ "^

Fig. 3-2

Analysis of Data

Assemble all your data in a table having
column headings for the mass of each object,

m^^ and m^, the speeds before the interaction,

v^ and Vg (for explosions, v.^ = v% = 0), and the

speeds after the collision, v^' and Vg'.

Examine your table carefully. Search for

quantities or combinations of quantities that

remain unchanged before and after the interac-

tion.

1. is speed a conserved quantity? That is, does
the quantity (v^ + v„) equal the quantity (v^' -r

2. Consider the direction as well as the speed.
Define velocity to the right as positive and velocity

to the left as negative. Is velocity a conserved
quantity?

3. If neither speed nor velocity is conserved, try a

quantity that combines the mass and velocity of

each cart. Compare (m^^v^ + n^,^v^^) with {m^v^'
+m„Vn') for each interaction. In the same way
compare mlv, mv, m^v, or any other lilcely

combinations you can think of, before and after

interaction. What conclusions do you reach?
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Experiment 3-2

f:oLMSlows
IN ONE DIMENSION. II

METHOD A. Film Loops
Film Loops 18, 19, and 20 show one-
dimensional collisions that you cannot easily

perform in your own laboratory. They were
filmed with a very high-speed camera, produc-
ing the effect of slow motion when projected at

the standarxl rate. You can make measurements
directly from the pictures projected onto graph
paper. Since you are interested only in compar-
ing speeds before and after a collision, you can
express speeds in any unit you wish, that is,

you can make measurements in any convenient

distance and time units.

Notes for these film loops are located on
pages 156 and 157. If you use these loops, read

the notes carefully before taking your data.

METHOD B. Stroboscopic Photo-
graphs
Strxjboscopic photographs showing seven dif-

ferent examples of one-dimensional collisions

appear on the following pages.* They are useful

here for studying momentum and again later

for studying kinetic energy.

For each event, you should find the speeds of
the balls before and after collision. From the
values for the mass and speed of each ball,

calculate the total momentum before and after

collision. Use the same; values to calculate the

total kiin'tic cncrgv before and after collision.

You should read Section 1 before analyzing

any of the events, in order to find out what
measurements to make and how the collisions

were prt)duced. After you have made your
measurements, turn to Section II for questions

to answer about each event.

I. The Measurements Vou Will Make
To make the necessary' measurements, you will

need a metric ruler marked in millimeters,

preferably of transparent plastic with sharp
scale markings Before starting your work,

consult Fig. 3-2 for suggestions on imprx)\ing

your measuring technique.

Figur^e 3-3 shows schematically that the

colliding balls were hung from very long wires.

The balls were released from rest, and their

double-wii'j' (bifilar) suspensions guided them
to a s(juaii'ly head-on collision Sti-oboscopes

illuminaU'tl the 90 cm x 120 cm rx'ctangle that

•Rnpnnhirod by (icnnisiiiun of National Film Boarti

(if ('aiKida

is edge c^ imagm

was the field of \iew of the camera. The
stroboscop>es are not shown in Fig. 3-3.

Notice the two rods whose tops reach into

the field of view. These rods were 1 m (±2 mm)
apart, measured ftxim top center of one rx>d to

top center of the other. The tops of these rods

are visible in the photographs on which you
will make your measurements. This enables

you to convert your measurements to actual

distances if you wish. However, it is easier to

use the lengths in millimeters measured di-

rectly on the photograph if you are merely
going to compare momenta
The balls speed up as the\' mo\e into the

field of view. Likewise, as they leave the field of

view, thev slow down. Therefore successive

^

^

^^

Fig. 3-3 Setup for photographing or>»-dim«nsion«l
collisions
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displacements on the stroboscopic photo-

graph, each of which took exactly the same
time, will not necessarily be equal in length.

Check this with your ruler.

As you measure a photograph, number the

position of each ball at successive flashes of the

stroboscope. Note the interval during which
the collision occurred. Identify the clearest

time interval for finding the velocity of each ball

(a) before the collision and (b) after the

collision. Then mark this information necir each

side of the interval.

II. Questions To Be Answered About
Each Event

After you have recorded the masses (or relative

masses) given for each baU and have recorded

the necessciry measurements of velocities, ans-

wer the following questions.

1. What is the total momentum of the system

of two balls before the collision? Keep in mind
here that velocity and, therefore, momentum
are vector quantities.

2. What is the total momentum of the system

of two balls after the collision?

3. Was momentum conserved within the limits

of precision of your measurements?

Event 1

The photographs of this Event 1 and aU the

following events appear as Figs. 3-11 to 3-17.

This event is also shown as the first example in

Film Loop 18, "One-Dimensional Collisions. I."

Figure 3-4 shows that ball B was initially at

rest. After the collision, both balls moved off to

the left. (The balls are made of hardened steel.)

B-VENT 1

before

&Vg-NT 2.

be-fc ^ o
i)50 yam^ 632 grams

a-ft^r

Fig. 3-5
O

2>50 ^amt> 52>2 jranris

collision reversed the direction of motion of

ball B and sent ball A off to the right. (The balls

are of hardened steel.)

As you can tell by inspection, bail B moved
slowly after collision, and thus you may have

difficulty getting a precise value for its speed.

This means that your value for this speed is the

least reliable of your four measurements of

speed. Nevertheless, this fact has only a small

influence on the reliability ofyour value for the

total momentum after collision. Can you ex-

plain why this should be so?

Why was the direction of motion of ball B

reversed by the collision?

If you have already studied Event 1, you wall

notice that the same balls were used in Events 1

and 2. Check your velocity data, and you will

find that the initial speeds were nearly equal.

Thus, Event 2 was truly the reverse of Event 1

.

Why, then, was the direction of motion of ball A
in Event 1 not reversed although the direction

of ball B in Event 2 was reversed?

Event 3
This event is shown as the first example in

Film Loop 19, "One-Dimensional Collisions. II."

Event 3 is not recommended until you have

studied one of the other events. Event 3 is

especially recommended as a companion to

Event 4.

Figure 3-6 shows that a massive ball A
entered from the left. A less massive ball B came

Fig. 3-4

O e-^/pKiT 2.

Event 2
This event, the reverse of Event 1, is showTJ as

the second example in Film Loop 18.

Figure 3-5 shows that ball B came in fixjm the

left and that ball A was initially at rest. The

be-Pc

aft-c-»'

I 80 icilogK-afn 632 gratis

Fig. 3-6
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in from the right. The directions of motion of

both balls were reversed by the collision. (The

balls are made of hardened steel.)

When you compare the momenta before and

after the collision, you will probably find that

they differed by more than any other event so

far in this series. Explain why this is so.

Event 4
This event is also shown as the second

example in Film Loop 19.

beforiE f j

—

*- Cj—»-

Rg. 3-7

O o-

E /eMT 5

b«rfc3r-« o O
Fig. 3-8

-o
Event 6

This event is shown as the second example

in Film Loop 20.

Figure 3-9 shows that balls .A and B mo\'ed in

from the right and left, resp>ecti\'ely, before

collision. The balls are made of a soft material

(plasticene). They remained stuck together after

the collision and moved oft" together to the left.

This is another perfectly inelastic collision, like

that in Event 5.

Figure 3-7 shows that two balls came in ftxjm

the left, that ball A was far more massive than

ball B, and that ball A was moving faster than

ball B before collision. The collision occurred

when A caught up with B, increasing Bs speed

at some expense to its own speed. (The balls

are made of hardened steel.)

Each ball moved across the camera's field

from left to right on the same line. In order to

be able to tell successive positions apart on a

stroboscopic photograph, the picture was
taken twice. The first photograph shows only

the progress of the large ball A because ball B

had been given a thin coat of black paint (of

negligible mass). Ball A was painted black when
the second picture was taken It will help you

to analyze the collision if you number white-

ball positions at successive stroboscope flashes

in each picture.

Ewnt 5
This event is also shov\n as the first example

in Film Loop 20, "Inelastic One-Uimensional

Collisions." You should find it interesting to

analyze this event or Ewnt 6 or Ewnt 7, but it is

not necessary to do mon* than one

Figuiv 3-H shows that ball A came in from the

right, striking ball B which was initially at nvst

The balls are made of a soft material (plas-

ticene). Tliey n'mained stuck together after the

collision and moved off to the left as one. A

collision of Ihis type is called /wrferf/y inelastic

eVEMT (S

toc^ore.

A-^t^r-

Fig. 3-9

c^-O
445 jr»rr^ (h&l S^ams

A-B

-cO
This event was photographed in two parts.

The first print shows the conditions before

collision, the second print, after collision Had
the j)ictiire been taken with the camera shutter

open throughout the motion, it would be

difficult to take measurements because the

combined balls (A -t- Bi after collision retraced

the path that ball B followed Iw'fore collision

You can numl>er the positions of each liall

l)efore collision at successiw flashes of the

strobosco|>e lin the fir-st photol; you can do
likewise for the combined balls (A + BI after the

collision in the second photo.

Event 7

Figuiv 3-10 shows that balls A and B moxipd

in from op|H)site dinvtion.s iK'fon* collision

I'he balls an> made of a soft material (plas-

ticenei Th('v remained stuck together after

collision and mo\t*d off together to the right

Ibis is another jK'rfeclly inelastic collision.
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B-VeNiT 7

\o<.-forc

Hg. 3-10

4.79 kilogram--. (^GOgf^ms

A+ B

o>
This event was photographed in two parts.

The first print shows the conditions before

collision, the second print, after collision. Had

the picture been made with the camera shutter

open throughout the motion, it would be

difficult to take measurements because the

combined balls (A + B) return along the same
path as incoming ball B. You can number the

positions of each ball before collision at succes-

sive flashes of the stroboscope (in the first

photograph); you can do likewise for the

combined balls (A + B) after collision in the

second photograph.

Photographs of the Events

The photographs of the events are shown in

Figs. 3-11 through 3-17.

Rg. 3-12 Event 2

10 flashes/sec.
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Fig3-15 Event 5, 10 flashes/sec.

•
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• ••

Fig. 3-17 Event 7, 10 flashes/sec.

Expcrinicnt 3-3

C:f)MJSIf)XS IX TUO
niMEXSIOXS. I

Collisions rarely occur in only one dimension,
that is, along a straight line. In billiards,

baskj-thall, and tennis, the ball usually re-

bounds at an angle to its original direction.
Oixlinaiy e.\plosions (which can be thought of
as collisions in which initial \elocities art? all

zero) send pieces Hying off in all directions

Ibis e-xperinient deals with collisions that
occur in two dimensions, that is, in a single
plane, instead of along a single straight line It

assumes that you know what momentum is

and understand what is meant l)y conserva-
tion of momentum in one tlimension In this
experiment, you will discover a general fonn of
the nil,, for one dimension that applies also to
the conservation of momentum in cases when>
the parts of the system move in two km lhn>ei
dimensions

Iwo methods of getting data on two-
dimensional cdllisions are described in
Melliods A and H (and two others in Kxperi
ment 3-41, but you will pix)bably want to M\o\k
only one method \Vhiche\fr method vou use
handle your results in the wa> ih-s( hImhI in
"Analvsis of Data."
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METHOD A. Colliding Pucks

On a carefully leveled glass tray covered with a

sprinkling of Dylite spheres, you can make
pucks coast with almost uniform speed in any

direction. Set one puck motionless in the

center of the table and push a second similar

one toward it, a little off-center. You can make
excellent pictures of the resulting two-

dimensional glancing collision with a camera

mounted directly above the surface.

To reduce reflection from the glass tray, the

photograph should be taken using the xenon

stroboscope uath the light on one side and

almost level with the glass tray. To make each

puck's location clearly visible in the photo-

graph, attach a steel ball or a small white

Styrofoam hemisphere to its center.

You can get a great variety of masses by

stacking pucks one on top of the other and
fastening them together with tape (avoid having

the collisions cushioned by the tape).

Two people are needed to do the experi-

ment. One experimenter, after some prelimi-

nary practice shots, launches the projectUe

puck while the other experimenter operates

the camera. The resulting picture should

consist of a series of white dots in a rough "Y"

pattern.

Using your picture, measure and record all

the speeds before and after collision. Record

the masses in each case too. Since you are

interested only in comparing speeds, you can

use any convenient speed units. You can

simplify your work if you record speeds in

millimeters per dot instead of trying to work
them out in centimeters per second. Because

friction does slow the pucks down, find speeds

as close to the impact as you can. You can also

use the "puck " instead of the kilogram as your
unit of mass.

METHOD B. Colliding Disk Magnets

Disk magnets wall also slide freely on Dylite

spheres as described in Method A.

The difference here is that the magnets need

never touch during the "collision." Since the

interaction forces are not really instantaneous

as they are for the pucks, the magnets follow

curving paths during the interaction. Con-

sequently the "before" velocity should be

determined as early as possible and the "after"

velocities should be measured as late as

possible.

Following the procedure described above for

pucks, photograph one of these "collisions."

Again, small Styrofoam hemispheres or steel

balls attached to the magnets should show up
in the strobe picture as a series of white dots.

Be sure the paths you photograph are long

enough so that the dots near the ends are along

straight lines rather than curves (see Fig. 3-18).

Fig. 3-18

Using your photograph, measure and record

the speeds and record the masses. You can

simplify your work if you record speeds in

millimeters per dot instead of working them out

in centimeters per second. You can use the disk

instead of the kilogram as your unit of mass.

Analysis of Data

whichever procedure you used, you should

analyze your results in the same way.

1. Multiply the mass of each object by its

before-the-collision speed, and add the products.

2. Do the same thing for each of the objects in the

system after the collision, and add the after-the-

collision products together. Does the sum before

the collision equal the sum after the collision?

Imagine the collision you observed was an

explosion of a cluster of objects at rest; the total

quantity mass-times-speed before the explo-

sion will be zero. But surely, the mass-times-

speed of each of the flying fragments after the

explosion is more than zero! "Mass-times-

speed" is obviously not conserved in an explo-

sion. You probably found it was not conserved

in the experiments with pucks and magnets,

either. You may already have suspected that

you ought to be taking into account the

directions of motion.
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To see what is conserved, proceed as follows.

Use your measurements to construct a

drawing like Fig. 3-19, in which you show the

directions of motion of all the objects both

before and after the collision.

Fig. 3-19 ^

Have all the direction lines meet at a single

point in your diagram. The actual paths in your

photographs will not do so, because the pucks

and magnets are lai^e objects instead of points,

but you can still draw the directions of motion

as lines thnjugh the single point P.

On this diagram draw a vector arrow whose
magnitude (length) is proportional to the mass

times the speed of the projectile before the

collision. (You can use any convenient scale.) In

Fig. 3-20, this vector is marked ni^v^.

d6FOf!e

Fig. 3-20

C0LLI5/ON

Below your first diagram draw a second one
in which you once more draw the directions of

motion of all the objects exactly as before. On
this second diagram, construct the vectors for

mass-times-speed for each of the objects

leaving Pafter the collision. For the collisions of

pucks and magnets, your diagram will resem-

ble Fig. 3-21. Now construct the "after-the-

collision" vector sum.

Collision

Fig. 3-21

rhe ItMigth of each of your arrows is giv-en by

the pnxhict of mass aiul speed. Since each

arrow is drawn in the liirrction of the speed,

the arrows n^present the pnuluct of mass and

velocity mv which is called momentum. The
vector sums "before" and "after" collision,

therefore, represent the total momentum of the

system of objects before and after the collision.

If the "before" and "after" arrows are equal,

then the total momentum of the system of

interacting objects is conserved.

3. How does this vector sum compare with the

vector sum on your before-the-collision figure?

Are they equal within the uncertainty?

4. Is the principle of conservation of momentum
for one dimension different from that for two, or

merely a special case of it? How can the principle

of conservation of momentum be extended to

three dimensions? SIcetch at least one example.
5. Write an equation that would express tfie

principle of conservation of momentum for colli-

sions of (a) three objects in two dimensions, (b)

two objects in three dimensions, (c) three objects

in three dimensions.

Fig. 3-22 A 1.350 kg steel ball s^ung by a crane against

the walls of a condemned building What happens to the

momentum of the l>all7
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Experiment 3-4

COLLISIONS IN TWO
DIMENSIONS. II

METHOD A. Film Loops

Several Film Loops (21, 22, 23, 24, and 251 show
tw'o-dimensional collisions that you cannot

conveniently reproduce in the laboratory.

Notes on these films appear on pages 77-79.

Project one of the loops on the chalkboard or

on a sheet of graph paper. Trace the paths of

the moving objects and record their masses

and measure their speeds. Then go on to the

analysis described in notes for FUm Loop 21.

METHOD B. Stroboscopic

Photographs

Stroboscopic photographs* of seven different

two-dimensional collisions in a plane are used

in this experiment. The photographs (Figs. 3-27

to 3-34) are shown on the pages immediately

following the description of these events. They

were photographed during the making of Film

Loops 21-25.

I. Material Needed

1. A transparent plastic ruler, marked in mil-

limeters.

2. A large sheet of paper for making vector

diagrams. Graph paper is convenient.

3. A protractor and two large drawing triangles

are useful for transferring directional vectors

fixim the photographs to the vector dicigrams.

II. How the Collisions Were Produced

Balls were hung on 10-m wires, as shown
schematically in Fig. 3-23. They were released

so as to collide directly above the camera,

which was facing upward. Electronic strobe

lights (shown in Fig. 3-26) illuminated the

rectangle shown in each fi^ame.

Two white bars are visible at the bottom of

each photograph. These are rods that had their

tips 1 m (±2 mml apart in the actual situation.

The rods make it possible for you to convert

your measurements to the actual distance. It is

not necessary to do so, ifyou choose instead to

use actual on-the-photograph distances in

millimeters (as you may have done in your

study of one-dimensional collisions).

Since the balls are pendulum bobs, they

move faster near the center of the photographs

'Reproduced by permission of National Film Board

of Canada.

Fig. 3-23 Setup for photographing two-dimensional
collisions.

than near the edge. Your measurements, there-

fore, should be made near the center.

III. A Sample Procedure

The purpose of your study is to see to what

extent momentum seems to be conserved in

two-dimensional collisions. For this purpose

you need to construct vector diagrams.

Consider an example: In Fig. 3-24, a 450-g and

a 500-g ball are moving toward each other. Ball

A has a momentum of 1.8kg-m/sec, in the

direction of the ball's motion. Using the scale

shown, draw a vector 1.8 units long, parallel to

the direction of motion of A. Similarly, for ball B

draw a momentum vector 2.4 units long,

parallel to the direction of motion of B.

The system of two balls has a total momen-
tum before the collision equal to the vector sum
of the two momentum vectors for A and B.

The total momentum after the collision is

also found the same way, by adding the

momentum vector for A after the collision to

that for B after the collision (see Fig. 3-25).

This same procedure is used for any event

you analyze. Determine the momentum (mag-

nitude and direction) for each object in the

system before the collision, graphically add

them, and then do the same thing for each

object after the collision.
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\ A
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Fig. 3-24 Two balls moving in a plane. Their individual

momenta, which are vectors, are added together

vectorially in the diagram on the lower right The vector

sum is the total momentum of the system of two balls.

(Your own vector drawings should be at least twice this

size.)
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For each event that you analyze, consider

whether momentum is conserved.

Events 8, 9, 10, and 11

Event 8 is shown as the first example in Film

Loop 22, "Two-Dimensional Collisions. II."

Event 10 is shown as the second example in

Film Ixjop 22.

Event 11 is also shown in Film Loop 21,

"Two-Dimensional Collisions. I."

These are all elastic collisions. Events 8 and
10 are simplest to analyze hecause each shows
a collision of equal masses. In Events 8 and 9,

one hall is initially at ivst.

A small sketch next to each photograph

indicates the direction of motion of each ball.

The mass of each ball and the strobe rate are

also given.

b«-fore af"tcr

Fig. 3-25 The two balls collide and move away Their

individual momenta after collision are added vectorially.

The resultant vector is the total momentum of the

system after collision.

Events 12 and 13
KviMit 12 is shown as the first example in Film

Ix)()p 23, 'Inelastic Two-Dimensional C'olli-

sions.

'

Event 13 is shown as the second example in

Film Loop 23.

Since Events 12 and 13 are similar, there is no
need to do lK)th.

Ewnts 12 and 13 show inelastic collisions

l)etween two plasticene balls that stick together

and move ofT as one compound object after the
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collision. In Event 13 the masses are equal; in 12

they are unequal.

CAUTION: You may find that the two objects

rotate slightly about a common center cifter the

collision. For each image after the collision, you
should make marks halfway between the cen-

ters of the two objects. Then determine the

velocitv' of this center of mass, and multiply it

by the combined mass to get the total momen-
tum after the collision.

Event 14
Do not try' to analN'ze Event 14 unless you

have done at least one of the simpler Events

8 through 13.

Event 14 is shown on Film Loop 24 "Scatter-

ing of a Cluster of Objects."

Figure 3-26 shows the setup used in photo-

graphing the scattering of a cluster of balls.

The photographer and camera are on the floor;

and four electronic stroboscope lights are on

tripods in the lower center of the picture.

Use the same graphical methods as you used

for Events 8-13 to see if the conservation of

momentum holds for more than two objects.

Event 14 is much more complex because you
must add seven vectors, rather than two, to get

the total momentum after the collision.

In Event 14, one ball comes in cmd strikes a

cluster of six balls of various masses, which

were initially at rest. Two photographs are

included: print 1 shows only the motion of ball

A before the event: print 2 shows the positions

of cill seven balls just before the collision and

the motion of each of the seven balls after the

collision.

Fig. 3-26 Catching the seven scattered balls to avoid

tangling the wires from which they hang. The photo-

grapher and the camera are on the floor. The four

stroboscopes are on tripwads in the lower center of the

picture.

You can analyze this event in two different

ways. One way is to determine the initial

momentum of ball A fixjm measurements taken

on print 1 and then compare it to the total final

momentum of the system of seven balls from

measurements taken on print 2. The second

method is to determine the total final momen-
tum of the system of seven balls on print 2,

predict the momentum of ball A, and then take

measurements of print 1 to see whether baU A
had the predicted momentum. Choose one

method.

The tops of prints 1 and 2 lie in identical

positions. To relate measurements on one print

AQ3C73^^

e>Q2>G7 2

Rg. 3-27 Event 8, 20 flashes/sec.
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to measurements on the other, measure a bail's

distance relative to the top of one picture with a

ruler; the ball would lie in precisely the same
position in the other picture if the two pictures

could be superimposed.

There are two other matters you must
consider. First, the time scales are different on
the two prints. Print 1 was taken at a rate of 5

flashes/sec, and print 2 was taken at a rate of 20

flashes/sec. Second, the distance scale may not
be exactly the same for both prints. Remember
that the distance from the center of the tip of
one of the white bars to the center of the tip of
the other is 1 m i ±2 mm) in real space. Check
this scale carefully on both prints to determine
the conversion factor.

The stroboscopic photographs for Events
8- 14 appear in Figs. 3-27 to 3-34

367<

Fig. 3-28 Event 9, 20 flashes/sec.

Fig. 3-29 Event 10, 20 flashes/sec.

A ^ ^P

Fig. 3-30 Event 11, 20 flashes/sec.
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Fig. 3-31 Event 12, 20 flashes/sec.

5003

X3

Fig. 3-32 Event 13, 10 flashes/sec.

Fig. 3-33 Event 14, print 1, 20 flashes/sec

AO16OO2
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Rfl. 3-34 Event 14, print 2, 20 flashes/sec.

Experiment 3-5

CONSERVATION OF ENERGY. I

In the previous experiments on conservation of

momentum, you recorded the results of a

numher of collisions involving carts and gliders

having different initial velocities. You found

that within the limits of experimental uncer-

tainty, momentum was conserved in each case.

You can now use the results of these collisions

to leam about another extremely useful con-

servation law, the conservation of energy.

Do you have any reason to believe that the

product of m and v is the only conserved

quantity? In the data obtained fhjm your

photographs, look for other combinations of

quantities that might be conserved. Find values

for tn/v, m V, and mv^ for each cart before and

after collision, to see if the sum of these

quantities for both carts is conser\'ed. Comp>are

the results of the elastic collisions v\ith the

inelastic ones. Consider the "explosion," too.

Is there a quantit>' that is conserved for one
type of collision but not for the other?

There are several alternative methods to

explore further the answer to this questioniyou

will probably wish to do just one. Check your
results against those of classmates who use

other methods.

METHOD A. Dynamics Carts

To take a closer look at the detaUs of an elastic

collision, photograph two d\Tiamics carts as

you may ha\-e done in a pre\ious exjjeriment.

Set the carts up as shown in Fig. 3-35.

liQhtvxjncesot s((Qb+ly different hcIah+$

^ ^^^
Run off \f^ c£r\ier of table

( I35cm minimum width}

Or^ of 12 disc slots faped
Qlrnost holf closed

Fig 3-3S
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The mass of each cart is 1 kg. Extra mass is

added to make the total masses 2 kg and 4 kg.

Tap>e a light source on each cart. So that you
can distinguish between the images formed by

the two lights, make sure that one of the bulbs

is slightly higher than the other.

Place the 2-kg cart at the center of the table

and push the other cart toward it from the left.

If you use the 12-slot disk on the stroboscope,

you should get several images during the time

that the spring bumpers are touching. You will

need to know which image of the right-hand

cart was made at the same instant as a given

image of the left-hand cart. Matching images

will be easier if one of the 12 slots on the

stroboscope disk is half-covered with tape (Fig.

3-36). Images formed when that slot is in front

of the lens will be fainter than the others.

r-^

'//''

V
Rg. 3-36

Now compute values for the scalar quantity

mv- for each cart for each time interval, and add
them to your table. On another sheet of graph

paper, plot the values of mv- for each cart for

each time interval. Connect each set of values

with a smooth curve.

Now draw a third curve that shows the sum
of the two vjilues ofmv^ for each time interval.

3. Compare the final value of mv^ for the system
with the initial value. Is m\/^ a conserved quantity?

4. How would the appearance of your graph
change if you multiplied each quantity by Vi? (The

quantity Vimv^ is called the kinetic energy of the

object of mass m and speed v.)

Compute values for the scalar quantitv' V2mv-

for each cart for each time inter\'al. On a sheet

of graph paper, plot the kinetic energy of each

cart as a function of time, using the same
coordinate axes for both.

Now draw a third curve that shows the sum
of the two values of Vimv- for each time interval.

5. Does the total amount of kinetic energy vary

during the collision? If you found a change in the

total kinetic energy, how do you explain it?

Compute the values for the momentum mv
for each cart for each time intenal while the

springs were touching, plus at least three

intervals before and after the springs touched.

List the values in a table, making sure that \ou
pair off the vcdues for the two carts correctly.

Remember that the lighter cart was initially at

rest while the hea\ier one moved toward it.

This means that the first few \'alues of mv for

the lighter cart will be zero.

On a sheet of graph paper, plot the momen-
tum of each cart as a function of time, using the

same coordinate axes for both. Connect each

set of values with a smooth curve.

Now draw a third curve that shows the sum
of the two values ofmv ithe total momentum of

the svstem) for each time interval.

1. Compare the final value of mv for the system
with the initial value. Was momentum conserved
in the collision?

2. What happened to the momentum of the

system while the springs were touching; was
momentum conserved during the collision?

METHOD B. Magnets

Spread some Dylite spheres (tiny plastic beads)

on a glass tray or other hard, flat surface. A disk

magnet will slide freely on this low-friction

surface. Level the surface carefully.

Put one disk magnet at the center and push a

second one toward it, slightly off" center. You
want the magnets to repel each other without

actually touching. Try varying the speed and
direction of the pushed magnet until you find

conditions that make both magnets move off

after the collision with about equal speeds.

To record the interaction, set up a camera
directly above the glass tray i using the motor-

strobe mount if your camera does not attach

directly to the tripod) and a xenon stroboscojae

to one side as in Fig. 3-37. Mount a steel ball or

a Styrofoam hemisphere on the center of each

disk VNith a small piece of clay. The ball will give

a sharp reflection of the strobe light.

Take strobe photographs of several interac-

tions. There must be several images before and
after the interaction, but you can vary the initial

speed and direction of the mo\ing magnet to
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Fig. 3-37

get a variety of interactions. Using your photo-

graph, calculate the "hefore" and "after" sjjeeds

of each disk. Since you are interested only in

comparing speeds, you can use any convenient

units of measurement for speed.

1. Is mi/2 a conserved quantity? Is V2mv^ a

conserved quantity?

If you find that there has been a decrease in

the total kinetic energy of the system of

interacting magnets, consider the follov\ing:

The surface is not perfectly frictionless and a

single magnet disk pushed across it \%ill slow

down a bit. Make a plot of Vzfnv- against lime

for a moving disk to estimate the rate at which
kinetic energ\' is lost in Ibis way.

2. How much of the loss in '/jmw' that you
observed in the interaction can be due to friction?

3. What happens to your results if you consider
kinetic energy to be a vector quantity?

Wlicn the two disks ar»> close together (but

not touching) there is quite a strong force

between them pushing them apart. If you put

the two disks down on the surface close

together and n«lease them, they will fly apart:

Ibe kinetic en«Tg\ of the system has incnMseil

If \()u have lime to go on, nou should In lo

find out what happens lo the total ({uanlity

Viniv* of the disks while they an* close together

during the interaction. To do this you will use a

fairiy high strobe rate, and push the projectile

magnet at fairly high speed, without letting the

two magnets actually touch, of course. Close

the camera shutter before the disks are out of

the field of view so that you can match images

by counting backward from the last images.

Now, working backward from the last inter-

val, measure v and calculate VT/nv- for each

disk. Make a graph in which you plot Vimv' for

each disk against time. Draw smooth curves

through the two plots.

Now draw a third curve that shows the sum
of the two Vzmv- values for each time interval.

4. Is the quantity ^/imv^ conserved during the

interaction, that is, while the repelling magnets
approach very closely?

Try to explain your observations.

METHOD C. Inclined Air Tracks

Suppose you give the glider a push at the

bottom of an inclined air track. As it moves up
the slope it slows down, stops momentarily,

and then begins to come back dovx-n the track.

Clearly the bigger the push you give the

glider (the greater its initial velocity v,), the

higher up the track it v\ill climb before

stopping. From expierience you know that there

is some connection between v, and d. the

distance the glider moves along the track

According to physics texts, when a stone is

thrown upwartl, the kinetic ener^ that it has

initially (V2n7i',-) is transformed into gravita-

tional potential energv' (ma,/jl as the stone

moves up. In this experiment, you will test to

see whether the same relationship applies to

the bj'havior of the glider on the inrlinetl air

track In paHicular, your task is to find the

initial kinetic cnei^' and the increase in

potential energy of the air track glider and to

compare them.

rhe puqjose of the first set of measurements
is to find the initial kinetic energv •j/rj*,*. You
cannot measutv \ , dinTtlv , but vou van find it

from vour calculation of the.i\rr,ige vvlocity »',,

as follows. In the case of unifonii acceleration

v,v = Vi(v, + v,l. Since final velocity' v, = at the

top of the track. v„ = V^»'i or v, = 2v,,.

Remember that v., = Ad/Al, so v, = 2( Ad/ All:

A</ and At an» easy to measure with vnur

ap|>aratus

To measure Ad and Af. three f>eople are

needed: one gives the glider the initial push.
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another marks the highest point on the track

reached by the glider, and the third uses a

stopwatch to time the motion from push to

rest.

Raise one end of the track a few centimeters

above the tabletop. The launcher should prac-

tice pushing to produce a push that will send
the glider nearly to the raised end of the track.

Record the distance traveled and time taken

for several trials, and weigh the glider. Deter-

mine and record the initial kinetic energj-.

To calculate the increase in gra\itational

potential energx, you must measure the vertical

height h through which the glider moves for

each push. Vou will probabK' find that you
need to measure from the tabletop to the track

at the initial hi and final /i
j
points of the glider's

motion (see Fig. 3-38), since h - hf - h^.

Calculate the potential energy increase, the

quantity maji, for each of your trials.

Fig. 3-38

For each trial, compcire the kinetic energv'

loss v\ith the potential energs' increase. Be sure

that you use consistent units: m in kilograms, v

in meters/second, a^ in meters/second-, h in

meters.

1. Are the kinetic energy loss and the potential

energy increase equal within your experimental
uncertainty?

2. Explain the significance of your result.

Here are more things to do ifyou have time to

go on:

(a) See if your answer to Question 1 continues

to be true as you make the track steeper and
steeper.

(b) Ulien the glider rebounds from the rubber

band at the bottom of the track, it is momentar-
ily stationaiy; its kinetic energy is zero. The
same is true of its gravitational potential energy,

if you use the bottom of the track eis the zero

level. Yet the glider will rebound from the

rubber b<md (regain its kinetic energy! and go

quite a way up the track (gaining gravitational

potential energy! before it stops. See if you can

explain what happens at the rebound in terms

of the conversation of mechanical energy.

(c) The glider does not get quite so far up the

track on the second rebound as it did on the

first. There is evidently a loss of energy. See if

you can measure how much energy is lost each

time.

Experiment 3-6

CONSERVATION OF ENERGY. II

METHOD A. Film Loops

You may have used one or more of Film Loops

18-25 in your study of momentum. You will

find it helpful to view these slow-motion films

of one- and two-dimensional collisions again,

but this time in the context of the study of

energy. The data you collected previously will

be sufficient for you to calculate the kinetic

energv' of each ball before and after the

collision. Remember that kinetic energy V2mv-

is not a vector quantity, and therefore you need

only use the magnitude of the velocities in your

calculations.

On the basis ofyour analysis you may wish to

try to answer such questions as: Is kinetic

energy conserved in such interactions? If not,

what happened to it? Is the loss in kinetic

energv' related to such factors as relative speed,

angle of impact, or relative masses of the

colliding balls? Is there a difference in the

kinetic energy lost in elastic and inelastic

collisions?

The FUm Loops were made in a highly

controlled laboratoiy situation. ,After you have

developed the technique of measurement and

analysis from Film Loops, you may want to turn

to one or more loops dealing with things

outside the laboratorv' setting. FUm Loops

26-33 involve freight cars, billiard balls, pole

vaulters, and the like. Suggestions for using

these loops can be found on pages 81-87.

METHOD B. Stroboscopic

Photographs of Collisions

V\'hen studying momentum, you may have

taken measurements on the one-dimensional

and two-dimensional collisions shown in

stroboscopic photographs on pages 107-110

and 115-118. If so, you can now easily reex-

amine your data and compute the kinetic

energy Vzmv- for each ball before and after the

interaction. Remember that kinetic energy is a

scalar quantity, and so you will use the mag-

nitude of the velocity but not the direction in
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making your computations. You would do well

to study one or more of the simjiler events (for

example, Events 1, 2, 3, 8, 9, or 10) before at-

tempting the more complex ones involving

inelastic collisions or several balls. Also, you

may wish to review the discussions given

earlier for each event.

If you find there is a loss of kinetic energy

beyond what you would expect from mea-

surement error, try to explain your results.

Some questions you might try to answer are:

How does kinetic enei^ change as a function

of the distance from impact? Is it the same
before and after impact? Mow is energy conser-

vation influenced by the relative speed at the

time of collision? How is energy conservation

influenced by the angle of impact? Is there a

difference between elastic and inelastic interac-

tions in the fraction of energy conserved?

of the projectile before impact. There are at

least two ways to find v'.

METHOD A. Air Track

The most dirtnt way to find v ' is to mount the

target on the air track and to time its motion

after the im|)act. (See Fig. 3-39.) Mount a small

can, lightly packed with cotton, on an air-track

glider. Make sure that the glider will still ride

freely with this extra load. Fire a "bullet" la

pellet from a tov gun that has been checked for

safety by your instructor) horizontalK', parallel

to the length of the air track. If M is lai^e

enough, compared torn, the gliders speed will

be low enough so that you can use a stoprwatch

to time it over a 1-m distance. Rep>eat the

measurement a few times until you get consis-

tent results.

Experiment 3-7

MEASl KING THE SPEED OF
A BULLET

In this experiment you will use the principle of

the conservation of momentum to find the

speed of a bullet. Sections 92 and 9.3 in the

Text discuss collisions and define momentum
You will use the general equation of the

principle of conservation of momentum for

two-body collisions: m^^ + ^b^^ - ^^a^a "^

m,^„.
The experiment consists of firing a projectile

into a can packed with cotton or into a hea\y

block that is free to move horizontally. Since all

velocities before and af^er the collision are in

the same direction, you may neglect the v-ector

nature of the (equation above and work only

with speeds. To avoid subscripts, call the mass
of the target M and the much smaller mass of

the projectile /7i. Before impact, the tai^et is at

rest, so you have only the speed v of the

pn)jectile to consider After impact, both the

target and the added pi-ojectile move with a

common sjieed \
' Thus, the general equation

becomes

mv = (Af + mlv'

or

{M +m)v'

lloth masses aiv easy to measure Iherefore. if

the comparatiwiy slow speed v' can 1m' found
after impact, you can compute the high s|>eed \

Fig. 3-39

1. What IS your value for the bullet's speed?
2. Suppose the collision between bullet and can

was not completely inelastic, so that the bullet

bounced back a little after impact. Would this

increase or decrease your value for the speed of

the bullet?

3. Can you think of an independent way to

measure the speed of the bullet? If you can. make
the independent measurement. Then see if you
can account for any differences between ttie two
results.

MFTHOn B. R;illis!ic Ptnduluiii

rliis was lh«' onginal methixi ot deti>niiining

the sjM'ed of bullets inwnled in 1742 and still

used in stime oixinance lal>oratnn»»s .A mo\ablr
block is susptMuled as a tn»ely swinging pen-

dulum whose motion nnvals the bullet s s[>eed.

Ohtaiiiiii^ tlu* S|M*e(l Kqiiatioii

Ihe collision is inelastic, so kinetic enepfjv w
n«it conserved in the inifKicI But during the

neari\- frirtionle5is swing of the |x>ndulum af^er

the impact mechanical enerRN' is conser%T»d
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that is, the increase in gravitational potential

energy of the pendulum at the end of its

upward swing is equal to its kinetic energy

immediately after impact. Written as an equa-

tion, this becomes

(M +m)aan =
*

2

where h is the increase in height of the

pendulum bob.

Solving this equation for v' gives:

in the

v' = V2ag/i

Substituting this expression for v'

momentum equation above leads to

;V/ + m .. /r

—

r

Now you have an equation for the speed v of

the bullet in terms of quantities that are known
or can be measured.

A Useftil Approximation

The change h in vertical height is difficult to

measure accurately, but the horizontal dis-

placement d may be 10 cm or more and can be

found easily. Can h be replaced by an equiva-

lent expression involving d? The relation bet-

ween h and d can be found by using a little

plane geometry.

In Fig. 3-40, the center of the circle, O,

represents the point from which the pendulum
is hung. The length of the cords is /.

In the triangle OBC,

SO l^^d^ +l^-2lh +h'
and 2//i = d^ + h^

For small swings, h is smcill compared with /

and d, so you may neglect h^ in comparison

with d', and write the close approximation

2lh - d'

or h = d'-/2l

Putting this value of h into your last equation

forv above and simplifying gives:

_(M +m)d^ AT"
m V T

If the mass of the projectUe is small com-

pared with that of the pendulum, this equation

can be simplified to another good approxima-

tion. How?

Finding the Projectile's Speed

Now you are ready to begin the experiment.

The kind of pendulum you use will depend on
the nature and speed of the projectile. If you
use pellets from a toy gun, a cylindrical

cardboard carton stuffed lightly with cotton

and suspended by threads from a laboratory

stand will do. Ifyou use a good bow and arrow,

stuff straw into a fairly stiff corrugated box and
hang it irom the ceiling. To prevent the target

pendulum irom twisting, hang it by parallel

cords connecting four points on the pendulum
to four points direcdy above them, as in Fig.

3-41.

^-[:fM
D

Hg. 3-40 Rg. 3-41
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To measure d, a light rod la pencil or a soda

straw) is placed in a tube clamped to a stand.

The rod extends out of the tube on the side

toward the pendulum. As the pendulum
swings, it shoves the rod back into the tube so

that the rod's final position marks the end of

the swing of the pendulum. Of course the

pendulum must not hit the tube and there

must be sufficient friction between rod and

tube so that the rod stops when the pendulum

stops. The original rest position of the pen-

dulum is readily found so that the displace-

ment d can be measured.

Repeat the experiment a few times to get an

idea of how precise your value for d is. Then

substitute your data in the equation for v, the

bullet's speed.

1. What is your value for the bullet's speed?

2. From your results, compare the kinetic energy

of the bullet before impact with that of the

pendulum after impact. Why is there such a large

difference in kinetic energy?

3. Can you describe an independent method for

finding v^? If you have time, try it, and explain any
difference betwen the two values of v.

Experiment 3-8

ENERGY ANALYSIS OF A
PENDULUM SWING
According to the law of conservation of energy,

the loss in gravitational potential energy of a

simple pendulum as it swings from the top of

its swing to the bottom is completely trans-

ferred into kinetic energy at the bottom of the

swing. You can check this with the following

photographic method. A 1-m simple pendulum

(measured from the support to the center of the

bob) with a 0.5-kg bob works w«ll. Release the

pendulum from a position where it is 10 cm
higher than at the bottom of its swing.

To simplify the calculations, set up the

camera for 10:1 scale reduction. Two different

strobe arrangements have proved successful:

(1) tape an ac blinky to the bob, or (2) attach an

AA cell and bulb to the bob and use a

motor-strobe disk in front of the camera lens. In

either case, you may need to use a two-string

suspension to prj'vent the pendulum lM)b from

spinning while swinging. Make a time exposurt*

for one swing of the pendulum.

You can either measure directly fnnn your

print (which should look something like the

one in Fig. 3-42) or make pinholes at the center

no 3-*2

of each image on the photograph and project

the hole images onto a larger sheet of paper.

Calculate the instantaneous speed v at the

bottom of the swing by di\iding the distance

traveled between the images nearest the bot-

tom of the swing by the interval between the

images. The kinetic ener^ at the bottom of the

swing, Vimv-, should equal the change in

potential ene^gv' from the top of the swing to

the bottom. If A/i is the difference in \-ertical

height between the bottom of the swing and

the top, then

V = V2a, A/i

If you plot both the kinetic and potential

energ\' on the same graph (using the bottom-

most point as a zero lex^l for gra\itational

potential enepgv), and then plot the sum of K£
-t- PE, you can check whether total enei^ is

conserved during the entire swing.

Experiment 3-9

LEAST ENERGY
Concepts such as momentum, kinetic energy.

potential eneix>', and the conservation laws

often tuni out to be unexpjectedly useful in

helping you to understand what at first glance

seem to l>e unrelated phenomena ThLs exper-

iment offers just one such case in point: How-

can you explain the observation that if a chain

is allowed to hang freely from its two ends, it

always assumes the same shajx'^ Hang a 1-m

lei\gth of l>eaded chain, the ty|X' u.sed on light

sockets. fn)m two (M)ints as shown in Fig 3-43

What shajH' does the chain assume' .At first

glance it seems to be a parabola

('heck whether it is a paratxila b\' finding the

equation for the parabola that wi>uld go

through the vertex and the twii fixed points
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would be an excellent computer problem.)

Draw vertical parallel lines about 2 cm apart

on the paper behind the chain (or use graph
paper). In each vertical section, make a mark
beside the chain in the middle of that section

(see Fig. 3-44).

\

Fig. 3-43

Determine other points on the parabola by
using the equation. Plot them and see whether

they match the shape of the chain.

One way to plot the parabola is cis follows.

The vertex in Fig. 3-43 is at (0,0) and the two

fixed points are at (-8, 14.5) and (8, 14.5). All

pcirabolas symmetric to the y axis have the

formula y = /gc^, where fc is a constant. For this

example, you must have 14.5 = ^(8)^, or 14.5 —

64/c. Therefore, k = 0227, and the equation for

the parabola going through the given vertex

and two points is y = 0.227}i^. Now substitute

values forx, producing a table of}i andy vcdues

for the parabola. When you plot these values on
the graph paper behind the chain, do the chciin

and the plotted points coincide?

A more interesting question is why the chain

assumes the particular shape it does, which is

called a catenary curve. Recall that the gravita-

tional potential energy of a body mass m is

defined as ma^h, where ag is the acceleration

due to gravity, and h is the height of the body
above the reference level chosen. Remember
that only a difference in energy level is mean-
ingful; a different reference level only adds a

constant to each value associated with the

original reference level. In theory, you could

measure the mass of one bead on the chain,

measure the height of each bead above the

reference level, and total the potential energies

for all the beads to get the total potential energy

for the whole chain.

In practice, that would be quite tedious, so

you will use an approximation that will still

allow you to get a reasonably good result. (This

Fig. 3-44

The total potential energy for that section of

the chain will be approximately Mag/jav- where
/lav is the average height marked, and M is the

toted mass in that section of chain. Notice that

near the ends of the chain there are more beads
in one horizontal interval than there are near

the center of the chain. To simplify the solution

further, assume that M is always an integral

number of beads that you can count.

In summary, for each interval multiply the

number of beads by the average height for that

interval. Total all these products. This total is a

good approximation of the gravitational poten-

tial energy of the chain.

After doing this for the finely hanging chain,

pull the chain uath thumbtacks into different

shapes such as those shown in Fig. 3-45.

Fig. 3-45
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Calculate the total p>otential energy for each

shape. Does the catenary curve (the freely

formed shape) or one of these others have the

minimum total potential enei^?

If you would like to explore other in-

stances of the minimization principles, try

the following:

1. When various shapes of wire ai^ dipjjed into

a soap solution, the resulting film always forms

so that the total surface area of the film is a

minimum. For this minimum surface, the total

potential energy due to surface tension is a

minimum. In many cases the resulting surface

is not at all what you would exp>ect. An
excellent source of suggested exp>eriments with

soap bubbles, and recipes for good solutions, is

the paperback Soap Bubbles and the Forces that

Mould Them, by Charles V. Boys, (Dover, 1959).

Also, see "The Strange World of Surface Film,"

The Physics Teacher (Sept., 1966).

2. Rivers meander in such a way that the work
done by the river is a minimum. For an

explanation of this, see "A Meandering River,"

in the June, 1966 issue of Scientific American

.

3. Suppose that points A and B are placed in a

vertical plane as shown in Fig. 3-46. You want to

build a track between the two points so that a

ball will roll from A to B in the least possible

time. Should the track be straight or in the

shape of a circle, parabola, cycloid, catenary, or

some other shape? An interesting property of a

cycloid is that no matter where on a cycloidal

track you release a bail, it will take the same
amount of time to reach the bottom of the

track. You may want to build a cycloidal track

in order to check this. Do not make the track so

steep that the ball slips instead of rolling.

Fig. 3-46

A more complete treatment of this principle

of h'iist action is given in the Fevnman Lectures

on rhvsics, \'ol. 2

Expi*rinient 3-10
TEiviPi:Ry\TiTRi: Axn
THEKMOMETEKS
You can usually tell just by louih which of two
similar bodies is the hotter. But if you want to

toll «vxartly how hot something is or to com-

municate such information to somebody else,

you have to find some way of assigning a

number to "hotness. ' This number is called

temperature, and the instrument used to

measure this number is called a thermometer
Standard units for measuring intervals of

time and distance, the day and the meter, are

both familiar. But try to imagine yourself living

in an era before the invention of thermometers
and temp)erature scales, that is, before the time
of Galileo. How would you describe, and if

p>ossible give a number to, the "degree of

hotness" of an object?

Any property (such as length, volume, den-
sity, pressure, or electrical resistancei that

changes with hotness and that can be mea-
sured could be used as an indication of

temjjerature; any device that measures this

prop)erty could be used as a thermometer
In this experiment you will be using ther-

mometers based on prop)erties of liquid exptan-

sion, gas expansion, and electrical resistance.

(Other common kinds of thermometers are

based on electrical voltages, color, or gas

pressure.) Each of these devices has its own
particular merits that make it suitable, from a

practical point of view, for some applications,

and difficult or imp>ossible to use in others.

Of course, temp)erature estimates gnvn by
two different types of thermometers must agree

over the range that they are to be used in

common. In this exp)eriment you will make
your own thermometers, put temperature
scales on them, and then compare them to see

how well they agree with each other.

Defining a Temperature Scale

How do you make a thermometer? First, you
decide what property (length, volume, etc. I of

what substance (mercury, air, etc. I to use in

your thermometer. Then you must decide on
two fixed points in order to arri\« at the size of

a degn»e. A fixed point Ls liased on a ph\'sical

phenomenon that always occurs at the same
degn*e of hotness Iwo con\Tnient fixed (X)inls

to use are the melting (X)int of ice and the

boiling point of water. On the Celsius i centi-

grade I scale they are assigned the values O'C and

lOO^'C at oixlinarv atmospheric pressure

Wlien you are making a themiomeler of any

sort, you haw to put a scale (»n it against which

you can read the ln)tness-srnsiliw quantity.

Often a piece of centimeter-marked tape or a

short piece of ruler will do Submit \x)ur

thermometer to two fixed points of hotness (for

example a luUh of Ixiiling water and a bath of
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Rg. 3-47 Any quantity that varies with hotness can be
used to establish a temperature scale (even the time it

takes for an antacid tablet to dissolve in water!). Two

"fixed points" (such as the freezing and boiling points of
water) are needed to define the size of a degree.

ice water) and mark the positions on the

indicator.

The length of the column can now be used to

define a temperature scale by assuming that

equal temperature changes cause equal

changes along the scale between the two
fixed-point positions. Suppose you marked the

length of a column of liquid at the freezing

point and again at the boiling point of water.

You can now dhade the total increase in length

into equcil parts and call each of these peirts

"one degree" change in temperature.

On the Celsius scale, the degree is 1/100 of

the temperature range between the boiling and
freezing points of water.

To identify temperatures betw^een the fixed

points on a thermometer scale, mark ofif the

actual distance between the two fixed points

on the vertical axis of a graph and equal

intervals for degrees of temperature on the
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Now put your two thermometers in a series

of baths of water at intermediate temperatures,

and again measure and record the length,

volume, resistance, etc., for each bath. Put both

devices in the bath at the same time in case the

bath is cooling down. Use your graphs to read

the temperatures of the water baths as indi-

cated by the two devices.

Do the temperatures measured by the two

devices agree?

If the two devices give the same readings at

intermediate temperatures, then you can appar-

ently use either as a thermometer. But if they

do not agree, you must choose only one of

them as a standard thermometer. Give what-

ever reasons you can for choosing one rather

than the other before reading the following

discussion. If possible, compare your results

with those of classmates using the same or

different kinds of thermometers.

There wall, of course, be some uncertainty in

your measurements, and you must decide

whether the differences you observe between

the two thermometers might be due only to

this uncertainty.

The relationship between the readings from

two different thermometers can be displayed

on another graph, where one axis is the reading

on one thermometer and the other axis is the

reading on the other thermometer. Each bath

will give a plot on this graph. If the points fall

along a straight line, then the two thermometer

properties must change in the same way. If,

however, a fairly regular smooth curve can be

drawn through the points, then the two

thermometer properties probably change with

hotness in different ways. (Figure 3-49 show^

possible results for two thermometers.)
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Discussion

If you were to compare many gas thermome-
ters at constant volume as well as pressure, and

use different gases and different initial volumes

and pressures, you would find that they all

behave quantitatively in veiy much the same
way with resp>ect to changes in hotness. If a

given hotness change causes a 10% increase in

the pressure of gas A, then the same change

will also cause a 10% increase in gas B's

pressure. Or, if the volume of one gas sample

decreases by 20% when transferred to a particu-

lar cold bath, then a 20% decrease in xtjlume

will also be observed in a sample of any other

gas. This means that the temperatures read

from different gas thermometers all agree.

This sort of close similarity of behavior

between different substances is not found as

consistently in the expansion of liquidft or

solids, or in their other prop>erties, and so these

thermometers do not agree, as you may have

just discovered.

This suggests two things. First, there is quite

a strong case for using the change in pressure

(or volume) of a gas to define the temjierature

change. Second, the fact that, in such experi-

ments, all gases do behave quantitatively in the

same way suggests that there may be some
underlying simplicity' in the behavior of gases

not found in liquids and solids, and that if one

wants to learn more about the way matter

changes with temp)erature, one would do well

to stari with gases.

Experiment 3-11

CALORIMETRY
Speedometers measure speed, voltmeters mea-

sure voltage, and accelerometers measure ac-

celeration. In this experiment, you will use a

device called a calorimeter As the name
suggests, it measures a quantity connected

with heat

Unfortunately, heat enerf^v' cannot be mea-

sured as directly as some of the other quan-

tities mentioned abov«. In fact, to measure the

heat ener^^V' absort>ed or given off b\- a sub-

stance you must measure the change in

leni|>eratun' of a second substance chosen as a

standard I'he heat exchange takes place inside

a calorimeter, a container in which measured
quantities of materials can be mixed together

without an appreciable amount of heat being

gained fhjm or lost to the outside.
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Fig. 3-50

A Preliminari' Experiment

The first experiment will give you an idea of

how good a calorimeter's insulating ability

really is.

Fill a calorimeter cup (a Styrofoam coffee cup

does nicely) about half full of ice water. Put the

same amount of ice water uith one or two ice

cubes floating in it in a second cup. Into a third

cup, pour the same amount of water that has

been heated to nearly boiling. Measure the

temperature of the water in each cup, and

record the temperature and the time of obser-

vation. (See Fig. 3-50.)

Repeat the observations at about 5-min

intervals throughout the period. Between ob-

servations, prepare a sheet of graph paper wdth

coordinate axes so that you can plot tempera-

ture as a function of time.

Mixing Hot and Cold Liquids

(You can do this experiment while continuing

to take readings of the temperature of the water

in your three cups.) You will make several

assumptions about the nature of heat. Then
you wiU use these assumptions to predict what

will happen when you mix two samples that

are initially at different temperatures. If your

prediction is correct, you can feel some confi-

dence in your assumptions; at least, you can

continue to use the assumptions until they

lead to a prediction that turns out to be wrong.

First, assume that, in your Ccilorimeter, heat

behaves like a fluid that is conserved. Assume
that it can flow from one substance to another,

but that the toted quantity of heat H present in

the calorimeter in any given experiment is

constant. Then the heat lost by a warm object

should just equal the heat gained by a cold

object. In symbols,

- AH, = AH2

Next, assume that if two objects at different

temperatures are brought together, heat will

flow from the warmer to the cooler object until

they reach the same temperature.

Finally, assume that the amount of heat fluid

Ah that enters or leaves an object is propor-

tional to the change in temperature AT and to

the mass of the object, m. In symbols,

AH = cm AT

where c is a constant of proportionality that

depends on the units, and is different for

different substances.

The units in which heat is measured have

been defined so that they are convenient for

calorimeter experiments. The Calorie (cal) is

defined as the quantity of heat necessary to

change the temperature of 1 kg of water by one

Celsius degree. (This definition has to be

refined somewhat for very precise woric, but it

is adequate for your purpose.) In the expres-

sion

AH = cm AT

when m is measured in kilograms of water and

T in Celsius degrees, H wiU be the number of

Calories. Because the Ccdorie was defined this

way, the proportionality constant c has the

value 1 Cal/kg C° when water is the only

substance in the calorimeter. In metric units, 1

Cal = 4.19 kJ. Therefore, you could also

measure directly in joules: 1 J of energy heats 1

g of water by 1/4.19, or 0.240 Celsius degree.

Checking the Assumptions

Measure and record the mass of two empty

plastic cups. Then put about one-half cup of

cold water in one and about the same amount

of hot water in the other, and record the mass

and temperature of each. (Subtract the mass of

the empty cup.) Now mix the two together in

one of the cups, stirgently uath a thermometer,

and record the final temperature of the mix-

ture.

Multiply the change in temperature of the

cold water by its mass. Do the same for the hot

water.

1. What is the product (mass x temperature

change) for the cold water?

2. What is this product for the hot water?

3. Are your assumptions confirmed, or is the

difference between the two products greater than

can be accounted for by uncertainties in your

measurement?
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Predicting

from the Ajisumptions

Try another mixture using different quantities

of water, for example one-quarter cup of hot

water and one-half cup of cold. Before you mix

the two, try to predict the final temp>erature.

4. What do you predict the temperature of the

mixture will be?
5. What final temperature do you observe?

6. Estimate the uncertainty of your thermometer
readings and your mass measurements. Is this

uncertainty enough to account for the difference

between your predicted and observed values?

7. Do your results support the assumptions?

Melting

The cups you filled with hot and cold water at

the beginning of the period should show a

measurable change in temperature by this

time. If you are to hold to your assumption of

conservation of heat fluid, then it must be that

some heat has gone fixjm the hot water into the

room and from the room to the cold water.

Measuring Heat Capaciti'

(While you are doing this experiment, continue

to take readings of the temperature of the water

in your three test cups.) Measure the mass of a

small metal sample. Put just enough cold water

in a calorimeter to cover the sample. Tie a

thread to the sample and susp>end it in a beaker

of boiling water. Measure the temp>erature of

the boiling water.

Record the mass and temp>erature of the

water in the calorimeter.

V\'hen the sample has been immersed in the

boiling water long enough to be heated uni-

formly 12 or 3 min), lift it out and hold it just

above the surface for a few seconds to let the

water drip off, then transfer it quickly to the

calorimeter cup. Stir gently with a thermometer

and record the temperature when it reaches a

steady value.

10. Is the product of mass and temperature

change the same for the metal sample and for the

water?
11. If not, must you modify the assumptions
about heat that you made earlier in the experi-

ment?

8. How much has the temperature of the cold

water changed?
9. How much has the temperature of the water
that had ice in it changed?

The heat that must have gone from the room
to the water-ice mixture evidently did not

change the temperature of the water as long as

the ice was present. But some of the ice melted,

so apparently the heat that leaked in melted

the ice. Kvidently, heal was needed to cause a

"change of state" (in this case, to change ice to

water) tjven if there was no change in tempera-

ture. The additional heat required to melt 1 g of

ice is called Intent heat ofmeltins^.Lutent means
hidden or dormant. Ihe units are C^alories per

gram; ihen* is no temperature unit here

because the temperature does not change.

Next, you will do an experiment mixing

materials other than liquid water in the

calorimeter to see if your assumptions about

heal as a fluid can still be used l\vo such
(vxp«'nm<Mils are descrilM-d brlow. 'Measuring

Meat (lapacily ' antl MtM.siiring l„it««nl Meal If

you have lime for only one of ihem, choo.se

either one. Finally, do "Rale of Cooling" to

complete your pn*liminarv rxperimrnt

In the expression AH = cm AT, the constant

of proportionality c (called the specific heat

capac/f>') may l>e different for diflferent mate-

rials. For water Ihe constant has the value 1

cal/kgC° or 0.240 J/gC. Vou can find a \alue of r

for the metal by using the assumption that heal

gained by the water equals the heat lost by the

sample Writing subscripts for water H^ and

metal sample //», AW» = — AW,

Then Cy,my, Af« = -r/ri.Af,

and c. ^ -c,^, Af,

m,A/,

12. What IS your calculated value for the specific

heat capacity ci for the metal sample you used?

If your assumptions about heat being a fluid

are valid, you now ought lo be able to pretlict

the final lem|)«'rature of am mixture of water

and your malenal

Ity lo \vrif\ the usefulness of your value

Predict the final temperature of a mixture of

water and a heated piece of your material
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using different masses and different initial

temperatures.

13. Does your result support the fluid model of

heat?

Measuring Latent Heat

Use your calorimeter to find the latent heat of

melting of ice. Start with about one-half cup of

water that is a little above room temperature,

and record its mass and temperature. Take a

small piece of ice from a mixture of ice and

water that has been standing for some time;

this will assure that the ice is at 0°C and will not

have to be warmed up before it can melt. Place

the small piece of ice on paper toweling for a

moment to dry' off water on its surface, and

then transfer it quickly to the calorimeter.

Stir gently with a thermometer until the ice is

melted and the mixture reaches an equilibrium

temperature. Record this temperature and the

mass of the water plus melted ice.

water, the latent heat is found to be 80 cal/g, or

335 J/g. How does your result compaire with the

accepted value?

Rate of Cooling

Ifyou have been measuring the temperature of

the water in your three test cups, you should

have enough data by now to plot three curves

of temperature against time. Mark the tempera-

ture of the air in the room on your graph too.

16. How does the rate at which the hot water
cools depend on its temperature?
17. How does the rate at which the cold water
heats up depend on its temperature?

Weigh the amount of water in the cups. From
the rates of temperature change (degrees/

minute) and the masses of water, calculate the

rates at which heat leaves or enters the cups at

various temperatures. Use this information to

estimate the error in your earlier results for

latent or specific heat.

14. What was the mass of the ice that you added?

The heat given up by the warm water is

The heat gained by the water formed by the

melted ice is

Hi = c«/niAti

The specific heat capacity c^ is the same in

both cases; that is, the specific heat of water.

The heat given up by the warm water first

melts the ice, and then heats the water formed

by the melted ice. Using the s>Tnbol AWl for the

heat energy required to melt the ice,

- AH„ = AHi -I- AHj

So the heat energy needed to melt the ice is

AHl = - AH« - AHi

The latent heat of melting is the heat energy

needed per gram of ice, so

latent heat ofmelting =

—

-

15. What is your value for the latent heat of

melting of ice?

When this experiment is done with ice made
&x)m distilled water with no inclusions of liquid

Experiment 3-12

ICE CALORIMETRY
A simple apparatus made up of thermally

insulating Styrofoam cups can be used for

doing some ice calorimetiy experiments. Al-

though the apparatus is simple, careful use will

give you excellent results. To determine the

heat transferred in processes in which heat

energy is given off, you will be measuring either

the volume of water or the mass of water from a

melted sample of ice.

You will need either three cups the same

size, or two large and one slightly smaller cup.

Also have some extra cups ready. One large cup

serves as the collector, A (Fig. 3-511, the second

cup as the ice container, I, and the smaller cup

(or one of the same size cut back to fit inside

the ice container as shown) as the cover, K.

Fig. 3-51 Rg. 3-52
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Cut a hole about 0.5 cm in diameter in the

bottom of cup I so that melted water can drain

out into cup A. To keep the hole from becoming

clogged by ice, place a bit of window screening

in the bottom of I.

In each experiment, ice is placed in cup 1.

This ice should \ie carefully prepared, free of

bubbles, and dry, if you plan to use the known
value of the heat of fusion of ice. However, you

can use ordinary crushed ice, and, before doing

any of the (!xp(!riments, deteiniine experimen-

tally the effective heat of melting of this

nonideal ice. (Why should these two values

differ?)

In some experiments that require some time

to complete (such as Experiment b),you should

set up two identical sets of apparatus (same

quantity of ice, etc.), except that one does not

contain a source of heat. One will serve as a fair

measure of the background effect. Measure the

amount of water collected in this control

apparatus during the same time, and subtract

this amount from the total amount of water

collected in the experimental apparatus,

thereby correcting for the amount of ice melted

just by the heat leaking in from the room. An
efficient method for measuring the amount of

water is to place the arrangement on the pan of

a balance and lift cups I and K at regular

intervals (about 10 min) while you weight A
with its contents of melted ice water.

(a) Heat of melting of ice

Fill a cup about one-half to one-third full

with crushed ice. (Crushed ice has a larger

amount of surface area, and so will melt more
quickly, thereby minimizing errors due to heat

from the rt)om.) Bring a small measured

amount of water (about 20 mU to a boil in a

beaker or large test tube and |)our it over the

ice in the cup. Stir briefly with a poor heat

conductor, such as a glass rod, until equilib-

rium has been reached. Pour the ice- water

mixture through cup I. Collect and measure the

final amount of water (/n,) in A If m„ is the

original mass of hot water at 100°C with which

you started, then ni, - m„ is the mass of ice that

was melted. The heat enepgy absorbed by the

melting ice is the latent heat of melting for ice,

/.|, limes the mass of meltetl ice: L^inif — m„).

This will be e(|ual to the heat eiiergN lost by the

boiling water cooling fn»m 100''(." to 0''C. There-

fore,

L|(/n, - m„) = m„ AT

and L, = m.
lOOC

m, - m„

Note: This derivation is correct only if there is

still some ice in the cup afterwards. Ifyou start

with too little ice, the water will come out at a

higher temperature.

For crushed ice that has been standing for

some time, the value of L, will vary l>et\veen 70

and 75 Cal/g.

(b) Heat exchange and transfer by
conduction and radiation

For several possible experiments you will

need the following additional apparatus. Make
a small hole in the bottom of cup K and thread

two wires, soldered to a lightbulb, through the

hole. A flashlight bulb that operates with an

electric current between 300 and 600 milliam-

peres (mA) is preferable; but e\'en a GE #1130

6-volt automobile headlight bulb (which draws

2.4 A) has been used with success. (See Fig.

3-52.) In each experiment, you are to observe

how the difl^erent apparatus affects heat trans-

fer into or out of the system.

1. Place the bulb in the ice and turn it on for 5

min. Measure the ice melted.

2. Repeat 1, but place the bulb above the ice for

5 min.

3. and 4. Repeat 1 and 2, but cover the inside of

cup K with aluminum foil

5. and 6. Rep>eat 3 and 4, but. in addition, co\-er

the inside of cup I with aluminum foil.

7. Prepare "heat-absorbing" ice by freezing

water to which you hax-e added a small amount
of dye, such as India ink Repeat any or all of

experiments 1 through 6 using this specially

prepared ice.

Some questions to guide your observations:

I3oes any heat escape w+jen the bulb is

immersed in the ice^ What arrangement keeps

in as much heal as possible?

ExpiTinient 3-13

MOiVTE <./\KLO i:\Pi:RI.\IKVr

ON .\10I.FC:i'I^\K <:OI.LISIONS

.\ model tor a gas consisting ot a larg«' niiml>er

of wi'N small particles in rapid random motion

has many advantages One of these is thai it

makes it possible to estimate the pn)j>erties of a

gas as a \\ hole from the l>eha\ior of a cx)mf>ara-

tivT>ly small random sample of its molecules In

this ex|>eriment. you will not use actual gas

particles, but instead employ analogs of

molecular collisions The technique is named
the Montr Carlo mrthod after that famous
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gambling casino in Monaco. The experiment

consists of two games, both of which involve

the concept of randomness. You will probably

have time to play only one game.

Game I: Collision Probability for a

Gas of Marbles

In this part of the experiment, you wall tiy to

find the diameter of marbles by rolling a

"bombarding marble" into an curay of "tai^et

marbles" placed at random positions on a level

sheet of graph paper. The computation of the

marble diameter vvHl be based on the propor-

tion of hits and misses. In order to assure

randomness in the motion of the bombarding
marble, release each marble fix)m the top of an
inclined board studded with nails spaced

about 2.5 cm apart: a sort of pinball machine
(Fig. 3-53). To get a fairly even, yet random,

distribution of the bombarding marble's mo-
tion, move its release position over one space

for each release in the series. The launching

board should be about 0.5 m from the target

board; from this distance, the bombarding

marbles will move in nearly parallel paths

through the target board.

Rg. 3-53

First you need to place the tJirget marbles at

random. Then draw a network of crossed-grid

lines spaced at least two marble diameters

apart on your graph paper. (If you are using

marbles whose diameters are 1 cm, these grid

lines should be spaced 3—4 cm apart.) Number
the grid lines as shown in Fig. 3-54.

9

8

7

b

t
'

3

I

!4-
'-^-4—^- : —

-

J-^^.

-f---
1—r~'7

X —
Fig. 3-54 Eight consecutive two-digit numbers in a table

of random numbers were used to place the marbles.

One way of placing the marbles at random Is

to turn to the table of random numbers at the

end of this experiment (Table 3-1). Each
student should start at a different place in the

table and then select the next eight numbers.

Use the first two digits of these numbers to

locate positions on the grid. The first digit of

each number gives the^ coordinate, the second

gives the y coordinate, or vice versa. Place the

tai^et marbles in these positions. Books may be

placed around the sides of the graph paper to

serve as containing walls.

With your array of marbles in place, make
about 50 trials with the bombcirding marble.

From your record of hits and misses compute
fl, the ratio between the number of runs in

which there £ire one or more hits to the total

number of runs. Remember that you are

counting "runs with hits," not hits. Therefore,

several hits in a single run are still counted as

"one."

Inferring the size of the marbles
How does the ratio fl lead to the diameter of

the tau^et object? The theory applies just as

well to determining the size of molecules as it

does to marbles, although there would be 10^°

or so molecules instead of eight "marble

molecules."

If there were no tai^get marbles, the bombard-

ing marble would get a clear view of the full

width, D, of the target eirea. There could be no

hit. If, however, there were target marbles, the

100% clear view would be cut down. If there
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were N target marbles, each with diameter d,

then the clear path over the width D would be

reduced by JV x d.

It is assumed that no tai^et marble is hiding

behind another. (This corresp)onds to the

assumption that the sizes of molecules are

extremely small compared to the distances

between them.)

The blocking effect on the bombarding

marble is, however, greater than just Nd. The

bombarding marble will miss a target marble

only if its center passes more than a distance of

one radius on either side of it. (See Fig. 3-55.)

This means that a target marble has a blocking

effect equal to twice its diameter (its own
diameter plus the diameter of a bombarding

marble), so the total blocking effect of N
marbles is ZNd. Therefore, the expected ratio fl

of hits to totiil trials is 2Nd/D (total blocked

width to total width). Thus,

ZNd
D '

fl =

which can be rearranged to give an expression

ford:

d = RD
IN

r
2d

2d

Fig. 3-55 A projectile will clear a target only if it passes

outside a center-to-center distance d on either side of it

Therefore, thinking ot the projectiles as points, the

effective blocking width of the target is 2d.

measurement of the marbles. (For example, line

up your eight marbles against a book Measure

the total length of all of them together and

divide by eight to find the diameter d of one

marble.)

1. What value to you calculate for the marble

diameter?
2. How well does your experiment prediction

agree with direct measurement?

Game II: Mean Free Path Between
Collision Squares

In this part of the exp)eriment you play with

blacked-in squares as target molecules in place

of marble molecules in a pinball game. On a

sheet of graph f)ap>er 50 units on a side 12,500

squares), you will locate, by the Monte Cario

method, between 40 and 100 molecules. ELach

student should choose a different number of

molecules.

You will find a table of random numbers
(fix>m to 50) at the end of this exp>eriment

(Table 3-1). Begin anywhere you wish in the

table, but then proceed in a regular sequence.

Let each pair of numbers bv thr .v and v

coordinates of a point on your graph, ilf one of

the pair is greater than 49, you cannot use it

Ignore it and take the next pair.) Then shade in

the squares for which these points are the

lower left-hand comers (Fig. 3-561 You now
have a random array of square target

"molecules."

(03, 02)

Rg. 3-56

To check the acruracy of the Montr C'arlo

method, rompan» the value ford obtained from

the foiiiuila abou* with that obtained by direct

Rules of the fiamr
rbe w.iy a bombarding particle passes

Ihmugli this array, it is Imund to collide with

some of the target jvarticles There are fi\« rules
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for this game of collision. All of them are

illustrated in Fig. 3-57.

(a) The particle can travel only along lines of

the graph paper, up or down, left or right. A

L.i rri
4-^

r-f-l--f 4

Rg. 3-57

particle starts at some point (chosen at ran-

dom) on the left-hand edge of the graph paper.

The particle initially moves horizontally fix)m

the starting point until it coUides with a

blackened square or another edge of the graph

paper.

(b) If the particle strikes the upper left-hand

comer of a target square, it is diverted upward
through a right angle. If it should strike a lower

left-hand comer it is diverted downward, again

through an angle of 90°.

(c) When the path of the particle meets an

edge or boundary of the graph paper, the

particle is not reflected directly back. (Such a

reversal of path would make the particle retrace

its pre\ious path.) Rather it moves tvvo spaces

to its right along the boundary edge before

reversing its direction.

(d) There is an exception to rule (c). Whenever
the particle strikes the edge so near a comer
that there is no room for it to move two spaces

to the right vdthout meeting another edge of

the graph paper, it moves two spaces to the left

cdong the boundeuy.

(e) Occasionally two target molecules may
occupy adjacent squares and the particle may
hit touching corners of the two target

molecules at the same time. The rule is that this

counts as two hits and the particle goes straight

through without changing its direction.

Finding the mean free path
With these collision rules in mind, trace the

path of the particle as it bounces about cimong

the random array of target squares. Count the

number of collisions with targets. Follow the

path of the particle until you get 50 hits with

tfirget squares (collisions with the edge do not

count). Next, record the 50 lengths of the paths

of the peirticle between collisions. Distances to

and from a boundary should be included, but

not distances a/ong a boundary (the two spaces

introduced to avoid backtracking). These 50

lengths are the fi^e paths of the particle. Total

them and divide by 50 to obtain the mean ft-ee

path, L for your random two-dimensional cirray

of square molecules.

In this game, your molecule analogs were

pure points, that is, dimensionless. In his

investigations, Clausius modified this model by

giving the particles a definite size. Clausius

showed that the average distcince L a molecule

travels between collisions, the so-called mean

ft'ee path, is given by

L =
Na

where V is the volume of the gas, N is the

number of molecules in that volume, and a is

the cross-sectional area of an individual

molecule. In this two-dimensional game, the

particle was moving over an area A, instead of

through a volume V, and was obstructed by

targets of width d, instead of cross-sectional

area a. A two-dimensional version of Clausius 's

equation is

where N is the number of blackened square

"molecules."

3. What value of L do you get from the data for

your runs?

4. Using the two-dimensional version of

Clausius's equation, what value do you estimate

for d (the width of a square)?

5. How does your calculated value of d compare
with the actual value? How do you explain the

difference?
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TABLE 3-1

TABLE OF 1000 RANDOM TWO-DIGIT NUMBERS
(FROM to 50)

03 47
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Experiment 3-14
BEHA\10R OF GASES

Air is elastic or springy. You can feel this when
you put your finger over the outlet of a bicycle

pump and push down on the pump plunger.

You can tell that there is some connection

between the volume of the air in the pump and
the force you exert in pumping, but the exact

relationship is not obvious. About 1660, Robert

Boyle performed an experiment that disclosed

a veiy simple relationship betueen gas pres-

sure and volume, but not until two centuries

later was the kinetic theory of gases developed,

which satisfactorily accounted for Boyle's law.

The purpose of these experiments is not

simply to show that Boyle's law and Gay
Lussac's law Iwhich relates temperature and
volume) are "true. ' The purpose is also to show
some techniques for analyzing data that can

lead to such laws.

I. Volume and Pressure

Boyle used a long glass tube in the form of a J to

investigate the "spring of the air." The short

arm of the J was sealed, and air was trapped in

it by pouring mercury into the top of the long

arm.

A simpler method requires only a small

plastic syringe, calibrated in milliliters, and
mounted so that you can push down the piston

by piling weights on it (see Fig. 3-58). The
volume of the air in the syringe can be read

directly fix)m the calibrations on the side. The
pressure on the air due to the weights on the

piston is equal to the force exerted by the

weights divided by the area of the face of the

piston:

Rg. 3-58

Because "weights " are usually marked with

the value of their mass, you will have to

compute the force firom the relation Fgrav =

magrav (It vvUl help if you answer this question

before going on: Uliat is the weight, in newtons,

of a 0.1-kg mass?)

To find the area of the piston, remove it fiDm

the syringe. Measure the diameter (2fl) of the

piston face, and compute its area ftx)m the

familiar formula A — ttR'.

You will want to both decrease and increase

the volume of the air, so insert the piston about

halfway down the barrel of the syringe. The
piston may tend to stick slightly. Give it a twist

to fi^e it and help it come to its equilibrium

position. Then record this position.

Add weights to the top of the piston and each

time record the equilibrium position, after you
have given the piston a twist to help overcome

friction.

Record your data in a table with columns for

volume, weight, and pressure. Then remove the

weights one by one to see if the volumes are the

same with the piston coming up as they were

going down.

If your apparatus can be turned over so that

the weights pull out on the plunger, obtain

more readings this way, adding weights to

increase the volume. Record these as negative

forces. (Stop adding weights before the piston is

pulled aU the way out of the barrel!) Again

remove the weights and record the values on
returning.

Interpreting Your Results
You now have a set of numbers somewhat

like the ones Boyle reported for his experiment.

One way to look for a relationship between the

pressure P„ and the volume V is to plot the

data on graph paper. Plot volume V (vertical

axis) as a function of pressure P„ (horizontal

axis I. Then draw a smooth curve that gives an
overall "best fit

' Because errors of measure-
ment affect each plotted point, your smooth
curve need not go through all the points.

Since V decreases as P„ increases, you can
tell before you plot it that your curve represents

an 'inverse " relationship. As a first guess at the

mathematical description of this curve, tiy the

simplest possibility, that 1/V is proportional to

P«. That is, lA' oc p^. if i/v is proportional to

P^, then a plot of 1/V against P^. will lie on a

straight line.

Add another column to your data table for

values of lA^ and plot this against P^..
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1. Does this curve pass through the origin?

2. If not, at what point does your curve cross the

horizontal axis? (In other words, what is the value

of P^ for which MV would be zero?) What is the

physical significance of the value of P^7

In Boyle's time, it was not understood that air

is really a mixture of several gases. Do you

believe you would find the same relationship

between volume and pressure if you tried a

variety of pure gases instead of air? If there are

other gases available in your laboratory, flush

out and refill your apparatus with one of them

and try the experiment again.

Draw a straight line as nearly as possible

through the points on your V-T graph and

extend it to the left until it shows the approxi-

mate temperature at which the volume would
be zero. Of course, you have no reason to

assume that gases have this simple linear

relationship all the way down to zero volume.

(In fact, air would change to a liquid long before

it reached the temperature indicated on your

graph for zero volume.) However, some gases

do show this linear behavior over a wide

temperature range, and for these gases the

straight line always crosses the T axis at the

same point. Since the volume of a sample of gas

cannot be less than zero, this point represents

the lowest possible temperature of the gases,

the absolute zero of temp>erature.

3. Does the curve you plot have the same shape
as the previous one? 7. What value does your graph give for absolute

zero?

II. Volume and Temperature

Boyle suspected that the temperature of his air

sample had some influence on its volume, but

he did not do a quantitative experiment to find

the relationship between volume and tempera-

ture. It was not until about 1880, when there

were better ways of measuring temperature,

that this relationship was established.

You could use several kinds of equipment to

investigate the way in which volume changes
with temperature. Such a piece of equipment is

a glass bulb with a J tube of mercury or the

syringe described above. Make sure the gas

inside is dry and at atmospheric pressure.

Immerse the bulb or syringe in a beaker of cold

water and record the volume of gas and
temperatuiv of the water (as measured on a

suitable thermometerl periodically as you
slowly heat the water.

Inter|)reting Yoiu- Results

4. With either of the methods mentioned here,

the pressure of the gas remains constant. If the

curve is a straight line, does this "prove" that the

volume of a gas at constant pressure is propor-

tional to its temperature?
5. Remember that the thermometer you used
probably depended on the expansion of a liquid

such as mercury or alcohol. Would your graph
have been a straight line if a different type of

thermometer had been used?
6. If you could continue to cool the air, would
there be a lower limit to the volume it would
occupy?

III. Questions for Discussion

Both the pressure and the temp>erature of a gas

sample affect its volume. In these experiments,

you were asked to consider each of these

factors separately.

8. Were you justified in assuming that the tem-

perature remained constant in the first experi-

ment as you varied the pressure? How could you
check this? How would your results be affected if,

in fact, the temperature went up each time you
added weight to the plunger?

9. In the second experiment, the gas was at

atmospheric pressure. Would you expect to find

the same relationship between volume and tem-

perature if you repeated the experiment with a

different pressure acting on the sample?

Gases such as hydrogen. ox>'gen. nitrogen

and rarljon dio.xide are wrv different in their

rhrmiral lM'ha\ior Vet thr\ all show the same
simple relationships l>et\veen wlumo, pres-

sure, and tem|H'rature that you founH in these

exjM'riments. cnvr a fairly wide range of pres-

sun\s and t«MiijM>ratiiPPS This suggests that

jM»rliaps thtMi" IS a simpir ph\siral iiKMlrl that

will explain the l)eha\ior of all gas<'s within

these limits of trm}>eraturp and pressure.

Chapter 11 of the Text desrrilx*s just such a

simple model and its im|Kir1anre in the

dp\flopment of physics.
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Experiment 3'15

WAVE PROPERTIES

In this laboratory exercise you will become

familiar with a variety of wave properties in

one- and two-dimensional situations.* Using

ropes, springs, Slinkies, or a ripple tank, you

can find out what determines the speed of

waves, what happens when they collide, and

how waves reflect and go around comers.

Waves in a Spring

Many waves move too fast or are too small to

watch easily, but in a long "soft" metal spring

you can make big waves that move slowly. With

a partner to help you, pull the spring out on a

smooth floor to a length of about 6-9 m. Now,

with your free hand, grasp the stretched spring

about 50 cm from the end. Pull the spring

together toward the end and then release it,

being careful not to let go of the fixed end with

your other hand! Notice the single wave, called

a pulse, that travels along the spring. In such a

longitudinal pulse, the spring coils move back

and forth along the same direction as the

wave travels. The wave carries energv', and thus

could be used to carry a message from one end

of the spring to the other.

You can see a longitudinal wave more easily

ifyou tie pieces of string to several of the loops

of the spring and watch thefr motion when the

spring is pulsed.

A transverse wave is easier to see. To make
one, practice moving your hand very quickly

back and forth at right angles to the stretched

spring, until you can produce a pulse that

travels down only one side of the spring. This

pulse is called transverse because the indi-

vidual coils of wire move at right angles to

(transverse to) the length of the spring.

Perform experiments to answer the following

questions about transverse pulses.

Next observe what happens when waves go

from one material into another, an effect called

refraction. To one end of your spring attach a

length of rope or rubber tubing (or a different

kind of spring) and have your partner hold this

end.

4. The far end of your first spring is now free to

move back and forth at the joint. What happens to

a pulse (size, shape, speed, direction) when it

reaches the boundary between the two media?

Have your partner detach the extra spring

and once more grasp the far end of your

original spring. Then you both send a pulse on

the same side, at the same instant, so that the

two pulses meet in the center. The interaction

of the two pulses is Ccdled interference

.

5. What happens (size, shape, speed, direction)

when two pulses reach the center of the spring? (It

will be easier to see what happens in the

interaction if one pulse is larger than the other.)

6. What happens when two pulses on opposite

sides of the spring meet?
As the two pulses pass on opposite sides of the

spring, can you observe a point on the spring that

does not move at all?

7. From these observations, what can you say

about the displacement caused by the addition of

two pulses at the same point?

By vibrating your hand steadily back and

forth, you can produce a train of pulses, a

periodic wave. The distance between any two

neighboring crests on such a periodic wave is

the wave/engf/j . The rate at which you vibrate

your hand will determine the ^equency of the

periodic wave. Use a long spring and produce

short bursts of periodic waves so you can

observe them without interference by reflec-

tions from the far end.

1. Does the size of the pulse change as it travels

along the spring? If so, in what way?
2. Does the pulse reflected from the far end
return to you on the same side of the spring as the

original pulse, or on the opposite side?

3. Does a change in the tension of the spring have
any effect on the speed of the pulses? When you
stretch the spring farther, in effect you are

changing the nature of the medium through

which the pulses move.

Adapted from R.F. BrinckerhofT and D.S. Taft, Mod-
ern Laboratory Experiments in Physics, by per-

mission of Science Electronics, Nashua, N Ji.

8. How does the wavelength seem to depend on

the frequency?

You have now observed the reflection, refrac-

tion, and interference of single waves, or pulses,

traveling through different materials. These

waves, however, moved only along one dimen-

sion. So that you can maike a more realistic

comparison with other forms of traveling

energy, in the next experiment you will

examine these same wave properties spread

out over a two-dimensional surface.
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Experimeni 3-16

WAV ES IN A RIPPLE TANK
In the laboratoiy, one or more ripple tanks will

have been set up. To the one you and your

partner are going to use, add water (if neces-

saiy) to a depth of 6-8 mm. Check to see that

the tank is level so that the water has equal

depth at all four comers. Place a large sheet of

white paper on the table below the ripple tank,

and then switch on the overhead light source.

Disturtjances on the water surface are pro-

jected onto the paper as light and dark

patterns, thus allowing you to "see" the shape

of the disturbances in the horizontal plane.

To see what a single pulse looks like in a

ripple tank, gently touch the water with your

fingertip, or, better, let a drop of water fall into it

from a medicine dropper held only a few

millimeters above the surface.

For certain purposes, it is easier to study

pulses in water if their crests are straight. To
generate single straight pulses, place a dowel,

or a section of a broom handle, along one edge

of the tank and roll it backward a fraction of a

centimeter. By rolling the dowel backward and
forward with a uniform frequency, a periodic

wave, a continuous train of pulses, can be

formed.

Use straight pulses in the ripple tank to

observe refiection, refraction, and difi^raction,

and circular pulses from point sources to

observe interference.

Reflection

Generate a straight pulse and notice the

direction of its motion. Now place a barrier in

the water so that it intersects that path.

Generate new pulses and ()bser\'e what hap-

pens to the pulses when they strike the barrier.

Try different angles between the barrier and the

incoming pulse.

1. What is the relationship between the direction

of the incoming pulse and the reflected one?
2. Replace the straight barrier with a curved one.

What is the shape of the reflected pulse?

3. Find the point where the reflected pulses run

together. What happens to the pulse after it

converges at this point? At this point, called the

focus, start a pulse with your finger or a drop of

water. What is the shape of the pulse after

reflection from the curved barrier?

Refraction

\j\y a sheet of glass in the center of the tank,

supported by coins if necessary, to make an

area of very shallow water. Tiy varying the angle

at which the pulse strikes the boundary

between the deep and shallow water.

4. What happens to the wave speed at the

boundary?
5. What happens to the wave direction at the

boundary?
6. How is change in direction related to change in

speed?

Interference

Arrange two point sources side by side a few

centimeters apari. When tapped gently, they

should produce two pulses. You will see the

action of interference better if you vibrate the

two point sources continuously w\\h a motor
and study the resulting pattern of waves.

7. How does changing the wave frequency affect

the original waves?
Find regions in the interference pattern where

the waves from the two sources cancel and leave

the water undisturbed. Find the regions where the

two waves add up to create a doubly great

disturbance.

8. Make a sketch of the interference pattern

indicating these regions.

9. How does the pattern change as you change
the wavelength?

Diflfraction

With two-dimensional waves you can observe a

new phenomenon: the behavior of a wax^e when
it passes around an obstacle or through an
opening. The spreading of the wax^e into the

"shadow" area us called diffraction . Generate a

steady train of wav-es by using the motor dri\en

straight-pulse source. Place a small l>arrier in

the path of the wa\-es so that it intercepts j>ar1.

but not all, of the wax^e front Observe what
happens as the waves pass the edge of the

barrier Now \ar>- the wawlength of the incom-

ing wave train by changing the speed of the

motor on the sourx^.

10. How does the interaction with the obstacle

vary with the wavelength?
Place two long barriers in the tank, leaving a

small opening between them
11. How does the angle by which the wave
spreads out beyond the opening depend on the

size of the opening?
12. In what way does the spread of the diffraction

pattern depend on the length of the waves?
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Experiment 3-17

MEASURING WAVELENGTH
There are three ways you can conveniently

measure the wavelength of the waves generated

in your ripple tank. You should try them all, if

possible, and cross-check the results. If there

are differences, indicate which method you
believe is most accurate and explciin why.

METHOD A: Direct

Set up a steady train of pulses using either a

single-point source or a straight-line source.

Observe the moving waves with a stroboscope,

and then adjust the vibrator motor to the

lowest frequency that will "freeze" the wave

pattern. Place a meter stick across the ripple

tank and measure the distance between the

crests of a counted number of waves.

METHOD B: Standing Waves
Place a straight barrier across the center of

the tcink parallel to the advancing waves. When
the distance of the barrier fix)m the generator is

properly adjusted, the superposition of the

advancing waves and the waves reflected firom

the barrier wall produce standing waves. In

other words, the reflected waves are, at some
points, reinforcing the originail waves, vvtiUe at

other points there is cilways cancellation. The
points of continued canceUation are called

nodes . The distance between nodes is one-half

wavelength.

METHOD C: Interference Pattern
Set up the ripple tank with two point

sources. The two sources should strike the

water at the same instant so that the two waves

will be exactly in phase and of the same
frequency as they leave the sources. Adjust the

distance between the two sources and the

frequency of vibration until a distinct pattern is

obtained, such as in Fig. 3-59.

As you study the pattern of ripples, you will

notice lines along which the waves cancel

Fig. 3-59 An interference pattern in water. Two point

sources vibrating in phase generate waves in a ripple

tank. A and C are points of maximum disturbance (in

opposite directions) and B is a point of minimum
disturbance.

almost completely so that the amplitude of the

disturbance is almost zero. These lines are

called nodal lines, or nodes. You have already

seen nodes in your earlier experiment with

standing waves in the ripple tank.

At every point along a node the waves

arriving from the two sources are half a

wavelength out of step, or "out of phase." This

means that for a point (such as B in Fig. 3-59) to

be on a line of nodes it must be V2 or 1V2 or 2V2

. . . wavelengths farther from one source than

from the other.

Between the lines of nodes are regions of

maximum disturbance. Points A and C in Fig.

3-59 are on lines down the center of such

regions, called anfinoda/ lines . Reinforcement of

waves from the two sources is at a maximum
along these lines.

For reinforcement to occur at a point, the

two waves must eirrive in step or "in phase."

This means that any point on a line of

antinodes is a whole number of wavelengths 0,

1, 2, . . . farther from one source than from the

other. The relationship between crests,

troughs, nodes, and antinodes in this situation

is summarized schematically in Fig. 3-60.
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Fig. 3-60 Analysis of interference pattern similar to that

of Fig. 3-59 set up by two in-phase periodic sources
(Here Si and Sj are separated by four wavelengths ) The
letters A and N designate antinodal and nodal lines The
dark circles indicate where crest is meeting crest, the

blank circles where trough is meeting trough, and the

half-dark circles where crest is meeting trough.

distance L from the sources, then d.L, and X are

related by the equations

d L

or

L

where fc is the distance between neighboring

antinodes lor neighboring nodes).

You now have a method for computing the

wavelength X from the distances that you can

measure precisely. Measure x» d, and L in your

ripple tank and compute X.

Experiment 3-18

SOUND
In previous exp>eriments, you observed how
waves of relatively low frequency behave in

different media. In this expjeriment, you will try

to determine to what extent audible sound
exhibits similar projaerties.

At the laboratory station where you work,

there should be the following: an oscillator, a

power supply, two small loudsp>eakers. and a

group of materials to be tested. A loudsp>eaker

is the source of audible sound waves, and your

ear is the detector. First connect one of the

loudspeakers to the output of the oscillator and
adjust the oscillator to a frequency of about

4000 Hz. Adjust the loudness so that the signal

is just audible 1 m away from the speaker. The

Most physics textbooks drvelop the

mathematical ai^ument of the n>lati()nship of

wavelength to the geometry of the interference

pattern. (Si^e, for example, p. 119 in Unit 3 of the

Text.) If the di.stanre between the sources is d
atul the detector is at a comparatively greater

Fig. 3-61 Sound from the speaker can be detected by
using a funnel and rubber hose, the end of wtiich is

placed to the ear The oscillator's banana plug )scks

must be inserted into the 8 V. 8 V and ground holes
of the power supply Insert the speaker's plugs into the
sine wave ground receptacles of the oscillator Select
the audio range by means of the top knob of the
oscillator and then turn on the power tupply.
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gain-control setting should be low enough to

produce a clear, pure tone. Since reflections

from the floor, tabletop, and hard-surfaced

walls may interefere with your observations, set

the sources at the edge of a table. Put soft

material over any close hard surface that could

cause reflective interference.

You may find that you can localize sounds

better if you make an "ear trumpet" or stetho-

scope from a small funnel or thistle tube and a

short length of rubber tubing (Fig. 3-61). Cover

the ear not in use to minimize confusion when
you are hunting for nodes and maxima.

Transmission and Reflection

Place samples of various materials at your

station between the speaker and the receiver to

see how they transmit the sound wave. In a

table, record your qualitative judgments as

best, good, poor, and so on.

Test the same materials for their abUity to

reflect sound and record your results. Be sure

that the sound is really being reflected and is

not coming to your detector by some other

path. You can check how the intensity varies at

the detector when you move the reflector and
rotate it about a vertical axis (see Fig. 3-62). If

suitable materials are available to you, also test

the reflection from curved surfaces.

Hg. 3-62

1. On the basis of your findings, what generaliza-

tions can you make relating transmission and
reflection to the properties of the test materials?

Refraction

You have probably observed the refraction or

"bending" of a wave front in a ripple tank as the

wave slowed down in passing from water of

one depth to shaUower water.

You may observe the refraction of sound
waves using a "lens" made of gas. Inflate a

spherical balloon with carbon dioxide gas to a

diameter of about 10-15 cm. Explore the area

near the bedloon on the side away from the

source. Locate a point where the sound seems
loudest, and then remove the balloon.

2. Do you notice any difference in loudness when
the balloon is in place? Explain.

Diffraction

In front of a speaker set up as before; place a

thick piece of hard material about 25 cm long,

mounted vertically about 25 cm directly in front

of the speaker. Slowly probe the area about 75

cm beyond the obstacle.

3. Do you hear changes in loudness? Is there

sound in the "shadow" area? Are there regions of

silence where you would expect to hear sound?
Does there seem to be any pattern to the areas of

minimum sound?

For another way to test for dififraction, use a

large piece of board placed about 25 cm in front

of the speaker with one edge aligned with the

center of the source. Now explore the area

inside the shadow zone and just outside it. (See

Fig. 3-63.)

Describe the pattern of sound interference

that you detect.

4. Is the pattern analogous to the pattern you
observed in the ripple tank?

Wavelength

METHOD A: Standing Wave
Set your loudspeaker about 0.5 m above and

facing toward a hard tabletop or floor, or about

that distance from a hard, smooth plaster wall

or other good sound reflector. Your ear is most

sensitive to the changes in intensity of faint

sounds, so be sure to keep the volume low.

Explore the space between the source and

reflector, listening for changes in loudness.

Record the positions of minimum loudness, or

at least find the approximate distjmce between
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two consecutive minima. These minima are

located one-half wavelength apart.

5. Does the spacing of the minima depend on the

intensity of the wave?
Measure the wavelength of sound at several

different frequencies.

6. How does the wavelength change when the

frequency is changed?

METHOD B: Interference

Connect the two loudspeakers to the output

of the oscillator and mount them at the edge of

the table about 25 cm apart. Set the frequency

at about 4,000 Hz to produce a high-pitched

tone. Keep the gain setting low during the

entire experiment to make sure the oscillator is

producing a pure tone, and to reduce re-

flections that would interfere with the experi-

ment.

9. Does the wavelength change with frequency?

If so, does it change directly or inversely?

Calculating the Speed of Sound
The relationship between speed v, wave-

length X, and frequency / is v = Kf. The
oscillator dial gives a rough indication of the

frequency (and your instructor can advise you
on how to use an oscilloscop>e to make precise

frequency settings). Using your best estimate of

X, calculate the speed of sound. If you ha\'e

time, extend your data to answer the following

questions.

10. Does the speed of the sound waves depend
on the intensity of the waves'

11. Does the speed depend on the frequency?

Pig. 3-63

Move your ear or "stethoscope" along a line

parallel to, and about 50 cm from, the line

joining the sources. Can you detect distinct

maxima and minima? Move farther away from

the sources; do you find any change in the

pattern spacing'

7. What effect does a change in the source
separation have on the spacing of the nodes?
8. What happens to the spacing of the nodes if

you change the frequency of the sound? To make
this experiment quantitative, work out for yourself

a procedure similar to that used with the ripple

tank.

Measure the separation d of the source

centers and the distance ,x l)etween nodes and
use these data to calciilatr the wawlength X.

Expc>riment 3-19

IXIRrlSOl'XD

The equipment needed for this exp>eriment is

an oscillator, power suppK , and three ultra-

sonic transducers (cr^-stals that transform elec-

trical impulses into sound waves, or\ice versal,

and several materials to be tested. The signal

from the detecting transducer can be displayed

with either an oscilloscope (as in Fig. 3-641 or an

r
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Fig. 3-65 Above, ultrasound transmitter and receiver.

The signal strength is displayed on a microammeter
connected to the receiver amplifier. Below, a diode

connected between the amplifier and the meter, to

rectify ttie output current. The amplifier selector switch

should be turned to ac. Jhe gain control on the amplifier

should be adjusted so that the meter will deflect about

full-scale for the loudest signal expected during the

experiment. The offset control should be adjusted until

the meter reads zero when there is no signal.

amplifier and meter (Fig. 3-65). One or two of

the transducers, driven by the oscillator, are

sources of the ultrasound, while the third

transducer is a detector. Before you proceed,

have the instructor check your setup and help

you get a pattern on the oscilloscope screen or

a reading on the meter.

The energy output of the transducer is

highest at about 40,000 Hz, and the oscillator

must be carefully "tuned" to that frequency.

Place the detector a few centimeters directly in

front of the source and set the oscillator range

to the 5-50 kHz position. Tune the oscillator

carefully around 40,000 Hz for maximum de-

flection of the meter or the scope track. If the

signal output is too weak to detect beyond 25

cm, plug the detector transducer into an

amplifier and connect the output of the

amplifier to the oscilloscope or meter input.

Transmission and Reflection

Test the various samples at your station to see

how they transmit the ultrasound. Record

your judgments as best, good, poor, etc. Hold

the sample of the matericil being tested close to

the detector.

Test the same matericils for their ability to

reflect ultrasound. Be sure that the ultrasound

is really being reflected and is not coming to

your detector by some other path. You can

check this by seeing how the intensity varies at

the detector when you move the reflector.

Make a table of vour observations.

1. What happens to the energy of ultrasonic

waves in a material that neither reflects nor

transmits well?

Diffraction

To observe diffraction around an obstacle, put a

3-cm wide piece of hard material about 8 or 10

cm in front of the source (see Fig. 3-66). Explore

the region 5-10 cm behind the obstacle.

Fig. 3-66 Detecting diffraction of ultrasound around a

barrier.

2. Do you find any signal in the "shadow" area?

Do you find minima in the regions where you
would expect a signal to be? Does there seem to

be any pattern relating the places of minimum
and maximum signals?

Put a larger sheet of absorbing material 10 cm
in front of the source so that the edge obstructs

about one-half of the source.

Again probe the "shadow" area and the area

near the edge to see if a pattern of maxima and
minima seems to appear.

Measuring Wavelength

METHOD A: Standing Wave
Investigate the standing waves set up bet-

ween a source and a reflector, such as a hard

tabletop or metal plate. Place the source about

10 to 15 cm from the reflector with the detector.

Find the approximate distance between two

consecutive maxima or two consecutive

minima. This distance is one-half the

wavelength.

3. Does the spacing of nodes depend on the

intensity of the waves?
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METHOD B: Interference

For sources, connect two transducers to the

output of the oscillator and set them ahout 5

cm apart. Set the oscillator switch to the 5-50

kHz position. For a detector, connect a third

transducer to an oscilloscope or amplifier and

meter as described in Method A of the experi-

ment. Then tune the oscillator for maximum
signal from the detector when it is held near

one of the sources (about 40,000 Hz). Move the

detector along a line parallel to and about 25

cm in front of a line connecting the sources. Do
you find distinct maxima and minima? Move

closer to the sources. Do you find any change
in the pattern spacing?

4. What effect does a change in the separation of

the sources have on the spacing of the nulls?

To make this experiment quantitath'e, work

out a procedure for yourself similar to that

used with the ripple tank. Measure the appropn

riate distances and then calculate the

wavelength using the relationship

Fig. 3-67 Setup for determination of wavelength by the
interference method.

derived earlier for interference patterns in a

ripple tank.

5. In using that equation, what assumptions are

you making?

The Speed of Litrasound

The relationship between sp)eed v, wavelength

k, and frequency/ is v = Kf. Using your best

estimate of X, calculate the sjjeed of sound.

6. Does the speed of the ultrasound waves
depend on the intensity of the wave?
7. How does the speed of sound in the inaudible

range compare with the speed of audible sound?
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ACTIVITIES
IS MASS CONSERVED?
You have read about some of the difficulties in

establishing the law of conservation of mass.

You can do several different experiments to

check this law.

Antacid Tablet

You will need the following equipment: antacid

tablets; 2-L flask, or plastic jug (such as is used

for bleach, distilled water, or duplicating fluid);

stopper for flask or jug; warm water; balance

(sensitivity better than 0.1 g); spring scale

(sensitivity better than 0.5 g).

Balance a tablet and 2-L flask containing

200-300 mL of water on a sensitive balance.

Drop the tablet in the flask. When the tablet

disappears and no more bubbles appear,

readjust the balance. Record any change in

mass. If there is a change, what caused it?

Repeat the procedure above, but include the

rubber stopper in the initial balancing. Im-

mediately after dropping in the tablet, place the

stopper tightly in the mouth of the flask. (The

pressure in a 2-L flask goes up by no more than

20%, so it is not necessary to tape or wire the

stopper to the flask. Do not use smaller flasks in

wtiich proportionately higher pressure would
be built up.) Is there a change in mass? Remove
the stopper after all reaction has ceased. What

happens? Discuss the difference between the

two procedures.

Brightly Colored Precipitate

You will need: 20 g lead nitrate; 11 g potassium

iodide; Erlenmeyer flask, 1000 mL with stopper;

test tube, 25 x 150 mm; balance.

Place 400 mL of water in the Erlenmeyer

flask, add the lead nitrate, and stir until

dissolved. Place the potassium iodide in the

test tube, add 30 mL of water, and shcike until

dissolved. Place the test tube, open and up-

ward, carefuUy inside the flask and seal the

flask with the stopper. Place the flask on the

balance and bring the balance to equilibrium.

Tip the flask to mix the solutions. Replace the

flask on the balance. Does the total mass

remain conserved? What does change in this

experiment?

Magnesium Flashbulb

On the most sensitive balance you have avail-

able, mejisure the mciss of an unflashed mag-

nesium flashbulb. Repeat the measurement
several times to make an estimate of the

precision of the measurement.

Flash the bulb by connecting it to a battery.

Be careful to touch the bulb as little as possible,

so as not to wear away any material or leave any

fingerprints. Measure the mass of the bulb

several times, as before. You can get a feeling for

how small a mass change your balance could

have detected by seeing how large a piece of

tissue paper you have to put on the balance to

produce a detectable difference.

EXCHANGE OF MOMENTUM
DEVICES

The four situations described below are more
complex tests for conversation of momentum,
to give you a deeper understanding of the

generality of the conservation law and of the

importance of your frame of reference.

(a) Fasten a section of HO-gauge model rail-

road track to two rings stands cis shown in Fig.

3-68. Set one truck of wheels, removed fiDm a

car, on the track and from it suspend an object

with mass roughly equal to that of the truck.

Hold the truck, puU the object to one side,

parallel to the track, and release both at the

same instant. What happens?

Fig. 3-68

Predict what you expect to see happen ifyou

released the truck an instant after releasing the

object. Try it. Also, try increasing the sus-

pended mass.
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(b) An air track supported on ring stands can

also be used. An object of 20 g mass was

suspended by a SO-cm string from one of the

small air-track gliders. (One student trial con-

tinued for 166 swings.)

(c) Fasten two dynamics carts together with

four hacksaw blades as shown in Fig. 3-69. Push

the top one to the right, the bottom to the left,

and release them. Try giving the bottom cart a

push across the room at the same instant you
release them.

Fig. 3-69

account for this increase? {Hint: Set the wedge

on a piece of cardboard supported on plastic

beads and try the exp>eriment.)

STUDENT HORSEPOU'ER
When you wtilk up a flight of stairs, the work
you do goes into frictional heating and increas-

ing gravitational potential energy. The
AlP£)|„v. in joules, is the product of your
weight in newtons and the height of the stairs

in meters.

Your useful power output is the average rate

at which you did the lifting work, that is, the

total change in IP£)b»v- di\ided by the time it

took to do the work.

Walk or run up a flight of stairs and have

someone time how long it takes. Determine the

total vertical height that you lifted yourself by

measuring one step and multiplying by the

number of steps.

Calculate your useful work output and your
power, in both units of watts and in horse-

power. (Take 1 horsepower to be equal to 746

watts.)

What would happen wlien you released the

two if there were 10 or 20 ball bearings or small

wooden balls hung as pendula from the top

cart?

(d) Push two large rubber stoppers onto a short

piece of glass tubing or wood (Fig. 3-70). Let the

"dumbbell" roll down a wooden wedge so that

the stoppers do not touch the table until the

dumbbell is almost to the bottom. When the

dumbbell touches the table, it suddenly in-

creases its linear momentum as it moves along

the table. Principles of rotational momentum
and enei^ are involved here that are not

covered in the Text, but even without extending

the Text, you can deal with the "mysterious'

increase in linear momentum when the stop-

pers touch the table.

^ M

DRINKING DUCK
A toy ctilled a Drinking Duck demonstrates ver\'

well the conN-ersion of heat ener^- into ener^gv'

of gross motion by the processes of evaporation

and condensation. The duck will continue to

bob up and down as long as there is enough
water in the cup to wet the beak (see Fig. 3-71).

Fig 3 70
Rg. 3-71

Using wtiatyou have learned about conserva-

tion of tnoiiKMitum. what do vou tliink could

Rather than dampen vour spirit of ad\-enture,

we will not tell you how it works. If vou cannot

figure out a (lossible mechanism for yourself.
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George Gamow's book, The Biography of

Physics, has a very good explanation. Gamow
also calculates how far the duck could raise

water in order to feed itself. An interesting

extension is to replace the water with rubbing

alcohol. What do you think will happen?

MECHANICAL EQUIVALENT
OF HEAT
By dropping a quantity of lead shot ftxim a

measured height and measuring the resulting

change in temperature of the lead, you can get

a value for the ratio of work units to heat units,

the mechanical equivalent of heat.

You will need the following equipment:

cardboard tube; lead shot (1-2 kg); stoppers; a

thermometer.

Close one end of the tube with a stopper, and

put in 1- 2 kg of lead shot that has been cooled

about 5°C below room temperature. Close the

other end of the tube with a stopper in which a

hole has been drilled and a thermometer

inserted. Carefully roll the shot to this end of

the tube and record its temperature. Quickly

invert the tube, remove the thermometer, and

plug the hole in the stopper. Now invert the

tube so the lead falls the fuU length of the tube

and repeat this quickly 100 times. Reinsert the

thermometer and measure the temperature.

Measure the average distance the shot falls,

vv+iich is the length of the tube minus the

thickness of the layer of shot in the tube.

If the average distance the shot falls is h and

the tube is inverted N times, the work you did

raising the shot of mass m is

AW = N X mag x h

The heat AH needed to raise the temperature

of the shot by an amount AT is

AH = cm AT

where c is the specific heat capacity of lead, 3.1

X 10-* cal/gC° (or 0.13 J/gC°).

The mechanical equivalent of heat is

Aw/ AH. The accepted experimental vjilue is

4.184 Nm/Cal (or Nm/J).

rainbow. He and his astronomer friend Gas-

sendi were a bulwark agfiinst Aristotelian

physics. Descartes belonged to the generation

between Gcilileo and Newton.

On the lighter side, Descartes is known for a

toy called the Cartesian diver that was veiy

popular in the eighteenth centuiy when very

elaborate ones were made. To make one, first

you will need a column of water. You may find

a large cylindrical graduate in the laboratory,

the taller the better. If not, you can improvise

one out of a large jug or any other tall glass

container. Fill the container almost to the top

with water. Close the contciiner in a way that

permits you to change the pressure in it. For

example, take a short piece of glass tubing with

fire-polished ends, lubricate the glass tubing

jmd the hole in the stopper wath water, and
carefully insert the glass tubing. Fit the rubber

stopper into the top of the container as shown
in Fig. 3-72.

rubber tufct

'1*^ rubbtr stopper

I— glass tube.

pili beetle.

ciiv«r rifli>t-sid« up

A DIVER IN A BOTTLE
Descartes is a name well known in physics.

When you graphed motion in Text Sec. 1.5, you
used Cartesian coordinates, w^ch Descartes

introduced. Using Snell's law of refraction,

Descartes traced 1,000 rays through a sphere

and came up with an explanation of the

Fig. 3-72

Next construct the diver. You may limit

yourself to pure essentials, namely a small pill

bottle or vial, which may be weighted with wire.
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Partially fill it with water so it just barely floats

upside down at the top of the water column. If

you are so inclined, you can decorate the bottle

so it looks like a real underwater swimmer (or

creature, ifyou prefer). The essential things are

that you have a diver that just floats and that

the volume of water in the diver can be

changed.

Now to make the diver perform, blow
momentarily on the rubber tube. According to

Boyle's law, the increased pressure (transmit-

ted by the water) decreases the volume of

trapped air and water enters the diver. The
buoyant force decreases, according to Ar-

chimedes' principle, and the diver begins to

sink. (Archimedes' principle simply says that

the buoyant force on an object is equal to the

weight of the liquid displaced. This is the

reason objects can float.)

If the original pressure is restored, the diver

rises again. However, if you are lucky, you will

find that as you cautiously make it sink deeper

and deeper down into the column of water, it is

more and more reluctant to return to the

surface as the additional surface pressure is

released. Indeed, you may find a depth at

which the diver remains almost stationary.

However, this apparent equilibrium, at which
its weight just equals the buoyant force, is

unstable. A bit above this depth, the diver will

freely rise to the surface, and a bit below this

depth it will sink to the bottom of the water

column from which it can be brought to the

surface only by vigorous sucking on the tube.

If you are mathematically inclined, you can

compute what this depth would be in terms of

the atmospheric pressure at the surface, the

volume of the trapped air, and the weight of the

diver. If not, you can juggle with the volume of

the trapped air so that the point of unstable

equilibrium comes about halfway down the

water column.

The diver raises interesting questions. Sup-

pose you have a well-behaved div-er that 'floats
'

at room temperature just halfway down the

water column. Where will it "float' if the

atmospheric pressure drops? Where will it

"float " if the water is cooled or heated? If the

ideal gas law is not enough to answer this

question, you may have to do a bit of reading

about the vapor pressure of water.

HOW TO VITIIGH A CAR WITH A
TIRE PRESSITRE GAUGE
Reduce the pressure in all four auto tires so

that the pressure is the same in each and
somewhat below recommended tire pressure.

Drive the car onto four sheets of graph paper
placed so that you can outline the area of the

tire in contact with each piece of pap>er. The car

should be on a reasonably flat surface igarage

floor or smooth drivewayl. Then sprav water on
the graph paper. After the car is moved off the

pap>er, you can measure the dry area The
flattened part of the tire is in equilibrium

between the vertical force of the ground
upward and the downward force of air pres-

sure within.

Measure the air pressure in the tires, and the

area of the flattened areas If you use centime-

ter graph pap>er, you can determine the area in

square centimeters by counting squares.

Pressure P (in pascals, Pa) is defined as F/A,

where F is the downward force lin newlons)

acting perpendicularly on the flattened area A
(in square metersi. Since the tire pressure

gauge indicates the pressure abow the normal
atmospheric pressure of 101 kPa. \x)U must add
this value to the gauge reading Compute the

four forces as pressure times area. Their sum
gix'es the weight of the car.

PERI»ETrAL-.\IOHON
.\1AC:IIINES?

You must ha\-e heard of "perjjetual-motion"

machines which, once started, will continue

nmning and doing useful work forp\"er These
proposed de\ires are inconsLstenI with the

laws of themiodMiamirs ilt is tempting to say

that thrv unlatr the laws of thpmi()d\-namics,

hut this implies that laws are rules bv which
Nature fnu5f run. instead of descriptions scien-

tists haw thought up i It is now beliex-ed that It

is in principle impossible to build such a

machine.
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But the dream dies hard! New proposals are

made edmost daily. Thus, S. Raymond Smedile,

in Perpetual Motion and Modem Research for

Cheap Power (Science Publications of Boston,

1962), maintains that this attitude of "it can't be

done" negatively influences the sejirch for new
sources of cheap power. His book gives 16

examples of proposed machines, of wWch two

are shown here.

Number 5 (Fig. 3-73) represents a wheel

composed of 12 chambers marked A. Each

chamber contains a lead ball B, which is free to

roll. As the wheel turns, each ball rolls to the

lowest level possible in its chamber. As the balls

roll out to the right edge of the wheel, they

create a preponderance of turning effects on

the right side as against those balls that roll

toward the hub on the left side. Thus, it is

claimed that the wheel is driven clockwise

perpetuiilly. If you think this machine wHl not

work, explain why not.

Number 7 (Fig. 3-74) represents a water-

driven wheel marked A. D represents the

buckets on the perimeter of the waterwheel for

receiving water draining from the tank marked
F. The waterwheel is connected to pump B by a

belt and wheel. As the overshot wheel is

operated by water dropping in it, it operates

the pump that sucks water into C from which it

enters into tank F. This operation is supposed

to go on perpetually. If you think otherwise,

explain why.

If such machines could operate, would the

conservation law^ necessarily be wrong?

Is the absence of perpetual-motion machines

due to "theoretical" or "practical" deficiencies?

Fig. 3-73 Number 5. Fig. 3-74 Number 7.

The cartoons on pages 150-151 (and others of the

same style that are scattered through the Handbook)
were drawn in response to some ideas in the Project

Physics course by a cartoonist who was unfamiliar with

physics. On being informed that the drawing on the

left did not represent conservation because the candle

was not a closed system, he offered the solution

above. (Whether a system is "closed" depends, of

course, upon what you are trying to conserve.)
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STANDING WAVES ON A DRUM
AND A \^OLIN

You can demonstrate many different patterns

of standing waves on a rubber membrane using

a method very similar to that used in Film Loop

42, "Vibrations of a Drum." If you have not yet

seen this loop, view it, if possible, before setting

up the demonstration in your lab (see Fig. 3-75).

Fig. 3-75

Rg. 3-76

Figure 3-76 shows the apparatus in action,

producing one pattern of standing waNfs. The
drumhead in the figure is an ordinary 17.5-cm

embroidery hoop with the end of a lai^e

balloon stretched over it. If you make your
drumhead in this way, use as lai^e and as

strong a balloon as possible, and cut its neck off

with scissors. A flat piece of sheet rubber

(dental dam) gives better results, since e\'en

tension over the entire drumhead is much
easier to maintain if the rubber is not curved to

begin with. Try other sizes and shapes of

hoops, as well as other drumhead materials,

such as a plastic wrap.

A 10-cm, 45-ohm speaker, lying under the

drum and facing upward toward it, drn-es the

vibrations. Connect the speaker to the output of

an oscillator. If necessary, ampUK' the osciUator

output.

Turn on the oscillator and sprinkle salt or

sand on the drumhead. If the frequency is near

one of the resonant frequencies of the surface,

standing waves will be produced. The salt will

collect along the nodes and be thrown off from

the antinodes, thus outlining the pattern of the

vibration. Vary the frequency' until you get a

clear pattern, then photograph or sketch the

pattern and move on to the next frequency

w+iere you get a pattern.

When the speaker is centered, the \ibration

pattern is symmetrical around the center of the

surfare. In ordrr to get antis\inmetric nodes of

vibration, move the speaker toward the edge of

the drumhead. Elxperiment with the spacing

between the speaker and the drumhead until

you find the position that gives the clearest

pattern; this position may be different for

different frequencies.

If your patterns are distorted, the tension of

the drumhead is probably not uniform. If you

have used a balloon, you may not be able to

remedy the distortion, since the curvature of

the balloon makes the edges tighter than the

center. By pulling gently on the rubber, how-

ever, vou mav at Ira.st hv ablf to make the

tension eN-en all around the edge.

A similar procedure, used 150 years ago and

still used in anaK'zing the performance of

violins, is shown in Fig. 3-77, reprinted from

Scientific American. "PhN-sics and Music."

REFLECmON
Two-dimensional water surface waves exhibit a

fascinating variet>' of reflection phenomena If

you have never watched closely as water waves

are reflerted from a fixed barrier, you should do

so ,'\ny still pool or waler-fill€»d wash basin or

tub will do Watch the circular wavT« radiate

outwartl, refleiM from rocks or walls, run

through each other, and finally die out. Dip

your fingeriip into and out of the water quickly.
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Rg. 3-77 Chladni plates indicate the vibration of the

body of a violin. These patterns were produced by

covering a violin-shaped brass plate with sand and
drawing a violin bow across its edge. When the bow
caused the plate to vibrate, the sand concentrated along

quiet nodes between the vibrating areas. Bowing the

plate at various points, indicated by the round white

marker, produces different frequencies of vibration and

different patterns. Low tones produce a pattern of a few
large areas; high tones a pattern of many small areas.

Violin bodies have a few such natural modes of

vibration that tend to strengthen certain tones sounded
by the strings. Poor violin bodies accentuate squeaky
top notes. This sand-and-plate method of analysis was
devised over 150 years ago by the German acoustical

physicist Ernst Chladni.

or let a drop of water fall from your finger into

the water. Now watch the circular wave ap-

proach and then bounce off of a straight wall or

board. The long side of a bathtub is a good

straight barrier. (See the illustrations on p. 376,

Unit 3.)

MOIRE PATTERNS
You will probably notice a disturbing visual

effect from the patterns in Figs. 3-78 and 3-79.

Some types of art depend on similar effects,

many of which are caused by moire patterns.

If you make a photographic negative of the

pattern in Fig. 3-78 or Fig. 3-79 and place it on

top of the same figure, you can use it to study

the interference pattern produced by two point

sources.

There are an increasing number of scientific

applications of moire patterns. Because of the

great visual changes caused by very small shifts

in two regular overlapping patterns, they can

Rg. 3-78 Rg. 3-79
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be used to make measurements to an accuracy

of +0.0000001%. Some specific examples of the

useof moire patterns are visualization of two- or

multiple-source interference patterns, the

measurement of small angular shifts, mea-

surements of diffusion rates of solids into

liquids, and representations of electric, mag-

netic, and gravitational fields. Some of the

patterns created still cannot be expressed

mathematically.

Scientific American (May, 1963) has an excel-

lent article, "Moire Patterns" by Gerald Oster

and Yasunori Nishijima. The Science of Moire

Patterns, a book by G. Oster, is available from

tdmund Scientific Co., Barrington, N. J. Ed-

mund also has various inexpensive sets of

different patterns, which save much drawing

time, and that are much more precise than

hand-drawn patterns.

MUSIC AND SPEECH
ACTIVITIES

(a) Frequency ranges: Set up a microphone

and oscilloscope so you can display the

pressure variations in sound waves. Play differ-

ent instruments and see how "high C" differs

on them.

(b) Some beautiful oscilloscope patterns result

wlien you display the sound of computer

music records, which use sound synthesizers

instead of conventional instruments.

(c) For interesting background, see the follow-

ing articles in Scienfj/jcAmer/'can; "Physics and

Music," July, 1948; "The Physics of Violins,"

November, 1962; "The Physics of Wood-winds,

'

October, 1960; and "Computer Music," De-

cember , 1959.

(d) The Bell Telephone Company has an in-

teresting educational item, which may be

available through your local Bell Telephone

office. A 33V3 LP record, "The Science of

Sounds," has 10 bands demonstrating different

ideas about sound. For instance, racitig cars

demonstrate the Doppler shift, and a soprano,

a piano, and a factory whistle all sound alike

when overtones are filtered out electronically

The record is also available on the Folkways

label FX6136.

(e) "Test records" are available for stereo hi-fi

equipment. Many of these records let you

check the "frequency response" of a sN^item by

giving a series of steady tones at various

frequencies. TYy playing one of these records

and checking for nodes Be sure to place the

speakers far enougli ;ipai1 (How f.ir- ap.in do ihc

speakers have to be so that you get two nodes

between them? Compute this for/ = 100;

500; 1,000; and 5,000 Hz.) Listen for nodes by-

moving your head back and forth.

MEASUREMENT OF THE SPEED
OF SOUND
For this experiment you need to work outside

in the vicinity of a large flat v\'all that produces a

good echo You also need some source of loud

pulses of sound at regular intervals, about one
per second or less. A friend beating on a drum
or something with a higher pitch will do. The
important thing is that the time between one
pulse and the next does not vary, so a

metronome would help. The sound source

should be fairly far away from the wall, about

200 m in front of it.

Stand somewhere between the reflecting wall

and the source of pulses (see Fig. 3-801. You will

hear both the direct sound and the sound
reflected from the wall. The direct sound will

reach you first because the reflected sound
must travel the additional distance from you to

the wall and back cigain. As you approach the

wall, this additional distance decreases, as does

the time interval between the direct sound and

the echo. Movement away from the wall

increases the interval.

f— vtiH

Hg. 3-80

If the distance from the source to the wall is

great enough, the added time taken by the echo

to reach you ran amount to more than the time

between drum beats You will l>e able to find a

position at wliich you hear the rcho of one

pulse at the same time vou hear the direct

sound of the next pulse Then vou know that

the .sound took a time equal to the interval

between pul.ses to travel from vou to the wall

and bark to vou.

Measure your distanc<' fnmi the wall Find

the time interval lM»tween pulses by measuring

the time for a lai^e number of pulses I'se these

twii values to calculate the sj>eed of sound
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9uls^

Rg. 3-81
iime.

(If you cannot get far enough away from the

wall to get this synchronization, shorten the

interval between pulses. If this is impossible,

you may be able to find a place where you hear

the echoes exactly halfway between the pulses

as shown in Fig. 3-81. You will hear a pulse,

then an echo, then the next pulse. Adjust your
position so that these three sounds seem
equally spaced in time. At this point you know
that the time taken for the return trip from you
to the wall and back is equal to /la/f the time

interval between pulses.)

MECHANICAL WAVE MACHINES
Several types of mechanical wave machines are

described below. They help a great deal in

understanding the various properties of waves.

Slinky

The spring called a Slinky behaves much better

when it is freed of friction from the floor or

table. Hang a Slinky horizontally from strings at

least 1 m long tied to rings on a wire stretched

Stretched CJite. ^ -- Curtain J?injs

Ij V fv
,

J I

r
, r

;
!

! I

I I

(f^mlumm^mmMmw^
s/;nkV

from two solid supports. Tie strings to the

Slinky at every fifth spiral for proper support.

(See Fig. 3-82.)

Fasten one end of the Slinl^ securely and
then stretch it out to about 5- 10 m. By holding

onto a 3-m piece of string tied to the end of the

Slinky, you can illustrate the "open-ended"
reflection of waves.

See Experiment 3-15 for more details on
demonstrating the various properties of waves.

Rubber Tubing and
Welding Rod
clamp both ends of a 1-m piece of rubber

tubing to a table so it is under slight tension.

Punch holes through the tubing every 2.5 cm
with a hammer and nail. (Put a block of wood
under the tubing to protect the table.)

Obtain enough 30-cm lengths of welding rod

for all the holes you punched in the tubing.

Unclamp the tubing, and insert one rod in each

of the holes. Hang the rubber tubing vertically,

as shown in Fig. 3-83, and give its lower end a

twast to demonstrate transverse waves. Perfor-

mance and visibility are improved by adding
weights to the ends of the rods or to the lower

end of the tubing. (See Fig. 3-83.)

Rg. 3-82

Fig. 3-83

A Better Wave Machine
An inexpensive paperback, Similarities in Wave
Behavior, by John N. Shive of Bell Telephone

Laboratories, has instructions for building a

better torsional-wave machine than that de-

scribed above.
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FILM LOOP NOTES
FUm Loop 18
ONE-DIMENSIOXAL COLLISIOxXS.
I

Two different head-on collisions of a pair of

steel balls are shown. The balls hang from long,

thin wires that confine each ball's motion to the

same circular arc. The radius is large compared
with the part of the arc, so the curvature is

hardly noticeable. Since the collisions take

place along a straight line, they can be called

one-dimensional.

You will find it useful to mark the filmed

crosses on the pwper on which you are

projecting, since this will allow you to correct

for projector movement and film jitter. Vou
might want to give some thought to measuring

distances. You may use a ruler with marks in

millimeters, so you can estimate to one-tenth of

a millimeter Is it wise to tiy to use the zero end
of the ruler, or should you use p>ositions in the

middle? Should you use the thicker or the

thinner marks on the ruler? Should you rely on
one measurement, or should you make a

number of measurements and av-erage them?
Estimate the uncertainty in distance and

time measurements, and the uncertainty- in

\elocity. What can you learn finom this about the

uncertaintv in momentum?

>T

In the First example, ball B, weighing 350 g, is

initially at rest. In the second example, ball A,

with a mass of 532 g, is the one at rest.

With this film, you can make detailed mea-

surements of the total momentum and enei^
of the balls before and after collision. Momen-
tum is a vector, but in'this one-dimensional

case you need only worrv about its sign. Since

momentum is the product of mass and velocity,

its sign is detennined by the sign of the velocity.

You know the masses of the balls. Velocities

can be measured by finding the distance

traveled in a knov\ii |K?riod of time.

After viewing the film, you can decide on

what strategN' to use for distance and time

measuit'iTients. One possibility' wouUl be to

time the motion through a given distance with

a stopwatch, perhaps making two lines on the

pap<>r You need the velocity just Iwfore and
after the collision Since the balls an- hanging

fnim win«s, their velocity is not constant On
the other hand, using a small an- incn-ases the

chances of distance- time uncertainties /\s

with most measuring situations, a number of

conflicting factors must be considered

J,
>Ji

in

Rg. 3-84

Wlien you compute the total momentum
befon* and after collusion (the sum of the

momentum of each balli. remember that you
must consider the direction of the momentum

.\rv the differences l>etwven the momentum
bt^fore and after collLsion significant, or are the\'

within the experimental error already estl-

matetP

Saw the data you coll«t so that later you CAn

make similar calculations on total kinetic

eneixy for both balls just before and just

collusion
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Film Loop 19
ONE-DIMENSION COLLISIONS.
II

Two different head-on collisions of a pair of

steel balls aire shoun, with the same setup as

that used in Film Loop 18, "One-Dimensional

Collisions. I.

"

In the first example, ball A with a mass of 1.8

kg collides head on VNith ball B, with a mass of

532 g. In the second example, ball A catches up

with ball B. The instructions for Film Loop 18

may be followed for completing this investiga-

tion also.

Film Loop 20
EVELASTIC ON^-DLMENSIONAL
COLLISIONS

In this film, two steel balls covered with

plasticene hang from long supports. Two
collisions are shown. The two balls stick

together after colliding, so the collision is

inelastic. In the first example, ball A, weighing

443 g, is at rest when ball B, with a mass of 662

g, hits it. In the second example, the same two

balls move toward each other. Two other films,

"One-Dimensional Collisions. I' and "One-

Dimensional Collisions. 11" show collisions in

which the two balls bounce off^ of each other.

What different results might you expect from

measurements of an inelastic one-dimensional

collision?

The instructions for Film Loop 18 may be

followed for completing this investigation.

Are the diff^erences between momentum
before and after collision significant, or are the\'

within the experimental error already esti-

mated?

Save your data so that later you can make
similcir calculations on total kinetic energy for

both balls just before and just after the

collision. Is whatever diff^erence you may have

obtained explainable by experimental error? Is

there a noticeable difference between elastic

and inelastic collisions as far as the conserva-

tion of kinetic energy is concerned?

Film Loop 21
TWO-DIMENSIONAL COLLISIONS.
I

Two hard steel bsdls, hanging irom long, thin

wires, collide. Unlike the collisions in Film

Loops 18 and 20, the balls do not move along

the same straight line before or after the

collisions. Although the balls do not all strictly

move in one plane because each motion is an

arc of a circle, to a good approximation

everything occurs in one plane. Therefore, the

collisions are two-dimensional. Two collisions

are filmed in slow motion, with ball A having a

mass of 539 g, and ball B having a mass of 361 g.

Two more cases are shown in Film Loop 22.

Using this film, you can find both the

momentum and the kinetic energy' of each ball

before and after the collision, and thus study

total momentum and total kinetic energy

conservation in this situation. Thus, you should

save your momentum data for later use when
studying energy.

Both direction and magnitude ofmomentum
should be taken into account, since the balls do

not move on the same line. To find momentum
you need velocities. Distance measurements

accurate to a fraction of a millimeter, and time

measurements to about one-tenth of a second

are suggested, so choose measuring instru-

ments accordingly.

You can project directly onto a large piece of

paper. An initial problem is to determine lines

on which the balls move. If you make many
marks at the centers of the balls, running the

Fig. 3-85
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film several times, you may find that these do

not form a straight line. This is due both to the

inaccuracies in your measurements and to the

inherent difficulties of high-speed photo-

graphy. Cameras photographing at a rate of

2,000 to 3,000 frames a second "jitter," because

the film moves so rapidly through the camera

that accurate frame registration is not possible.

Decide which line is the "best" approximation

to determine direction for velocities of the balls

before and after collision.

To find the magnitude of the velocity, the

sf)eed, measure the time it takes the ball to

move across two lines marked on the paper.

For the sake of accuracy, take a number of

different measurements to determine which

values to use for the speeds and how much
error is present.

Compare the sum of the momentum before

collision for both balls with the total momen-
tum after collision. If you do not know how to

add vector diagrams, you should consult your

teacher or the Programmed Instruction

Booklet, "Vectors II." The momentum of each

object is represented by an arrow whose

direction is that of the motion and whose
length is proportional to the magnitude of the

momentum. Then, if the head of one arrow is

placed on the tail of the other, moving the line

parallel to itself, the vector sum is represented

by the arrow that joins the "free" tail to the

"free" head.

What can you say about momentum conser-

vation? Remember to consider measurement

errors.

Film Loop 22
TWO-DIi\IFNSIOIVAL
COLLISIONS. II

Two hard steel balls, hanging from long, thin

wires, collide. Unlike the collisions in Film

Loops 18 and 20, the balls do not move along

the same straight line before or after the

collisions. Although all the balls do not strictly

move in one plane, as each motion is an arc of a

circle, eveiything occurs in one plane There-

fore, the collisions are two-dimensional I\vo

collisions are filmed in slow motion, with Ixith

balls having a mass of 367 g. IVvo other cases

are shown in Film Loop 21

I'sing this film, you ran find both the kinetic

energv and thr inomenliiin of each ball Iwfore

and afirr the collision, and thus study total

moinenlutn and total enrrg\ conserNation in

this situation. Follow the instructions gi\-en for

Film l,oop 21 in completing this in\rstigation

Fflm Loop 23 '

INELASTIC TH'O-DLMENSIONAL
COLLISIONS J

Two hard steel balls, hanging from long, thin

wires, collide. Unlike the collisions in Film

Loop>s 18 and 20, the balls do not move along

the same straight line before or after the

collision. Although all the balls do not strictly

move in one plane, as each motion is an arc of a

circle, to a good approximation the motion

occurs in one plane. Therefore, the collisions

are two-dimensional. Two collisions are filmed

in slow motion. E^ch ball has a mass of 500 g.

The plasticene balls stick together after colli-

sion, and move as a single mass.

Using this film, you can find both the kinetic

energy and the momentum of each ball before

and after the collision, and thus study total

momentum and total energy conservation in

this situation. Follow the instructions given for

Film Loop 21 in completing this investigation.

Film Loop 24
SCATTERLNG OF A CLUSTER
OF OmECTS
This film and also Film Loop 25 each contain

one of the Events 8- 13 of the series. Strobo-

scopic Still Photographs of Two-Dimensional
one of the Events 8- 13 of the series, "Strobo-

scopic Still Photographs of Two-Dimensional

Collisions, or one of the examples in Film

Loops 22 and 23 All these examples invoK*

two-body collisions, whereas the film described

here involves seven objects and Film Loop 25,

five objects.

In this film, se\-en balls are suspended from

long, thin wires. The camera sees only a small

portion of their motion, so the balls all mo\^
approximately along straight lines The slow-

motion camera is above the balls Six balls are

initially at rest. A hardened steel ball strikes the

cluster of resting balls The diagram in Fig 3-86

shows the mass of each of the l^a\ls

Part of the film is photographed in slow-

motion at 2.000 frames j)er second Bv project-

ing this section of the film on paper sewral

times and making measurements of dLstancc^s

and times, you can determine the dixvctions

antl magnitutlcs of the wiocities of each of the

balls Distance and time measurements are

lUMHled Discussions of how to make such
measurements are contained in the Film Loop
Notes for one-dimensional and two-
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Rg. 3-86

Rg. 3-87

dimensional collisions. (See FUm Loops 18 and

21.)

Compare the total momentum of the system

both before and after the collision. Remember
that momentum has both direction and mag-
nitude. You can add momenta after collision by

representing the momentum of each ball by an

arrow, and "adding" arrows geometrically.

WTiat can you say about the accuracy of your

calculations and measurements? Is momen-
tum conserved? You might also wish to con-

sider energy conservation.

Film Loop 25
EXPLOSIOX OF A CLUSTER
OF OBJECTS

Five balls are suspended independently fix)m

long, thin wires. The balls are initially at rest,

with a small cylinder containing gunpowder in

the center of the group of balls. The masses and

initial positions of the balls are shown in Fig.

3-88. The charge is exploded and each of the

balls moves off in an independent direction. In

the slow-motion sequence, the camera is

mounted directly above the resting balls. The
camera sees only a small part of the motion, so

that the paths of the balls are almost straight

lines.

^-

Rg. 3-88

In your first viewing, you might try to predict

where the "missing" balls will emerge. Several

of the balls are hidden at first by the smoke

from the charge of powder. All the balls except

one are visible for some time. What information

could you use that would help you make a

quick decision about where this last ball will

appear? What physical quantity is important?

How can you use this quantity to make a quick

estimate? When you see the ball emerge from

the cloud, you can determine whether or not

your prediction was correct. The animated

elliptical ring toward the end of the film

identifies this final ball.

You can also make detailed measurements,

simUar to the momentum conservation mea-

surements you may have made using other

Project Physics Film Loops. During the slow-

motion sequence, find the magnitude and

direction of the velocity of each of the balls after

the explosion by projecting the film on paper,

and measuring distances and times. The notes

on previous films in this series. Film Loops 18

and 21, will provide you with information about

how to make such measurements if you need

assistance.

Determine the tot£d momentum of all the

balls after the explosion. What was the momen-
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turn before the explosion? You may find these bullet imbeds itself in the log. The two bodies

results slightly puzzling. Can you account for

any discrepancy that you find? Watch the film

again and pay close attention to what happens

during the explosion.

move together after this violent collision. The

height of the log is 15.0 cm. You can use this

information to convert distances to centime-

ters. The setup is illustrated in Fig. 3-89.

KEVETIC ENERGY
CALCULATIOIVS

You may have used one or more of Film Loops

18 through 25 in your study of momentum. You

will find it helpful to view these slow-motion

films of one- and two-dimensional collisions

again, but this time in the context of the study

of energy. The data you collected previously

will be sufficient for you to calculate the kinetic

energy of each ball before and after the

collision. Remember that kinetic energy Vzmv^

is not a vector quantity; therefore, you need

only use the magnitude of the velocities in your

calculations.

On the basis ofyour analysis you may wish to

tiy to answer such questions as: Is kinetic

energy consumed in such interactions? If not,

what happened to it? Is the loss in kinetic

energy rt^lated to such factors as relative speed,

angle of impact, or relative masses of the

colliding balls? Is then^ a difference in the

kinetic energy lost in elastic and inelastic

collisions?

Film I.4M>p 26
FINIIINC; THE SPEED OF A
RIFLE BULLET. I

In this film, a rifle bullet of 13.9 g is fired into an

8.44-kg log Ilie log is initially at rest, and the

r^---»1

Fig. 3-89 Schematic dicgram of ballistic pendulum (not

to scale)

You can make measurements in this film

using the extreme slow-motion sequence The

high-speed camera used to film this sequence

operated at an awrage rate of 2A50 frames per
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second; if your projector runs at 18 frames per

second, the slow-motion factor is 158. Although

there was some variation in the speed of this

camera, the average frame rate of 2,850 is quite

accurate. For velocity measurements in cen-

timeters per second (a convenient unit to use in

considering a rifle bullet) convert the apparent

time of the film to seconds. Find the exact

duration with a timer or a stopwatch by timing

the interval from the yellow circle at the

beginning to the one at the end of the film.

There are 3,490 frames in the film, so you can

determine the precise speed of the projector.

Project the film onto a piece of white paper

or graph paper to make your measurements of

distance and time. View the film before making

decisions about which measuring instruments

to use. As suggested above, you can convert

your distance and time measurements to

centimeters and seconds.

After measuring the speed of the log after

impact, ciilculate the bullet speed at the

moment when it entered the log. What physical

laws do you need for the calculation? Calculate

the kinetic energy given to the bullet, and edso

calculate the kinetic energy of the log after the

bullet enters it. Compare these two energies

and discuss any differences that you might

find. Is kinetic energy conserved?

A final sequence in the film allows you to find

a lower limit for the bullet's speed. Three

successive frames are shown, so the time

between each is 1/2,850 sec. The frames are

each printed many times, so each is held on the

screen. How does this lower limit compiire with

your measured velocity?

Film Loop 27
FINDING THE SPEED OF A
RIFLE BULLET. II

The problem proposed by this film is to

determine the speed of the bullet just before it

hits a log. The wooden log with a mass of 4.05 kg

is initially at rest. A bullet fired ftxim a rifle

enters the log I Fig. 3-90). The mass of the bullet

is 7.12 g. The bullet is imbedded in the thick log

and the two move together after the impact.

The extreme slow-motion sequence is intended

for tciking measurements.

The log is suspended from thin wires so that

it behaves like a pendulum that is free to swing.

As the bullet strikes the log, the log starts to

rise. When the log reaches its highest point, it

momentarily stops, and then begins to swing

Fig. 3-90

back down. This point of zero velocity is visible

in the slow-motion sequence in the film.

The bullet plus the log after impact form a

closed system, so you would expect the total

amount of mechanical energy of such a system

to be conserved. The total mechaniccil energy is

the sum of kinetic energy plus potential energy.

Ifyou conveniently take the potential energy as

zero at the moment of impact for the lowest

position of the log, then the energy at that time

is all kinetic energy. As the log begins to move,

the potential ener^ is proportional to the

vertical distance above its lowest point, and it

increases while the kinetic enei^, depending

upon the speed, decreases. The kinetic energy

becomes zero at the point where the log

reverses its direction because the log's speed is

zero at that point. All the mechanical energy at

the reversal point is potential energy. Because

energy is conserved, the initial kinetic energy at

the lowest point should equal the potentiiil

energy at the top of the swing. On the basis of

this result, write cm equation that relates the

initial log speed to the final height of rise. You

might check this result with your teacher or

with other students in the class.

If you measure the vertical height of the rise

of the log, you can calculate the log's initial

speed, using the equation just derived. What is

the initial speed that you find for the log? Ifyou

wish to convert distance measurements to

centimeters, it is useful to know that the

vertical dimension of the log is 9.0 cm.

Find the speed of the rifle bullet at the

moment it hits the log, using conservation of

momentum.
Calculate the kinetic energy of the rifle bullet

before it strikes and the kinetic enei^gy of the log
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plus bullet after impact. Compare the two

kinetic enei^ies, and discuss any difference.

Film Loop 28
RECOIL

Conservation laws can be used to determine

recoil velocity of a gun, given the exjjerimental

information that this film provides.

The preliminary scene shows the recoil of a

cannon firing at the fort on St. Helene Island,

near Montreal, Canada (Fig. 3-91). The small

brass laboratoiy "cannon" in the rest of the film

is suspended by long wires. It has a mass of 350

g. The projectile has a mass of 3-5 g. When the

firing is photographed in slow motion, you can

see a time lapse between the time the fuse is

lighted and the time when the bullet emei^es

from the cannon. Why is this delay observed?

The camera used here exposes 8,000 frames per

second.

Project the film on paper. It is convenient to

use a horizontal distance scale in centimeters.

Find the bullet's velocity by timing the bullet

over a lar^ge fraction of its motion. (Only relative

values are needed, so it is not necessary to

convert this velocity into centimeters per

second.)

Use momentum conservation to predict the

gun's recoil velocity. The system (gun plus

bullet) is one dimensional; all motion is along

one straight line. The momentum before the

gun is fired is zero in the coordinate system in

which the gun is at rest, so the momentum of

the cannon after firing should be equal and
opp>osite to the momentum of the bullet

Test your prediction of the recoil velocity by

running the film again and timing the gun to

find its recoil velocity experimentally. What
margin of error might you exp)ect? Do the

predicted and observed values agree? Give

reasons for any difference you observe. Is

kinetic enef^ conserved? Elxplain your answer.

Film Loop 29
CX)LLIDCVG FREIGHT CARS
This film shows a test of freight-car coupling.

The collisions, in some cases, w«re \iolent

enough to break the coupUngs. The "hammer
car," coasting down a ramp, reaches a speed of

about 10 km/hr. The momentary force between

the cars is about 4,400,000 \. The photograph

(Fig. 3-921 shows coupling pins that were
sheared off by the force of the collision. The
slow-motion collision allows you to measure

speeds before and after impact, and thus to test

conservation of momentum. The collisions are

partially elastic, as the cars separate to some
extent after collision. The masses of the cars

are: hammer car: m ,
= 95,000 kg: tai^get car: m,

= 120,000 kg. To find velocities, measure the

film time for the car to mo\'e through a giwn

Fig 3-91
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Rg. 3-92 Broken coupling pins from colliding freight

distance. (You may need to run the film several

times.) Use any convenient units for velocities.

Simple timing will give v, andv2. The film was
made on a cold winter day jmd ftiction was
appreciable for the hammer car after collision.

One way to allow for friction is to make a

velocity time graph, iissume a uniform negative

acceleration, and extrapolate to the instant

after impact.

An example might help. Suppose the ham-
mer car coasts 3 squares on graph paper in 5

sec eifter collision, and it also coasts 6 squares

in 12 sec after collision. The average velocity

during the first 5 sec was Vj = (3 squares)/(5

sec) = 0.60 squares/sec. The average velocity

during any short interval approximately equals

the instantaneous velocity at the midtime of

that interval, so the car's velocity was about v,

= 0.60 squares/sec at t = 2-5 sec. For the

interval 0-12 sec, the velocity was v, = 0.50

squares/sec at f = 6.0 sec. Now plot a graph like

that shown in Fig. 3-93. This graph shows, by

extrapolation, that v, = 0.67 squares/sec at t =

0, just after the collision.

.70
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and just after the collision. Watch not only the

overall motion of the ball, but also "internal"

motions. Can any of these motions by appro-

priately described by the word "spin"? Can you
distinguish the cases where the ball is rolling

along the table, so that there is no slippage

between the ball and the table, from the

situations where the ball is skidding along the

tahlt! without rolling? Does the first ball move

immediately after the collision? You can see

that even this simple phenomenon is more

complex than you might have expected.

Can you write a careful verbal description of

the event? How might you go about giving a

more careful mathematical description?

Using the slow-motion sequence, you can

make a momentum analysis, at least partially,

of this collision. Measure the velocity of the cue

ball before impact and the velocity of both balls

after impact. Remember that there is friction

between the ball and the table, so velocity is not

constant. Since the balls have the same mass,

conservation of momentum predicts that

velocity of cue ball just before collision =

sum of velocities of the balls just after

collision

How closely do the results of your measure-

ments agree with this principle? What reasons,

considering the complexity of the phenome-
non, might you suggest to account for any

disagreement? VVliat motions are you neglect-

ing in your analysis?

Film LcMip 31
a methoii of measihring
i:xi:k(;y: nails driixn into
uoou
Some physical quantities, such as distance, can

be measured directly in simple ways. Other

concepts can be connected with the world of

experience only through a long series of

measurements and calculations. In certain

situations, simple and reliable methotls of

deteniiining rncri^v an* possible Hcnv you are

concenied with the energv' of a nuning object

This film allows you to check the validity of

one way of measuring mechanical energv' If a

moving object strikes a nail, the objeit will lose

all of its enei>(\'. This ener-gN has some effect, in

that the nail is dri\Tn into the wood The

enei-g\ of the objecl becomes wm-k done on the

nail, driving it into the block ot wood
The first scenes in tlie film show a construc-

tion site A pile drixTr strikes a pile owr and

ov-er again, "planting" it in the ground. The
laboratory' situation duplicates this situation

under more controlled circumstances. Each of

the blows is the same as any other because the

massive object is always raised to the same

height above the nail. The nail is hit 10 times.

Because the conditions are kept the same, you
exp)ect the energv' of the impact to be the same

for each blow. Therefore, the work from each

blow is the same. L'se the film to determine if

the distance the nail is driven into the wood is

proportional to the energv' or work. How can

you find the energy exjjended if you know the

depth of penetration of the nail?

The simplest way to display the measux^e-

ments made with this film may be to plot the

depth of nail p>enetration versus the number of

blows. Do the experimental points that you
obtain lie approximately along a straight line? If

the line is a good approximation, then the

energy is about proportional to the depth of

penetration of the nail. Thus, depth of penetra-

tion can be used in the analysis of other films to

measure the energy of the striking object

If the graph is not a straight line, you can still

use these results to calibrate your enei^-

measuring device. By use of f>enetration versus

the number of blows, an observed penetration

(in centimeters, as measured on the screen),

can be converted into a number of blows, and

therefore an amount proportional to the work

done on the nail, or the energv' transferred to

the nail. Thus, in Fig. 3-95, a jjenetration of 3 cm
signifies 5.6 units of enepRk'

Rg 3-95

Film I^<M»p '.12

GRyW'ITAliOXAL POXrVTIAL
f:xi:kc;y

Introduiton phvsics courses usualK do not

give a complete definition of potential ener]^

because of the mathematics invnlwd Only



FILM LOOP NOTES 165

particular kinds of potential energy, such as

gravitational potential energy, are considered.

The expression for the gravifaf /on a/ poten-

tial energy of an object near the earth is the

product of the weight of the object and its

height. The height is measured from a location

chosen arbitrarily as the zero level for potential

energy. It is almost impossible to "test" a

formula v\ithout other physics concepts. Here,

a method of measuring energy is needed. The

previous Film Loop 31, "A Method of Measuring

Energy," demonstrated that the depth of pene-

tration of a nail into wood, due to a blow, is a

good measure of the energy at the moment of

impact of the object.

Although you are concerned with potential

energy, you will calculate it by first finding

kinetic energy. Where there is no loss of energy'

through heat, the sum of the kinetic energy and

potential energy is constant. If you measure

potential energy from the point at which the

weight strikes the nail, at the moment of

striking all the energy' will be kinetic energy. On
the other hand, at the moment an object is

released, the kinetic energy is zero, and all the

energy is potential energy. These two must, b\

conservation of energy, be equal.

Since totcil energy is conserved, you can

determine the initial potential energy that the

object had from the depth of penetration of the

nail by using the results of the measurement
connecting energy and nail penetration.

Two types of measurements are possible

with this film. The numbered scenes are all

photographed fix)m the same position. In the

first scenes (Fig. 3-961, you can determine how
gravitational potential energy depends upon
weight. Objects of different masses fall from the

same distance. Project the film on paper and

measure the positions of the nailheads before

and after the impact of the falling objects. Make
a graph relating the penetration depth and the

weight nia^. Use the results of the previous

experiment to convert this relation into a

relation between gravitational potential energy

and weight. VVTiat can you learn from this

graph? What factors are you holding constant?

What conclusions can you reach fixjm your
data?

Later scenes (Fig. 3-97) provide information

for studying the relationship between gravita-

tional potential energy and position. Bodies of

equal mass are raised to different heights cmd
allowed to fall. Study the relationship between
the distance of fall and the gravitational poten-

tial energy. What graphs might be useful? What
conclusion can you reach fi:x)m your measure-

ments?

Fig. 3-96

Fig. 3-97

Can you relate the results of these measure-

ments to statements in the Text concerning

gravitational potential energy?

Film Loop 33
KEVETIC ENERGY
In this film, you can test how kinetic energy KE
depends on speed v. You will measure both KE
and V, keeping the mass m constant.

The penetration of a nail driven into wood is

a good mecisure of the work done on the nail,

and thus is a measure of the energy lost by

whatever object strikes the nail. The speed of

the moving object can be measured in several

ways.

The preliminary scenes show that the object

falls on the nail. Only the speed just before the

object strikes the nail is important. The scenes

intended for measurement were photographed
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with the camera on its side, so the body

appears to move horizontally toward the nail.

The speeds can be measured by timing the

motion of the leading edge of the object as it

moves from one reference mark to the other.

The clock in the film (Fig. 3-98) is a disk that

rotates at 3,000 revolutions per minute. Project

the film on paper and mark the positions of the

clock pointer when the body crosses each

reference mark. The time is proportional to the

angle through which the pointer turns. The

speeds are proportional to the reciprocals of

the times since the distance is the same in each

case. Since you are testing only theform of the

kinetic energy dependence on speed, any

convenient unit can be used. Measure the

speed for each of the five trials.

Fig. 3-98

The kinetic energy of the moving object is

transformed into the work required to drive the

nail into the wood. In Film Loop 31, you related

the work to the distance of penetration. Mea-

sure the nail penetration for each trial, and use

your results fn)m the prtnious film.

How does KE depend on v? The conservation

law derived from Newton's laws indicates that

KE is pniportional to v^, the square of the

speed, not proportional to v. Test this by

making two graphs. In one graph, plot KE

verticalK and plot v- horizontally. For compari-

son, plot KE versus v. What can you conclude?

Do you have any assurance that a similar

rtrlation will hold if the speeds or masses are

ver\' (lilTenMit fi-om those found here'' How
might \(>u go about determining this.'

Film Loop 34
CONSERVATION OF ENERGY:
POLE VAULT
This quantitative film ran help you study

conservation of enei^. A pole vaulter (mass 6«

kg, height 180 cm) is shown (first at normal

speed and then in slow motion! clearing a bar

at 3.45 m. You can measure the total energy of

the system at two moments in time: (II just

before the jumper starts to rise and (21 part of

the way up, when the pole is bent. The total

energy of the system is constant, although it is

divided differently at different times. Since it

takes work to bend the pole, the pole has elastic

potential energy when bent. This elastic energy

comes from some of the kinetic energy the

vaulter has as he runs horizontally before

inserting the pole in the socket. Later, the

elastic potential ener^ of the bent pole is

transformed into some of the jump>ers gravita-

tional potential energy when he is at the top of

the jump (Fig. 3-99).
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The work done in deforming the pole is

stored as elastic potential energy. In the final

scene, a chain windlass bends the pole to a

shape similar to that which it assumed during

the jump in Position 2. When the chain is

shortened, work is done on the pole: work =

(average force) x (displacement!. During the

cranking sequence, the force varied. The aver-

age force can be approximated by adding the

initial and final values (found from the scale)

and dividing by two. Convert this force to

newtons. The displacement can be estimated

from the number of times the crank handle is

pulled. A close-up show^ how far the chain

moves during a single stroke. Calculate the

work done to crank the pole into its distorted

shape.

You now can add and find the total energy.

How does this compare with the original

kinetic energy?

Position 3
Gravitational potential energy is the work

done to raise the jumper's center of gravity.

From the given data, estimate the verticjil rise of

the center of gravity as the jumper moves from

Position 1 to Position 3. (His center of gravity

clears the bar by about 0.3 m.) Multiply this

height by the jumpers weight to get potential

energy. If vveight is in newtons and height is in

meters, the potential energy will be in joules. A
small additioncil source of energy is in the

jumper's muscles; judge for yourself how far he

lifts his body by using his arm muscles as he

nears the highest point. This is a small

correction, so a relatively crude estimate will

sufiBce. Perhaps he pulls with a force equal to

his own weight through a vertical distance of

0.7 m.
How does the initial kinetic energy, plus the

muscular energy expended in the pull-up,

compare with the final gravitational potential

energy? (An agreement to within about 10% is

about as good as you can expect firom a

measurement of this type.)

Film Loop 35
CXJNSERVATIOX OF ENERGY;
AIRCRAFT TAKEOFF
The pilot of a Cessna 150 (Fig. 3-100) holds the

plane at constant speed in level flight, just

above the surface of the runway. Then, keeping

the throttle fixed, the pilot pulls back on the

stick, and the plcme begins to rise. With the

Fig. 3-100

same throttle setting, the plane levels off at

about 100 m. At this altitude, the ciircraft's

speed is less than at ground level. You can use

this film to make a crude test of energy

conservation. The plane's initial speed was

constant, indicating that the net force on it was

zero. In terms of an approximation, £iir resis-

tance remained the same after lift-off. How
good is this approximation? What would you

expect ciir resistance to depend on? When the

plane rose, its gravitational potential energy

increased, at the expense of the initial kinetic

energy of the plane. At the upper level, the

plane's kinetic energy is less, but its potential

energy is greater. According to the principle of

conservation of energy, the total energy IKE +

PE) remained constant, assuming that air

resistance and any other similar factors are

neglected. But are these factors negligible? Here

are the data concerning the film and the

airplane:

length of plane: 75 m
mass of plane: 550 kg

weight of plane:

550 kg X 9.8 m/sec^ = 5400 N
camera speed: 45 fi"ames/sec

Project the film on paper. Mark the length of

the plane to calibrate distances.

Stop-frcime photography allows you to mea-

sure the speed of 45 frames per second. In

printing the measurement section of the film,

only eveiy third frame was used. Each of these

frames was repeated ("stopped ") a number of

times, enough to iillow time to mark a position

on the screen. The effect is one of "holding"

time, and then jumping one-fifteenth of a

second.

Measure the speeds in all three situations,

and also the heights above the ground. You

have the data needed for calculating kinetic

energy (Vimv^) and gravitational potential
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energy (ma„/i) at each of the three levels.

Calculate the total energy at each of the three

levels.

Can you make any comments concerning air

resistance? Make a table showing (for each

level) KE, PE, and £ totals. Do your results

substantiate the law of conservation of energy

within experimental error?

Film Loop 36
REVERSIBILITY OF TIME

It may sound strange to speak of "reversing

time." In the world of common experience, we
have no control over time direction, in contrast

to the many aspects of the world that we can

modify. Yet physicists are much concerned

vAXh the reversibility of time; perhaps no other

issue so clearly illustrates the imaginative and

speculative nature of modem physics.

The camera provides a way of manipulating

time. If you project movie film backwards, the

events pictured happen in reverse time order.

This film has sequences in both directions,

some shown in their "natural" time order and

some in reverse order.

The film concentrates on the motion of

objects. Consider each scene from the stand-

point of time direction: Is the scene being

shown as it was taken, or is it being reversed

and shown backward? Many sequences tire

paired, the same film being used in both time

senses. Is it always clear which one is forward

in time and which is backward? With wiiat

types of events is it difficult to tell the "natural"

direction?

The Newtonian laws of motion do not

depend on time direction. Any filmed motion of

particles following strict Newtonian laws

should look completely "natural" whether seen

forward or backward. Since Newtonian laws are

"invariant" under time reversal (changing the

direction of time), you could not tell by

examining a motion obeying these laws

whether the sequence is forward or backward.

Any motion that could occur forward in time

can also occur, under suitable conditions, with

the events in the opposite order.

With more complicated phv-sical systems,

with an extremely large number of particles,

the situation changes. If ink were dn)pp«nl into

water, you would haw no ditfirult>' in deter-

mining wtiich sequence was photographed

forward in time and which backwartl So

certain physical j)henomena at least appear to

be imn'ersible, taking place in only one lime

direction. Are these processes fundamentally

irreversible, or is this only a limitation on

human powers? This is not an easy question to

answer. It could still be considered, in spite of a

50-year histoiy, a frontier problem.

Reversibility of time has been used in many
ways in twentieth-century physics. For exam-

ple, an interesting way of viewing the two kinds

of charge in the unix-erse, positive and negati\'e,

is to think of some particles as "mo\ing"

backward in time. TT»us, if the electron is

viewed as mo\ing forward in time, the positron

can be considered as exactly the same particle

moving backward in time. This backward

motion is equivalent to the forward-moving

particle having the opposite chaise! This was

one of the keys to the dev-elopment of the

space- time view of quantum electrodynamics

which R. P. Feynman described in his Nobel

Prize lecture.

For a general introduction to time reversibil-

ity, see the Martin Gardner article, "Can Time

Go Backward?" originally published in Scien-

tific American (January, 1967).

Film Loop 37
SUPERPOSITION

Using this film, you will study an important

physical idea, superposition. The film was

made by photographing patterns displayed on

the face of the cathode-ray tube iCRTi of an

oscilloscope, similar to a television set. Vou may
have such an oscilloscope in your laboratory.

Still photographs of some of these patterns

appearing on the CRT screen are shown in Figs.

3-101 and 3-102, The two patterns at the top of

the screen are called sinusoidal The\' ar^ not

just any wavy lines, but lines generated in a

pi^ecise fashion. Ifyou are familiar with the sine

and cosine functions, you will recognize them

here. TTie sine function is the special case

where the origin of the coortlinate system is

located where the function is zero and starting

to rise. No origin is shown, so it is arbitrary as to

w+iether one calls these sine curves, cosine

curves, or some other sinusoidal curve V\hat

physical situations might lead to curves of this

type'' lYou might want to consult books about

simple harmonic oscillators i Hert* the curves

are pnuluced by electronic cirxniits that gener^

ale an electrical voltage changing in time so as

to cause the curve to be displayed on the

cathode-ray tube The oscilloscope operator

can adjust the magniludi«s and phasi«s of the

twi) top functions.
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Rg. 3-101 Fig. 3-104

Rg. 3-102 Fig. 3-105

Rg. 3-103

The bottom curve is obtained by a point-by-

point adding of the top curves. Imagine a

horizontal axis going through each of the two

top curves, and positive and negative distances

measured vertically from this axis. The bottom
curve is at each point the algebraic sum of the

two points above it on the top curves, as

measured ftxjm their respective axes. This

point-by-point algebraic addition, when
applied to actual waves, is called superpos/fion

.

Two cautions are necessary. First, you are

not seeing waves, but models of waves. A wave
is a disturbance that propagates in time, but, at

least in some of the cases shown, there is no
propagation. A model always has some limita-

tions. Second, you should not think that all

waves are sinusoidal. The form of whatever is

propagating can be any shape. Sinusoidal

waves constitute only one important class of

waves. Another common wave is the pulse,

such as a sound wave produced by a sharp

blow on a table. The pulse is not a sinusoidal

wave.
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Several examples of superposition are shown
in the film. If, as approximated in Fig. 3-101, two

sinusoidal curves of equal period and
amplitude are in phase, both having zeroes at

the same places, the result is a double-sized

function of the same shape. On the other hand,

if the curves are combined out of phase, so that

one has a positive displacement while the other

one has an equal negative displacement, the

result is zero at each point (Fig. 3-102). If

functions of different periods are combined

(Figs. 3-103 to 3-105), the result of the superpo-

sition is not sinusoidal, but more complex in

shape. You are asked to interpret, both verbally

and quantitatively, the superpositions shown
in the film.

A high-speed snapshot of the string at any
time would show its instantaneous shape.

Sections of the string move, except at the

nodes. The eye sees a blurred or "time-

exposure" superjjosition of string shapes be-

cause of the frequenc>' of the string. In the film,

this blurred eflfect is reproduced by photo-

graphing at a slow rate; each frame is exfxised

for about 1/15 sec.

Some of the vibration modes are photo-

graphed by a stroboscopic method. If the string

vibrates at 72 vib/sec and frames are exf>osed in

the camera at the rate of 70 times p)er second,

the string seems to go through its complete
cycle of vibration at a slower frequency when
projected at a normal speed. In this way, a

slow-motion effect is shown.

Film Loop 38
STANIJUVC; WAVES ON A STRING
Tension determines the speed of a wave

traveling down a string. When a wave reaches a

fixed end of a string, it is reflected back again.

The reflected wave and the original wave are

superimposed or added together. If the tension

(and therefore the speed) is just right, the

resulting wave will be a standing wave. Certain

nodes will always stand still on the string.

Other points on the string will continue to

move in accordance with superposition. V\'hen

the ttMision in a vibrating string is adjusted,

standing waves appear when the tension has

one of a set of "right" values.

In the film, one end of a string is attached to a

tuning fork with a frequency of 72 vibrations

per second. The other end is attached to a

cylintler. The tension of the string is adjusted

by sliding the cvlindrr hack and forth

Several standing wav<' |)atterns i\rv shown
For example, in the third mode the string

vibrates in three segments with two nodes

(points of no motion) between the nodes at

each end. The nodes are half a wavelength

apart. Between the nod(>s are points of

maxinuirn p()ssil)le vibration called antinodes

Vou tune the strings of a violin or guitar b\

changing the tension on a string of fixed length,

higher tension com'sponding to higher pitch.

Dilleit'nt notes an* pfoduced In pl.uing a finger

on the sliinfi to shoilen ihv vibrating pari In

this film, the litHjutMicv of vibration of a string is

fixed, b»H"ause the string is always drivvn at 72

vil)/sec. When the fivquj'ncy ivmains constant,

the wavelength changes as the tension is

adjusted because veloc it\ depends on tension

Film Loop 39
STAXDLXG ll'A\XS L\ A GAS
Standing waves are set up in air in a large glass

tube (Fig. 3-1061 The tube is closed at one end
by an adjustable piston. A loudsp>eaker at the

other end supplies the sound wave. The
speaker is driven by a variable-finequenc\' oscil-

lator and amplifier. About 20 watts of audio-

power are used, telling ever>'one in a large

building that filming is in progress! The wavt^s

are reflected frxjm the piston.

Fig. 3-106

A standing wave is foniied when the fn*-

quenc\' of the oscillator is adjusted to one of

several discrete values Most frequencies do not

givv standing waws l^esonance is indicated in

each mode of vibration by ntxies and an-

tinodes rhere is always a nmle at the fixed end
iwhere air molecules cannot mow) and an

aniinode at tlie speaker (wfiere air is set into

motion) Between the fixetl end and the speaker

then* niav l>e additintial nodes and antinodes
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The patterns can be observed in several ways,

two of which are used in the film. One method
of making visible the presence of a stationary

acoustic wave in the gas in the tube is to place

cork dust along the tube. At resonance, the dust

is blown into a cloud by the movement of air at

the antinodes; the dust remains stationary at

the nodes where the air is not moving. In the

first part of the film, the dust shows standing

wave patterns for various frequencies (Table

3-2).

Frequency Number of half-

(vib/sec) wavelengths

230 1.5

370 2.5

530 3.5

670 4.5

1900 12.5

The pattern for/= 530 is shown in Fig. 3-107.

From node to node is VaX, and the length of

the pipe is 3 A. + VSzX (the extra V2X is from the

speaker antinode to the first node). There are,

generally, (n -I- V2) half-wavelengths in the fixed

length, so A. a i/(n -I- V2). Since/ oc i/X, / oc

(n -I- V2). Divide each frequency in the table by

(n -I- V2) to find wiiether the result is reasonably

constant.

Fig. 3-107

In all modes, the dust remains motionless

near the stationcuy piston that is a node.

In the second part of the film, nodes and

antinodes are made visible by a dififerent

method. A wire is placed in the tube near the

top. This wire is heated electrically to a dull

red. When a stemding wave is set up, the wire is

cooled at the antinodes, because the air carries

heat away from the ware when it is in vigorous

motion. So the wire is cooled at the antinodes

and glows less. The bright regions correspond

to nodes where there are no air currents. The

oscillator frequency is adjusted to give several

standing wave patterns with successively smal-

ler wavelengths. How many nodes and an-

tinodes are there in each case? Can you find

the frequency used in each case?

Film Loop 40
VIBRATIONS OF A WIRE
This film shows standing wave patterns in thin

but stiff wires. The wave speed is determined

by the wire's cross section and by the elastic

constants of the metal. There is no external

tension. Two shapes of wire, straight and
circular, are used.

The wire passes between the poles of a

strong magnet. When a switch is closed, a

steady electric current from a battery is set up
in one direction through the wire. The interac-

tion of this current and the magnetic field leads

to a downward force on the wire. When the

direction of the current is reversed, the force on
the wire is upward. Repeated rapid reversal of

the current direction can make the wire vibrate

up and down.

The battery is replaced by a source of

variable-ft^quency alternating current whose
frequency can be changed. Wlien the frequency

is adjusted to match one of the natural

frequencies of the wire, a standing wave buUds

up. Several modes are shown, each excited by a

different frequency.

The first scenes show a straight brass wire,

2.4 mm in diameter (Fig. 3-108). The "boundary

conditions" for motion require that, in any

mode, the fixed end of the wire is a node and

the free end is an antinode. (A horizontal

plastic rod is used to support the wire at

another node.) The wire is photographed in

two ways: (1) in a blurred "time exposure," as

the eye sees it; and (2) in "slow motion,"

simulated through stroboscopic photography.

Fig. 3-108

Study the location of the nodes and an-

tinodes in one of the higher modes of vibration.

They are not equally spaced along the wire, as

for vibrating string (see FUm Loop 38). This is

because the wire is stiff whereas the string is

perfectly flexible.
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In the second sequence, the wire is hent into

a horizontal loop, supported at one point iFig.

3-109). The boundary conditions require a node
at this point; there can be additional nodes,

equally spaced around the ring. Several modes
are shown, both in "time exposure" and in

"slow motion." To some extent, the vibrating

circular wire is a helpful model for the wave
behavior of an electron oHiit in an atom such as

hydrogen; the discrete modes correspond to

discrete energy states for the atom.

film. An eccentric arm attached to the motor
shakes the bottom end of the hose. Thus, this

end moves slightly, but this motion is so small

that the bottom end also is a node. (See Fi^.

3-110.)

Fig. 3-109

Film Loop 41
VIBRATIONS OF A RUBBER HOSE
You can generate standing waves in many
physical systems. When a wave is set up in a

medium, it is usually reflected at the bound-
aries. Characteristic patterns will be formed,

depending on the shape of the medium, the

frequency of the wave, and the material. At

certain points or lines in these patterns, there is

no vibration because all the partial waves

passing through these points just manage to

cancel each other through superposition (as

you saw in the ripple tank).

Standing wave patterns only occur for certain

frequencies. Tlie physical process selects a

spectrum of frequencies from all the possible

ones. Often there are an infinite number of

such discnUe frequencies. Sometimes there are

simple mathematical relations between the

selected frequencies, but for other bodies the

relations are more complex. Several films in this

series show vibrating systems with such pat-

terns.

This film uses a rubber hose, clamped at the-

top. Such a stationary point is called a node
The bottom of the stretched hose is attached to

a motor whose speed is increased during the

Fig 3-110

The motor begins at a frequency below that

for the first standing wave pattern. As the motor

is graduaUy speeded up, the amplitude of the

\ibrations increases until a well-defined steady

loop is formed between the nodes. This ioon

has its maximum motion at the cen'er. The
pattern is half a wa\-elength long. Increasing the

speed of the motor leads to other harmonics,

each one being a standing wave pattern with

both nodes and antinodes, points of maximum
vibration. These resonances can be seen in the

film to occur only at certain sharp frequencies.

For other motor frequencies, no such simple

pattern is seen. Vou can count as many as 11

loops with the highest frequency- case shown.

It would be interesting to ha\« a sound track

for this film. The sound of the motor is by no
means constant during the process of increas-

ing the frequency The stationary resonance

pattern corresponds to points v>tiere the motor

is running much more quietly, because the

motor does not need to fight against the hose.

This sound distinction is particularly notice-

able for the higher harmonics.

If you play a xiolin, cello, or other stringed

instnmient, vtiu might ask how the harmonics

observed in this film are related to musical

properties of \ilH-ating strings What can be

done with a violin string to change the

frequency of vibration' What musical relation

exists between two notes if one of them is twice

the frequency of the other?
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What would happen if you kept increasing

the frequency of the motor? Would you expect

to get arbitrarily high resonances, or would

something "give"?

Film Loop 42
\^BRATIO^S OF A DRU\I

The standing wave patterns in this film <ire

formed in a stretched, circular rubber mem-
brane driven by a loudspeaker (see Fig. 3-111).

The loudspeaker is fed large cmiounts of power,

about 30 watts — more power than you would

want to use with a television set or phono-

graph. The frequency of the sound can be

changed electronically. The lines drawn on the

membrane make it easier for you to see the

patterns.

Fig. 3-111

The rim of the drum cannot move, so in all

cases it must be a nodal circle — a circle that

does not move as the waves bounce back and

forth on the drum. By operating the camera at a

frequency only slightly different firom the

resonant frequency, a stroboscopic effect en-

ables you to see the rapid vibrations in slow

motion.

In the first part of the film, the loudspeaker is

directly under the membrane and the vibratory

patterns are symmetrical. In the fundamental

harmonic, the membrane rises and falls as a

whole. At a higher frequency, a second circular

node shows up between the center and the

rim.

In the second part of the film, the speaker is

placed to one side so that a different set of

modes is generated in the membrane. You can

see an asymmetrical mode where there is a

node along the diameter, with a hill on one side

and a valley on the other.

Various symmetric and cisymmetric vibration

modes are shown. Describe each mode, iden-

tifying the nodail lines and circles.

In contrast to the one-dimensional hose in

FUm Loop 41, there is no simple relation of the

resonant frequencies for this two-dimensional

system. The frequencies are not integral multi-

ples of any basic frequency. The relation

between values in the frequency spectrum is

more complex than that for the hose.

Film Loop 43
VIBRATIONS OF A METAL PLATE
The physical system in this film is a square

metal plate (see Fig. 3-112). The various

vibrational modes are produced by a

loudspeaker, as with the vibrating membrane in

Film Loop 42. The metal plate is clamped at the

center, so that point is always a node for each

of the standing wave patterns. Because this is a

stiff metal plate, the vibrations are too slight in

amplitude to be seen directly. The trick used to

make the patterns visible is to sprinkle sand

along the plates. This sand moves away from

the parts of the plates that are in rapid motion,

and tends to fall filong the nodal lines, which

£ire not moving. The beautiful patterns of sand

are known cis Chladni figures. These patterns

have often been much admired by artists.

These and similar patterns are also formed

when a metcil plate is caused to vibrate by

means of a violin bow, as seen at the end of this
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Fig. 3-112

film and in the Activity, "Standing Waves on a

Drum and a Violin."

Not all frequencies will lead to stable pat-

terns. As in the case of the drum, these

harmonic frequencies for the metal plate obey

complex mathematical relations, rather than

the simple arithmetic progression seen in a

one-dimensional string; but, again, they are

discrete e\'ents. Only at certain well-defined

frequencies are these pattenns produced.



1
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Behavior of a Light Beam at the

Boundary l)etv^'een Two Media

Direct the beam at the center of the flat side of

the dish, keeping the slit vertical. Tilt the

projector until you can see the path of light

both before it reaches the dish and £ifter it

leaves the other side.

To describe the behavior of the beam, you

need a convenient way of referring to the angle

the beam makes with the boundary. In physics,

the system of measuring angles relative to a

surface assigns a value of 0° to the perpendicu-

lar, or strciight-in, direction. The angle at which

a beam strikes a suri"ace is called angle of

incidence id^); it is the number of degrees away

from the straight-in direction. Similariy, the

angle at which a refracted beam leaves the

boundary is called the angle ofrefraction idf). It

is measured as the deviation from the straight-

out direction (Fig. 4-3).

Refraction Angle and Change
in Speed

Change the angle of incidence in S* ste(>s from

0° to 85°, recording the angle of the refracted

beam for each step. As the angles in air get

larger, the beam in the water begins to spread,

so it becomes more difficult to measure its

direction precisely. You can avoid this difficulty

by directing the beam into the round side of the

dish instead of into the flat side. This will give

the same result since, as you have seen, the

light path is reversible.

3. On the basis of your table of values, does the

angle in air seem to increase in proportion to the

angle in water?
4. Make a plot of the angle in air against the

angle in water. How would you descrit>e the

relation between the angles?

Fig. 4-3

Note the direction of the refracted beam for a

particular angle of incidence. Then direct the

beam perpendicularly into the rounded side of

the dish where the refracted beam came out

(Fig. 4-4). At what angle does the beam now
come out on the flat side? Does reversing the

path like this have the same kind of effect for all

angles?

1. Can you state a general rule about the

passage of light beams through the medium?
2. What happens to the light beam when it

reaches the edge of the container along a radius?

Change the angle of incidence and observe

how the angles of the reflected and refracted

beams change (It may be easiest to leave the

projector supported in one place and to rotate

the sheet of paper on which the dish rests. I You

will see that the angle of the reflected beam is

always equal to the angle of the incident beam,

but the angle of the refracted beam is not

related to the angle of incidence in so simple a

fashion.

According to both the simple w^ve and
simple particle models of light, it is not the ratio

of angles in two media that will be constant, but

the ratio of the sines of the angles. Add two

columns to your data table and, referring to a

table of the sine function, record the sines of

the angles you observed. Then plot the sine of

the angle in water against the sine of the angle

in air.

5. Do your results support the prediction made
from the models?
6. Write an equation that describes the relation-

ship between the angles.

According to the wa\ e model, the ratio of the

sines of the angles in two media is the same as

the ratio of the light speeds in the two media.

7. According to the wave model, what do your

results indicate is the speed of light in water?

Color Differences

You haw prol)abl\' observed in this ejiperiment

that different cxilors of light are not rrfracted by

the same amount (This effect is called disper-

sion.) This is most noticeable when you direct

the beam into the round side of the dish, at an

angle such that the rvfracted Ix'am leaving the

flat side lies very close to the flat side. The
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different colors of light making up the white

beam separate quite distinctly.

8. What color of light is refracted most?
9. Using the relation between sines and speeds,

estimate the difference in the speeds of different

colors of light in water.

Other Phenomena

In the course ofyour observations you probably

have observed that for some angles of inci-

dence, no refiracted beam appears on the other

side of the boundary. This phenomenon is

called total internal reflection

.

10. When does total internal reflection occur?

By immersing blocks of glass or plastic in the

water, you can observe what heppens to the

beam in passing between these media and
water. (Liquids other than water can be used,

but be sure you do not use one that will

dissolve the plastic dish!) Ifyou lower a smaller

transparent container upside-down into the

water so as to trap air in it, you ctin observe

what happens at another water- air boundary

(Fig. 4-5). A round container so placed will

show wiiat effect an air bubble in water has on

light.

Fig.

Fig. 4-5

Experiment 4-2

YOUNG'S EXPERIMENT:
THE WAVELENGTH OF LIGHT

You have seen how ripples on a water surface

are diffracted, spreading out after having
passed through an opening. You have also seen

wave interference w+ien ripples, spreading out

from two sources, reinforce each other at some
places and cancel out at others.

Sound and ultrasound waves behave like

water waves. These diffraction iind interference

effects cire characteristic of all wave motions. If

light has a wave nature, must it not also show
diffraction and interference effects?

You may shake your head when you think

about this. If light is diffracted, this must mean
that light spreads around comers. But you
learned in Unit 4 that "light travels in straight

lines." How can light both spread around
comers and move in straight lines?

Simple Tests of Lig^t Waves

Have you ever noticed light spreading out after

passing through an opening or around an

obstacle? Try this simple test: Look at a narrow
light source several meters away from you. (A

straight-filament lamp is best, but a single

fluorescent tube far away will do.) Hold two
fingers in front of one eye and parallel to the

light source. Look at the light through the gap

between your fingers (Fig. 4-6). Slowly squeeze

your fingers together to decrease the width of

the gap. What do you see? What happens to the

light as you reduce the gap between your
fingers to a very nannw slit?

.ight source

11. Before trying this last suggestion, make a

sketch of what you believe will happen. If your

prediction is wrong, explain what happened.

^W

Fig. 4-6

Evidently light can spread out in passing

through a very narrow opening between your

fingers. For the effect to be noticeable, the

opening must be small in comparison to the

wavelength. The opening must be much
smJiller than those used in the ripple tank, in

the case of light, or with sound waves. This

suggests that light is a wave, but that it has a



178 LNIT 4 / LIGHT AND ELECTROMAGNETISM

much shorter wavelength than the ripples on

water, or sound or ultrasound in the air.

Do light waves show interference? Your

immediate answer might be "no." Have you ever

seen dark areas formed by the cancellation of

light waves from two sources?

As with diffraction, to see interference you

must arrange for the light sources to be small

and close to each other. A dark photographic

negative with two clear lines or slits running

across it works very well. Hold up this film in

front of one eye with the slits parjillel to a

narrow light source. What evidence do you see

of interference in the light coming from the two

slits?

magnifying eyepiece and scale unit in the end

toward your eye and look through it at the light.

(See Fig. 4-8.) What you see is a magnified view

of the interference pattern in the plane of the

scale. Try changing the distance between the

eyepiece and the double slits.

strolght /~\^

lOmp

Fig 4-8

tciescop* tubes

Two-Slit Interference Pattern

To examine this interference pattern of light in

more detail, fasten the film with the double slit

on the end of a cardboard tube, such as the

telescope tube without the lens. Make sure that

the end of the tube is "light-tight," except for

the two slits. (It helps to cover most of the film

with black tape.) Stick a piece of translucent

"frosted" tape over the end of a narrower tube

that fits snugly inside the first one. Insert this

end into the wider tube, as shown in Fig. 4-7.

In an earlier exf>eriment, you calculated the

wavelength of sound from the relationship

The relationship was deriv-ed for water waN-es

from two in-phase sources, but the mathemat-

ics is the same for any kind of wave. iThe use of

two closely spaced slits gives a reasonably good

approximation of in-phase sources.) See Fig.

4-9.

Stroight

filament

lomp

n\ dojble
Slit

fros-^ed'tope

^"X-© telescope tubes

Fig 4-7

Set up your double tube at least 1^ m away

from the narrow light source with the slits

parallel to the light source. With your eve about

30 cm away from the open end of the tube,

focus your eye on the tape "screen." Then» on

the screen is the interference pattern formed by

light from the two slits.

1. Describe how the pattern changes as you
move the screen farther away from the slits.

2. Try putting different colored filters in front of

the double slits. What are the differences between
the pattern formed in blue light and the patterns

formed in red or yellow light?

Measurement of \Va\elength

Ri'inovr th<» translur«»nt tap«» schmmi fnmi the

inside end of the narrow tube Insert a

Fig. 4-9

I'se the formula to find the wa\-elength of the

light transmitted by the different colored filters.

To do so, measure ,<, the distance between

neighboring dark fringes, with the measuring

magnifier (Fig 4-101. (Remember that the small-

est divisions on the scale are 1 mm i Vou can

also use the magnifier to measure d. the

distance between the two slits Place the film

against the scale and then hold the film up to

Fig 4-10
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the light. In the drawing, / is the distance from

the slits to the plane of the patternyou measure.

The speed of light in air is approximately

3 X 10* m/sec. Use your measured values of

wavelength to calculate the approximate light

frequencies for each of the colors you used.

3. Could you use the method of "standing
waves" (Experiment 3-18, "Sound") to measure
the wavelength of light? Why?
4. Is there a contradiction between the statement,

"Light consists of waves" and the statement,

"Light travels in straight lines"?

5. Can you think of a common experience in

which the wave nature of light is noticeable?

Suggestions for Some More
Experiments

1. Examine light diffracted by a circular hole

instead of by a ncurow slit. The light source

should now be a small point, such as a distant

flashlight bulb. Look also for the interference

effect with light that passes through two small

circular sources (pinholes in a card) instead of

the two narrow slits. (Thomas Young used

circular openings rather than slits in his

original experiment in 1802.)

2. Look for the diffraction of light by cm

obstacle. For example, use straight wires of

various diameters, parallel to a narrow light

source. Or use circular objects such as tiny

spheres, the head of a pin, etc., and a point

source of light. You can use either method of

observation: the translucent tape screen or the

magnifier. You may have to hold the magnifier

fciirly close to the diffracting obstacle.

3. Try some of the experiments listed under

"Two-Slit Interference Pattern," using four or

six slits instead of two. Note any differences in

results.

Instructions on how to photograph some of

these effects are in the activities that follow.

Experiment 4-3

ELECTTRIC FORCES. I

If you walk across a carpet on a dry day and

then touch a metal doorknob, a spark may
jump across between your fingers and the

knob. Your hair may crackle as you comb it (see

Fig. 4-11). You have probably noticed other

examples of the electrical effect of rubbing two

objects together. Does your hair ever stand on

end after you puU a sweater over your head?

Fig. 4-11

(This effect is particularly strong if the sweater

is made of a synthetic fiber.)

Small pieces of paper are attracted to a

plastic comb or ruler that has been rubbed on a

piece of cloth. Try it. The attractive force is

often large enough to lift scraps of paper off

the table, showing that the attractive force is

stronger than the gravitational force between

the paper and the entire earth!

The force between the rubbed plastic and the

paper is an electriceil force, one of the four basic

forces of nature.

In this experiment, you will make some
observations of the nature of the electrical

force. If you do the next experiment, "Electric

Forces. 11," you v^ make quantitative mea-

surements of the force.

Forces between Electrified Objects

Stick a 20-cm length of transpjirent tape to the

tabletop. Press the tape down well with your

finger leaving about 2.5 cm loose as a "handle."

Carefully remove the tape ftx)m the table by

pulling on this loose end, preventing the tape

from curling up around your fingers.

To test whether or not the tape became
electrically charged when you stripped it from

the table, see if the nonsticky side wall pick up a

scrap of paper. Even better, will the paper jump

up from the table to the tape? Is the tape

charged? Is the paper charged?

So far, you have considered only the effect of

a charged object (the tape) on an uncharged

object (the scrap of paper). What effect does a

charged object have on another charged ob-

ject? Here is one way to test it.

Charge a piece of tape by sticking it to the

table and peeling it off as you did before.

Suspend the tape from a horizontal wooden

rod, or over the edge of the table. (Do not let the

lower end curl around the table legs.)
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Now charge a second strip of tape in the

same way and bring it close to the first one,

Have the two nonsticky sides facing (see Fig.

4-12).

Fig. 4-12

Do the two tapes affect each other? Is the

force between the tapes attractive or repulsive?

Hang the second tape about 10 cm away from

the first one. Proceed as before and electrify a

third piece of tape. Observe the reaction

between this tape and your first two tapes.

Record all your observations. Leave only the

first tape hanging from its support; you will

need it again shortly. Discard the other two

tapes.

Stick a new piece of tape (A) on the table and

stick a second tape (B) over it. Press them down
well. Peel the stuck-together tapes from the

table. To remove the net charge the pair will

have picked up, run the nonsticky side of the

pair over a water pipe or your lips. Check the

pair with the original test strip to be sure the

pair is electrically neutral. Now carefully pull

the two tapes apart.

1. As you separated the tapes did you notice any

interaction between them (other than that due to

the adhesive)?

2. Hold one of these tapes in each hand and bring

them slowly towards each other (nonsticky sides

facing). What do you observe?

3. Bring first one, then the other of the tapes near

the original test strip. What happens?

Mount A and B on the rod or table edge to

serve as test strips. If you have rods of plastic,

glass, or rubbor available, or a plastic comb,

ruler, etc., rhargi* each one in turn by rubbing

on cloth or fur. Bring the rod or comb close to A

and then B.

Although you cannot pro\-e it from the

results of a limited number of exp>eriments,

there seem to be only two classes of electrified

objects. No one has ev'er produced an elec-

trified object that either attracts or repels both

A and B (wtiere A and B are themselves

electrified objects i The two classes are called

positive ( + ) and negative i-i. Write a general

statement summarizing how all members of

the same class behave with each other (attract,

repel, or remain unaffected by) and with all

members of the other class.

A Puzzle

Your system of two classes of electrified objects

was based on observations of the way chained

objects interact. How can you account for the

fact that a chained object 'like a rubbed combi

will attract an unchained object (like a scrap of

paper)?

4. Is the force between a charged body (either

or -) and an uncharged body always attractive,

always repulsive, or is it sometimes one, some-
times the other?

5. Can you explain how a force arises between
charged and uncharged bodies and why it is

always the way it is? The clue here is the fact that

the negative charges can move about slightly,

even in materials called nonconductors, like

plastic and paper.
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Fig. 4-13

Experiment 4-4

ELECTTRIC FORCES. II:

COULOMB'S LAW
You have seen that electrically charged objects

exert forces on each other, but so far your

observations have been qualitative; you have

observed but not measured. In this experiment,

you will find out how the amount of electrical

force between two charged bodies depends on

the amounts of electrical charges and on the

sepeiration of the bodies. In addition, you will

experience some of the difficulties in using

sensitive equipment.

The electric forces between charges that you

can conveniently produce in a laboratory are

smaU. To measure them at all requires a

sensitive balance, good technique, and a day

that is not too humid (otherwise the chai^ges

leak off too rapidly).

Constructing the Balance

(If your balance is already assembled, you need

not read this section; go on to "Using the

Balance.") A satisfactory balance is shown in

Fig. 4-13.

Coat a small Styrofoam ball with a conduct-

ing paint and fix it to the end of a plastic sliver

or toothpick by sticking the pointed end of the

sliver into the ball. Since it is veiy important

that the plastic be clean and dry (to reduce

leakage of chcirge along the surface), handle the

plastic slivers as little as possible, and then only

with clean, dryfingers. Push the sliver into one

end of a soda straw leaving at least 2.5 cm of

plastic exposed, as shown in Fig. 4-14.

Next, fill the plcistic support for the balance

with glycerin, oil, or some other liquid. Cut a

shallow notch in the top of the straw about 2

cm from the axle on the side away from the

sphere (see Fig. 4-14).

Locate the balfmce point of the straw, ball,

and sliver unit. Push a pin through the straw at

this point to form an axle. Push a second pin

through the straw directly in front of the axle

and perpendicular to it. (As the straw rocks

back and forth, this pin moves through the fluid

in the support tube. Friction wdth the fluid

reduces the swings of the balance.) Place the

straw on the support, the pin hanging down
into the liquid. Now, adjust the balance by

sliding the plastic slrver slightly in or out of the

straw, until the straw rests horizontally. If

necessary, stick small bits of tape to the straw

to make it balemce. Make sure the bedance can

swing freely while meiking this adjustment.

Finally, cut five or six small, equal lengths of

thin, bare wire (such as #30 copper). Each

should be about 2 cm long, and they must all be

as close to the same length as you can make

them. Bend them into small hooks (Fig. 4-14)

that can be hung over the notch in the straw or

hung from each other. These are your

"weights."

rf^ ttiirt Kook u>ct«nT

Rg. 4-14

Mount another coated ball on a pointed,

pliistic sliver and fix it in a clamp on a ring

stand, as shown in Fig. 4-13.

Using the Balance

Charge both balls by wiping them with a

rubbed plastic comb or ruler. Then bring the

ring-stand ball down toward the beilance ball.
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1. What evidence have you that there is a force

between the two balls?

2. Is the force due to the charges?

3. Can you compare the size of the electrical

force between the two balls with the size of

gravitational force between them?

Repeat until you hav'e used all the hooks; do
not reduce the air space between the balls to

less than 0-5 cm. Then quickly retrace your

steps by removing one hook (or more) at a time

and raising the ring-stand ball each time to

restore balance.

Your balance is now ready, but in order to do

the experiment, you need to solve two techni-

cal problems. During the experiment you will

adjust the position of the ring-stand ball so that

the force between the charged balls is balanced

by the wire weights. The straw will then be

horizontal. First, therefore, you must check

quickly to be sure that the straw is balanced

horizontally each time. Second, measure the

distance between the centers of the two balls.

You cannot put a ruler near the charged balls,

or its presence will affect your results; however,

if the ruler is not close to the balls, it is very

difficult to make the measurement accurately.

Here is a way to make the measurement.

With the balance in its horizontal position, you

can record its balanced position with a mark on

a folded card placed near the end of the straw

(at least 5 cm away from the charges). (See Fig.

4-13.)

How can you avoid the parallax problem? Try

to devise a method for measuring the distance

between the centers of the balls. Ask your

instructor if you cannot think of one.

You are now ready to make measurements to

see how the force between the two balls

depends on their separation and on their

charges.

Doing the Experiment

From now on, work as quickly as possible but

move carefully to avoid disturbing the balance

or creating air currents. It is not necessary to

wait for the straw to stop moving before you
record its position. When it is swinging slightly,

but equally, to either side of the balanced

position, you can consider it balanced.

Charge both balls, touch them together

briefly, and move the ring-stand ball until the

straw is returned to thr balanced position The
weight of one hook now balances the electric

force between the charged spheres at this

separation. Record the distance between the

balls.

Witliout nu'harging the balls, atld a second
hook and n'adjiist the .system until balance is

again restored. Recortl this new sepanition

4. The separations recorded on the "return trip"

may not agree with your previous measurements
with this same number of hooks. If they do not,

can you suggest a reason wtiy?

5. Why must you not recharge the balls between
one reading and the next?

Interpreting Your Results

Make a graph of your measurements of force F

against separation d between centers. Cleariy F

and d are inversely related; that is, F increases

as d decreases. You can go further to find the

relationship between F and d. For example, it

might be F oc i/d. F a 1/c/*, or F a: l/d^ etc.

6. How would you lest which of these relation-

ships best represents your results?

7. What relationship do you find between f and
d7

Further Investigation

In this experiment, you can determine how the

force F varies with the charges on the spheres

when d is kept constant.

Chaise both balls and then touch them

together briefly. Since they are neariy identical,

it is assumed that when touched, they v\ill

sharp the total charge almost equally

Hang four hooks on the balance and movT*

the ring-stand ball until the straw is in the

balanced position. Note this position.

Touch the upper l)all with your finger to

discharge the ball If the two balls are again

brought into contact, the charge left on the

balance ball will be shared equally between the

two balls.

8. What IS the charge on each ball now las a

fraction of the original charge)?

Return the ring-stand ball to its previous

f)osition how many houks must you removx* to

restore the balance?
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9. Can you state this result as a mathematical
relationship between quantity of charge and
magnitude of force?

10. Consider why you had to follow two precau-

tions in doing the experiment:
(a) Why can a ruler placed too close to the charge
affect results?

(b) Why should you get the spheres no closer

than about 0.5 cm?
11. How might you modify this experiment to see
if Newton's third law applies to these electric

forces?

Experiment 4*5

FORCES ON CURRENTS
If you did Elxj>eriment 4-4, you used a simple

but sensitive balance to investigate how the

electric force between two charged bodies

depends on the distance between them and on
the fimount of charge. In this and the next

experiment you will examine a related effect:

the force between moving charges, that is,

between electric currents. You wUl investigate

the efifect of the magnitudes and the directions

of the currents. Before starting the experiment,

you should have read the description of

Oersted's and Ampere's work (Text Sections

14.11 and 14.12).

The apparatus for these experiments (like

that in Fig. 4-15) is similar in principle to the

Fig. 4-15
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balance apparatus you used to measure elec-

tric forces. The current balance measures the

force on a horizontal rod suspended so that it

is free to move sideways at right angles to its

length. You can study the forces exerted by a

magnetic field on a current by bringing a

magnet up to this rod while there is a current

in it. A force on the current-carrying rx)d causes

it to swing away finom its original position.

You can also pass a current through a fixed

wire parallel to the pivoted rod. Any force

exerted on the rod by the current in the fixed

wire will again cause the pivoted rod to move.

You can measure these forces simply by

measuring the counterforce needed to return

the rod to its original position.

Adjusting the Current Balance

This instrument is more complicated than

most of those you have worked with so far

Therefore, it is worthwhile spending a little

time getting to know how the instrument

operates before you start taking readings.

1. You have three or four light metal rods bent

into I I or '-vj-' shapes. These are the movable

"loops." Set up the balance with the longest

loop clipped to the pivoted horizontal bar.

Adjust the loop so that the horizontal part of

the loop hangs level with the bundle of wires

(the fixed coil) on the pegboard frame. Adjust

the balance on the frame so that the loop and

coil are parallel as you look down at them. They

should be at least 5 cm apart. Make sure

the loop swings freely.

2. Adjust the "counterweight" cylinder to bal-

ance the system so that the long pointer arm is

approximately horizontal. Mount the

S -shaped plate (zero-mark indicator) in a

clamp and position the plate so that the zerx)

line is opposite the horizontal pointer (Fig.

4-16). (If you are using the equipment for the

first time, draw the zero-index line yourself.)

^/W
zero line

Ftg. 4-16 Set ttie zero mark level with the pointer when
there is current in the balance loop and no current in the

fixed coil

3. Now set the balance for maximum sensitiv-

ity. To do this, move the sensiti\ity clip up the

vertical rod (Fig. 4-171 until the loop slowly

swings back and forth. These oscillations may
take as much as 4 or 5 sec p>er swing. If the clip

is raised too far, the balance may become
unstable and flop to either side without

"righting" itself.

Fig 4-17

4. Make sure that the pivots (knife-edge con-

tacts) are clean and shiny luse fine-grade

abrasive paper i, and remain clean throughout

the experiment; otherwise, they will not let the

current pass reliably. Now connect a 6 \'/5 A
max power supply that can supply up to 5 A
through an ammeter to one of the flat horizon-

tal plates on which the pivots rest Connect the

other plate to the second terminal of the power
supply I Fig. 4-18). To limit the current and keep

it frxjm tripping the circuit breaker, it may be

necessary to put one or two l-fl resistors in the

circuit. I If your power supply does not ha\e

variable control, it should be connected to the

plate thrxjugh a rheostat.)

Fig 4 18
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6. Set the variable control for minimum cur-

rent, and turn on the power supply. If the

ammeter deflects the wrong way, interchange

the leads to it. Slowly increase the current to

about 4.5 A.

6. Now bring a smaU magnet close to the

pivoted conductor.

1. How must the magnet be placed to produce

the greatest effect on the rod? What determines

the direction in which the rod swings?

You will make quantitative measurements of

the forces between magnet and current in the

next experiment, "Currents, Magnets, and

Forces." The rest of this experiment is con-

cerned with the interaction between two cur-

rents.

7. Connect a similar circuit consisting of a

power supply, ammeter, and rheostat (if there

is no variable control on the power supply) to

the fixed coil on the vertical pegboard (the

bundle of ten wires, not the single wire). The

two circuits (fixed-coU and movable-hook) must

be independent. Your setup should now look

like the one shown in Fig. 4-19. Only one meter

is actually required, because you can move it

from one circuit to the other as needed. It is,

however, more convenient to work with two

meters.

'^^1

"^ ffHEcr>rrT

Rg. 4-19 Current balance connections using rheostats

when variable power supply is not available.

8. Turn on the currents in both circuits and

check to see which way the pointer rod on the

btilance swings. It should move up. If it does

not, see if you can miike the pointer swing up

by changing something in your setup.

2. Do currents flowing in the same direction

attract or repel each other? What about currents

flowing in opposite directions?

9. Prepare some "weights" fix)m the thin wire

given to you. You will need a set that contains

wire lengths of 1 cm, 2 cm, 5 cm, and 10 cm.

You may want more than one of each; you can

make more as needed during the experiment.

Bend the wires into small S-shaped hooks so

that they can hang from the notch on the

pointer or from each other. This notch is the

same distance from the axis of the balance as

the bottom of the loop; therefore, when there is

a force on the horizonteil section of the loop,

the total weight F hung at the notch will equal

the magnetic force acting horizontally on the

loop. (See Fig. 4-20).

hooks

i

=--=&<>

f <- C 1 001

Rg. 4-20 Side view of a balanced loop. The distance

from the pivot to the wire hook is the same as the

distance to the horizontal section of the loop, so the

weight of the additional wire hooks is equal in mag-
nitude to the horizontal magnetic force on the loop.

These preliminary adjustments tire common
to all the investigations. But from here on, there

are separate instructions for three different

experiments. Different members of the class

wiU investigate how the force depends upon:

(a) the current in the wires,

(b) the distance between the wires, or

(c) the length of one of the wires.

When you have finished your experiment,

read the section "For Class Discussion."

(a) How Force Depends on Current

in the Wires

By keeping a constant separation between the

loop and the coil, you can investigate the effects

of varying the currents. Set the balance on the

frame so that, as you look down at them, the

loop and the coil are parcdlel £ind about 1 cm
apart.

Set the current in the balance loop to about 3

A. Do not change this current throughout the

experiment. With this current in the balance

loop and no current in the fixed coil, set the

zero mark in line with the pointer rod.
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Starting with a relatively small current in the

fixed coil (about 1 A), determine how many
centimeters of wire you must hang on the

pointer notch until the pointer rod returns to

the zero mark.

Record the current /, in the fixed coil and the

length of wire added to the pointer arm. The
weight of wire is the balancing force F.

Increase I, step by step, checking the current

in the balance loop as you do so, until you
reach a current of about 5 A in the fixed coil.

3. What is the relationship between the current

in the fixed coil and the force on the balance loop?

One way to discover this is to plot force F against

current /,. Another way is to find what happens to

the balancing force when you double, then triple,

the current /,.

4. Suppose you had held /, constant and mea-
sured F as you varied the current in the balance

loop /,,. What relationship do you think you would
have found between F and /,,? Check your answer
experimentally (for example, by doubling /,,) if

you have time.

5. Can you write a symbolic expression for how
F depends on both /, and /,,? Check your answer
experimentally (by doubling both /, and /,,) if you
have time.

6. How do you convert the force, as measured in

centimeters of wire hung on the pointer arm, into

the conventional unit for force (newtons)?

(b) How Force Varies uith the

Distance between Wires

To measure the distance between the two

wires, you have to look down. F»ut a scale on the

wooden shelf below the loop. Because there is a

gap between the wires and the scale, the

number you read on the scale changes as you
move your head hack and forth. This effect is

called parallax, and it must be reduced if you
are to get good measurements. If you look

down into a mirror set on the shelf, you can tell

when you are looking straight down because

the wire and its image will line up. Tr^' it I Fig.

4-21).

WTfOP jJtJf
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Fig. 4-21 Only when your eye is perpendicularly above
the moving wire will it line up with its reflection in the
mirror.

Stick a length of centimeter tap>e along the

side of the mirror so that you can sight down
and read off the distance between one edge of

the fixed wire and the corresponding edge of

the balance loop. Set the zero mark with a

current /(, of about 4-5 A in the balance loop and

no current /, in the fixed coil. Then adjust the

distance to about 0.5 cm.

Begin the experiment by adjusting the cur-

rent passing through the fixed coil to 4^ A.

Hang weights on the notch in the pointer arm
until the pointer is again at the zero position.

Record the weight and distance carefully.

Repeat your measurements for four or fh-e

greater separations. Between each set of mea-

surements make sure the loop and coil are still

parallel; check the zero position, and see that

the currents are still 4.5 A.

7. What is the relationship between the force F

on the balance loop and the distance d between
the loop and the fixed coil? One way to discover

this is to find some function of d (such as 1 d'. 1 d.

d^, etc.) that gives a straight line when plotted

against F. Another way is to find what happens to

the balancing force F when you double, then

triple, the distance d.

8. If the force on the balance loop is F, what is

the force on the fixed coil?

9. Can you convert the force, as measured in

centimeters of wire hung on the pointer arm, into

force in newtons?

(c) Hou Force \'aries with the

Length of One of the Ulres

By keeping constant currents /, and It, and a

constant separation d, you can im-pstigate the

effects on the length of the wires. In the current

balance setup, it is the bottom, horizontal

section of the loop that interacts most strxingly

with the coil. Ixjops with sewral different

lengths of horizontal segment are piDMded
To measure the distances l>etwtM'n the two

wires, you have to look down at them Put a

scale on the wooden shelf l>elow the loop

Because there is a gap between the wires and
the scale, what you read on the scale changes

as you mow your head I>ack and forth This

effect is called paralla,\ parallax must be

reduced ifyou are to get giMxi measurements. If

you look down into a mirror set on the shelf,

you can tell when you are looking straight

down l>ecause the wire and its image will line

up Tr> it I Fig 4-21)

Stick a length of centimeter tape along the

side of the mirror Then you can sight dowii
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and read off the distance between one edge of

the fixed wire and the corresponding edge of

the balance loop. Adjust the distance to about

0.5 cm. With a current I^ of about 4.5 A in the

balance loop and no current /f in the fixed coil,

set the pointer at the zero mark.

Begin the experiment by passing 4.5 A
thrxDugh both the bcilance loop and the fixed

coil. Hang weights on the notch in the pointer

arm until the pointer is again at the zero

position.

Recorxl the vcdue of the currents, the distance

between the two wir^s, and the weights added.

Turn off the currents, and carefully remove

the balance loop by sliding it out of the holding

clips (Fig. 4-22). Measure the length / of the

horizontcil segment of the loop.

For Class EHscussion

Be prepared to report the results of your

particular investigation to the rest of the class.

As a class, you wiU be able to combine the

individual experiments into a single statement

about how the force varies with current, with

distance, and with length. In each part of this

experiment, one factor was varied while the

other two were kept constant. In combining the

three separate findings into a single expression

for force, you are assuming that the effects of

the three factors are independent . For example,

you are assuming that doubling one current

will always double the force, regardless of what

constant values d and / have.

Fig. 4-22

13. What reasons can you give for assuming such

a simple independence of effects? What could you
do experimentally to support the assumption?
14. To make this statement into an equation,

what other facts do you need; that is, what must
you know to be able to predict the force (in

newtons) existing between the currents in two
wires of given length and separation?

Experiment 4-6

CURRENTS, MAGNETS, AND
FORCES

Insert another loop. Adjust it so that it is level

with the fixed coil and so that the distance

between loop and coil is just the same as you

had before. This is important. The loop must

cilso be parallel to the fixed coU, both as you

look down at the wires from above and as you

look at them from the side. Also reset the clip

on the balance for maximum sensitivity. Check

the zero position, and see that the currents cire

still 4.5 A.

Repeat your measurements for each balance

loop.

10. What is the relationship between the length /

of the loop and the force F on it? One way to

discover this is to find some function of / (such as

/, /2, Ml, etc.) that gives a straight line when plotted

against F. Another way is to find what happens to

F when you double /.

11. Can you convert the force, as measured in

centimeters of wire hung on the pointer arm, into

force in newtons?
12. If the force on the balance loop is F, what is

the force on the fixed coil?

If you did Experiment 4-5, "Forces on Cur-

rents," you discovered how the force between

two wires depends on the current in them,

their length, and the distance between them.

You also know that a nearby magnet exerts a

force on a current-carrying wire. In this exper-

iment, you will use the current balance to study

further the interaction between a magnet and a

current-carrying wire. You may need to refer

hooks

=Sh:>

F <- oop

Fig. 4-23 Side view of a balanced loop. Since the

distance from the pivot to the wire hooks is the same as

the distance to the horizontal section of the loop, the

weight of the additional wire hooks is equal to the

horizontal magnetic force on the loop.
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back to the notes on Elxperiment 4-5 for details

on the equipment.

In this experiment, you will not use the fixed

coil. The frame on which the coil is wound will

serve merely as a convenient support for the

balance and the magnets.

Attach the longest of the balance loops to the

pivotal horizontal bar, and connect it through

an ammeter to a variable source of current.

Hang weights on the pointer notch until the

pointer rod returns to the zero mark (see Fig.

4-23).

(a) How the Force between Current

and Magnet Depends on the Current

1. Place two small ceramic magnets on the

inside of the iron yoke. Their orientation is

important; they must be turned so that the two

near faces attract each other when they are

moved close together. (Caution: Ceramic mag-

nets are brittle. They break if you drop them.)

Place the yoke and magnet unit on the platform

so that the balance loop passes through the

center of the region between the ceramic

magnets (Fig. 4-24).

^balance loop

^^^ 'po\e piece

Fig. 4-24 Each magnet consists of a yoke and a pair of

removable ceramic-magnet pole pieces.

2. Check whether the horizontal pointer

moves up when you turn on the current. If it

moves down, change something (the current?

the magnets?) so that the pointer swings up.

3. With the current off, mark the zero position

of the pointer ami v\'ith the indicator. Adjust

the current in the coil to about 1 A. Hang wire

weights in the notch of the balance arm until

the pointer returns to the zero position.

Record the current and the total lialancing

weight. Rej)eat the measurements for at least

four greater currents. Between each pair of

readings, check the zero position of the pointer

arm.

1. What IS the relationship between the current /,,

and the resulting force f that the magnet exerts

on the wire? (Try plotting a graph.)

2. If the magnet exerts a force on the current, do
you think the current exerts a force on the

magnet? How would you test this?

3. How would a stronger or a weaker magnet
affect the force on the current? If you have time,

try the experiment with different magnets or by
doubling the number of pole pieces. Then plot F
against /,, on the same graph as in Question 1

above. How do the plots compare?

(b) How the Force between a

Magnet and a Current Depends
on the Length of the Region

of Interaction

1. Place two small ceramic magnets on the

inside of the iron yoke to act as pole pieces (Fig.

4-24). (Caution: Ceramic magnets are brittle.

They break ifyou drop them.) Their orientation

is important; they must be turned so that the

two near faces attract each other when they ax^

moved close together Place the yoke and

magnet unit on the platform so that the balance

loop passes through the center of the region

between the ceramic magnets (Fig. 4-241.

Place the yoke so that the balance loop

passes through the center of the magnet and

the pointer moves up v\+ien you turn on the

current.

With the current off, mark the zero position

of the pointer with the indicator.

2. Hang 10 cm or 15 cm of wire on the notch in

the balance rod, and adjust the current to

return the pointer rod to its zero position.

Record the current and the total length of wire,

and set aside the magnet for later use

3. Put a second yoke and pair of pole pieces in

position and see if the balance is restored. You

have changed neither the current nor the

length of wire hanging on the pointer There-

fore, if balance is restored, this magnet must be

of the same strength as the first one If it is not.

try other combinations of pole pieces until you

have two magnets of the same strength You

can produce small variations in strength by

moving the pole pieces: ai into the yoke to make

it strongt-r; l)i to th»« ends of the yoke to make it

weaker. If possible, try to get three matched

magnets.

4. Now you are ready for the important test.

Place two of the magnets on the platform at the

same time iFig 4-251 To keep the magnets from

afTectitig each others field appn^ciably. the>'

should Im* at least 10 cm apart ()f course, each

nuignet must l^e jK)sitioned so that the pointer

IS ileflected upwanl With the current just what

it was l>efore, haiig wire weights in the notch

until the Iwlance is restored.
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Fig. 4-25

If you have three magnet units, repeat the

process using three units at a time. Again, keep

the units well apart.

Interpreting Your Data

Your problem is to find a relationship between
the length / of the region of interaction and the

force F on the wire.

You may not know the exact length of the

region of interaction between magnet and wire

for a single unit. It certcdnly extends beyond the

region between the two pole pieces. But the

force decreases rapidly with distance from the

magnets. As long as the separate units are far

from each other, neither wiU be influenced by
the prescence of the other. You can then

assume that the total length of interaction uath

two units is double that for one unit.

?
4. How does F depend on /?

(c) A Study of the Interaction

Between the Earth and an Electric

CXirrent

The magnetic field of the earth is much weaker

than the field near one of the ceramic mag-

nets and the balance must be adjusted to its

maximum sensitivity. The following sequence

of detailed steps will make it easier for you to

detect and measure the small forces on the

loop.

1. Set the balance, with the longest loop, to

maximum sensitivity by sliding the sensitivity

clip to the top of the vertical rod. The sensitivity

can be increased further by adding a second

clip; be careful not to make the balance

top-heavy so that it falls over.

2. With no current in the balance loop, align

the zero mark with the end of the pointer arm.

3. Turn on the current and adjust it to about

5 A. Turn off the current £ind let the balance

come to rest.

4. Turn on the current, and observe carefully:

Does the balance move when you turn the

current on? Since there is no current in the

fixed coil, and there are no magnets nearby, any

force acting on the current in the loop must be

due to an interaction between it and the earth's

magnetic field.

5. To make measurements of the force on the

loop, you must set up the experiment so that

the pointer swings up when you turn on the

current. If the pointer moves down, try to find a

way to make it go up. (If you have trouble,

consult your instructor). Turn off the current,

and bring the balance to rest. Mark the zero

position with the indicator.

6. Turn on the current. Hang weights on the

notch, and adjust the current to restore

balance. Record the current and the length of

wire on the notch. Repeat the measurement of

the force needed to restore balance for several

different values of current.

If you have time, repeat your measurements

of force cind current for a shorter loop.

Interpreting Yoiu* Data

Try to find the relationship between the

current /b in the balance loop and the force F
on it. Make a plot of F against /b.

5. How can you convert your weight unit (cen-

timeters of wire) into newtons of force?

6. What force (in newtons) does the earth's

magnetic field in your laboratory exert on a

current /b in the loop?

For Class Discussion

Diff"erent members of the class have investi-

gated how the force F between a current and a

magnet varies with current / and with the

length of the region of interaction with the

current /. It should also be clear that in any
statement that describes the force on a current

due to a magnet, you must include another

term that takes into account the "strength" of

the magnet.

Be prepared to report to the class the results

of your own investigations and to help formu-

late an expression that includes till the relevant

factors investigated by members of the class.

7. The strength of a magnetic field can be
expressed in terms of the force exerted on a wire

carrying 1 A of current when the length of the wire

interacting with the field is 1 m. Try to express the

strength of the magnetic field of your magnet
yoke or of the earth's magnetic field in these units,

newtons per ampere-meter. (That is, what force

would the fields exert on a horizontal wire 1 m
long carrying a current of 1 A?)
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In using the current balance in this experi-

ment, all measurements were made in the zero

position when the loop was at the very bottom

of the swing. In this position a vertical force will

not affect the balance. Therefore, you have

measured only horizontal forces on the bottom

of the loop.

However, since the force exerted on a current

by a magnetic field is always at right angles to

the field, you have therefore measured only

the vertical component of the magnetic fields.

From the symmetry of the magnet yoke, you

might guess that the field is entirely vertical in

the region directly between the pole pieces. But

the earth's magnetic field is exactly vertical only

at the magnetic poles. (See the drawing on page

457 of the Text.)

8. How would you have to change the experiment

to measure the horizontal component of the

earth's magnetic field?

Experiment 4-7

ELECri RON BEAM TL^BE. I

If you did the experiment "Electric Forces. II:

Coulomb's Law, " you found that the force on a

test charge, in the vicinity of a second charged

body, decreases rapidly as the distance be-

tween the two charged bodies is increased. In

other words, the electric field strength due to a

single small chargrci body dei rcas«'.s with

distance from the body. In many experiments it

is useful to have a region wtiere the field is

uniform, that is, a region where the force on a

test charge is the same at all points. The field

evervwhert" between two closely spared paral-

lel. Hat, oppositely charged plates is verv nearly

unifomi (Fig. 4-26).

The nearly imifomi magnitude E depends

upon the potential diffenMice Ix'tween \hv

plates and upon their separation (/:

In addition to electric forces on charged bodies,

you found (ifyou did either of the pre\ious two

experiments with the current balance) that

there is a force on a current-carrying wire in a

magnetic field.

• a

Fig. 4-26 The field t>etween two parallel flat plates is

uniform £ = Vid where V is the potential dtHerence

(volts) between the two plates

Free Charges

In this experiment, the chaises will not be

confined to a Styrofoam ball or to a metallic

conductor. Instead they will be free chaiiges,

free to move through the field on their own in

air at low pressure.

You will build a sp>ecial tube for this experi-

ment. The tube will contain a filament wire and
a metal can with a small hole in one end.

Electrons emitted from the heated filament are

accelerated towartl the positi\ely rhar^jed can

and some of them pass through the hole into

the space l>eyond formmg a lM*am of electrons

If the tube is carefully constructed, the air

pumf>ed out to the right pressure, and the tube

well sealed, it is possible to observe how the

beam is affected by electric and magnetic fields.

\Mien one of the air molecules remaining in

the partially e\acuated tube is struck by an

electron, the molecule emits some light.

\fol(>cules of different gases emit light of

different colors (Neon gas, for example, glows

red 1 The bluish glow of the air left in the tube

shows the path of the electron beam.
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Building Your Electron Beam Tube

Full instructions on how to build the tube are

included with the parts. Note that one of the

plates is connected to the can. The other plate

must not touch the can.

After you have assembled the filament and

plates on the pins of the glass tube base, you
Ccin see how good the alignment is if you look

in through the narrow glass tube. You should

be able to see the filament across the center of

the hole in the can. Do not seal the header in

the tube until you have checked this alignment.

Then leave the tube undisturbed overnight

wtiile the sealaint hairdens. It is not unusual that

some of the tubes in a given class do not work

well. In that case, try to share the tubes that

function successfully.

Operating the Tube

With the power supply turned off, connect the

tube £is showTi in Figs. 4-27 and 4-28. The

low-voltage connection provides a current to

heat the filament and make it emit electrons.

-C:

0-4Vo—/«kV

0~C ftjnp

Fig. 4-28 The pins to the two plates are connected so
that they will be at the same potential and there will be
no electric field between them.

The ammeter in this circuit allows you to keep

a close check on the current and avoid burning

out the filament. Be sure the 0- 6 V control is

turned down to 0.

The high-voltage connection provides the

field that accelerates these electrons toward

the can. Let the instructor check the circuits

before you proceed further.

Turn on the vacuum pump and let it run for

several minutes. If you have done a good job of

putting the tube together, and if the vacuum
pump is in good condition, you should not

have much difficulty getting a glow in the

area where the electron beam comes through

the hole in the can.

You should woiSc with the faintest glow that

you can see clearly. Even then, it is important to

keep a close watch on the brightness of the

glow. There is an appreciable current from the

filament wire to the can. As the residual gas

gets hotter, it becomes a better conductor, thus

increasing the current. The increased current

will cause further heating, and the process can

build up; the back end of the tube will glow

intensely blue-white and the can wiil become
red hot. You must immediately reduce the

current to prevent the tube from being de-

stroyed. If the glow in the back end of the tube

begins to increase noticeably, turn down the

filament current very quickly, or turn off the

power supply altogether.

Deflection by an Electric Field

When you get an electron beam, try to deflect it

in an electric field by connecting the deflecting

plate to the ground terminal (see Fig. 4-29). You

Rg. 4-27

Rg. 4-29 Connecting one deflecting plate to ground will

put a potential difference of 125 V between the plates.
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will put a potential diiference between the

plates equal to the accelerating voltage. Other

connections can be made to get other voltages,

but check your ideas with your instructor

before trying them.

1. Make a sketch showing the direction of the

electric field and of the force on the charged
beam. Does the deflection in the electric field

confirm that the beam consists of negatively

charged particles?

Deflection by a Magnetic Field

Now tiy to deflect the beam in a magnetic field,

using the yoke and magnets from the current

balance experiments.

2. Make a vector sketch showing the direction of

the magnetic field, the velocity of the electrons,

and the force on them.

Balancing the Electric and
Magnetic Effects

Try to orient the magnets so as to cancel the

effect of an electric field between the two

plates, permitting the charges to travel straight

through the tube.

3. Make a sketch showing the orientation of the

magnetic yoke relative to the plates.

The Speed of the Charges

As explained in Chapter 14 of the Text, the

magnitude of the magnetic force is q\'B, where

q is the electron charge, v is the speed, and B is

the magnetic field strength. The magnitude of

the electric force is qE, where E is the strength

of the electric field. If you adjust the voltage on

the plates until the electric force just balances

the magnetic force, then qvB = qE and, there-

fore, v =B/E.

4. Show that fl/£ will be in speed units if B is

expressed in newtons/ampere-meter and £ is

expressed in newtons/coulomb. Hint: Remember
that 1 A 1 C/sec.

If you know the value of B and £. you can

calculate the speed of the electrons The value

of E is easy to find since, in a uniform field

between parallel plates, £ = V/d, where V is the

potential difference between the plate I in volts)

and d is the separation of the plates (in meters I.

(The unit volts/meter is equivalent to

newtons/coulomb.)

A rough value for the strength of the

magnetic field between the poles of the magnet

yoke can be obtained as described in Elxperi-

ment 4-6, "Currents, Magnets, and Forces."

5. What value do you get for E (in volts per

meter)?
6. What value did you get for B (in newtons per
ampere-meter)?
7. What value do you calculate for the speed of

the electrons in the beam?

An Important Question

One of the problems facing phvsicists at the

end of the nineteenth century was to decide on
the nature of these cathode rays ' (so called

because they are emitted from the negative

electrode or cathode). One group of scientists

(mostly German) thought that cathode rays

wei^ a form of radiation, like light, v\t»ile others

(mostly English) thought they v\*er^ streams of

particles. J.J. Thomson at the Cavendish Labo-

ratory in Cambridge, England, did exp>erimenls

much like the one described here which
showed that the cathode rays behaved like par-

ticles; these particles are now called electrons

These experiments \\'erv: of great imjxjrtance

in the eariy dev-elopment of atomic phvsics In

Unit 5, you will do an experiment to determine

the ratio of the charge of an electix>n to its mass.

Experiment 4-8

ELECTRON BEAM TUBES. II'

1. Focusing the Electron Beam
A current in a wire coiled around the electron

tube will produce inside the coil a magnetic

field parallel to the axis of the tube (Ring-

shaped magnets slipped oxT-r the tube will

pniduce the same kind of field.) An electron

mo\ing directly along the axis will experience

no fon^e since its velocity' is parallel to the

magnetic field .An electron mo\ing perjx'ndiru-

lar to the axis, howvwr. will exf>enrn(v a forre

IF = q\Bi at right artgles to Ixith wlority and

field. If the curved path of the electron remains

'\otr: This experiment is more romplfx than usual.
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in the uniform field, it will be a circle. The
centripetal force F = mv^/R that keeps it in the

circle is just the magnetic force qvB, so

qvB =
R

where R is the radius of the orbit. In this simple

case, therefore,

R
mv

Suppose the electron is moving down the

tube only slightly off axis, in the presence of a

field parallel to the axis [Fig. 4-30la)]. The
electron's velocity can be thought of as made
up of two components: an axial portion of v^

and a transverse portion (perpendicular to the

eixis) V, [Fig. 4-30(b)]. Consider these two

components of the electron's velocity indepen-

dently. You know that the axial component will

be unaffected; the electron will continue to

move down the tube with speed v^ [Fig. 4-30(c)].

The transverse component, however, is per-

pendicular to the field, so the electron will also

move in a circle [Fig. 4-30(d)]. In this case,

qB

The resultant motion (uniform speed down
the cLxis plus circular motion perpendicular to

the axis) is a helix, like the thread on a bolt [Fig.

4-30(e)].

L-J ,

-/ J\- I'

(Q) (b) Cc)

B +

(d)

Rg. 4-30

In the absence of any field, electrons travel-

ing off-axis would continue toward the edge of

the tube. In the presence of an axicil magnetic

field, however, the electrons move down the

tube in helixes; that is, they have been focused

into a beam. The radius of this beam depends

on the field strength B and the transverse

velocity v,.

Wrap heavy-gauge copper wire, such as #18,

around the electron beam tube (about two

turns per centimeter) and connect the tube to a

low-voltage (3-6 V), high-current source to give

a noticeable focusing effect. Observe the shape

of the glow, using different coils and currents.

(Alternatively, you can vary the number and
spacing of ring magnets slipped over the tube

to produce the axial field.)

2. Reflecting the Electron Beam
If the pole of a very strong magnet is brought

near the tube (with great care being taken that

it does not pull the iron mountings of the tube

toward it), the beam glow will be seen to spiral

more and more tightly as it enters stronger field

regions. If the field lines diverge enough, the

path of the beam may start to spiral back. The
reason for this is suggested in SG 39 in Chap-
ter 14.

This kind of reflection operates on particles

in the radiation belt around the earth as they

approach the earth's magnetic poles. (See

drawing at the end of Text Chapter 14.) Such

reflection is what makes it possible to hold

tremendously energetic, changed peirticles in

magnetic "bottles." One kind of coil used to

produce a "bottle" field is called a magnetic

torus.

3. Diode and Triode Characteristics

This experiment gives suggestions for how you
can explore some characteristics of electronic

vacuum tubes with your electron beam tube

materials.

These experiments are performed at ac-

celerating voltages below those that cause

ionization (a visible glow) in the electron beam
tube.

Rectification

Connect an ammeter between the can and

high-voltage supply to show the direction of

the current, and to show that there is a current

only when the can is at a higher potential than

the filament (Fig. 4-31).

riil|ia»irtter

0-30YC ^-

0-tV^ -e
Fig. 4-31

Note that there is a measurable current at

voltages far below those needed to give a visible

glow in the tube. Then apply an alternating

potential difference between the can and
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filament (for example, from a Variac). Use an

oscilloscope to show that the can is alternately

above and below filament potential. Then

connect the oscilloscope across a resistor in

the plate circuit to show that the current is only

in one direction. (See Fig. 4-32.)

oscilloscope

J

Fig. 4-32 The one-way valve (rectification) action of a

diode can be shown by substituting an ac voltage

source for the dc accelerating voltage, and connecting a

resistor (about 1,000 ohms) in series with it. When an

oscilloscope is connected, as shown by the solid lines

above, it will indicate the current in the can circuit. When
the one wire is changed to the connection shown by the

dashed arrow, the oscilloscope will indicate the voltage

on the can.

Triode
The "triode" in Fig. 4-33 was made with a

thin aluminum sheet for the plate and ni-

chrome wire for the grid. The filament is the

original one from the electron beam tube kit,

and thin aluminum tubing fixjm a hobby shop

was used for the connections to plate and grid.

(For reasons lost in the history of vacuum
tubes, the can is usually called the plate.) It is

interesting to plot graphs of plate current

versus filament heating current, and plate

current versus voltage. Note that these charac-

teristic curves apply only to voltages too low to

produce ionization. With such a triode, you can

plot curves showing triode characteristics:

plate current against grid voltage; plate current

against plate voltage.

You can also measure the voltage amplifica-

tion factor, which descril>es how large a change

in plate voltage is produced by a change in grid

voltage. More precisely, the amplification factor

M =
- AV

Change the grid voltage by a small amount,

then adjust the plate \oltage until you have

regained the original plate current TTie mag-

nitude of the ratio of these two \'oltage chcinges

is the amplification factor. (Commercial vacuum
tubes commonly have amplification factors as

high as 500.1 The tube gave noticeable ampli-

fication in the circuit shown in Fig. 4-35 and
Fig. 4-36.

^A^PuomES

affia Xtfo—

Outpul Si^n«t In f^Jlt. Ci'(K>'f

/nput »»^imI "tf ^rid

Fig. 4-35 An amplifying circuit

plait

AV,

I'K* 1

\

<»IU^«

when the plate current is kept constant. Fig. 4-M Schematic diagram of amplifyir>g circuit.
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Experiment 4-9

WAVES AND COMMUNICATION
Having studied many kinds and characteristics

of waves in Units 3 and 4 of the Text, you are

now in a position to see how they are used in

communications. Here are some suggestions

for investigations with equipment that you have

probably already seen demonstrated. The fol-

lowing notes assume that you understand how
to use the equipment. If you do not, then do

not go on until you ask for instructions.

Although different groups of students may use

different equipment, all the investigations are

related to the same phenomenon: communica-

tion by means of waves.

A. Turntable Oscillators

Turn on the oscillator with the pen attached to

it. (See Unit 5, page 231.) Turn on the chart

recorder, but do not turn on the osciUator on

which the recorder is mounted. The pen vvQl

trace out a sine curve as it goes back and forth

over the moving paper. When you have re-

corded about 7 cm- 8 cm, turn off the oscilla-

tor and bring the pen to rest in the middle of

the paper. Now turn on the second oscillator

at the same rate that the first one was going.

The pen will trace out a similar sine curve as

the moving paper goes back and forth under it.

The wavelengths of the two curves are probably

very nearly, but not exactly, equal.

1. What do you predict will happen if you turn

on both oscillators? Try it. Look carefully at the

pattern that is traced out with both oscillators on

and compare it to the curves previously drawn by

the two oscillators running alone.

Chcmge the wavelength of one of the compo-

nents slightly by putting weights on one of the

platforms to slow it down a bit. Then make

more traces firom other pairs of sine curves.

Each trace should consist of three parts, as in

Fig. 4-37: the sine curve from one oscillator; the

sine curve fiDm the other oscillator; and the

composite curve from both oscillators.

2. According to a mathematical analysis of the

addition of sine waves, the wavelength of the

envelope {K in Fig. 4-37) will increase as the

wavelengths of the two components (A.,, Xj

become more nearly equal. Do your results

confirm this?

3. If the two wavelengths X, and X^ were exactly

equal, what pattern would you get when both

turntables were turned on; that is, when the two
sine curves were superimposed? What else would
the pattern depend on, in addition to X, and X2?

As the difference between \, and X2 gets

smaller, Xp gets bigger. You can thus detect a

very small difference in the two wavelengths by

examining the resultant wave for changes in

amplitude that teike place over a relatively long

distance. This method, called the method of

beats, provides a sensitive way of comparing

two oscillators, and of adjusting one until it has

the same frequency as the other.

This method of beats is also used for tuning

musical instruments. If you play the same note

on two instruments that are not quite in tune,

you can hear the beats. The more ne<irly in tune

the two instruments are, the lower the fre-

quency of the beats. You might like to try this

with two guitars or other musical instnjments

(or two strings on the same instrument).

In radio communication, a signal can be

transmitted by using it to modulate a carrier

wave of much higher frequency. (See Part E for

further explanation of modulation.) A snapshot

of the modulated wave looks similar to the

beats you have been producing, but it results

from one wave being used to control the

amplitude of the other, not from simply adding

the waves together.

B. Resonant Circuits

You have probably seen a demonstration of

how a signal can be transmitted from one

liFwHlHHi
Fig. 4-37
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circuit to another that is tuned to it. (Ifyou have

not seen the demonstration, you should set it

up for yourself using the apparatus shown in

Fig. 4-38.)

Fig. 4-38 Two resonant circuit units. Each includes a wire

coil and a variable capacitor. The unit on the right has an

electric cell and ratchet to produce pulses of oscillation

in its circuit.

This setup is represented by the schematic

drawing in Fig. 4-39.

ratchet

ha t tery

5
Fig. 4-39

E3
diode
—H-—

The two coils have to be quite close to each

other for the receiver circuit to pick up the

signal from the transmitter. The effect is due to

the fluctuation of the magnetic field from one

coil inducing a fluctuating currt^nt in the other

coil. It works on the same principle as a

transformer.

Investigate the efi^ect of changing the position

of one of the coils. Try turning one of them
around, moving it farther away, etc.

4. What happens when you put a sheet of metal,

plastic, wood, cardboard, wet paper, or glass

between the two coils?

5. Why does an automobile always have an
outside antenna, while a home radio does not?

You liiur probably learned that to transmit a

signal fn)m one circuit to another, the two

circuits must be tuned to the same frequenc\'.

To investigate the range of frequencies obtain-

able with \()ur nvsonant circuit, connect an

antenna (length of v\irel to the resonant

receiving cinniit. in (»rder to increase its

sensitivity, and n'place the speaker by an

amplifier and oscilloscope (Fig. 4-401. Set the

Rg. 4-40

oscilloscope to Internal Svnc" and the sweep
rate to about 100 kHz.

6. Change the setting of the variable capacitor

( ^ ) and see how the trace on the oscilloscope

changes. Which setting of the capacitor gives the

highest frequency? which setting the lowest? By
how much can you change the frequency by
adjusting the capacitor setting?

When you tune a radio, you are usually, in

the same way, changing the setting of a variable

capacitor to tune the circuit to a different

frequency.

The coil also plays a part in determining the

resonant frequency of the circuit If the coil has

a different number of turns, a different setting

of the capacitor would be needed to get the

same frequency.

C. Elementan- Properties of

Micro\\a\'es

With a microwave generator, you can in\-esti-

gate some of the characteristics of short wa\«s

in the radio part of the electromagnetic

spectnim In Kxperiment 3-17 "Measuring

Wavelength" and E.xperiment 3-18 "Sound,"ntju

explored the behavior of sex-eral different kinds

of waves These eariier experiments contained

a number of ideas that will help \-ou conclude

that the energ\' emitted by \-our microwave

generator is in the form of wa\t»s

Refer to your notes on these e.xj>eriments

Then, using the arrangements suggested there

or ideas of \our own explore the transmission

of microwaws thnnigh various materials as

well as micniwavv reflection and n^fraction Try

to detect their diffraction aniunil obstacles and
through narrow openings in some material that

is opaque to them. Finally, if \x)u ha\« two
transmitters available or a metal horn attach-

ment with tw<) o|>«Miings see if vou can

measure the wavvlength usirtg the interference

method of K\|>«'riment 3-18 Discuss N-our

results with students doii\g the following
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'k^iu-m.

experiment (D) on the interference of reflected

microwaves.

D. Interference of Reflected

Microuaves

With microwaves it is easy to demonstrate

interference between direct radiation ftxjm a

source and radiation reflected from a flat

surface, such as a metal sheet. At points where

the direct and reflected waves arrive in phase,

there wiU be maxima; at points where they

arrive one-half cycle out of phase, there will be

minima. The maxima and minima are readily

found by moving the detector along a line

perpendicular to the reflector. (Fig. 4-41)

reflector

\\

/----^
tdetcctor
i a long "i

Fig. 4-41

again, you can sketch out lines of nnaxima and
nninima.

8. How is the interference pattern similar to

what you have observed for two-source radia-

tion?

7. Can you state a rule with which you could

predict the positions of nnaxima and minima?
By moving the detector back and scanning

Standing microwaves will be set up if the

reflector is placed exactly perpendicular to the

source (Fig. 4-42). (As with other standing

Rg. 4-42
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waves, the nodes are one-half wavelength

apart.) Locate several nodes by moving the

detector along a line between the source and
reflector, and from the node separation calcu-

late the wavelength of microwaves.

9. What is the wavelength of your microwaves?
10. Microwaves, like light, propagate at 3 ^ 10*

m/sec. What is the frequency of your microwaves?
Check your answer against the chart of the

electromagnetic spectrum given on page 511 of

Text Chapter 16.

The interference between direct and re-

flected radio waves has important practical

consequences. There are layers of partly

ionized (and therefore electrically conducting)

air, collectively called the ionosphere, that

surround the earth roughly 30 km - 300 km
above its surface. One of the layers at about 300

km is a good reflector for radio waves; it is used

to bounce radio messages to points that,

because of the curvature of the earth, are too far

away to be reached in a straight line.

If the transmitting tower is 100 m high, then,

as shown roughly in Fig. 4-43, point A, the

farthest point that the signal can reach directly

in flat country, is 35 km away. But by reflection

from the ionosphere, a signal can reach points

not in the line of sight like B and beyond.

Fig. 4-43

'^N^

Sometimes both a direct and a reflected

signal will arrive at the same place and
interference occurs; if the two signals are out of

phase and have identical amfilitudes, the

receiver will pick up nothing. Such destructive

interference is responsible for radio fading. It is

complicated by the fart that the height of the

ionosphere and the intensity of reflection from

it vary with tin* amoutit of sunlight and with

time.

The setup in Fig 4-44 is a model of this

situation. Move the reflector (the "ionosphen>"l

back and forth. What happens to the signal

StHMlgtll?

"»!«*» r

'-V' /W
\

Fig. 4-44

There can also be multiple reflections; the

radiation can bounce back and forth between
earth and ionosphere sex'eral times on its way
from, say, New York to Calcutta, India. Perhaps

you can simulate this situation, too, with your
microwave equipment.

E. Signals and \Iicrou-a\'es

Thus far, you have been learning about the

behavior of microwaves of a single frequency'

and constant amplitude. A signal can be added
to these waves by changing their amplitude at

the transmitter. The most ob\ious way to

change the amplitude of the w^ves vwould be

just to turn them on and off as represented in

Fig. 4-45. Coded messages idots and dashes)

can be transmitted in this primiti\-e fashion But

the wave amplitude can be varied in a more
elaborate way to earn,' music or voice signals.

For example, a 1,000-Hz sine wax'e fed into part

of the microwave transmitter will cause the

amplitude of the microwaN-e to var>' smoothly at

1,000 Hz.

i'l

—
''

'

—

i^r

Rg 4-45

Controlling the amplitude of the transmitted

wav-e like this is called amplitude modulation, in

Fig. 4-46, .A represents the unmodulated mi-

cnnvave. B rrpn»sents a nuxlulating signal and
C repre.sents the modulated mirrowaw The
Hamon micnnvaw oscillator has an input for a

inodulatiiTg signal. You can modulate the

microvN-aNT output with a variet>- of signals, for

example, with an audio frequency' oscillator or

with a microphone and amplifier.
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The microwave detector probe is a one-way
device; it passes current in only one direction.

If the microwave reaching the probe is repre-

sented in C, then the electric signed finom the

probe wiU be as shown in D.

You can see this signal on the oscilloscope by
connecting the oscilloscope to the microwave
probe (through an amplifier if necessary).

The detected modulated signal from the

probe can be turned into sound by connecting
an amplifier and loudspeaker to the probe. The
speaker will not be able to respond to the 10^

individual pulses per second of the "carrier"

wave, but only to their averaged effect, repre-

sented by the broken line in E. Consequently,

the sound output of the speaker wall corre-

spond veiy nearly to the modulating signal.

la

Rg. 4-46

11. Why must the carrier frequency be much
greater than the signal frequency?
12. Why is a higher frequency needed to transmit
television signals than radio signals? (The highest
frequency necessary to convey radio sound in-

formation is about 12,000 Hz. The electron beam
in a television tube completes one picture of 525
lines in 0.03 sec, and the intensity of the beam
should be able to vary several hundred times
during a single line scan.)
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ACTIVITIES
THIN FILM IIVTERFERENCE

Press two clean microscope slides together.

Look at the light they reflect from a source (like

a mercury lamp or sodium flame) that emits

light at only a few definite wavelengths. What

you see is the result of interference between

light waves reflected at the two inside surfaces

that are almost, but not quite, touching. (The

thin film is the layer of air between the slides.)

The phenomenon can also be used to

determine the flatness of surfaces. If the two

inside surfaces are planes, the interference

fringes are parallel bands. Bumps or depres-

sions as small as a fraction of a wavelength of

light can be detected as wiggles in the fringes.

This method is used to measure very small

distances in terms of the known wavelength of

light of a particular color. If two very flat slides

are placed at a slight angle to each other, an

interference band appears for every wavelength

of separation. (See Fig. 4-47.)

How could this phenomenon be used to

measure the thickness of a very fine hair or very

thin plastic?

^/> in+crftrsnce bo.iad«

photos in Figs. 4-49 and 4-50 were produced
with the setup diagrammed in Fig. 4-4S.

Fig. 4-47

HANDKERCHIEF DIFFRACTFION
GRATING
Stretch a linen or cotton handkerchief of good

quality and look through it at a distant light

source, such as a street light about one block

away. You will see an interesting difTrartion

pattern. (A window screen or cloth umbrella

will also work.)

PHOTOGRAPHING IMFFRACTFION
PATTERNS
Diffraction patterns like those pictured here

can be produced in your lab or at home Tlie

object

It'

Rg. 4-48

To photograph the patterns, you must have a

darkroom or a large, light-tight box. Figure 4-49

was taken using a Polaroid 4x5 back on a

Graphic press camera. The lens was remm-ed,

and a single sheet of 3,000-ASA-speed Polaroid

film was exposed for 10 sec; a piece of

cardboard in front of the camera was used as a

shutter.

Fig 4-49

Fig 4-50
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As a light source, use a 1.5-volt flashlight bulb

and AA cell. Turn the bulb so the end of the

filament acts as a point source. A red (or blue)

filter makes the fringes sharper. You can see the

fringes by examining the shadow on the screen

with the 10 X magnifier. Razor blades, needles,

or wire screens make good objects.

POISSON'S SPOT
A bright spot can be observed in a photograph

of the center of some shadows, like that shown

in Fig. 4-51. To see this, set up a light source,

obstacle, and screen as shown in Fig. 4-52.

Satisfactory results require complete darkness.

Tiy a 2-sec exposure with Polaroid 3,000-ASA

fUm.

Fig. 4-51

)ight source

SmOireB"cemented
foglQSs slide

Fig. 4-52

PHOTOGRAPHIC ACTTIVITIES

The number of photography activities is limit-

less, so we shall not try to describe many in

detail. Rather, this is a collection of suggestions

to give you a "jumping-ofT' point for classroom

displays, demonstrations, and creative work.

History ctf Photography
Life magazine, December 23, 1966, had an

excellent special issue on photography. How
the world's first trichromatic color photograph

was made by James Clerk Maxwell in 1861 is

described in the Science Study Series pa-

perback, Latent Image, by Beaumont Newhall.

Much of the early history of photography in the

United States is discussed in Mathew Brady, by

James D. Horan (Crown Publishers).

Schlieren Photography
For a description and instructions for

equipment, see Scientific American, February,

1964, pp. 132-133.

Infrared Photography
Try to make some photos like the one shown

on page 513 of Unit 4 in the Text. Kodak infrared

film is no more expensive than normal black

and white film, and can be developed with nor-

mal developers. Ifyou have a 4 x 5 camera uath

a Polaroid back, you can use 4x5 Polaroid

infrared film sheets. You may find the Kodak
Data Book M-3, "Infrared and Ultraviolet Pho-

tography," very helpful.

COLOR
You can easily carry out many intriguing

experiments and activities related to the physi-

cal, physiological, and psychological aspects of

color. Some of these are suggested here.

Scattered Light

Add about one-quarter teaspoon of milk to a

drinking glass full of water. Set a flashlight

about 60 cm away so that it shines into the

glass. When you look through the milky water

toward the light, it has a pale orange color. As

you move around the glass, the milky water

appears to change color. Describe the change

and explain what causes it.

The Rainbow Effect

The way in which rainbows are produced

can be demonstrated by using a glass of water

as a large cylindrical raindrop. Place the glass

on a piece of white paper in the early morning

or late afternoon sunlight. To make the rainbow

more visible, place two books upright, leaving a

space a little wider than the glass between

them, so that the sun shines on the glass but

the white paper is shaded (Fig. 4-53). The rain-

bow will be seen on the backs of the books.

What is the relationship between the arrange-
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-^ii^-—

Fig. 4-53

ment of colors of the rainbow and the side of

the glass that the light entered? This and other

interesting optical effects are described in

Science from Your Airplane Window, by Eliza-

beth A. Wood (Dover, 1975, paperback).

Color Vision by Contr€ist

(Land Effect)

Hook up two small lamps as shown in Fig.

4-54. Place an obstacle in front of the screen so

that adjacent shadows are formed on the

screen. Do the shadows have any tinge of color?

Now cover one bulb with a red filter and notice

that the other shadow appears green by

contrast. Try this wath different colored filters

and vary the light intensity by moving the

lamps to various distances.

SOU/CtS
obstacle

F]g. 4-54

POLARIZED LIGHT

The use of polarized light in basic research is

spreading rapidly in many fields of science. The
laser, the most intense laboratory source of

polarized light, was invented by researchers in

electronics and microwaves. Botanists have

discovered that the direction of growlh of

certain plants can be determined by controlling

the polarization form of illumination, iuid

zoologists have found that bees, ants, and
various other creatures routinely use the

polarization of sky light as a navigational

"compass." High-enei^ physicists hax-e found

that the most modem particle accelerator, the

synchrotron, is a superb source of polarized X

rays. Astronomers find that the polarization of

radio waves fixim planets and from stars offers

important clues to the dvnamics of those

bodies. Chemists and mechanical engineers are

finding new uses for polarized light as an

analytical tool. Theoreticians hav-e discov-ered

shortcut methods of dealing with polarized

light algebraically. From all sides, the onrush of

new ideas is imparting new vigor to this

classical subject.

A discussion of many of these asp)ects of the

nature and application of polarized light,

including activities such as those discussed

below, can be found in Polarized Light, by W. A.

Shurcliff and S.S. Ballard l\'an Nostrand

Momentum Book #7, 1964).

Detection

Polarized light can be detected directly by

the unaided human e\e provided you know
what to look for. To develop this ability', begin

by staring through a sheet of Polaroid film at

the sky for about 10 sec. Then quickly turn the

polarizer 90° and look for a pale wllow
brush-shaped pattern similar to Fig 4-55.

Land Two-Color Demonstrations
A different and interesting activity is to

demonstrate that a full-color picture can be

created by simultaneously projecting two
black-and-white transparencies taken thn)ugh

a red and a gnuMi filter For more infomiation

see Scientific American. May 1959; September
1959; and January 1960.

The eye itself responds to color in a wav that

is neither obvious nor rt)inpletely undenitood,

even today. It does not work like a camera in

this respect For a discussion oi a ctintem-

poriiiy tiu'oty, see Scientific American , Uwem-
ber, 1977. p. 108.

^-iv!^:

Rg. 4-5S
1 P(MC«( ^

The color will fade in a few seconds, but

another pattern v\ill ap[)ear when the Polaroid

is .igaiti rotated 90". A light-blue filter l>ehind

the Polan»i(i may help.



ACTIVITIES 203

B.C. By John Htrt

see CCLCf267HE SAM^. .

y .1^

..U<E,..6PeENJ
TbYbU MlCrtr LCOK

ThIOUGM I CALL W
GReeM too!

By peraisslon of John Hare and Field Encerprlses Inc.

How is the axis of the brush related to the

direction of polarization of light transmitted by

the Polaroid? iTo determine the polarization

direction of the filter, look at light reflected

from a horizontal nonmetallic surface, such as

a tabletop. Turn the Polaroid until the reflected

light is brightest. Put tape on one edge of the

Polaroid parallel to the floor to show the

direction of polarization.) Does the axis of the

yellow pattern always make the same angle

with the axis of polarization?

Some people see the brush most clearly

when viewed with circularly polarized light. To
make a circular polarizer, place a piece of

Polaroid in contact with a piece of cellophane

with its axis of polarization at a 45° angle to the

fine stretch lines of the cellophane.

Picket-Fence Analogy
At some time, you may have hecird the

polarization of light explained in terms of a

rope tied to a fixed object at one end, and being

shaken at the other end. In between, the rope

passes through two picket fences (as in Fig.

4-56), or through two slotted pieces of

cardboard. This analogy' suggests that when the

slots are parallel the waves pass through, but

when the slots are perpendicular the waves are

stopped. (You may want to use a rope and

slotted boards to see if this really happens.)

completely. Then place a third filter between

the first two, and rotate it about the axis of all

three. What happens? Does the picket-fence

cinalogy still hold?

A similar experiment can be done with

microwaves using parallel strips of tinfoil on

cardboard instead of Polaroid filters. The elec-

tric field in the microwaves is "shorted out,"

however, when the pickets are parallel to the

field. This is just the opposite of the rope-and-

fence analogy. Prove this for yourself.

MAKE AN ICE LEXS

Dr. Clawbonny, in Jules Verne's The Adventures

of Captain Hatteras, was able to light a fire in

—48° weather (thereby sa\ing stranded travel-

ers) by shaping a piece of ice into a lens and

focusing it on some tinder. If ice is clear, the

sun's rays pass through with little scattering.

You can make an ice lens by freezing water in a

round-bottomed bowl. Use boiled, distilled

water, if possible, to minimize problems due

to gcis bubbles in the ice. Measure the focal

length of the lens and relate this length to the

radius of the bowl. (Adapted from Physics for

Entertainment, Y. Perelman, Foreign Languages

Publishing House, Moscow, 1936.1

Fig. 4-56

Place two Polaroid filters parallel to each

other and turn one so that it blacks out the light

DETECTING ELECTRIC FIELDS

Many methods can be used to explore the

shape of electric fields. Two very simple ones

are described here.

Gilbert's Versorium

A sensitive electric "compass " is easily con-

structed from a toothpick, a needle, and a cork.

An external electric field induces surface

charges on the toothpick. The forces on these
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induced charges cause the toothpick to line up
along the direction of the field.

To construct the versorium, first bend a flat

toothpick into a slight arc. When it is mounted
horizontally, the downward curve at the ends

will give the toothpick stability by lowering its

center of gravity below the pivot point of the

toothpick. With a small nail, drill a hole at the

balance point almost all the way through the

pick. Balance the pick horizontally on the

needle, being sure it is free to swing like a

compass needle. Try bringing chained objects

near it.

For details of Gilbert's and other experi-

ments, see Holton and Roller, Foundations of
Modern Physical Science, Chapter 26.

Charged Ball

A charged pithball (or conductor-coated
Styrofoam ball) suspended from a stick on a

thin insulating thread can be used as a rough

indicator of fields around charged spheres,

plates, and wires.

Use a point source of light to project a

shadow of the thread and ball. The angle

between the thread and the vertical gives a

rough measure of the forces. Use the charged

pithball to explore the nearly uniform field necir

a large, chai-ged plate suspended by tape strips,

and the l/r drop-off of the field near a long

charged wire.

Plastic strips rubbed with cloth are adequate

for charging well-insulated spheres, plates, or

wires. (To prevent leakage of the chaise from

the pointed ends of a charged wire, fit the ends

with small metal spheres. Even a smooth small

blob of solder at the ends should help.)

AN 11^ BATTERY
Using a penny (95% copper) and a silver dime
(90% silver) you can make an l\C battery. Cut a

2.5-cm square of filter paper or paper towel, dip

it in salt solution, and place it between the

penny and the dime. Connect the penny and
the dime to the terminals of a galvanometer

with two lengths of copper wire Does your
meter indicate a current.' Will the batterv also

produce a current with the penny and dime in

direct dry contact?

voltaic: pile

CaH 20 or more disks each of two difTerent

metals. Copper and zinc make a good combina-

tion. (The round metal "slugs " from electrical

outlet-box installations can be used for zinc

disks because of their heavy zinc coating.

i

Pennies and nickels or dimes will work, but not

as well. Cut pieces of filter paper or paf>er towel

to fit in between each pair of two metals in

contact. Make a pile of the metal disks and the

salt-water soaked paper, as V'olta did. Keep the

pile in order for example, copf>er-pap>er-zinc,

copper-paper-zinc, etc. Connect copper wires

to the top and bottom ends of the pile. Touch
the fi^e ends of the wires with two fingers of

one hand. What is the effect? Can you incr^ease

the effect by moistening your fingei^? In w+iat

other ways can you increase the effect? How
many disks do you need in order to light a

flashlight bulb?

If you have metal fillings in your teeth, try

biting a piece of aluminum foil. Can you explain

the sensation?

MEASllUNG MAGNETIC FIELD
INTENSITY

Many important devices used in phv'sics exp>er-

iments make use of a uniform magnetic field of

known intensity. Cyclotir>ns, bubble chambers,

and mass spectrometers are examples. Use the

current balance described in Experiments 4-4

and 4-6. Measure the magnetic field intensit>' in

the space between the pole faces of two

ceramic disk magnets placed close together

Then when you are learning about radioacti\it>'

you can observe the deflection of beta particles

as they pass through this space, and determine

the average enei^' of the particles

Bend two strips of thin sheet aluminum or

copper (not ironi. and tape them to twx) disk

magnets as shown in Fig. 4-57.

N^Q^r*»i

l.75on

Fig 4-57

Loop on

Curre/>t



ACTIVITIES 205

Be sure that the pole faces of the magnets tire

parcdlel and are attracting each other (unlike

poles facing each other). Suspend the movable

loop of the current balance midway between

the pole faces. Determine the force needed to

restore the balance to its initial position when a

measured current is passed through the loop.

You learned in Experiment 4-5 that there is a

simple relationship between the magnetic field

intensity', the length of the part of the loop that

is in the field, and the current in the loop. It is

F = BII, where F is the force of the loop (in

newtons), B is the magnetic field intensity (in

newtons per ampere-meter), / is the current

(in amperes), and / is the length (in meters) of

that part of the current-carryang loop that is

actually in the field. With your current balance,

you can measure F, /, and /, and thus compute
B

For this activity, make two simplifying as-

sumptions that are not strictly true but which
enable you to obtain reasonably good values for

B: (a) the field is fairly uniform throughout the

space between the poles, and (b) the field drops

to zeix) outside this space. Ulth these ap-

proximations you can use the diameter of the

magnets as the quantity / in the above expres-

sion.

Try the same experiment with two disk

magnets above and two below the loop. How
does B change? Bend metal strips of different

shapes so you can vary the distance between

pole faces. How does this affect B?

An older unit of magnetic field intensity still

often used is the gauss iGi. To convert from

one unit to the other, use the conversion fac-

tor, 1 N/A (1 tesla, T) = 10^ G.

D— H S-!)

^ A r ';)C^

/'V

<^

Rg.4-58

to eight levers and are securely hinged to wheel

E at the point marked F. Each magnet is also

provided with a roller wheel, G, to prevent

friction as it rolls on the guide marked C.

Guide C is supposed to push each magnet
toward the hub of this mechanism as it is being

carried upward on the left-hand side of the

mechanism. As each mcignet rolls over the top,

the fixed magnets facing it cause the magnet on
the wheel to fall over. This creates an overbal-

ance of weight on the right of wheel E and thus

perpetually rotates the wheel in a clockwise

direction.

In Fig. 4-59, A represents a w+ieel in uliich

eight hollow tubes marked E tire placed. In

each of the tubes a magnet, B, is inserted so

MORE PERPETUAL MOTION
MACHINES
The diagrams in Figs. 4-58 amd 4-59 show two

more of the perpetual motion machines dis-

cussed by R. Raymond Smedile in his book.

Perpetual Motion and Modem Research for
Cheap Power. (See also page 150 of Unit 3,

Handbook .) What is the weakness of the cirgu-

ment for each of them? (Also see "Perpetual

Motion Machines," Stanley W. Angrist, Scientific

American, January, 1968.)

In Fig. 4-58, A represents a stationary wheel

around which is a larger, movable wheel, E.

Three magnets mariced B are placed on station-

ary wheel A in the position shown in the

drawing. On rotary w+ieel E are placed eight

magnets marked D. The magnets are attached Fig. 4-59
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that it will slide back and forth. D represents a

stationaiy rack in which five magnets are

anchored as shown in the drawing. ELach

magnet is placed so that it will repel the

magnets in wheel A as it rotates in a clockwise

direction. Since the magnets in stationary rack

D will repel those in rotaiy wheel A, this will

cause a perpetual overbalance of magnet
weight on the right side of w+ieel A.

cube with all the N sides facing outward. The
pieces rep>el each other strongly and may be

either glued (with rubber cement) or tied

together with thread.

Do you now have an isolated north jxile, that

is, a north pole all over the outside land south

pole on the inside)?

Is there a magnetic field directed outward

from all surfaces of the cube?

TRANSISTOR AMPLIFIER

The function of a PNP or NPN transistor is very

similar to that of a triode vacuum tube

(although its operation is not so easily de-

scribed). The diagram in Fig. 4-60 show^ a

schematic transistor circuit that is analogous to

the vacuum tube circuit showoi in Experiment

4-8. In both cases, a small input signal controls

a large output current.

input

Sianal

Some inexpensive transistors can be bought

at almost any radio supply store, and almost

any PNP or NPN will do. Such stores also

usually carry a variety of paperback books that

give simplified explanations of how transistors

work and how you can use cheap components

to build some simple electronic equipment.

AN ISOLATED NORTH
MAGNETIC POLE?

Magnets made of a rather soft rubber-like

substance are available in some hardware

stores. Typical magnets an? flat pieces 20 mm x

25 nun and about 5 iniu thick, \%ith a magnetic

north pole on one 20 x 25 mm surface and a

south pole on the other They may be cut with a

shaq) knife.

Cut six of these magnets so that you haw six

square pieces, 20 mm on an edge Then lew!

the edges on the S side of each piece so that the

pieces can be fitted together to form a hollow

FARADAY DISK DYNAMO
You can easily build a disk dynamo similar to

the one shown in Fig. 4-61. Cut a 20-cm
diameter disk of sheet copp>er Drill a hole in

the center of the disk and put a bolt through

the hole. Run a nut tight up against the disk so

the disk will not slip on the bolt. Insert the bolt

in a hand drill and clamp the drill in a ring

stand so that the disk passes through the

region between the poles of a large magnet.

Connect one wire of a 100-microamp l/iA) dc

meter to the metal part of the drill that does not

turn. Tap>e the other wire to the magnet so it

brushes lightly against the copper disk as the

disk is spun between the magnet p>oles.

Fig. 4-61

Frantic cranking can create a IO-/1A current

with the magnetron magnet shown in Fig 4-61

If vou use one of the metal vokes from the

cum*nt iKilant^. with three ceramic magnets

on each side of the yoke, \ou may Ix* able to get

the needle to move from the zero position just

noticeably
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The braking effect of currents induced in the

disk can also be noticed. Remove the meter,

wires, and magnet. Have one person crank

while another holds the magnet so that the disk

is spinning between the magnet poles. Com-
pare the efifort needed to turn the disk vvath and

without the magnet over the disk.

If the disk will coast, compare the coasting

times with and without the magnet in place. (If

there is too much friction in the hand drill for

the disk to coast, loosen the nut and spin the

disk by hand on the bolt.)

GENERATORJUMP ROPE
With a piece of wire about twice the length of a

room, and a sensitive galvanometer, you can

generate an electric current using only the

earth's magnetic field. Connect the ends of the

wire to the meter. Pull the wire out into a long

loop and twirl half the loop like a jump rope. As

the wire cuts across the earth's meignetic field,

a voltage is generated. If you do not have a

sensitive meter, connect the input of one of the

amplifiers, and connect the amplifier to a less

sensitive meter.

T

rxiU

How does the current generated when the

axis of rotation is along a north- south line

compeire with the current generated with the

same motion along an east- west line? What
does this tell you about the ecirth's magnetic

field? Is there any effect if the people stand on
two landings and hang the wire (while swing-

ing it) down a stairwell?

SIMPLE METERS AND MOTORS
You can make workable current meters and
motors from very simple parts:

2 ceramic magnets

1 steel yoke

1 #7 cork

1 metal rod, about 2 mm in diameter

and 12 cm long (a piece of bicycle

(from current

bcilance kit)

(for meter

only)

spoke, coat-hanger wire, or a large

finishing nail will do)

1 block of wood, about 10 cm x 5 cm x 1 cm
about 2.7 m of insulated #30 copper magnet
wire

2 thumbtacks

2 safety pins

2 carpet tacks or small nails

1 white card (10 cm x 12.5 cm)
stiff black paper, for pointer

electrical insulating tape (for motor only)

Meter

To build a meter, follow the steps below paying

close attention to the diagremis. Push the rod

through the cork. Mcike the rotating coil, or

armature, by winding about 20 turns of wire

around the cork, keeping the turns parallel to

the rod. Leave about 30 cm of wire at both ends
(Fig. 4-62).

\-

Fig. 4-62

Use nails or ccirpet tacks to fix two safety pins

firmly to the ends of the wooden-base block

(Fig. 4-63).

Fig. 4-63

Make a pointer out of the black paper and

push it onto the metal rod. Pin a piece of the

white card to one end of the base. Then
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suspend the armature between the two safety

pins from the free ends of wire into two loose

coils, and attach them to the base with

thumbtacks. Put the two ceramic magnets on

the yoke (unlike poles facing), and place the

yoke around the armature (Fig. 4-64). Clean the

insulation off the ends of the leads, and you are

ready to connect your meter to a low-voltage dc

source.

-gAlS to

voltage o:\irci.

Fig. 4-64

Calibrate a scale in volts on the white card

using a variety of known voltages from dry cells

or from a low-voltage power supply, and your

meter is complete. Minimize the parallcix

problem by having your pointer as close to the

scale as possible.

Motor

To make a motor, wind an armature as you did

for the meter. Leave about 6 cm of wire at each

end; carefully scrape the insulation from the

wire. Bend each into a loop and then twist into

a tight pigtail. Tape the two pigtails along

opposite sides of the metal rod (Fig. 4-65).

Fig. 4-66

Fix the two safety pins to the base as for the

meter, and mount the coil between the safety

pins.

The leads into the motor iire made fhsm two
pieces of wire attached to the baseboard with

thumbtacks at points X (Fig. 4-66).

=<=-H=---

I

—

No Coiitact

Fig. 4-66

Place the magnet yoke around the coil. The
coil should spin freely (Fig. 4-67).

FJg. 4-67

Connect a l.S-x-olt batter>' to the leads Start

the motor by spinning it with N-our finger If it

does not start, check the contacts between
leads and the contact wires on the rod. You
may not have remo\'ed all the enamel from the

wires Tr>' pressing lightly at points A iFig. 4-66)

to miprow the contact .-Vlso check to see that

the two contacts touch the armature wires at

the same time (Fig. 4-67).

SI.MPI.r MOTOR- GENERATOR
DEMONSTRATION
With two fairiy .stn)ng I'-magents and two coils,

which vou wind \'ourself, vou can prepare a

simple demonstration showing the principles
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of a motor and a generator. Wind two flat coils

of magnet wire 100 turns each. The cardboard

tube from a roll of paper towels makes a good

form. Leave about 0.5 m of wire free at each end

of the coil. Tape the coil so it does not wind

when you remove it from the cardboard tube.

Hang the coils frtjm two supports as shown
(Fig. 4-68) so the coils pass over the poles of two

U-magnets set on the table about 1 m apart.

Connect the coils. Pull one coil to one side and

release it. What happens to the other coil?

Why? Does the same thing happen if the coils

are not connected to each other? What if the

magnets are reversed?

Connectors

Fig. 4-68

Try vcirious other changes, such as turning

one of the magnets over while both coils £ire

swinging, or starting with both coils at rest and

then sliding one of the magnets back and forth.

If you have a sensitive galvanometer, it is

interesting to connect it between the two coils.

PHYSICS CXILLAGE

I33SZES]

1 "> SITIVE
^ Research

• Strike

IL

>iOoa
M33M S S

Many of the words used in physics class enjoy

wide usage in everyday language. Cut "physics

words" out of magazines, newspapers, etc., and
make your ov\ti collage. You may wish to take

on a more challenging art problem by trying to

give a visual representation of a physical

concept, such as speed, light, or waves.

BICYCLE
GENERATOR

The generator on a bicycle (Fig. 4-69) operates

on the same basic principle as that described in

the Text, but with a different, and extremely

simple, design. Take apart such a generator and

see if you can explain how it works. Note: You

may not be able to reassemble it.

Fig. 4-69

LAPIS POLARIS,
MAGNES
The etching in Fig. 4-70 shows a philosopher in

his study surrounded by the scientific equip-

ment of his time. In the left foreground, in a

basin of water, a natural magnet or lodestone

floating on a piece of wood orients itself north

£ind south. Traders from the great Mediterra-

nean port of Amalfi probably introduced the

floating compass, having learned of it from Arab

mariners. An Amalfi historian, Flavius Blondus,

writing about A.D. 1450, indicates the uncertJiin

origin of the compass, but later historians in

repeating this early reference warped it and

gave credit for the discoveiy of the compass to

Flavius.



210 UNIT 4 / LIGHT AND ELECTROMAGNETISM

LAPIS POLARIS, M \ N K

Lapis mlujU ifle Flauio abdttum ^oU Juum huru arutrm

Fig. 4-70

Can you identify the various devices lying

around the study? When do you think the

etching was made? (If you have some back-

ground in art, you might consider whether
your estimate on the basis of scientific clues is

consistent with the style of the etching.)

MICROWAVE TRANSMISSION
SYSTEMS
Microwaves of about 6-cm wavelength are used

to transmit telephone conversations over long

distances. Because microwave radiation has a

limited range, a series of relay stations has been

erected about 50 km apart. At each station the

signal is detected anti amplified before being

retransmitted to the ne.xt one. If you have

several microwave generators that can be

amplitude modulated, see if you can put

together a demonstration of how this system

works. You will need an audio frequency

oscillator (or microphone), amplifier, mic-

rowave generator and povve'r supply, detector

another amplifier and a loudspeaker; another

microwaw generator, and another detector, a

third amplifier, and a loudspeaker

GOOD READING
Several good paperbacks in the Science Study

Series (Anchor Books. Doubleday and Col are

appropriate for Unit 4, including The Physics of
Tele\ision, by Donald G. Fink and David M.

Lulyens; Waves and Messages, by John R.

Pierce; Quantum Electronics, by John R Pierce;

Electrons and \\'a\-es, by John R Pierce: Com-
puters and the Human Mind, by Donald G Fink.

Throughout this course, you should make a

point of checking ynur library' for books or

articles on topics that interest \x)u
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FILM LOOP NOTES
Film Loop 44
STANDING ELECTROMAGNETIC
WAVES
Standing waves are not confined to mechanical

waves in strings or in gas. It is only necessary to

reflect the wave at the proper distance from a

source so that two oppositely moving waves
superpose in just the right way. In this film,

standing electromagnetic waves are generated

by a radio transmitter.

The transmitter produces electromagnetic

radiation at a frequency of 435 x lo^ Hz. Since

all electromcignetic waves travel at the speed of

light, the wavelength is A. = cff = 0.69 m. The
output of the transmitter oscUlator (Fig. 4-71)

passes through a power-indicating meter, then

to an antenna of two rods each one-quarter

wavelength (Vi \), or a total antenna of Vi k,

long.
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Experiment 5-1

ELECTROLYwSIS

Volta and Davy discovered that electric cur-

rents create chemical changes never observed

before. As you have already learned, these

scientists were the first to use electricity to

break down apparently stable compounds and
to isolate certain chemical elements.

Later, Faraday and other experimenters
compared the amount of electric charge used
with the amount of chemical products formed
in such electrochemical reactions Their mea-
surements fell into a regular pattern that hinted

at some underlying link between electricity and
matter.

In this experiment, you will use an electric

current just as Volta and Daw did to decom-
pose a compound By comparing the charge

used with the mass of one of the pn)ducts. you
can compute the mass and volume of a single

atom of the product.

Tlioon Behind the Lxperiiiieiit

A l)raker of copper sulfate (CuSO^I solution in

wat«'r is suppoHed under one arm of a lialancr

(Fig. 5-1). A negatively charged copper electrode

is supported in the solution by the balance arm
so that you can measure its mass without

removing it from the solution .\ second
positively charged copper electrode fits around
the inside wall of the beaker. The beaker, its

solution, and the positi\e electrode are not

supported by the balance arm.

If you have studied chemistiy. \x>u pmb>ably

know that in solution copper sulfate breaks

down into separate, char>;ed particles, called

ions, of copper (Cu**) and sulfate (SO«"l, which
move about freely in the solution.

Utien a voltage is applied across the copper
electrodes, the electric field causes the SC)4"

ions to drift to the positiw electrode lor ancxlel

and the Cu'* ions to drift to the negative

electrode (or cathode). At the cathode, the Cu* *

particles acquire enough negative charge to

form neutral copper atoms that dejxisit on the

cathode and add to its weight Hie motion of

charged particles lowartl the electnxles is a

continuation of the electric current in the wires

and the rate of transfer of charge (coulombs per

second) is equal to it in magnitude. The electric

current is pm\ided bv a power suppK that
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power supply

Fig. 5-1

converts a lOO-V alternating current into a

low-voltage direct current. The current is set by
a variable control on the power supply (or by an

external rheostat) and measured by an amme-
ter in series with the electrolytic cell as shovvTi

in Fig. 5-1.

With a watch to measure the time the current

flows, you can compute the electric charge that

passed through the cell. By definition, the

current / is the rate of transfer of charge,

/ = AQ/Ar. It follows that the charge trans-

ferred is the product of the current and the

time.

AQ = / X At

(coulombs = coulombs X sec)

Since the amount of charge carried by a

single electron is known (qe = 1-6 x lO"'^ C),

the number of electrons transferred, N^, is

If n electrons are needed to neutralize each

copper ion, then the number of copper atoms

deposited, Ncu> is

n

If the mass of each copper atom is mcu, then

the total mass of copper deposited, Mq^, is

Mcu =A/c-u"icu

Thus, if you measure /, Af, and Mqu and you

know Qe and n, you can calculate a veilue for

mcu/ the mass of a single copper atom!

Combining the above equations algebraically

gives

/ Af

Setup and Procedure

Either an equal-arm or a triple-beam balemce

C£m be used for this experiment. First arrange

the cell cind the balance as shown in Fig. 5-1.

The cathode cylinder must be supported far

enough above the bottom of the beaker so that

the balance arm can move up and down freely

when the cell is full of the copper sulfate

solution.

Next connect the circuit as illustrated in the

figure. Note that the electrical connection fipom

the negative terminal of the power supply to

the cathode is made through the balance beam.

The knife-edge and its seat must he bypassed

by a short piece of thin flexible wire, as shown
in Fig. 5-1 for equal-arm balances, or in Fig. 5-2

for triple-beam balances. The positive terminal

of the power supply is connected directly to

the anode in any convenient manner.

Before any measurements are made, operate

the cell long enough (10-15 min) to form a

preliminary deposit on the cathode unless this

has already been done. In any case, run the

current long enough to set it at the value

recommended by your instructor, probably

about 5 A.

When all is ready, adjust the balance and

record its reading. Pass the current for the

length of time recommended by your instruc-
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copper ions, Cu**. At the cathode the copper

ions are neutralized by electrons and neutral

copper atoms are deposited: Cu** + 2e" = Cu.

2. How many electrons were required to neu-

tralize the total charge transferred? (Each electron

carries - 1.6 ^ 10 '» C.)

3. How many electrons (single negative charges)

were required to neutralize each copper ion?

4. How many copper atoms were deposited?

5. What is the mass of each copper atom?

6. The mass of a penny is about 3 g. If it were

made of copper only, how many atoms would a

penny contain? (In fact, modem pennies contain

zinc as well as copper.)

7. The volume of a penny is about 0.3 cm'. How
much volume does each atom occupy?

Fig. 5-2 This cutaway view shows how to bypass the

knife-edge of a typical balance. The structure of other

balances may differ.

tor. Measure and record the current / and the

time interval Ar during which the current

passes. Check the ammeter occasionally and, if

necessary, adjust the control in order to keep

the current set at its original value.

At the end of the run, record the new reading

of the balance and find, by subtraction, the

increase in mass of the cathode.

Calculating Mass and
Volume of an Atom
Since the cathode is buoyed by a liquid, the

masses you have measured are not the true

masses. Because of the buoyant force exerted

by the liquid, the mass of the cathode and its

increase in mass will both appear to be less

than they would be in air. To find the true mass

increase, you must divide the observed mass

increase by the factor (1 - DjDc). where D, is

the density of the solution and D^ is the density

of the copper.

Your instructor will give you the values of

these two densities ifyou cannot find values for

them yourself, and also explain how the

correction factor is derived. The important

thing for you to understand here is why a

coiTPrtion factor is necos.sarv.

1. How much positive or negative charge was
transferred to the cathode?

In the solution, this positive charge is carried

from anode to cathode b\ doubly charged

Experiment 5-2

THE CHARGE.TO-.\IASS RATIO
FOR AN ELECTRON
In this experiment, you will make mea-

surements on cathode rays. A set of similar

experiments by J.J. Thomson convinced physi-

cists that these rays are not wav-es but streams

of identical, charged particles, each with the

same ratio of charge to mass. If you did the

experiment on the "Electron Beam Tube," you

have already worked with cathode rax-s and

ha\'e seen how they can be deflected by electric

and magnetic fields.

Thomson's use of this deflection is described

on page 543 of L'nit 5, Text. Read that section

of the Text before beginning this experiment.

Theory- of the Experiment

The basic plan of the experiment is lo measure

the bending of the electron beam by a known

magnetic field. From these measurements and

a knowledge of the voltage accelerating the

electrons, you can calculate the electron

charge-to-mass ratio The reasonitig behmd the

calculation is illustrated in Fig. 5-3. The alge-

braic steps are described belo%v

Wlien the beam of electrons (each of mass m
and charge q^i is bent into a circular arc of

radius fl by a uniform magnetic field R. the

centripetal force m\Vfl on each electron i>

supplied by the magnetic force Bq,* Therefon-

or, rearrariging to get v by itself.
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Fig. 5-3 The combination of two relationships, for

centripetal and kinetic energy, with algebraic steps that

eliminate velocity, v, lead to an equation for the

charge-to-mass ratio of an electron.
Fig. 5-4

The electrons in the beam are accelerated by

a voltage V, which gives them a kinetic energy

If you replace v in this equation by the

expression for v in the preceding equation, you

get

or, after simplifying,

Qe - 2V

You can measure with your apparatus all the

quantities on the right-hand side of this

expression, so you can use it to calculate the

charge-to-mass ratio for an electron.

Preparing the Apparatus

You will need a tube that gives a beam at least 5

cm long. If you kept the tube you made in

Elxperiment 4-7, you may be able to use that. If

your class did not have success with that

experiment, you will have to use another

method.

In this experiment, you need to be able to

adjust the strength of the magnetic field until

the magnetic force on the charges just balances

the force due to the electric field. To enable you

to change the magnetic field, you will use a

pair of coils instead of permanent magnets. A
current in a pair of coils, which are separated

by a distance equal to the coil radius, produces

a nearly uniform magnetic field in the central

region between the coils. You can vary the

magnetic field by changing the current in the

coils.

Into a cardboard tube about 7.5 cm in

diameter and 7.5 cm long, cut a slot 3 cm wide

(Fig. 5-4). Your electron beam tube should fit

into this slot as shown in the photograph of the

completed setup (Fig. 5-5). A current in the pair

of coils will create a magnetic field at right

angles to the axis of the cathode rays.

Fig. 5-5 The magnetic field is parallel to the axis of the

coils; the electric and magnetic fields are perpendicular

to each other and to the electron beam.

Now wind the coUs, one on each side of the

slot, using a single length of insulated copper

wire (magnet wire). Wind about 20 turns of wire

for each of the two coils, one coil on each side

of the slot, leaving 25 cm of wire free at both

ends of the coil. Do not cut the wire off the reel

untQ you know how much you will need. Make

the coils as neat as you can and keep them

close to the slot. Wind both coUs in the same

direction (for example, make both clockwise).

When you have made your set of coils, you

must calibrate it; that is, you must find out

what magnetic field strength B corresponds to

what value of current / in the coils. To do this,

you can use the current balance, as you did in

Experiment 4-5. Use the shortest of the balance

"loops" so that it will fit inside the coils as

shown in Fig. 5-6.

^
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t«_J

Fig. 5-6

Connect the two leads from your coils to a

power supply capable of giving up to 5 A of

direct current. There must be a variable control

on the power supply (or a rheostat in the

circuit) to control the current; and an ammeter
to measure it.

Measure the force F for a current / in the

loop. To calculate the magnetic field due to the

current in the coils, use the relationship F - Bll

w+iere / is the length of short section of the

loop. Do this for several different values of

current in the coil and plot a calibration graph

of magnetic field B against coil current /.

Set up your electron beam tube as in

Experiment 4-7. Reread the instructions for

operating the tube.

Connect a shorting ware between the pins for

the deflecting plates. This will insure that the

two plates are at the same electric potential, so

the electric field between them will l>e zero.

Pump the tube out and adjust the filament

current until you have an easily visible beam.

Since there is no field between the plates, the

electron beam should go straight up the center

of the tube between the two plates (If it does

not, it is probably because the filament and the

hole in the anode are not properly aligned.)

Turn down the filament current and sv\ilch

off the power supply. Now, without releasing

the vacuum, mount the coils around the tube

as shown in Fig. 5-6.

Connect the coils as before to the power
supply. Connect a voltmeter across the power
supply tenninals that provide the accelerating

voltage V.

Your apparatus is now complete.

Fert'oniiing the Experiment

Turn on Ihe beam and make surt> it is travelling

in a straight line Ihe electric field remains off

hroughout the experiment, and the deflecting

olates should still be connected.

Turn on and slowly increase the current in

the coils until the magnetic field is strong

enough to deflect the electron beam noticeably.

Record the current / in the coils.

Using the calibration graph, find the mag-

netic field B.

Record the accelerating voltage V between

the filament and the anode plate.

Finally, you need to measure R , the radius of

the arc into which the beam is bent by the

magnetic field. The deflected beam is slightly

fan-shaped because some electrons are slowed

by collisions with air molecules and are bent

into a curve of smaller radius fl. You need to

know the largest value of fl (the "outside" edge

of the curved beam I, which is the path of

electrons that have made no collisions. You will

not be able to measure fl directly, but you can

find it from measurements that are easy to

make (Fig. 5-7).

You can measure x and d. It follows from

Pythagoras' theorem that fl*=d* + (fl-Ac)*, so

2ji

\

n
Al

6 pofx*'

R-

Hg S-7
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1. What is your calculation of R on the basis of

your measurements?

Now that you have values for V, B, and fl, you
can use the formula qjm = 2V/B^fl^ to

calculate your value for the charge-to-mass

ratio for an electron.

2. What is your value for qJm, the charge-to-

mass ratio for an electron?

Experiment 5-3

THE MEASUREMENT OF
ELEMENTARY CHARGE
In this experiment, you wall investigate the

charge of the electron, which is a fundamental

physical constant in electricity, electromag-

netism, and nuclear physics. This experiment

is substantially the same as MiUikan's famous
oil-drop experiment, described on page 547 of

Unit 5, Text. The following instructions assume
that you have read that description. Like

MiUikan, you are going to measure very small

electric charges to see if there is a limit to how
small an electric charge can be. Try to answer

the following three questions before you begin

to do the experiment in the lab.

surements. Fortunately, you can now use
suitable objects whose sizes are accurately

known. You wall use tiny latex spheres (about
10~^ cm diameter), which are almost identical

in size in any given sample. In fact, these

spheres, shown magnified (about 5,000 x) in

Fig. 5-8, are used as a convenient way to find

the magnifying power of electron microscopes.

The spheres can be bought in a water suspen-
sion, with their diameter recorded on the

bottle. When the suspension is sprayed into the

air, the water quickly evaporates and leaves a

cloud of these particles, which have become
charged by friction during the spraying. In the

space between the plates of the Millikan

apparatus, they appear through the 50-power

microscope as bright points of light against a

dark background.

Fig. 5-8 Electron micrograph of latex spheres 1.1x10^
cm, silhouetted against diffraction grating of 11,340

lines/cm. What magnification does this represent?

1. What is the electric field between two parallel

plates separated by a distance d meters if the

potential difference between them is V volts?

2. What is the electric force on a particle

carrying a charge of q coulombs in an electric

field of E volts/meter?

3. What is the gravitational force on a particle of

mass m in the earth's gravitational field?

Background

Electric charges are measured through the

forces they experience and produce. The
extremely small charges that you cire seeking

require that you measure extremely small

forces. Objects on which such small forces can

have a visible efifect must also, in turn, be very

small.

Millikan used the electrically charged drop-

lets produced in a fine spray of oil. The varying

size of the droplets complicated his mea-

You will find that an electric field between

the plates can pull some of the particles

upward against the force of gravity, so you will

know that they are charged electrically.

In your experiment, you will adjust the

voltage producing the electric field until a

particle hangs motionless. On a balanced

particle carrying a charge q, the upward

electric force Eq and the downward gravita-

tional force mag cire equal; therefore,

mag = Eq

The field E = V/d, where V is the voltage

between the plates (the voltmeter reading) and

d is the separation of the plates. It follows that

rnaM
q = =—
^ V

Notice that magd is a constant for all

measurements and need be found only once.
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Each value of q will be this constant ma^ times

1/V as the equation above shows. That is, the

value of q for a particle is proportional to 1/V;

the greater the voltage required to balance the

weight of the particle, the smaller the chaise of

the particle must be.

Using the Apparatus

If the apparatus is not already in operating

condition, consult your teacher. Study Figs. 5-9

and 5-10 until you can identify the \arious

parts. Then switch on the light source and look

through the microscope. You should see a

series of lines in clear focus against a uniform

gray background.

Fig. 5-9 A typical set of apparatus. Details may vary

considerably.

Tlie lens of the light source may fog up as the

heat from the lamp drives moisture out of the

light-source tube. If this happens, remov-e the

lens and wipe it on a clean tissue Wait for the

tube to warm up thoroughly before replacing

the lens.

Squeeze the bottle of latex suspension two or

three times until five or ten particles drift into

view. You will see them as tiny bright spots af

light. You may have to adjust the focus slightly

to see a specific particle clearly Notice how the

particle appears to move upward. The \iew is

inverted by the microscojje; the particles are

actucilly falling in the earth's gravitational field.

Now switch on the high voltage across the

plates by turning the switch up or dovMi. Notice

the effect on the particles of varying the electric

field by means of the voltage-control knob.

Notice the effect when you reverse the

electric field by re\'ersing the switch position.

(When the switch is in its mid-position, there is

zero field between the plates.)

4. Do all the particles move in the same direc-

tion when the field is on?
5. How do you explain this?

6. Some particles move much more rapidly in

the field than others. Do the rapidly moving
particles have larger or smaller charges than the

slowly moving particles?

To chomber

To voltrnete

(^versing

s^vitch

I I
lo enamour

Pi\ rl"^
yellow

voltoge

control

To power supply

Fig 5-10 A typical arrangement of connections to the

high-voltage reversing switch.

Sometimes a few particles cling together,

making a clump that is easy to see. The clump
falls more rapidly than single particles when
the electric field is off. Do not tI^' to use these

clumps for measuring q.

Tr>' to balance a particle by adjusting the

field until the particle hangs motionless Ob-

serve it carefully to make sure it is not slowly

drifting up or down. The smaller the chaiige,

the greater the electric field must be to hold up
the* particle.

Taking Data

It is n(»t worth working at voltages much t>elow

50 \ Only highly charged particles can be

balanced in these small fields and nou are

interested in obtaining the least charge

possible.

Set the potential difTereni-e Iwtweon the

plates to about 75 \' Rext^rse the field a few

times so that the more quickly moving particles

(those with the greater rhargei are swept out of

the field of view Any particles that remain have
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low charges. If no particles remain, squeeze in

some more and look again for some with small

charges.

When you have isolated one of these parti-

cles carrying a low charge, adjust the voltage

carefully until the particle hangs motionless.

Observe it for some time to make sure that it is

not moving up or down very slowly, and that

the adjustment of voltage is as precise as

possible. (Because of uneven bombardment by

air molecules, there will be some slight, uneven

drift of the particles.)

Read the voltmeter. Then estimate the preci-

sion of the voltage setting by seeing how little

the voltage needs to be changed to cause the

particle to start moving just perceptibly. This

small change in voltage is the greatest amount
by which your setting of the balancing voltage

can be uncertain.

When you have balanced a particle, make
sure that the voltage setting is as precise as you
can make it before you go on to another

particle. The most useful range to work uathin

is 75- 150 V, but try to find particles that can be

brought to rest in the 200- 250 V range too, if

the meter can be used in that range. Remember
that the higher the balancing field the smaller

the charge on the particle.

In this kind of an experiment, it is helpful to

have large amounts of data. This usually makes

it easier to spot trends and to distinguish main

effects fix)m the background scattering of data.

Thus, you may wish to contribute your findings

to a class data pool. Before doing that, however,

arrange your values of V in a vertical column of

increasing magnitude.

7. Do the numbers seem to clump together in

groups, or do they spread out more or less evenly

from the lowest to the highest values?

If you would like to make a more complete

quantitative analysis of the cIeiss results, calcu-

late an average vcilue for each of the highest

three or four clumps of V values in the class

histogram. Next change those values to values

of 1/V and list them in order. Since q is

proportional to l/V, these values represent the

magnitude of the charges on the particles.

To obtain actual values for the charges, the

lA's must be multiplied by magd. The separa-

tion d of the two plates, typically about 5 mm,
or 5 X 10"^ m, is given in the specification

sheets provided by the manufacturer. You

should check this.

The mass m of the spheres is worked out

from a knowledge of their volume and the

density D of the matericil they are made from.

Mass = volume x density, or m = */3H x D.

The sphere diameter (2r) h<is been previously

measured and is given on the supply bottle.

The density D is 1,077 kg/m' (found by

measuring a large batch of latex before it is

made into little spheres).

9. What is the spacing between the observed

average values of 1/1/, and what is the difference

in charge that corresponds to this difference in

MV?
10. What is the smallest value of MV that you
obtained? What is the corresponding value of q?
11. Do your experimental results support the idea

that electric charge is quantized? If so, what is

your value for the quantum of charge?

12. If you have already measured qjm in Experi-

ment 4-9, compute the mass of an electron. Even

if your value differs from the accepted value by a

factor of 10, perhaps you will agree that its

measurement is a considerable intellectual

triumph.

Now combine your data with that collected

by your classmates. This can conveniently be

done by placing your values of V on a class

histogram. When the histogram is complete,

the results can easily be transferred to a

transparent sheet for use on an overhead

projector. Alternatively, you may wish to take a

Polaroid photograph of the completed histog-

ram for inclusion in vour laboratory notebook.

8. Does your histogram suggest that all values

of q are possible and that electric charge is,

therefore, endlessly divisible, or the converse?

Experiment 5-4

THE PHOTOELECTRIC EFFECT

In this experiment, you will make observations

of the effect of light on a metal surface; then you

will compare the appropriateness of the wave

model and the particle model of light for

explaining what you observe.

Before doing the experiment, read Text Sec.

18.4 (Unit 5) on the photoelectric eflfect.

How the Apparatus W'^orks

Light that you shine through the window of the

phototube falls on a hiilf-cylinder of metcil
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K,.fc^-!B

«

LICHT SOURCE

AMPUCitR

PHOTOELECTRIC

utite-\os«.

TUBE

Fig. 5-11

called the emitter. The light drives electrons

from the emitter surface.

Along the axis of the emitter (the center of the

tube) is a wire called the collector. When the

collector is made a few volts positive with

respect to the emitter, practically all the

emitted electrons are drawn to it, and will

return to the emitter through an external wire.

Even if the collector is made slightly negative,

some electrons wall reach it and there will be a

measurable current in the external circuit.

The small current cam be amplified several

thousand times and detected in any of several

different ways. One way is to use a small

loudspeaker in which the amplified photoelec-

tric current causes an audible hum; another is

to use a cathode-ray oscilloscope. The follow-

ing description assumes that the output cur-

rent is read on a microammeter (Fig. 5-11).

The voltage control knob on the phototube

unit allows you to vary the voltage between

emitter and collector. In its full coun-

terclockwise position, the voltage is zero. As

you turn the knob clockwise the photocurrent

decreases. You are making the collector more
and more negative and fewer and fewer elec-

trons get to it. Finally the photorunvnt ceases

altogether; all the electnins are turned bark

before reaching the collector The voltage

between emitter and collector that just stops all

the electrons is called the stopping vnltaf^r. The
value of this voltage indicates the maximum
kinetic energy v\ith which the elertnnis lea\e

the emitter. To iuul the value of the stopping

voltage precisely, you \mI1 ha\e to be able to

Fig. 5-12 However much the details may differ, any
equipment for the photoelectric effect experiment will

consist of these basic parts.

determine precisely when the photocurrent is

reduced to zero Because there is some drift of

the amplifier output, the current indicated on

the meter will drift around the zero point e\-en

when the actual current remains exactly zero

Therefore you will have to adjust the amplifier

offset occasionally to be sure the zero level is

really zero. .\n altemati\-e is to ignore the

precise reading of the cumMit meter and adjust

the collector voltage until turning the light off

and on causes no detectable change in the

current. Turn up the negati\-e collector x-oltage

until blocking the light from the lube (with

black paperi has no effect on the meter reading.

The exact location of the meter pointer is not

imporiant.

rhe position of the \oltage-control knob at

the curri'nt cutoff gi\vs_NX)u a rough measure of

stopping voltage. To measure it mor« precisely.

connect a voltmeter as shown in Fig 5-13.

In the exfx'riment. yxtu will measure the

stopping xdltaji^es as ligtit of diffenMit fmjuen-

cies falls on the phototul>e CkkmI colored filters

will allow light of only a certain range of
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to

Vo Itroeteir^

Fig. 5-13

frequencies to pass through. You can use a

hand spectroscope to find the highest fre-

quency line passed by each filter. The filters

select frequencies from the mercury spectrum

emitted by an intense mercury lamp. Useful

frequencies of the mercury spectrum are:

yellow 5.2 x lO'Vsec

green 5.5 X lO'Vsec

blue 6.9 X lO'Vsec

violet 7.3 X lO'Vsec

(ultraviolet) 8.2 x lO'Vsec

Doing the Experiment
PART I

The first part of the experiment is qualitative.

To see if there is a time delay between light

falling on the emitter and the emission of

photoelectrons, cover the phototube and then

quickly remove the cover. Adjust the light

source and filters to give the smallest photocur-

rent that you can conveniently notice on the

meter.

1. Can you detect any time delay between the

moment that light hits the phototube and the

moment that the motion of the microammeter
pointer (or a hum in the loudspeaker or deflection

of the oscilloscope trace) signals the passage of

photoelectrons through the phototube?

To see if the current in the phototube

depends on the intensity of incident light, vary

the distance of the light source.

To find out whether the kinetic energy of the

photoelectrons depends on the intensity of the

incident light, measure the stopping voltage

with different intensities of light falling on the

phototube.

?
3. Does the kinetic energy of the photoelectrons

depend on intensity, that is, does the stopping
voltage change with light intensity?

Finally, determine how the kinetic ener^ of

photoelectrons depends on the frequency of

incident light. You will remember (Text Sec.

18.5) that the maximum kinetic energy of the

photoelectrons is Vstopf/e' where Vs,op is the

stopping voltage, and q^ - 1.60 x 10"'^ C, the

charge on an electron. Measure the stopping

voltage wdth various filters over the uandow.

*?

4. How does the stopping voltage and, thus, the

kinetic energy change as the light is changed from

red through blue or ultraviolet (no filters)?

PART U
In the second part of the experiment you will

make more precise measurements of stopping

voltage. To do this, adjust the voltage-control

knob to the cutoff (stopping voltage) position

and then measure V with a voltmeter (Fig. 5-13).

Connect the voltmeter only after the cutoff

adjustment is made so that the voltmeter leads

will not pick up any ac voltage induced from

other conducting wares in the room.

Measure the stopping voltage \^^^ for three

or four different light frequencies, and plot the

data on a graph. Along the vertical axis, plot

electron energy Vs,opqie- When the stopping

voltage V is in volts, and q^ is in coulombs, Vq^

wall be energy, in joules.

Along the horizontal axis, plot the frequency

of light/.

Interpretation of Results

As suggested in the opening paragraph, you

can compare the wave model of light and the

particle model in this experiment. Consider,

then, how these models explain your observa-

tions.

2. Does the number of photoelectrons emitted

from the sensitive surface vary with light inten-

sity, that is, does the output current of the

amplifier vary with the intensity of the light?

5. If the light striking your phototube acts as

waves,
(a) can you explain why the stopping voltage

should depend on the frequency of light?
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(b) would you expect the stopping voltage to

depend on the Intensity of the light? Why?
(c) would you expect a delay between the tinne

that light first strikes the ennitter and the emission

of photoeiectrons? Why?
6. If the light is acting as a stream of particles,

what would be the answer to questions a, b, and c

above?

If you drew the graph suggested in Part II of

the experiment, you should now be prepared

to interpret the graph. It is interesting to recall

that Einstein predicted its form in 1905, and by

experiments similar to yours, Millikan verified

Einstein's prediction in 1916.

Einstein's photoelectric equation (Text Sec.

18.5) describes the energy of the most energetic

photoeiectrons (the last ones to be stopped as

the voltage is increased), as

= hf-W

This equation has the form

y =k}c — c

In this equation c is a constant, the value of

y at the point where the straight line cuts the

vertical axis; and k is another constant, namely

the slope of the line. (See Fig. 5-14.) Therefore,

the slope of a graph of V,u,pqe against/ should

be/i.

Fig 5-15

With the equipment you used, the slop>e is

unlikely to agree with the accepted value of h

(6.6 X 10"** J/sec) more closely than an order of

magnitude. Perhaps you can give a few reasons

why your agreement cannot be closer.

The lowest frequency at which any electrons

are emitted from the cathode surface is called

the threshold frequency, /q. At this frequency

Vinrvmax - and hfo = W, where W is the work

function . Your experimentally obtained value of

W is not likely to be the same as that found for

very clean cathode surfaces, more carefully

filtered light, etc. The important thing to notice

here is that there is a value of W, indicating that

there is a minimum energy needed to release

photoeiectrons from the emitter.

Fig. 5-14

7. What IS the value of the slope of your graph'
How well does this value compare with the value

of Planck's constant, h 6.6 • 10 ** J sec? (See
Fig. 5-15.)

?
8. Einstein's equation was derived from the

assumption of a particle (photon) model of light. If

your results do not fully agree with Einstein's

equation, does this mean that your experiment

supports the wave theory?

Experiment 5-5

SPECTROSCOPY
In Text Chapter 19 you learned of the immense
importance of spectra to an understanding of

nature. You are about to observT" the spectra of

a variet>' of light sources to see for yourself how
spectra differ from each other and to leam how-

to measure the wavelengths of spectrum lines.

In particular, vou will measure the wa\-elengths

of the hydrogen spectrum and relate them to

the stnictun* of the hydrogen atom.

Before \'ou begin, re\iew carefully Sec. 19.1 of

Text Chapter 19.

Cre.itinj( Spectra

Materials ran be made to gi\« ofT light (or be

"excited"! in sewral different ways: by heating
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in a flame, by an electric spark between

electrodes made of the material, or by an

electric current through a gas at low pressure.

The light emitted can be dispersed into a

spectrum by either a prism or a diflraction

grating.

In this experiment, you will use a diflraction

grating to examine light from various sources. A
diffraction grating consists of many very fine

parallel grooves on a piece of glass or plastic.

The grooves can be seen under a 400-power

microscope.

In Experiment 4-2 (Young's Experiment), you
saw how two narrow slits spread light of

different wavelengths through different angles,

and you used the double slit to make approxi-

mate measurements of the wavelengths of light

of different colors. The distance between the

two slits was about 02 mm. The distance

between the lines in a diffraction grating is

about 0.002 mm. A diffraction grating may have

about 10,000 grooves instead of just two.

Because there are more lines and they are

closer together, a grating diffracts more light

and separates the different wavelengths more
than a double slit, aind can be used to make
veiy accurate measurements of wavelength.

Observing Spectra

You can observe diffraction when you look at

light that is reflected from a phonograph
record. Hold the record so that light from a

distant source is eilmost parallel to the record's

surface, as in Fig. 5-16. Like a diffraction grating,

the grooved surface disperses light into a

spectrum.

Fig. 5-16

Use a recil diffraction grating to see spectra

simply by holding the grating close to your eye

with the lines of the grating parallel to a

distant light source. Better yet, arrange a slit

about 25 cm in fhant of the grating, as shown in

Fig. 5-17, or use a pocket spectroscope.

Look through the pocket spectroscope at a

fluorescent light, at an ordinary (incandescent)

light bulb, at mercury-vapor and sodium-vapor

street lamps, at neon signs, at light from the sky

(but do not look directly at the sun), and at a

flame into which various compounds are

Fig. 5-17

introduced (such as salts of sodium, potassium,

strontium, barium, and calcium).

1. Which color does the grating diffract into the

widest angle and which into the narrowest? Are
the long wavelengths diffracted at a wider angle

than the short wavelengths, or vice versa?

2. The spectra discussed in the Text are (a) either

emission or absorption, and (b) either line or

continuous. What different kinds of spectra have
you observed? Make a table showing the type of

spectra produced by each of the light sources you
observed. Do you detect any relationship between
the nature of the source and the kind of spectrum
it produces?

Photographing the Spectrum

A photograph of a spectrum has several

advantages over visual observation. A photo-

graph reveals a greater range of wavelengths;

also, it allows* greater convenience for your

measurement of wavelengths

.

When you hold the grating up to your eye,

the lens of your eye focuses the diffracted rays

to form a series of colored images on the retina.

Ifyou put the grating in front of the camera lens

(focused on the source), the lens will produce

sharp images on the film.

The spectrum of hydrogen is particularly

interesting to measure because hydrogen is the

simplest atom and its spectrum is feiirly easily

related to a model of its structure. In this

experiment, hydrogen gas in a glass tube is

excited by an electric current. The electric

discharge separates most of the Hj molecules

into single hydrogen atoms.

Set up a meter stick just behind the tube (Fig.

5-18). This is a scale against which to observe

and measure the position of the spectrum

lines. The tube should be placed at about the

70-cm mark since the spectrum viewed

through the grating will appear nearly 70 cm
long.
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Fig. 5-18

From the camera position, look through the

grating at the glowing tube to locate the

positions of the visible spectral lines cigainst the

meter stick. Then, with the grating fastened

over the camera lens, set up the camera with its

lens in the same position your eye was. The
lens should be aimed perpendicularly at the

50-cm mark, and the grating lines must be

parallel to the source.

Now take a photograph that shows both the

scale on the meter stick and the spectral lines.

You may be able to take a single exposure for

both, or you may have to mcike a double

exposure: first the spectrum, and then, with

more light in the room, the scale. It depends on

the amount of light in the room. Consult your

instructor.

Analv'zing the Spectrum

Count the number of spectral lines on the

photograph, using a magnifier to help pick out

the faint ones.

3. Are there more lines than you can see when
you hold the grating up to your eye? If you do see
additional lines, are they located in the visible part

of the spectrum (between red and violet) or in the

infrared or ultraviolet part?

The angle through which light is diffracted

by a grating depends on the wavelength X of the

light and the distance d between lines on the

grating. The formula is a simple one: K = d sin

e.

To find 6, you need to find tan 6 = }c./l as

shown in Fig. 5-19. Here )i. is the distance of

the spectral line along the meter stick from the

source, and / is the distance from the source to

the grating. Use a magnifier to read ,< from your
photograph. Calculate tan 6, and then look up
the corresponding values of 6 and sin 6 in

trigonometric tables.

To find d, remember that the grating space is

probably given as lines per centimeter. You
must convert this to the distance between lines

in meters. One centimeter is 1.00 x lo * m, so if

there are 5,275 lines per centimeter, then d is

11.00 X 10^1/(0.52 X 10^1 = 1.92 x lo • m.

Calculate the values of X for the various

spectral lines you ha\-e measured.

4. How many of these lines are visible to the eye?

5. What would you say is the shortest wavelengtti

to which your eye is sensitive?

6. What is the shortest wavelength that you can

measure on the photograph?

X <

4* a^orrut po'^.fioO

iA

t»„ G

imoae. at Sj^<.^
( fo*.< tA

\ ( /»*w>j« of Co Jftt.

Fig. 5-19 Different images of the source are formed on
the film by different colors of diffracted light The angle

of diffraction is equal to the apparent angular dis-

placement angle of the source in the photograph, so
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Compare your values for the wavelengths

with those given in the Text, or in a more
complete list (for instance, in the Handbook of
Chemistry and Physics). The differences be-

tween your values and the published ones

should be less than the experimental uncer-

tainty of your measurement. Are they?

This is not all that you can do with the

results of this experiment. You could, for

example, work out a value for the Rydberg

constant for hydrogen (mentioned in Text Sec.

19.2).

More interesting perhaps is to calculate

some of the energy levels for the excited

hydrogen atom. Using Planck's constant ih —

6.6 X 10"^), the speed of light in vacuum (c =

3.0 X 10* m/sec), and your measured Vcilue of

the wavelength X of the separate lines, you can

calculate the energy of vcirious wavelengths of

photons (£ — hf = hc/k) emitted when
hydrogen atoms change from one state to

another. The energy of the emitted photon is

the difference in energy between the initial and
final states of the atom.

Make the assumption (which is correct) that

for all lines of the series you have observed, the

final energy state is the same. The energies that

you have calculated represent the energy of

various excited states above this final level.

Draw an energy-level diagram something like

the one shown in Fig. 5-20. Show on it the

energy of the photon emitted in transition from

each of the excited states to the final state.

f. f,

r

r

i

; ''^rooncJ 5We" for 3
i

HalMicr 'ttatjsitibDj

n =5

lou.es't' «oCr<jy strf+e.
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Fig. 5-20

7. How much energy does an excited hydrogen
atom lose when it emits red light?
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ACTIVITIES
DALTON^ PUZZLE

Once Dalton had his theory to work with, the

job of figuring out relative atomic masses and

empirical formulas became nothing more than

working through a series of puzzles. Here is a

very similar kind of puzzle with which you can

challenge your classmates.

Choose three sets of objects, each having a

different mass. Large ball bearings with masses

of about 70, 160, and 200 g work well. Let the

smallest one represent an atom of hydrogen,

the middle-sized one an atom of nitrogen, and

the large one an atom of oxygen.

From these "atoms" construct various

"molecules." For example, NH3 could be repre-

sented by three small objects and one middle-

sized one; NjO by two middle-sized ones and
one large, and so forth.

Conceal one molecule of your collection in

each one of a series of covered Styrofoam cups

(or other lightweight, opaque containers). Mark

on each container the symbols (but not the

formula!) of the elements contained in the

compound. Dalton would have obtained this

information by qualitative analysis.

Give the covered cups to other students.

Instruct them to measure the "molecular" mass

of each compound and to deduce the relative

atomic masses and empirical formulas from the

set of masses, making Dalton's assumption of

simplicity. If the objects you have used for

"atoms ' are so light that the mass of the

Styrofoam cups must be taken into account,

you can either supply this information as part

of the data or leave it as a complication in the

problem.

If the assumption of simplicity is relaxed,

what other atomic masses and molecular

formulas would be consistent with the data?

ELECrrROLYSIS
OF UA lEK
The fact that electricity can decompose water

was an amazing and exciting discovery, yet the

process is one that you can easily demonstrate

with materials at your disposal. Figure 5-21

provides all thr necessary infonnation. Set up
an electrolysis apparatus and demonstrate the

pn)cess for your classmates

In the sketch it looks as if al>out twice as

many bubbles are coming from one electrode

as from the other. Which electixxie is it? Does

this happen in your apparatus? Would you
expect it to happ>en?

How would you collect the two gases that

bubble off the electrodes? How could you prove

their identity?

Fig. 5-21

If water is really just two gases "put together"

chemically, you should be able to put the gases

together again and get back the water with

wtiich you started. Using your knowledge of

physics, predict what must then happ>en to all

the electrical energy you sent flowing through

the water to sep>arate it.

SIXGLE-ELECTTRODE
PLATING

A student asked if copper would "plate out"

from a solution of copper sulfate if only a

negati\'e electrode were placed in the solution.

It was tried and no copper was obserx'ed even

when the electrode was connected to the

negative terminal of a high-voltage source for 5

min. Another student suggested that only a

very small ( invisible 1 amount of copper was
deposited since copper ions should be at-

tracted to a negative electrode.

A more precise test was devised. A nickel

sulfate solution wius made containing several

micpociiries of radit)active nickel mo radiocop-

per was available' A single cartxin electrode

was immersed in the solution, and cx)nnected

to the negative terminal of the high-vxillage

source again for 5 min. The electrode was
removed, dried, and tested with a Geiger

counter The rod was slightly radioactive A
control test was run using identical test

contlitions exiepl that no eUMtrical connec-

tion was made to the electrode. The control

showed more radioactrvitv.

J
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Repeat these experiments and see if the

effect is true generally. What explanation would

you give for these effects? (Adapted from Ideas

for Science Investigations, N.S.T.A., 1966).

Complete instructions appeeir in the PSSC

Physics Laboratory Guide, Second Edition, D.C.

Heath Company, Elxperiment IV-12, "The Mass
of the Electron," pp. 79- 81.

ACTIVITIES FROM
SCIENTIFIC AMERICAN
Articles from the "Amateur Scientist" section of

Scientific American often relate to Unit 5. These

articles range widely in difficulty. In your

libraiy, scan the index of Scientific American

for the past few years for such topics as

accelerators, cloud chambers, spectroscopy,

etc.

WRITINGS BY OR ABOUT
EUVSTEIN

In addition to his scientific works, Einstein

wrote many perceptive essays on other areas of

life that are easy to read and are still very

timely. The chapter titles from Out ofMy Later

Years (Citadel, 1973) indicate the scope of these

essays: Convictions and Beliefs; Science; Public

Affairs; Science and Life; Personalities; My
People. This book includes his writings from

1934 to 1950. The best (and most inexpensive)

book of Einstein's writings is Albert Einstein,

Ideas and Opinions (Dell Publishing Co., 1973).

The most scholarly biography is Philip Frank,

Einstein, His Life and Times (Knopf, 1947).

Albert Einstein: Philosopher-Scientist , edited

by P. Schilpp (Library of Li\ing Philosophers,

Vol. 7, 1973) contains Einstein's autobiographi-

Ccil notes, left-hand pages in German and

right-hand pages in EngUsh, and essays by 12

physicist contemporaries of Einstein's about

various aspects of his woric. An informative and

very readable book on Einstein is Albert

Einstein: Creator and Rebel by Banesh
Hofifinann in collaboration with Helen Dukas,

Einstein's secretary for neariy 30 years (Viking

Press, 1972). Also see Einstein (Penguin, 1976,

paperback) by Jeremy Bernstein.

MEASURING q/m FOR THE
ELECTRON
With the help of a 'tuning eye" tube such as

you may have seen in radio sets, you can

measure the charge-to-mass ratio of the elec-

tron in a way that is veiy close to J.J.

Thomson's original method.

CATHODE RAYS IN A
CROOKES TUBE
A Crookes tube ha\ing a metal barrier inside it

for demonstrating that cathode rays travel in

straight lines may be available in your
classroom. In use, the tube is excited by a Tesla

coil or induction coU.

Use a Crookes tube to demonstrate to the

class the deflection of cathode rays in meignetic

fields. To show how a magnet focuses cathode

rays, bring one pole of a strong bar magnet

toward the shadow of the cross-shaped obsta-

cle near the end of the tube. Watch wtiat

happens to the shadow as the magnet gets

closer and closer to it. What happens when you
switch the poles of the magnet? What do you

think would happen if you had a stronger

magnet?

Can you demonstrate deflection by an elec-

tric field? Try using static charges as in

Experiment 4-3, 'Electric Forces. I," to create a

deflecting field. Then, if you have an electro-

static generator, such as a small Van de Gra<iff

or a Wimshurst machine, try deflecting the rays

using parallel plates connected to the

generator.

LIGHTING AN ELECTRIC LAMP
WITH A MATCH
Here is a trick with which you can challenge

your friends. It illustrates one of the many
cimusing and useful applications of the photo-

electric effect in real life. You will need the

phototube from Experiment 5-4 "The Photo-

electric Effect," together with the Project

Physics Amplifier and Power Supply. You will

also need a 1.5-V diy cell or power supply and a

6-V light source such as the one used in the

MUlikan apparatus. (Ifyou use this light source,

remove the lens and cardboard tube and use

only the 6-V lamp.) Mount the lamp on the

photoelectric-effect apparatus and connect it

to the 0.5-V, 5 A variable output on the power

supply. Adjust the output to maximum. Set the

transistor switch input switch to switch.

Connect the photoelectric-effect apparatus

to the amplifier as shown in Fig. 5-22. Notice

that the poIarit\' of the 1.5-V cell is reversed and
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Fig. 5-22

that the output of the amplifier is connected

to the transistor switch input.

Advance the gain control of the amplifier to

maximum, then adjust the offset control in a

positive direction until the filament of the 6-V

lamp ceases to glow. Ignite a match near the

apparatus (the wooden type works the best)

and bring it quickly to the window of the

phototube while the phosphor of the match is

still glowing brightly (Fig. 5-23). The phosphor
flare of the match head will be bright enough to

cause sufficient photocurrent to operate the

transistor swatch that turns on the bulb. Once
the bulb is lit, it keeps the photocell activated

by its own light; you can remove the match and
the bulb will stay lit.

pinch out the wick. When your fingers pass

between the bulb and the photocell, the bulb

turns off, although the filament may glow
a little, just as the wick of a freshly snuffed

candle does. You can also make a "candle

snuffer" from a little cone of any reasonably

opaque material and use this instead of your
fingers. Or you can "blow out" the bulb. It will

go out obediently if you take care to remove it

from in front of the photocell as you blow it out.

X RAYS FROM
A CROOKES XrBE
To demonstrate that X rays penetrate materials

that stop visible light, place a sheet of 10 cm x

12.5 cm 3,000-ASA-speed Polaroid Land film,

still in its protective pap>er jacket, in contact

with the end of the Crookes tube. (A film pack

cannot be used, but any other photographic

film in a light-tight paper en\'elop>e could be

substituted.) Support the film on books or the

table so that it does not move during the

exposure. The photo in Fig. 5-24 is from a 1-min

exposure using a hand-held Tesla coil to excite

the Crookes tube.

Fig. 5-23

VVlien you an* demonstrating tlii.s »<fl»'(t. tell

your audience thai the bulb is n'ally a candle

and thai it sliould nol sur-|)rise Ihrm that vou
can light il with a inalcli ()t course, one way to

put out a candle is to moisten your fingers and

sriEivnsTs on stamps
Scienlisls an* often pictured on Ihe stamps of

many countries, often b<»ing honored by coun-

lrii«s other than their homelands ^ on ma\

want to visit a stamp shop and assemble a

display for your classroom.
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MEASURING IONIZATION:
A QUANTUM EFFECT
With an inexpensive thyratron 884 tube, you
can demonstrate an effect that is closely related

to the famous Franck- Hertz effect.

Theory

According to the Rutherford- Bohr model, an

atom can absorb and emit energy only in

certain amounts that correspond to permitted

"jumps" between states.

Ifyou keep adding energy in lai^er and larger

"packages," you will finally reach an amount
large enough to separate an electron entirely

firom its atom, that is, to ionize the atom. The

energy needed to do this is called the ioniza-

tion energy.

Now imagine a beam of electrons being

accelerated by an electric field through a region

of space filled with argon atoms. This is the

situation in a thyratron 884 tube with its grid

and anode both connected to a source of

variable voltage, as shown schematically in Fig.

5-25.

V

-V

/\k
-f-^

grid .

cathcxlt-\

filomir*

Fig. 5-25

In the form of its kinetic energy, each

electron in the beam carries energy in a single

"package." The electrons in the beam collide

with argon atoms. As you increase the ac-

celerating voltage, the electrons eventually

become energetic enough to excite the atoms,

as in the Franck- Hertz effect. However, your

equipment is not sensitive enough to detect the

resulting small energy absorptions, so nothing

seems to happen. The electron current from

cathode to anode appears to increase quite

linearly with the voltage, as you would expect,

until the electrons get up to the ionization

energy of argon. This happens at the ionization

potential Vj, which is related to the ionization

energy Ej and to the charge qe on the electron

as follows:

£, = qeV,

As soon as electrons begin to ionize argon

atoms, the current increases sharply. The argon

is now in a different state, called an ionized

state, in which it conducts electric current

much more easily than before. Because of this

sudden decrease in electrical resistance, the

thyratron tube can be used as an "electronic

swatch" in such devices as stroboscopes. lA

similar process ionizes the air so that it can

conduct lightning.) As argon ions recapture

electrons, they emit photons of ultraviolet and

of visible violet light. When you see this violet

glow, the argon gas is being ionized.

For theoretical purposes, the important

point is that ionization takes place in any gas at

a particular energy that is characteristic of that

gas. This is easily observed evidence of one

special case of Bohr's postulated discrete

energy states.
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Equipment

thyratron 884 tube

octal socket to hold the tube (not essential but

convenient)

voltmeter (0- 30 V dc)

ammeter (0- 100 mA)
potentiometer (10,000 f), 2 W or lai^er) or

variable transformer, 0- 120 V ac

power supply, capable of delivering 50- 60 mA
at 200 V dc

Connect the apparatus as shown schematically

in Fig. 5-25.

Procedure

With the potentiometer set for the lowest

available anode voltage, turn on the power and

wait a few seconds for the filament to heat. Now
increase the voltage by small steps. At each new
voltage, call out to your partner the voltmeter

reading. Pause only long enough to permit your

partner to read the ammeter and to note both

readings in your data table. Take data as rapidly

as accuracy permits: Your potentiometer will

heat up quickly, especially at high currents. If it

gets too hot to touch, turn the power off and

wait for it to cool before beginning again.

Watch for the onset of the violet glow. Note in

your data table the voltage at which you first

observe the glow, and then note what happens
to the glow at higher voltages.

Plot current versus voltage, and mark the

point on your graph where the glow first

appeared. From your graph, determine the first

ionization potential of argon. Compare your

experimental value with published values, such

as the one in the Handbook of Chemistry and

Physics

.

What is the amount of energy an electron

must have in order to ionize an argon atom?

MODELING ATOiMS HITH
MAGIVETS

Here is one easy way to demonstrate some
of the important differences between the

Thomson "raisin-pudding" atom model and
the Rullu'rford nuclear nuidcl.

To show how alpha particles wouiil l)c

expected to Iwliave in collisions with a Ihoin-

son atom, repn«sent the spivad-out "pudding

of positive change by a roughly circular ar-

rangement of small disk magnets, spaced

10- 12.5 cm apart, under the center of a

smooth tray, as shown in Fig 5-26 I'se tape or

putty to fasten the magnets to the undei-side of

Fig. 5-26 The arrangement of the magnets tor a

"Thomson atom
"

the tray. Put the large magnet (representing the

alpha particle) down on top of the tray in such

a way that the large magnet is repelled by the

small magnets. Sprinkle onto the tray enough

tiny plastic beads to make the large magnet

slide freely. Now push the alpha particle" from

the edge of the tray toward the "atom." As long

as the "alpha particle" has enough momentum
to reach the other side, its deflection by the

small magnets under the tray will be quite

small: never more than a few degrees.

For the Rutherford model, on the other hand,

gather all the small magnets into a vertical stack

under the center of the tray, as shown in Fig.

5-27. Turn the stack so that it repels "alpha

particles" as before This tiucleus of positKe

charge" now has a much greater effect on the

path of the "alpha pjuticle."

Fig. 5-27 The arrangement o< the magnets (or a

"Rutherford atom "

Haw a fiartner ta(M> an unknown array of

magnets to the bottom of the tray: can nyiu
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determine the arrangement just by scattering

the large magnet?

With this magnet analogue you can do some
quantitative work with the scattering relation-

ships that Rutherford investigated. (See Text

Sec. 19.3 and the notes on Film Loop 47,

"Rutherford Scattering" in this Handbook.) Try

again with different sizes of magnets. Devise a

launcher so that you can control the velocity of

your projectile magnets and the distance of

closest approach.

(1) Keep the initicil projectile velocity v con-

stant and vary the distance b (see Fig. 5-28);

then plot the scattering angle </> versus b.

nucleus

alpha.

porticle

Rg. 5-28

(2) Hold b constant and vary the speed of the

projectile, then plot </> versus v.

(3) Try scattering hard, nonmagnetized disks

off of each other. Plot (/) versus b and 4> versus v

as before. Contrast the two kinds of scattering-

angle distributions.

"BLACK-BOX" ATOMS
Place two or three different objects, such as a

battery, a small block of wood, a bar magnet, or

a ball bearing, in a small box. Seal the box, and
have one of your fellow students tiy to tell you
as much about the contents as possible,

without opening the box. For example, sizes

might be determined by tilting the box, relative

masses by balancing the box on a support, or

w+iether or not the contents are magnetic by
checking with a compass.

The object of all this is to get a feeling for

what you can or cannot infer about the

structure of an atom purely on the basis of

secondary evidence. It may help you to write a

report on your investigation in the form you
may have used for writing a proof in plane

geometry, with the property of the box in one
column and your reason for asserting that

the property is present in the other column.

The analogy can be made even better if you
are exceptionally imaginative: Do not let the

guesser open the box, ever, to find out what
is really inside.

STANDING WAVES ON A
BAND-SAW BLADE
Standing waves on a ring can be shown by

shaking a band-saw blade with your hand.

Wrap tape around the blade for about 15 cm to

protect your hand. Then gently sh£ike the blade

up and down until you have a feeling for the

lowest vibration rate that produces reinforce-

ment of the vibration. Double the rate of

shaking, and continue to increase the rate of

shaking, watching for standing waves. You
should be able to maintain five or six nodes.

TURNTABLE OSOLLATOR
PATTERNS RESEMBLING
DE BROGLIE WAVES
If you set up two turntable osciUators and a

Variac as shown in Fig. 5-29, you can draw
pictures resembling de Broglie waves, like those

shown in Chapter 20 of the Text.

Fig. 5-29

Place a paper disk on the turntable. Set both

turntables at their lowest speeds. Before start-

ing to draw, check the back-and-forth motion of

the second turntable to be sure the pen stays

on the paper. Turn both turntables on and use

the Variac as a precise speed control on the

second turntable. Your goal is to get the pen to

follow exactly the same path each time the

paper disk goes around. Try higher frequencies

of back-and-forth motion to get more
wavelengths around the circle. For each sta-

tionary pattern that you get, check whether the

back-and-forth frequency is an integral multi-

ple of the circular frequency.
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STANDING WAVES IN A
WIRE RING
With the apparatus described here, you can set

up circular waves that somewhat resemble the

de Broglie wave models of certain electron

orbits. You will need a strong magnet, a fairly

stiff wire loop, a frequency oscillator, and a

power supply with a transistor chopping

switch.

The output current of the oscillator is much
too small to interact with the magnetic field

enough to set up visible standing waves in the

wire ring. However, the oscillator current can

operate the transistor switch to control

("chop") a much larger current from the power
supply (see Fig. 5-30).

Fig. 5-30 The signal from the oscillator controls the

transistor switch, causing it to turn the current from the

power supply on and off. The "chopped" current in the

wire ring interacts with the magnetic field to produce a

pulsating force on the wire.

The wire ring must be of nonmagnetic metal.

Insulated copper magnet wire works well.

Twist the ends together and support the ring at

the twisted portion by means of a binding post,

Fahnestock clip, thumbtack, or ringstand

clamp. Remove a little insulation from each end

for electrical connections.

A ring 10- 15 cm in diameter made of

22-guage enameled copper wire has its lowest

rate of vibration at about 20 Hz. StifTer wire or a

smaller ring will have higher characteristic

vibrations that are more difficult to see.

Position the ring as shovMi. with a section of

the wiiv passing between the poles of the

magnet VVlien tlie piilseti current passes

thn>ugh the ring, the cunvnt interacts with the

magnetic field, piDducing alternating forces

that cause the wire to vibrate. In Fig. 5-30, the

magnetic field is vertical, and the vibrations are

in the plane of the ring. You can turn the

magnet so that the vibrations ar ep>erp>endicular

to the ring.

Because the ring is clamped at one point, it

can support standing waves that have any
integral number of half-wavelengths. In this

respect they are different from waves on a free

wire ring, which are restricted to integral

numbers of whole wavelengths. Such waves are

more appropriate for comparison to an atom.

When you are looking for a certain mode of

vibration, position the magnet between ex-

pected nodes (at antinodesl. The first "charac-

teristic state," or "mode of vibration," that the

ring can support in its plane is the first

harmonic, having two nodes: one at the point of

support and the other opposite it. In the

second mode, three nodes are spaced evenly

around the loop, and the best position for the

magnet is directly opposite the support, as

shown in Fig. 5-31.

f

Fig. 5-31

You can demonstrate the various modes of

vibration to the class by setting up the magnet,

ring, and support on the platform of an

overhead projector. Be careful not to break the

glass with the magnet, especially if the frame of

the pnijector hapj>ens to be made of a mag-

netic material

Ihe Project I'hysics Film Loop "Vibrations of

a Wire" also shows this type of vibration.
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FILM LOOP NOTES
Film Loop 45
PRODUCTION OF SODIUM BY
ELECTROLYSIS

In 1807, Humphry Day>' produced metallic

sodium by the electrolysis of molten lye

(sodium hydroxide).

In the film, sodium hydroxide (NaOH) is

placed in an iron crucible and heated until it

melts at a temperature of 318°C. A rectifier

connected to a power transformer supplies a

steady current through the liquid NaOH
through iron rods inserted in the liquid.

Sodium ions are positive and are therefore

attracted to the negative electrode; there they

pick up electrons and become metallic sodium,

as indicated symbolically in this reaction:

Na" + e" = Na

The sodium accumulates in a thin, shiny layer

floating on the surface of the molten sodium
hydroxide.

Sodium is a dangerous material that com-
bines explosively with water. The experimenter

in the film scoops out a little of the metal and
places it in water (Fig. 5-32). Energy is released

rapidly, as you can see from the violence of the

reaction. Some of the sodium is vaporized and
the hot vapor emits the yellow light characteris-

tic of the spectrum of sodium. The same yellow

emission is easily seen if common salt, sodium
chloride, or some other sodium compound is

sprinkled into an open flame.

Film Loop 46
THOMSON MODEL OF THE ATOM
Before the development of the Bohr theory, a

popular model for atomic structure was the

"raisin-pudding" model of J.J. Thomson. Ac-

cording to this model, the atom was supposed

Fig. 5-32
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to be a uniform sphere of positive charge in

which were embedded small negative "corpus-

cles" (electrons). Under certain conditions, the

electrons could be detached and obser\'ed

separately, as in Thomson's historic experi-

ment to measure the charge/mass ratio.

The Thomson model did not satisfactorily

explain the stability of the electrons and
especially their arrangement in "rings," as

suggested by the periodic table of the elements

In 1904, Thomson performed experiments
which to iiim showed the possihilitv of a ring

structure within the broad outline of the

raisin-pudding model. Thomson also made
mathematical calculations of the various ar-

rangements of electrons in his model.

In the Thomson model of the atom, the cloud

of positive charge cit'ated an electric field

directed along radii, strongest at the surface of

the sphere of charge and decreasing to zero at

the center. You are familiar with a gra\ntational

example of such a field. The earth's downward
gravitational field is strongest at the surface and

it decreases toward the center of the earth.

For his model-of-a-model, Thomson used

still another type of field: a magnetic field

caused by a strong electromagnet above a tub

of water. Along the water surface the field is

"radial, " as shown by the pattern of ircjn tilings

sprinkled on the glass bottom of the tub.

Thomson used vertical magnetized steel nee-

dles to represent the electrons; these were
stuck through corks and floated on the surface

of the water. The needles were oriented with

like poh's pointing upwartl: their mutual re-

pulsion tended to c:ause the magnets to sprt?ad

apart. Tin; outward repulsion was rounterart-

ed by the radial magnetic field directed inwaixl

toward the center. When the floating magnets
were placed in the tub of water, they came to

eciuilibriiim configurations under the com-
bined action of all the forc(!s. Thomson .saw in

this experiment a partial verification of his

calculation of how electrons (raisins) might

come to equilibrium in a spherical blob of

positive fluid.

In the film the fioating magnets avf 3.8 cm
long, supported b\ ping-pong balls (Fig. 5-331

K(]uilibrium configurations aiv shown for \ari-

ous numlxM's of i)ails. fn)in 1 to 12 IVrliaps sou

can interjinU tlie patlcnis in tcnus of rings, as

did Thomson.

Thomson was unable to make an exact

con-elation with the facts of chemistiy. For

exampit*, he knew that the eleventh electron is

easily r-ernou-d (corresponding to sotliuin. tiie

Fig 5-33

eleventh atom of the periodic tabiei, yet his

floating magnet model failed to show this.

Instead, the patterns for 10, 11. and 12 floating

magnets are rather similar.

Thomson's work with this apparatus illus-

trates how physical theories may be tested

with the aid of analogies. He was disappointed

by the failure of the model to account for the

details of atomic structure. A few years later,

the Rutherford model of a nuclear atom made
the Thomson model obsolete, but in its day the

Thomson model did receive some support

from experiments such as those shown in the

film.

Film IxNip 47
RiTiiEKioKi) sr^irrFRixc;

This film simulates the scattering of alpha

fiarticles b\ a heavy nucleus, such as gold, as in

F.rnest Rutherford s famous experiment. Tlie

film was matle with a digital computer
The computer program was a slight

modification of that used in Film Loops 13 and

14. on program oriiits. concerned v\ith plane-

tarv orbits The onl\ difference is that the

()p«Tator selected an inverse-squan* law of

rrpiilsion instead of a law of attraction such as

that of gnuit>'. The results of the computer
calculation were displayed on a cathode-ray

tul>e and then photographed (Fig. 5-341. Points

ari» shown at ecjual time intervals \erif\ the law

of arjMs for the motion of the alpha particles by

pnijerting the film for measurements Why
vvduUI \t)u expect etjual areas to \te s\>vpt out

in ('(iii.il limes?
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Fig. 5-34

All the scattering particles shown are near a

nucleus. If the image from your projector is 30

cm high, the nearest adjacent nucleus would

be about 150 m above the nucleus shown. Any
alpha particles mo\ing through this large area

between nuclei would show no appreciable

deflection.

The computer and a mathematical model are

used to tell what the result will be if particles

are shot at a nucleus. The computer does not

know" about Rutherford scattering. What it

does is determined by a program placed in the

computer's memory, written, in this particular

instance, in a language called Fortran. The
programmer has used Newton's laws of motion
and has assumed an inverse-square repulsive

force. It would be easy to change the program
to test another force law, for example F = K/r^.

The scattering would be computed and dis-

played; the angle of deflection for the same
distance of closest approach would be different

than for inverse-square force.

Working backward from the observed scatter-

ing data, Rutherford deduced that the inverse-

square Coulomb force law is correct for all

motions taking place at distances greater than

about 10 '^ m from the scattering center, but he

found deviations from Coulomb's law for closer

distances. This suggested a new type of force,

called nuclear force. Rutherford's scattering

experiment showed the size of the nucleus

(supposedly the same as the range of the

nuclear forces I to be about 10"'* m, which is

about 1/10,000 the distance between the nuclei

in solid bodies.
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Experiment 6-1

RANDOM EVENTS
In Unit 6, after having explored the random
behavior of gas molecules in Unit 3, you are

learning that some atomic and nuclear events

occur in a random manner. The purjjose of this

experiment is to give you some firsthand

experience with random events.

What Is a Random Event?

Dice are useful for studying random beha\ior.

You cannot predict with certainty how many
spots will show on a single throw. But you are

about to discover that you can make usefiil

pn'diclions about a large number of thn)ws If

the beha\ior of the diet* is tnily random, you
can use probability theoiy to make predictions

When, for example, you shake a box of 100 dice,

you can predict with some confidence how
many will fall with one spot up, how many with

two spots up. and so on Probability theorv' has

many appliiations For example, it is used in

the study of automobile tratVic flow, the in-

teii)i-f>tation of faint radar echoes fiDrn the

planets, the pretliction of biilh. death, and

accident rates, and the study of the breakup of

nuclei.

The theory' of probabilit\' proxides wavs of

determining whether a set of events is random.

An important characteristic of all truly random
e\ents is that each e\ent is independent of the

others. For example, if you throw a legitimate

die four times in a row and find that a single

spot turns up each time, your chance of

observing a single spot on the fifth throw is no
greater or smaller than it was on the first throw

If events are to be independent, the circum-

stances under which the observations are

made must never favor one outcome over

another. This condition is met in each of the

following parts of this experiment. You are

expected to do only one of these parts. The
section ' Reconiing Your Data ' that follows the

descriptions applies to all parts of the experi-

ment Read this section in pn*paring to do any

part of the experiment

(a) Kaiicloni Event Disks

\ini will u.se 100 random »'\ent disks and a large

piece of graph paper Wlien the disk^ are

spread around on the graph paper, even into
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the comers, what is the chance that a cross of

the heavy grid marks of the graph paper will be
covered by a disk (a "hit")?

On your graph paper, spread the disks

around fairiy evenly and count the number of

"hits" for that trial. Record your results in a

table like that on p. 238. Then spread the disks

again and make another count. The counting

wall go faster if you divide the graph paper into

sections and have helpers count in each area.

Repeat the process until you have counted 100

trials.

As described below, calculate the mean
number of hits per trial, then divide by 100 to

obtain the fraction of one grid area covered by a

disk.

From your distribution table, estimate the

spread of vcilues around the mean that include

two-thirds of the values. That number, called

the standard deviation (s.d.), is a characteristic

of the distribution and, like the mean, should

be nearly the same value for each set of trials.

An estimate of the uncertainty of the mean,
called the standard error (s.e.), is found from

s.d./V/V where N is the number of trials used

to obtain the mean. As N increases, the s.e.

decretises.

1. What is the s.e. for your set of 100 trials?

2. If you combine several sets of trials, what is

the new mean and its s.e.?

(b) Twenty-Sided Dice

A tray containing 120 dice is used for this

experiment. Each die h£is 20 identical faces (the

name for a solid with this shape is icosahed-

ron). One of the 20 faces on each die should be

marked; if it is not, mark one face on each die

with a felt-tip pen.

3. What is the probability that the marked face

will appear at the top for any one throw of one
die? To put it another way, on the average, how
many marked faces would you expect to see face

up if you roll all 120 dice?

Fig. 6-1 Icosahedral dice in use.

The counting vvdll go faster if the floor area or

tabletop is divided into three or four sections,

with a different person counting each section

and another person recording the total count.

Work rapidly, taking turns vvath others in your
group if you get tired, so that you can count at

least 100 trials.

(c) Diffusion Cloud Chamber

A cloud chamber is a device that makes visible

the trail left by the particles emitted by

radioactive atoms. One version is a transparent

box filled with supercooled alcohol vapor.

When an a partical passes through, it leaves a

trail of ionized air molecules. The alcohol

molecules are attracted to these ions and they

condense into tiny droplets which mark the

trail.

Your purpose in this experiment is not to

leam about the operation of the chamber, but

simply to study the randomness with which

the a particles are emitted. A barrier with a

narrow opening is placed in the chamber near

a radioactive source that emits a particles.

Count the number of tracks you observe

coming through the opening in a convenient

time interval, such as 10 sec. Continue counting

for as many intervals as you can during the

class period. (See Fig. 6-2.)

rad laCLcJlve. £/£•

Now try it, and see how well your prediction

holds. Record as mciny trials as you Ccin in the

time available, shaking the dice, pouring them
out onto the floor or a large tabletop, and
counting the number of marked faces showing
face up. (See Fig. 6-1.)

r

iOJ.a.1 iirr.e. ir+ervo.'s

Fig. 6-2 A convenient method of counting events in

successive time intervals is to mark them in one slot of

the "dragstrip" recorder, while marking seconds (or

10-sec intervals) in the other slot.
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(d) Geiger Counter

A Geiger counter is another device that detects

the passage of invisible particles. A potential

difference of several hundred volts is main-

tained between the two electrodes of the Geiger

tube. When a /3 particle or a y ray ionizes the

gas in the tube, a short pulse of electricity

passes through the tube. The pulse may be

heard as an audible click in an earphone, seen

as a "blip" on an oscilloscope screen, or read as

a change in a number on an electronic scaling

device. When a radioactive source is brought

near the tube, the pulse rate goes up rapidly.

But even without the source, an occasional

pulse still occurs. These pulses are called

background and are caused by cosmic radia-

tion and by a slight amount of radiactivity

always present in objects around the tube.

Use the Geiger counter to determine the rate

of background radiation, counting over and

over again the number of pulses in a conven-

ient time interval, such as 10 sec.

Recording Your Data

Whichever of the experiments you do, prepare

your data record in the following way:

Down the left-hand edge of your paper write

a column of numbers frxjm to the highest

of ei/enfi

2

30
SJ.

65

/Jib

Numbtr of

C¥(ntS obserygd

in one
time 'mterrtLL
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Fig. 6-5 The predicted results of shaking the dice 1,000

times. Notice that the vertical scale is different from that

in Fig. 6-4. Do you see why?

Compare this with the results for only 10

trials shown in Fig. 6-6. As the number of trials

increases, the distribution generally becomes

smoother and more like the distribution in Fig.

6-5.

6

>-

C2 -

I
• h n

1 2 3 4 3 t 7 8 9 10 II IZ 13 K
numberof events (n)

Fig. 6-6 Results of shaking the dice 10 times.

Predicting Random Events

How can data like these be used to make
predictions?

On the basis of Fig. 6-5, the best prediction of

the number of marked faces turning up would

be 5 or 6 out of 120 rolls. Apparently the chance

of a die having its marked face up is about 1 in

20, that is, the probability is V20.

But not all trials had 5 or 6 marked faces

showing. In addition to the average of a

distribution, you also need to know something

about how the data spread out around the

average. Examine the histogrcun and answer
the following questions.

4. How many of the trials in Fig. 6-5 had from 5

to 7 counts?
5. What fraction is this of the total number of

observations?

6. How far, going equally to the left and right of

the average, must you go to include one-half of all

the observations? to include two-thirds?

For a theoretical distribution like this (which

your own results will closely approximate as

you increase the number of trials), it turns out

that there is a simple rule for expressing the

spread: If the average count is A, then two-

thirds of the counts will be between A - WA
and A -f- \A. Putting it another way, about

two-thirds of the vcilues will be in the range of

A ±y/A.

Another example may help make this clear.

For example, suppose you have been counting

cloud-chamber tracks and find that the average

of a lai^e number of 1-min counts is 100 tracks.

Since the square root of 100 is 10, you would
find that about two-thirds of your counts

would lie between 90 and 110.

Check this prediction in Fig. 6-5. The average

is 6. The square root of 6 is about 2.4. The points

along the base of the histogram corresponding

to 6 ± 2.4 are between 3.6 and 8.4. (Of course, it

does not really make sense to talk about a

fraction of a marked side. You would need to

round off to the nearest whole numbers, 4 cmd
8.) Therefore, the chances are about two out of

three that the number of mariced sides showing

after any shake of the tray will be in the range of

4 to 8 out of 120 throws.

7. How many of the trials did give results in the

range 4 to 8? What fraction is this of the total

number of trials?

8. Whether you used the disks, rolled dice,

counted tracks, or used the Geiger counter,

inspect your results to see if two-thirds of your

counts do lie in the range A ± V47

If you counted for only a single 1-min trial,

the chances are about two out of three that

your single count C will be in the range

A ± wA, where A is the true average count

(which you would find over many trialsl. This

implies that you can predict the true average

value fairiy well e\'en if you have made only a

single 1-min count. The chances are about two

out of three that the single count C will be

within "NM of the true average A. If you assume

C is a fairly good estimate ofA, you can use Vc
as an estimate of Va and conclude that the
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TABLE 6-1 SAMPLE RESULTS AND ESTIMATED "TWO-THIRDS RANGES "

Time
min
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A Geiger counter, on the other hand, detects

P particles better than a particles. This is

because a particles, in fonming a heavy trail,

lose all their energy long before they get

through e\en the thin window of cin ordinary

Geiger tube. Beta particles encounter the atoms

in the tube uindow also, but they give up
relatively less energy so that their chances of

getting through the wall are fairly good.

For these reasons, you count a particles

using a cloud chamber and fi particles with a

Geiger counter.

Observing a Particles

Mark off a distance scale on the bottom of the

cloud chamber so that you will be able to

estimate, at least to the nearest 0.5 cm, the

lengths of the tracks formed iFig. 6-7). Insert a

source of a radiation and a barrier (as in the

preceding experiment on random events) with

a small slot opening at such a hei^t that the

tracks form a fairly narrow beam moving
parallel to the bottom of the chamber. Put the

cloud chamber into operation according to the

instructions supplied with it.

Practice watching the tracks until you can

report the length of any of the tracks you see.

Rg. 6-7

When you are ready to take data, count and

record the number of as that come through

the opening in the barrier in 1 min. Measure

the opening and calculate its area. Measure

and record the distance from the source to

the barrier.

Actually, you have probably not seen aU the

peirticles coming through the opening since the

sensitive region in which tracks are visible is

rather shallow and close to the chamber floor.

You will probably miss the as above this layer.

The Range and Energy- of a Particles

The maximum range of radioactive particles as

they travel through an absorbing material

depends on several factors, including the

density and the atomic number of the absorber.

The graph (Fig. 6-8) summarizes the results of

many measurements of the range of a particles

travelling through air. The range- energy curve

for particles in air saturated with alcohol vapor,

as the air is in your chamber, does not differ

significantly from the curve shown. You are,

therefore, justified in using Fig. 6-8 to get a fiiir

estimate of the kinetic energy of the a particles

vou observed.

^60

I"
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Fig. 6-9

can find the rate C at which the particles must

be penetrating the total area of the sphere:

C ^ 4ffr'

c a

(The a-particle source is not a point, but

probably part of a cylinder. This discrepancy,

combined wdth a failure to count those parti-

cles that pass above the active layer, will

introduce an error of as much as a factor of 10.)

The total number of particles leaving the

source per minute, multiplied by the average

energy of the particles, is the total energy lost

per minute.

To answer the following questions, use the

relationships

IMeV = 1.60 X 10 '^ J

leal = 4.18 J

2. How many joules of energy are leaving the
source per minute?
3. How many calories per minute does this

equal?

4. If the source were placed in 1 g of water in a

perfectly insulated container, how long would it

take to heat the water from DC to 100 C?
5. How many joules per second are leaving the
source? What is the power output in watts?

Observing /3 Particles

After removing all radioactive sources from

near the Geiger lube, count the number of

pulses caused by background radiation in

several minutes. Calcuiatt- the* avenige back-

ground radiation in counts per minute Then

place a source of /3 radiation near the Geiger

tube, and determine the new count rate. (Make

sure that the sourro and Geiger tube are not

moved during the n\st of the experiment.! Since

you arv concemetl only with tin* partic-U»s from

the source, subtract the average backgix)und

count rate.

Next, place a piece of absorbing material

(such as a sheet of cardboard or thin sheet

metal) between the source and the tube and
count again. Place a second, equally thick sheet

of the same material in front of the first and
count a third time. Keep adding absort)ers and
recording counts until the count rate ha

dropped nearly to the level of background

radiation.

Plot a graph on wtiich the horizontal scale is

the total thickness (number) of absorbers and
the vertical scale is the number of /3's getting

through the absorber per minute.

In addition to plotting single points, show
the uncertainty in your estimate of the count

rate for each point plotted. You know that

because of the random nature of radioacthity,

the count rate actually fluctuates around some
average value. You do not know wtiat the trve

average value is; it would ideally take an infinite

number of 1-min counts to determine the

"true" average. But you know that the distribu-

tion of a great number of 1-min counts will

have the property that two-thirds of them will

differ from the average by less than the square

root of the average. (See Experiment 6-1.)

For example, suppose you ha\e observed 100

counts in a given 1-min interval. The chances

are two out of three that, if you counted for a

veiy long time, the mean count rate would be

between 90 and 110 counts (between 100 -

VlOO and 100 + VlOO counts) For this reason,

you would mark a vertical line on your graph

extending from 90 counts up to 110. In this way
you avoid the pitfall of making a single

measurement and assuming you know the

"correct" value. (For an example of this kind of

graph, see notes for Film Loop 9 in L'nit l.i

If other kinds of absorbing material are

available, repeat the experiment with the same
source and another set of absorbers. For

sources that emit very low-energv- /3 ravs, it may
be necessary to use very thin materials, such as

paper or household aluminum foil.

Range and Absorption

of ;3 Particles

Examine your graph of the absorption of

particles.

6. Is It a straight Ime^

7. What would the graph look like if (as is the case

for II particles) all fi particles from the source were
able to penetrate the same thickness of a given

absorbing matenal before giving up all their

energy?
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8. If you were able to use different absorbing

materials, how did the absorption curves com-
pare?

9. What might you conclude about the kinetic

energy of /3 particles?

groups give a more uniform decay curve and a

more reliable value for the half-life?

3. Use your best decay curve to estimate the
number of trials needed to reduce the decay
activity to one-eighth the initial value. How many
trials would be needed before you were sure that

there was no more radioactivity in the sample?

Experiment 6-3

HALF-LIFE. I

The more people there are in the worid, the

more people die each day. The less water there

is in a tank, the more slowly water leaks out of a

hole in the bottom.

In this experiment, you will observe three

other examples of quantities that change at a

rate that depends on the total amount of the

quantity present. The objective is to find a

common principle of change. Your conclusions

will apply to many familiar growth and decay

processes in nature.

If you experimented earlier with random
disks, rolling dice, and radioactive decay IEjc-

periment 6-1), you were studying random
events you could observe one at a time. You
found that the fluctuations in such small

numbers of random events were relatively

large. But this time you will deal with a large

number of events, and you will find that the

outcome ofyour experiments is therefore more
precisely predictable.

A. Random Disks

Use the random disks and graph paper cis in

Experiment 6-1, Part (a), as an analogue of

radioactive decay. Spread the 100 disks, which
represent radioactive nuclei, over the graph

paper. When a disk covers a heavy cross on the

graph paper, consider it a radioactive decay.

For each trial, remove the disks that "decayed"

and record their number. When removed, these

disks can be arranged like a bar graph in a

series of pUes. Make up to 20 trials, or until you
have less than three decays per trial. Graph the

decay curve, which shows for each trial the

number of nuclei that decayed.

1. What was the initial decay rate for your first

trial? After how many trials had the decay rate

decreased to half the original rate? to one-fourth
the original rate?

2. If other groups are making similar experi-

ments, how well do the results agree? Are the

differences within the range to be expected from
sampling? Consider your results for Experiment
6-1. Does a combination of results from several

A variation that is more representative of

actual radioactive disintegration series can be

made by using a small disk representing a

daughter nucleus to replace each of the larger

disks that decays. Then the number of nuclei

remains constant; jione has vanished. Because

the daughter nuclei are represented by small-

er disks, their decay rate will be slower. Make
20 to 25 trials using both size disks. For each

trial, tally the number of decays of lai^e and

of small disks. Also record their sum, the

total activity of the sample. A plot of the total

activity wUl show the pattern of activity for a

sample that is a mixture of two radioactive

nuclei.

4. What is the half-life of the daughter nucleus?

You could even add a granddaughter nu-

cleus by using pennies or cardboard pieces as a

third size disk.

B. Twenty-Sided Dice

Mark any two sides of each 20-sided die with a

(washable) marking pen. The chances will

therefore be 1 in 10 that a marked surface

will be face up on any one die when you shake

and roll the dice. When you have rolled the 120

dice, remove all the dice that have a marked
surface face up. Record the number of dice you
removed lor line them up in a column). With

the remaining dice, continue this process by

shaking, rolling, and removing the marked dice

at least 20 times. Record the number you
remove each time (or line them up in a series of

columns).

Plot a graph in which each roll is represented

by one unit on the horizontal axis, and the

number of dice removed after each roll is

plotted on the vertical axis. (If you have lined

up columns of removed dice, you already have

a graph.)

Plot a second graph with the same horizontal

scale, but with the vertical scale representing

the number of dice remaining in the tray after

each roll.
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You may find that the numbers you have

recorded are too erratic to produce smooth

curves. Modify the procedure as follows: Roll

the dice and count the dice v^th marked

surfaces face up. Record this number but do

not remove the dice. Shake and count again. Do
this five times. Now find the mean of the five

numbers, and remove that number of dice. The

effect will be the same cis if you had actually

started with 120 x 5 or 600 dice. Continue this

procedure as before, and you will find that it is

easier to draw smooth curves that pass very

nearly through all the points on your two

graphs.

5. How do the shapes of the two curves com-
pare?

6. What is the ratio of the number of dice

removed after each shake to the number of dice

shaken in the tray?

7. How many shakes were required to reduce

the number of dice in the tray from 120 to 60?

from 60 to 30? from 100 to 50?

C. Electric Circuit

A capacitor is a device that stores electric

charge. It consists of two conducting surfaces

placed very close together, but separated by a

thin sheet of insulating material. When the two

surfaces are connected to a battery, negative

charge is removed from one plate and added

to the other so that a potential difference is

established between the two surfaces. (See Sec.

14.6 of Unit 4, Text.) If the conductors are

disconnected from the battery and connected

together through a resistor, the charge will

begin to flow back from one side to the other.

The chaise will continue to flow as long as

there is a potential difference between the sides

of the capacitor. As you learned in I'nit 4, the

rate of How of char-ge Ithe current) thniugh a

conducting path depends both on the resis-

tance of the path and the potential difference

across it.

To picture this situation, think of two partly

filled tank.s of water connected by a pipe

running from the bottom of one tank to the

bottom of the other (Fig. 6-10). When water is

transfem'd from one tank to the other, the

additional potential energ\' of the water is given

by tlie (liffenMice in hiMght, just as the potential

diffen»nce between the sides of a chargetl

capacitor is proportional to the potential

energy stonul in the capacitor. Water flows

through the pipe at the bottom until the water

Fig. 6-10 An analogy: The rate of flow of water depends I
upon the difference in height of the water in the two '

tanks and upon the resistance the pipe offers to the flow

of water.

levels are the same in the two tanks Similarly,

charge flows through the conducting path

connecting the sides of the capacitor until

there is no potential difference between the

two plates.

Connect the circuit as in Fig. 6-11, close the
j

switch, and record the reading on the I

voltmeter. Now open the switch and take a

series of voltmeter readings at regular intervals.

Plot a graph using time intervals for the

horizontal axis and voltmeter readings for the

vertic2il.

rr
0^) Chare^inf the capacitor

-V rf-—

Cb) discharging Through the renifor '

Fig 6-11

8. How long does it take for the voltage to drop

to one-half of its initial value? from one-half to

one-fourth? from one-third to one-sixth?

Repeat the experiment with a different resis-

tor in the circuit. Find the time required for the

voltage to drop to one-half its initial value Do
this for sjneral resistors

9. How does the time required for the voltage to m
drop to half its initial value change as the 1
resistance in the circuit is changed?
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D. Short-Lived Radioisotope

Whenever you measure the radioactivity of a

sample with a Geiger counter, you must first

determine the level of background radiation.

With no radioactive material near the Geiger

tube, take a count for several minutes and
calculate the average number of counts per

minute caused by background radiation. This

number must be subtracted from any count

rates you observe with a sample near the tube,

to obtain what is called the net count rate of the

sample.

The measurement of background rate can be

carried on by one member of your group while

another prepares the sample according to the

directions given below. Use this measurement
of background rate to become familiar with the

operation of the counting equipment. You will

have to woric quite quickly when you begin

counting radiation from the sample itself.

First, a sample of a short-lived radioisotope

must be isolated from its radioactive parent

material and prepared for the measurmeent of

its radioactivitv'.

Although the amount of radioactive material

in this experiment is too small to be considered

at all dangerous (unless you drink large quan-

tities of it), it is a very good idea to practice

caution in dealing with the material. Respect

for radioactivity is cm important attitude in our

increasingly complicated worid.

The basic plan is to 111 prepare a solution

containing several radioactive substances,

(21 add a chemical that absorbs only one of the

radioisotopes, 13) wash most of the solution

away leaving the absorbing chemical on a piece

of filter paper, (4) mount the filter paper close to

the end of the Geiger counter.

1. Prepare a funnel — filter assembly by

placing a small filter paper in the funnel and
wetting it with water.

Pour 12 mL of thorium nitrate solution into

one graduated cylinder, and 15 mL of dilute

nitric acid into another cylinder.

2. Take these materials to the filter flask set

up in your laboratory. Your teacher will con-

nect your funnel to the filter flask and pour in

a quantity of ammonium phosphomolybdate

precipitate, (NH4)3PMo,2O40. The phospho-

molybdate precipitate adsorbs the radioiso-

tope's radioactive elements present in the

thorium nitrate solution.

3. Wash the precipitate by sprinkling several

milliliters of distilled water over it, and then

slowly pour the thorium nitrate solution onto

the precipitate (Fig. 6-12). Distribute the solu-

Fig. 6-12

tion over the whole surface of the precipitate.

Wash the precipitate again with 15 mL of dilute

nitric acid and wait a few moments while the

pump attached to the filter flask dries the

sample. By the time the sample is diy, the nitric

acid should have carried all the thorium nitrate

solution through the filter. Left behind on the

phosphomolybdate precipitate should be the

short-lived daughter product whose radioactiv-

ity you wish to measure.

4. As soon as the sample is dry, remove the

upper part of the funnel from the filter flask and
take it to the Geiger counter. Make sure that the

Geiger tube is protected with a layer of thin

plastic food wrapping. Then lower it into the

funnel carefully until the end of the tube eilmost

touches the precipitate (Fig. 6-13).

Fig. 6-13

You will probably find it convenient to count

for one period of 30 sec in each minute. This

will give you 30 sec to record the count, reset

the counter, and so on, before beginning the
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next count. Record your results in a table like

Fig. 6-14. Try to make about 10 trials.

background - 12 ccxjiits per minute^

- 6 countb pfrJ^ ivinufc

(mms)
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radioactive material in the bottle. In this

experiment, you will measure the half-life of

this radioactive deposit.

Although the amount of radioactive material

in this experiment is too small to be considered

at all dcingerous (unless you drink lai^e quan-

tities of it), it is a very good idea to practice

caution in dealing with the material. Respect

for radioactivity is an important attitude in our

increasingly complicated worid.

The setup is illustrated in Fig. 6-15. The
thorium nitrate is spread on the bottom of a

seeded container. (The air inside should be kept

damp by moistening the sponge with water.)

Radon gas escapes into the air of the container,

and some of its decay products are deposited

on the upper foil.

ta aroW<d
\

thorium

nitrate-

to + HSO

Fig. 6-15

P^tr

/; \ •^"spq'^g'f • .' • '.^\zj\\ \

When radon disintegrates in the nuclear

reaction

86Rn22«^g,Po2'6-^2He^

the polonium atoms formed are ionized, ap-

parently because they recoil fast enough to lose

an electron by inelastic collision with air

molecules.

Because the atoms of the first daughter

element of radon are ionized (positively

charged), you can increase the amount of

deposit collected on the upper foil by charging

it negatively to several hundred volts. Although

the electric field helps, it is not essential; you
will get some deposit on the upper foil even if

you do not set up an electric field in the

container.

After two days, so much deposit has accumu-

lated that it is decaying nearly as rapidly as the

constant rate at which it is being formed.

Therefore, to collect a sample of maximum
activity, your apparatus should stand for about

two days.

Before beginning to count the activity of the

sample, you should take a count of the

background rate. Do this far away from the

vessel containing the thorium. Remove the

cover, place your Geiger counter about 1 mm
above the foil, and begin to count. Make sure,

by adjusting the distance between the sample
and the window of the Geiger tube, that the

initial count rate is high (several hundred per

minute). Fix both the counter and the foil in

position so that the distance will not change.

To get fairly high precision, take a count over a

period of at least 10 min (see Experiment 6-1).

Because the deposit decays rather slowly, you
can afford to wait several hours between

counts, but you will need to continue tciking

counts for several days. Make sure that the

distance between the sample and the Geiger

tube stays constant.

Record the net count rate and its uncertainty

(the "two-thirds range" discussed in Experi-

ment 6-1). Plot the net count rate against time.

Remember that the deposit contains several

radioactive isotopes and each is decaying. The
net count rate that you measure is the sum of

the contributions of all the active isotopes. The
situation is not as simple as it was in Experi-

ment 6-2, in which the single radioactive

isotope decayed into a stable isotope.

1. Does your graph show a constant half-life or a

changing half-life?

Look again at the thorium series and, in

particular, at the half-lives of the decay prod-

ucts of radon. Try to interpret your observa-

tions of the variation of count rate with time.

2. Which isotope is present in the greatest

amount in your sample? Can you explain why this

is so? Make a sketch to show approximately how
the relative amounts of the different isotopes

in your sample vary with time. Ignore the iso-

topes with half-lives of less than 1 min.

You can use your me<isurement of count rate

and half-life to get an estimate of the tmiount

An
of deposit on the foil. The activity, —— , de-

pends on the number of atoms present N:

AN
At

= AN.



248 UNIT 6 / THE NUCLEUS

The decay constant X is related to the half-life

T.. by

0.693
X =

T^

Use your values of counting rate and half-life

to estimate N, the number of atoms present in

the deposit. What mass does this represent? il

amu = 1.7 X 10'^^ kg.) The smallest amount of

material that can be detected with a chemical

balance is on the order of 10~* g.

Discussion

it is not too difficult to calculate the speed and

therefore the kinetic energy of the polonium

atom. In the disintegration

„«Rn"«^H4Po^'« + 2He\

the a particle is emitted with kinetic energy 6.8

MeV. Combining this with the value of its mass,

you can calculate v^ and, therefore, v. What is

the momentum of the a particle? Momentum is

of course conserved in the disintegration. So

what is the momentum of the polonium atom?

What is its speed? What is its kinetic energy?

The ionization energy (the energy required to

remove an outer electron from the atom) is

typically a few electron volts. How does your

value for the polonium atom's kinetic energy

compare with the ionization enepgv'? Does it

seem likely that most of the recoiling polonium

atoms would ionize?

Experiment 6>o

R^\IIIOACTI\ E TRACERS
In this group of experiments, you have the

opportunity to invent your procedures yourself

and to draw your own conclusions. Most of the

experiments will take more than one class

period and will require careful planning in

advance.

Caution

All these experiments take cooperation from

the biologN' or the chemistrv department, and
require that safety pn»rautions be obserx-ed

very carefully so that neither you nor other

students will be exposed to radiation.

For example, handle radioisotopes as you

would a stn)ng arid: wear ili.sposabie plastic

gloN'es and goggles, and work with all contain-

ers in a Iray lined with paper to s(»ak up an\

spills. Never draw radioactive liquids into a

pipette by mouth; use a mechanical pipette or a

rubber bulb. Your teacher will discuss other

safety precautions with you before you begin.

None of these acthities is suggested just for

the sake of doing tricks with isotopes. You
should have a question cleariy in mind before

you start, and should plan carefully so that you
can complete your experiment in the time you
have available.

Tagged Atoms

Radioactive isotopes have been called tagged

atoms because e\en when they are mixed with

stable atoms of the same element, they can still

be detected. To see how tagged atoms are used,

consider the following example.

A green plant absorbs carbon dioxide (COj)

from the air, and by a series of complex

chemical reactions, builds the carbon dioxide

(and water) into the material of w+iich the plant

is made. SuppKJse you tried to follow the steps

in the series of reactions. You can separate each

compound from the mixture by using ordinary

chemical methods. But how can you trace the

chemical steps by w+iich each compound is

transformed into the next w+ien they are all

jumbled together in the same place? Tagged

atoms proxide an answer.

Put the growing green plant into an atmos-

phere containing carbon dioxide. A tiny quan-

tity of COj molecules containing the radioactive

isotope carbon-14 in place of normal carbon-12

should be added to this atmosphere. Less than

1 min later, the radioacti\it>' can be detected

within some, but not all, of the molecules of

complex sugars and amino acids being svnthe-

sized in the leaves. As time goes on. the

radioactiv-e carbon enters step b\' step into each

of the carbon compounds in the leaves.

With a Geiger counter, one can, in effect.

watch each compound in turn to detect the

moment when radioacti\-p molecules begin to

be added to it In this way the mixture of

compounds in a plant cjtn be arranged in the

order of their formation, which is obviously a

useful clue to chemists studying the reactions

Photos\Tithesis, long a mv-ster^'. has been

studied in detail in this way
Radioactiw isotopes used in this manner are

called tracers. The quantit>- of tracer material

needed to do an experiment is astonishingly

small For example, compare the amount of

carbon that ran l»e detected by an anal\1ical

balance with the amount needinl to do a tracer

experiment ^our (i««iger counter may, t>pirally.

need 100 net counts per minute to distinguish
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the signal from background radiation. If only 1%

of the particles emitted by the sample are

detected, then, in the smallest detectable

sample, 10,000 (or 10^) atoms are decaying each

minute. This is the number of atoms that decay

each minute in a sample of only 4 x io~^ /xg of

carbon-14. Under ideal conditions, a chemical

balance might detect 1 /xg.

Thus, in this particular case, measurement
by radioacti\ity is over 10,000 times more
sensitive than by the balance.

In addition, tracers give you the ability to find

the precise location of a tagged substance

inside an undisturbed plant or animal. Radia-

tion from thin sections of a sample placed on
photographic film produces a xisible spot I Fig.

6-16). This method can be made so precise that

scientists can tell not only which cells of an

or^ganism have absorbed the tracer, but also

which parts of the cell (nucleus, mitochondria,

etc.).

Choice of Isotope

The choice of which radioactive isotope to use

in an experiment depends on many factors,

only a few of which are suggested here.

Carbon-14, for example, has several proper-

ties that make it a useful tracer. Carbon
compounds are a major constituent of all living

organisms. It is usually impossible to follow the

fate of any one carbon compound that you
inject into cm organism, since the added
molecules and their products are immediately

lost in the sea of identical molecules of which
the organism is made. Carbon-14 atoms, how-
ever, can be used to tag the carbon compounds,
which can then be followed step by step

through complex chains of chemical processes

in plants and animals. On the other hand, the

carbon-14 atom emits only (3 particles of rather

low energy. This low energy makes it impracti-

cal to use carbon-14 inside a Icirge liquid or

solid sample since all the emitted particles

would be stopped inside the sample.

The half-life of carbon-14 is about 6,000 years,

which means that the activity of a sample will

remain practically constant for the duration of

an experiment. But sometimes the experi-

menter prefers to use a short-lived isotope so

that it will rapidly drop to negligibly low activity

in the sample or on the laboratoiy table if it gets

spilled.

Some isotopes have chemical properties that

make them especially useful for a specific kind

of experiment. Phosphorus-32 (half-life: 14.3

days) is especially good for studying the grow^

of plants because phosphorus is used by the

plant in many steps of the growth process.

Practically cdl the iodine in the human body is

used for just one specific process, the manufac-

ture of a hormone in the thyroid gland that

regulates metabolic rate. Radioactive iodine-131

(half-life: 8.1 days) has been immensely useful

as a tracer in unravelling the steps in that

complex process.

The amount of tracer to be used is deter-

mined by its activity, by how much it wiU be

diluted during the experiment, and by how
much radiation can be safely allowed in the

laboratory. Since even very small amounts of

radiation are potentially harmful to people,

safety precautions and regulations must be

carefully followed. The Department of Energy

has established licensing procedures and regu-

lations governing the use of radioisotopes. As a

student you are permitted to use only limited

quantities of certain isotopes under carefully

controlled conditions. However, the variety of

experiments you can do is still so great that

these regulations need not discourage you
from using radioactive isotopes as tracers.

One unit used to measure the radioactivity of

a source is called the curie. When 3.7 x io'°

atoms within a source disintegrate or decay in

1 sec, its activity is said to be 1 curie (ci. (This

number was chosen because it is the approxi-

mate average activity of 1 g of pure radium-226.)

A more practical unit for tracer experiments is

the microcurie ifxc), which is 3.7 x iff* disinteg-

rations per second or 2.2 x lO® per minute. The
quantity of radioisotope that students may
safely use in experiments, without special

license, varies from 0.1 /xc to 50 /xc depending

on the type and energy of radiation.

Notice that even when you are restricted to

0.1 /xc for your experiments, you may still

expect 3,700 disintegrations per second, which

would cause 37 counts a second in a Geiger

counter that recorded only 1% of them.

1. What would be the "two-thirds range" in the

activity (disintegrations per minute) of a 1 /xc

source?
2. What would be the "two-thirds range" in

counts per minute for such a source measured
with a Geiger counter that detects only 1% of the

disintegrations?

3. Why does a Geiger tube detect such a small

percentage of the /3 particles that leave the

sample? (Review that part of Experiment 6-2 on

the range of /3 particles.)
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A. Autoradiography

One rather simple experiment you can almost

certainly do is to reenact Becquerel's original

discovery of radioactivity. Place a radioactive

object (lump of uranium ore, luminous watch

dial with the glass removed, etc.) on a Polaroid

film packet or on a sheet of X-ray film in a

light-tight envelope. A strong source of radia-

tion wall produce a visible image on the fUm

within an hour, even through the paper

wrapping. If the source is not so strong, leave it

in place overnight. To get a very sharp picture,

you must use unwrapped film in a completely

dark room and expose it wath the radioactive

source pressed firmly against the film.

(Most Polaroid film can be developed by

placing the packet on a Hat surface and passing

a metal or hard-rubber roller firmly over the

pod of chemicals and across the film. Other

kinds of film are processed in a darkroom

according to the directions on the developer

package.)

This photographic process has grown into an

important experimental technique called au-

toradiography. The materials needed are rela-

tively inexpensive and easy to use, and there

are many interesting applications of the

method. For example, you can grow plants in

soil treated with phosphoms-32, or in water to

which some phosph()rus-32 has been added,

and make an autoradiograph of the roots, stem,

and leaves (Fig. 6-16). Or each day take a leaf

from a fast-growing young plant and show how

the phosphorus moves from the roots to the

growing tips of the leaves.

B. Chemical Reactions and
Separations

Tracers are used as sensitive indicators in

chemical reactions. You may w^ant to try a

tracer experiment using iodine-131 to study the

reaction between lead acetate and potassium

iodide solutions. Does the radioacti\it\' remain

in the solute or is it carried down with the

precipitate? How complete is the reaction?

When you do experiments like this one with

liquids containing /3 sources, transfer them

carefully (with a special mechanical pipette or a

disposable plastic s\Tingei to a small, dispos-

able container called a planchet, and evaporate

them so that you count the diy sample. This is

important when you are using /3 sources since,

otherwise, much of the radiation would be

absorbed in the liquid before it reached the

Geiger tube.

You may want to try more elaborate exj>eri-

ments involving the movement of tracers

through chemical or biological systems. Stu-

dents have grown plants under bell jars in an

atmosphere containing radioactive carbon

dioxide, fed radioactive phosphorus to earth-

worms and goldfish, and studied the metab-

olism of rats with iodine-131. Be sure to re-

view safety and humane guidelines for the

use of animals in resefirch before attempting

any of these exp>eriments.

Fig 6-16 Autoradiograph made by a student to show
uptake of phosphorus-32 in Coleus leaves.

Experiment 6-6

MKASl'RIXC; THE ENERGY OF
(i RADIATION

With a device called a ^ray spectrometer, you

can sort out the /3 particles emitted by a

radioartiw source according to their energV'

just as a grating or prism spertroscxipe spreads

t)iit the colors of the \isible spectrum You can

make a simple /3-ray spectrometer with two

disk magnets and a packet of Polaroid film.

With it \ou can make a fairly good estimate of

the average energv of the /3 particles emitted

fnim \arious soun-es b\- observiivi how much
the\ arr deflected by a magnetic field of known

mtt'nsity

Mount twtj disk magnets as shown in Fig.

6-17. Be sure the faces of the magnets are

parallel and opposite poles are facing each

other.
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Fig. 6-17

Bend a piece of sheet meted into a curve so

that it will hold a Polaroid film packet snugly

around the mcignets. Place a /3 source behind a

barrier made of thin sheet lead containing two

narrow slits that will allow a beam of /3 particles

to enter the magnetic field as shown in Fig.

6-18. Expose the film to the )8 radiation for two

days. Then carefully remove the magnets

without changing the relative positions of the

film and P source. Expose the film for two more
days. The long exposure is necessary because

the coUimated beam contains only a small

fraction of the /3 radiation given off by the

source, and because Polaroid film is not very

sensitive to /3 radiation. (You can shorten the

exposure time to a few hours if you use X-ray

film.)

t=-Ptsa of developer I-3000 ASA
chemicols "^ Pbiaroid

Film packet

to source

^Sheet /€ad collimator

Disc magnet

Sheet metal bocliing

Fig. 6-18

When developed, your film will have two

blurred spots on it; the distance between their

centers will be the arc length a in Fig. 6-19.

An interesting mathematical problem is to

find a relationship between the angle of

deflection, as indicated by a, and the average

energy of the particles. You can Ccilculate the

momentum of the particle fairly easily. Unfor-

tunately, since the /3 particles ftxjm radioactive

sources are travelling at nearly the speed of

light, the simple relationships between
momentum, velocity, and kinetic energy (which

you learned in Unit 3) cannot be used. Instead,

you need to use equations derived from the

special theory of relativity which, although not

at all mysterious, are a little beyond the scope

of this course. (The necessary relations are

developed in the supplemental unit, "Elemen-

tary Particles.") A graph (Fig. 6-20) that gives the

values of kinetic energy for various values of

momentum is provided.

ii"

0.0
z 4 6 e /o /2 l'^

mv = qBB

(^IO'"'kj-n^/Si.<.l

Fig. 6-20 Kinetic energy versus momentum for electrons
{m c^ = 0.511 MeV).

First, you need an expression that will relate

the deflection to the momentum of the particle.

The relationship between the force on a

charged particle in a magnetic field and the

radius of the circular path is derived on page

542 of Unit 5, Text. Setting the magnetic force

equal to the centripetal force gives

Bgv
mv'

Fig. 6-19

which simplifies to

mv = Bqfl

If you know the magnetic field intensity B

(measured with the current balance as de-

scribed in the Unit 4 Handbook), the charge on
the electron, and can find R, you can compute
the momentum. A little geometry will enable

you to calculate B from the arc length a and

the radius r of the magnets. A detailed solu-
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lion will not be given here, but a hint is shown
in Fig. 6-21.

Fig. 6-21

The angle B is

d = -^x 360°
Zvr

You should be able to prove that if tangents are

drawn from the center of curvature O to the

points where the particles enter and leave the

field, the angle between the tangents at O is

also 6. With this as a start, see if you can

calculate R

.

The relationship between momentum and

kinetic energy for objects travelling at nearly

the speed of light

E = y/p^c^ -hmo'c*

is discussed in most college physics texts. The
graph in Fig. 6-21 was plotted using data

calculated from this relationship.

From the graph, find the average kinetic

energy of the fi particles whose momentum
you have measured. Compare this with values

given in the Handbook of Chemistry and
Physics, or another reference book, for the

particles emitted by the source you used.

You will probably find a value listed VN+iich is

two to three times higher than the value you
found. The value in the reference book is the

maximum energy that any one /3 particle from

the source can have, whereas the value you
found was the average of all the /3 particles

reaching the film. Ttiis discrepancy' between

the maximum energy 'which all the /3's should

theoretically have) and the average energy

puzzled physicists for a long time The explana-

tion, suggested by Enrico Fermi in the mid-

1930s, led to the discovery of a strange new
particle called the neutrino, wtiich you will

want to find out about.
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FILM LOOP NOTES
Film Loop 48
COLLISIONS WITH AN OmECTT
OF UNKNOWN MASS
In 1932, Chadwick discovered the neutron by

analyzing collision experiments. This film al-

lows a measurement similar to Chadwick's,

using the laws of motion to deduce the mass of

an unknown object. The film uses balls rather

than elementary particles and nuclei, but the

finalysis, based on conservation laws, is re-

markably similar.

The first scene shows collisions of a small

ball with stationary target balls, one of similar

mass and one of larger mass (Rg. 6-22). The
incoming ball always has the same velocity, as

you can see.

Fig. 6-22

The slow-motion scenes allow you to mea-

sure the velocity acquired by the targets. The

problem is to find the mass and velocity of the

incoming ball without measuring them di-

rectly. The masses of the targets are M, = 352 g,

M2 = 4,260 g.

Chadwack used hydrogen and nitrogen nuc-

lei as targets and measured their recoil vel-

ocities. The target balls in the film do not have

the same mass ratio, but the idea is the same.

The analysis is shown in detail on a special

page in Chapter 23 of the Text. For each of the

two collisions, equations can be written ex-

pressing conservation of energy and conserva-

tion of momentum. These four equations

contain three quantities that Chadwick could

not measure: the initial neutron velocity and

the two final neutron velocities. Some algebraic

manipulation results in the elimination of these

quantities, leaving a single equation that can be

solved for the neutron mass. If v,' and Vj' are

the speeds of targets 1 and 2 after collision, and

M, andM2 the masses, the neutron mass m can

be found from

m(v,' — Vj') - M2V2' — M,v,'

MoV,' — M,v,'m = —^-^, j—^
V, -V,

Make measurements only on the targets, as

the incoming ball (representing the neutron) is

supposed to be unobservable both before and

after the collisions. Measure v,' and v^' in any

convenient unit, such as divisions per second.

(Why is the choice of units not important here?)

Calculate the mass m of the invisible, unknown
particle. In what ways might your results differ

from Chadwick's?
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Answers to End-of-Section Questions

Chapter 1

1. We have no way of knowing the lengths of time

involved in going the observed distances.

2. No. The time between stroboscope flashes is

constant and the distance intervals shoviai are

not equal.

3. An object has a uniform speed if it travels equal

distances in equal time intervals; or, if the

distance traveled divided by time taken =

constant, regardless of the particular distances

and times chosen.

4. V =^
_ 720 m

8.
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16.

17,

_ 2 km/hr - 5 km/hr
^*

15 min

_ - 3 km/hr
15 min

= —02 km/hr/min

No, since average acceleration is specified.

Av
At

aav =

At = Av
aav

12 m/sec

18.

4 m/secj

= 3 sec

Av =aav Af

= (4m/sec2)(6 sec)

= 24 m/sec

Chapter 2

1. shape, size, and weight

Drop several different objects, being sure to

change only one quality with each object, and
observe the results.

2. Composition: Terrestrial objects are composed
of combinations of earth, water, air, and fire,

celestial objects of nothing but a unique fifth

element.

Motion: Terrestricil objects seek their natural

positions of rest depending on their relative

contents of earth (heaviest), water, air, and fire

(lightest); celestiid objects moved endlessly in

circles.

3. (a), (b), and (c)

4. Aristotle: The nail is heavier than the toothpick

so it falls faster.

Gcilileo: Air resistance slows down the toothpick

more than the nail.

5. (1) The bag, since it is lighter than the rock,

slows the rock down. Therefore, the rock and

bag together fall slower than the rock alone.

(2) The bag and the rock together are heavier

than the rock alone. Therefore, the bag and

rock together fall^asfer thcin the rock alone.

6. See question 3 of Chapter 1.

7. An object is uniformly accelerated if its speed

increases by equcd amounts during equal time

intervals; Av/ At = constant.

^ At

_ 32 m/sec - 22 m/sec
5 sec

= 2 m/sec,

. _ 40 m/sec - 32 m/sec
2 m/sec.2

= 4 sec

9. The definition should (1) be mathematically

simple and (21 correspond to actual free-fall

motion.

10. (b)

11. Distances are relatively easy to measure as

compared with speeds; measuring short time

intervals remained a problem, however.

12. The expression d =vt can only be used if v is

constant. The second equation refers to acceler-

ated motion in which v is not constant.

Therefore, the two equations cannot be applied

to the same event.

13. (c) and (e)

14. (d)

15. (a), (c), and (d)

16. (a)

Chapter 3

1. kinematic: (a), (b), (d) dynamic: (c), (e)

2. a continuously applied force.

3. The air pushed aside by the puck moves around
to fill the space left behind the puck as it moves
along and so provides the propelling force

needed.

4. the force of gravity downward and an upward
force of equal size exerted by the table

The sum of the forces must be zero, because the

vase is not accelerating.

5. the first three

6. 6; zero; 6; 2 up; 6 in

7. no

When an object is in equilibrium, the net force

acting on it equals zero.

no

8. (a) vector (d) vector

(b) scalar (e) scal2ir

(c) scalar (f) vector

9. Vector quantities (1) have magnitude and direc-

tion, (2) can be represented graphically by

arrows, and (3) can be combined to form a single

resultant vector by using either the head-to-tail

or the parallelogram method. (Note: Only vec-

tors of the same kind are combined in this way;

that is, we add force vectors to force vectors, not

force vectors to velocity vectors, for example.)

10. Direction is now taken into account. (We must

now consider a change of direction to be as valid

a case of acceleration as speeding up or slowing

down.)

11. Aristotle: A continuous force is required to

sustain motion.

Newton: Since a force is not needed to sustain

motion, the pedaling force must exactly oppose

air resistance, and the net force is zero.

Aristotle's ideas represent a "common sense"

interpretation of natural events, which we all

tend to accept before studving the events

carefully.

12. W downward, 0,0,0

13. Galileo's "straight line forever " motion may have

meant motion at a constant height above the

earth, whereas Newlon's meant moving in a

straight line through empty space.

14. 1 newton = 1 kg • m/sec^

ION
15

a 4m/sec-
= 2.5 kg
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16. false IFrictional forces must be taken into

account in determining the actual net force

exerted.)

Ar

_ 10 m/sec
5 sec

= 2 m/sec*

IS. the magnitude and direction of the applied

force, and the mass of the object

19. Mass Acceleration

(kg) (m/sec*)

F =ma
= (2kg)(2m/8ec*)

= 4N

1

2

3

1/5

0.5

45

10

0.4

30

15

10

150

«0
0.67

3

75

20. Weight (m x a,) is the force acting on a mass at

the earth's surface, caused by the earth's

gravitational attraction. Weight is a vector

quantity.

Mass (m) is the unchanging quality of a body

that describes its resistance to any acceleration.

Mass is a scalar quantity.

21. Because the hammer is 20 times more massive

than the nail, it also requires 20 times more force

to accelerate the hammer. Thus, the accelera-

tions are nearly equal.

22. F =ma

a=m̂
_ 30N
3kg

= 10 m/sec*

The acceleration on the moon or in deep space

would be the same since the mass of the object

remains the same.

23. Ic) and (0

24. (1) The second force is equal in magnitude 13 N).

(2) The second force acts in the opposite

direction (to the lef^).

(3) The second force acts on the first object

25. The horse pushes against the earth; the earth

pushes aigainst the horse causing the horse to

accelerate forward ll'he earth accelerates also,

but can you measure it?) The swimmer pushes

backward against the water; the water, accord-

ing to the third law, pushes forward against the

swimmer; however, there is also a backward

fhrtional force of drag exerted by the water on

the sv\-inimer The two fones acting on the

swimmer add up to zen), since he is not

accelerating

26. No 1'he force pulling the string apart Ls slill

only 300 N. the 500 N would haw to be exerted

ul both ends to bnrak the line

27. See /r,<r p BH

28.

29.

F =ma
= (70kg)(3m/»ec*)

= 210N

a =
''

m
_ 29.4 N

3Kg
= 9.8 m/»ec*

The weight of the object is equal to its mass

(3 kgj times the acceleration of gravity 19.8

m/sec^l: that is, 3 kg x 9.8 m/sec^ = 29 4 .N

Chapter 4

1. It agrees with the exp>eriment. Also, the horizon-

tal motion agrees with Newton's first law, v\'hile

the vertical motion agrees with Newlon s second

law.

2. a,, because the two motions are indeptendent

3. Ad =v, Ar »- Vxailti^

vertical (v, = 01 horizontal (a = 0)

Ay =0 + Via(Af)* A^t = v, Al

Ay = Mia( A;t/Av,)* ^t = A;c/Av,

4. (a), Id, and (e)

5. Aac = V, Al

= (4 m/secMlOsec)
= 40m

Ay = Mia,( Aj>*

= Vi(10m/»ec*»(10sec)*

= 500 m
6. They must be moving with a uniform speed

relative to each other.

7. A person in the stands sees a p2uvbolic path

Two different observers see different motions.

The moxing observer is in the plane of the

motion and does not observe a sideways

motion.

8. la) T = l/f = 1/45 = 22 X 10 ' min

Ibl 22 X 10* min x 60 sec/min = 132 sec

Ic) / = 45 rpm x 1/60 min/sec = 0.75 rps

9. 2irR _ 2 x 3 14 x 3 = Jl cm/min
T 60

10. / =80 vibrations/min = 13 vib/sec

T = l/f = 1/13 = 0.75 sec

la) and Ibl

I

11

12

13.

mv
R

'-(t)
_ m(4iT*W)

T*

^ 4iH(l)(05)

1

= 19.7 N (to center)

It would move in a straight path

= 19 7 N (from center)

14. !)«• \ahie of the gra\itatioi\al acceleration and

ihv radius of the mmin (to wtiuh 110 km is

added to determine HI

15. 1'he force \w calculate to be holding it in orbit is

the earth s gravity at that height
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16. f = Unnifl^aaiL. h)

= 1,660 N

Chapter 5

1. The sun would set 4 min later each day.

2. Ceilendars were needed to schedule agricultural

activities and religious rites.

3. The sun has a westward motion each day, an

eastward motion v\ith respect to the fixed stars,

cind a north— south variation.

follfl
light

— from
Sun

5. Eclipses do not occur each month because the

moon and the earth do not have the same
planes of orbit.

6. (a) The moon continuously moves in an easterly

direction through the slcy, exhibits changing

phases, and rises and sets each day.

(b) Throughout one year, the motion is similar

month by month.

(c) The words "moon" and "month" have the

same origin

7. Mercuj>' and Venus are always fciirly near the

sun: either east of the sun (evening sky) or west

of the sun (morning skyl.

8. When in opposition, a planet is opposite the

sun: therefore, the planet would rise at sunset

and be on the north- south line at midnight.

9. after they have been farthest east of the sun and
are visible in the evening sk\'

10. when they are near opposition

11. No. They are always close to the ecliptic.

12. Mercury and Venus remain near the sun. Mars,

Jupiter, and Saturn (as well as Uranus, Neptune,

and Plutol ccin be found in different locations

along the zodiac. When they are nearly opposite

the sun. Mars, Jupiter, and Saturn cejise their

eastwcird motion and move westward (in retro-

grade motion) for several months. They then

return to their eastward motion.

13. How may the irregular motions of the planets be

accounted for by combinations of constant

sjjeeds along circles?

14. Many of their written records have been

destroyed by fire, weathering, and decay.

15. Only perfect circles and uniform sp)eeds were

suitable for the perfect and changeless heavenly

bodies.

16. A geocentric system is an earth-centered sys-

tem. The yearly motion of the sun is accounted

for by assuming that it is attached to a separate

sphere that moves contrary to the motion of the

stars.

17. The first solution, as proposed by Eudoxus,
consisted of a system of transparent crystalline

spheres that turned at various rates around
various axes.

18. Aristarchus assumed that the earth rotated

daily, which accounted for all the daily motions
observed in the sky. He also assumed that the

e£irth revolved around the sun, which ac-

counted for the many annual changes observed
in the sky.

19. When the earth moved between one of these

planets and the sun (with the planet being

observed in opposition), the earth would be
moving faster than the planet. So the planet

would appear to us to be moving westward.

20. The direction to the steirs should show an
£innual shift: the annucil parallax. (This involves a

very smcill angle and so could not be observed

with instruments available to the Greeks. It was
first observed in ax) 1836.)

21. Aristarchus was considered to be impious

because he suggested that the earth, the abode
of human life, might not be at the center of the

universe.

His system was neglected for a number of

reasons:

(1) "Religious": It displaced humanity &x)m the

center of the universe.

(2) Scientific: Stellar parallax was not observed.

(3) Practical: It predicted celestial events no
better than other, less offensive, theories.

Chapter 6

1. The lack of uniform velocity associated with

equants was (1) not sufficiently absolute and (2)

not sufficiently pleasing to the mind.

2. (a) P, C (d) C
(b) P, C (e) P, C
(c) P (f) C

3. the relative size of the planetary orbits as

compared with the distance between the earth

and the sun; these were related to the calculated

periods of revolution about the sun.

4. (b) and (d)

5. 2° in both cases

6. No. E'recise computations required more smcdl

motions than in the system of Rolemy.

7. Both systems were about equally successful in

explaining observed phenomena.
8. The position of humanity and its abode, the

earth, were important in interpreting the divine

plan of the universe.

9. They are equally valid; for practical purposes we
prefer the Copemican because of its simplicity.

10. He challenged the earth-centered worid outlook

of his time and opened the way for later

modifications and improvements by Kepler,

Galileo, and Newton.

11. the appearance in 1572 of a "new star" ofvaiying

brightness

12. It included expensive equipment and facilities
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and involved the coordinated work of a staff of

people.

13. They showed that comets were distant as-

tronomical objects, not local phenomena as had
been believed.

14. Pie made them lai^er and sturdier and devised

scales with which angle measurements could be

read more precisely.

18. He analyzed the probable errors inherent in

each piece of his equipment; also, he made
corrections for the effects of atmospheric refrac-

tion.

16. He kept the earth fixed, as did Ptolemy, and he

had the planets going around the sun, as did

Copernicus.

Chapter 7

1. finding out the correct motion of Mars through

the heavens

2. Epicycles were only a convenient computational

device for describing some of the cyclical

motions. Kepler began to seek objects and forces

that caused the motions.

3. By means of circular motion, Kepler could not

make the position of Mars agree with TVcho
Brahe's observations. (There was a discrepancy

of 8 min of arc in latitude.)

4. By means of triangulation, based on observa-

tions of the directions of Mars and the sun 687

days apart, he was able to plot the orbit of the

earth.

8. A line drawn from the sun to a planet sweeps

out equal areas during equal time intervals.

6. where it is closest to the sun

7. You would probably guess that he went to the

store every day at 8 am An empirical law is a

general statement based on observations. Em-
pirical laws can result in over-generalizations

8. Mars has the largest eccentricity of the planets

Kepler could study.

9. (a) Law of elliptical orbits

(b) Law of areas

(c) Both (plus date of passage of perihelion, for

examplel

10. The square of the period of any planet is

pn)portional to the cube of its average distance

to the sun.

11. Jupiter: —, = '" ^'*
= 1

' R' (52)*

Saturn:
(29.46)» = 1

fl' (9.54)»

All objects orbiting the sun have T*/R* = 1 in

units of years and astronomical imits.

12. R^ = (5)'

fl' = 25

n = 2.9 All

13. Keplcrs |wriod» drsrribed motion around the

sun The complex motions of an earth-riMitereti

system did not iii('liid«> such periods

14. Kepler t>as(<(l his laws upon ol)servalions. and
expressed them in a mathematical form

18. popular language, concise mathematical ex-

pression

16. The common beliefe contradicted by GalUeo's

observations were:

(a) Changes do not occur in the stany heavens.

(b) Stars are meant to provide light at night;

therefore, no "invisible" stars can exist.

(c) The moon is p»erfectly spherical

(d) Only the earth is the center of revolutions.

(e) The sun, like other heavenly bodies, is

perfect.

(f) Venus is always between the sun and the

earth, and therefore cannot show a full"

phase.

17. both the heliocentric and TVchonic theories

18. 7he sunspots and the mountains on the moon
refuted the Ptolemaic assertion that all heavenly

bodies were perfect spheres

19. No They only supported a belief that he alread\'

held

20. Some believed that distortions in the telescopie

(which M^re plentiful) could have caused the

peculiar observations Otfiers believed that

established physics, religion, and philosophy far

outweighed a few odd observations

21. b, c (d is not an unreasonable answer, since it

was by writing in Italian that he stirred up many
people.)

Chapter 8

1. (1) Scholars published journals and formed

societies where they presented reports

(2) Time and money were available.

(3) Interest in science was growing.

(4) Capable scientists and arii&ans were avail-

able.

(5) Experimental and mathematical tools were

improving

(6) Interestir\g problems were clearly stated

2. "From the phenomena of motions to investigate

(induce) the forces of nature, and then from

these forces to demonstrate (deduce) other

phenomena"
3. (II Do not use more hy|X)theses than necessary-

(21 To the same effrrts. assign the same causes

(3) Properties of neartiv Ixnlies are assumed to

be true of distant tx>dies also

(41 H>iKJtheses (propxisilionsi based on observa-

tions are accepted until refined by new
observations

4. Evei%' btxly in the universe attracts evwy other

lx)dv

8. The same set of rules (laws) applies on the earth

and in the heawns
e. The fones rxertetl on \\re planets are ahvavs

directed lovvanl the single jHiini wl>erT the sun

is located

7. the fomuila for centripetal acceleration

8. that the orbit was rin'ular

9. No. he includetl the more general caae of all

conic sections.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32,

33.

4X, 25X, 16X

1/(60)- = 1/3,600 = 0.00028 = 0.028%

9.8 m/sec- X 0.00028 = 0.0027 m/sec-

That one law would be sufficient to account for

both.

He thought it was magnetic and acted tangen-

tially.

the physics of motion on earth and in the

heavens under one universal law of gravitation

No. He thought it was sufficient to simply

describe and apply it.

An all pervasive ether transmitted the force

through larger distances. He did not wish to use

a hypothesis that could not be tested.

phenomenological and thematic

discussion

(a) The forces are equal.

(b) The accelerations are inversely proportional

to the masses.

(a) 2F
(b) 3F

(c) 6F
(b) Fab = 4Fcu
Otherwise, calculation of the force would

require considering all parts of the bodies and

their distances separately. Experimental evi-

dence and mathematical analysis justify the use

of point masses" for rigid bodies. Only simple

systems can really be studied. The conclusion

that a simple law worked was very important,

the values of the constant in Kepler's third law

T'-/R^ =k as applied to satellites of each of the

two planets to be compared

the numerical value of G

Fgrav. m,, m-i. R

the period of the moon and the distance

between the centers of the earth and the moon,

or the ratio T'/R^

similar information about Saturn and at least

one of its satellites

1/1,000; inversely proportional to the masses

On the near side, the water is pulled away from

the solid earth; on the far side, the solid earth is

pulled away firom the water. Since F oc l/fl ^, the

larger R is, the smaller the corresponding F.

all of them
As the moon orbits, its distance to the sun is

continually changing, thus affecting the net

force on the moon due to the sun and the earth.

Also, the earth is not a perfect sphere.

Comets travel on very elongated ellipses,

no

diapter 9

false

No. Don't confuse mass with volume or mass

wath weight.

Answer C
The total mass is 15 g.

No. Change speed to velocity and perform

additions by vector techniques.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

(a), (c), and (d) (Their momenta before collision

are equal in magnitude and opposite in direc-

tion.)

(a) The total momentum does not change.

(b) The total initial momentum is equal to the

total final momentum.
(c) Nothing can be said about the individual

parts of the system.

Least momentum: a pitched baseball (small

mass and fairly small speed)

Greatest momentum: a jet plane in flight (veiy

large mass and high speed)

(a) about 4 cm/sec; faster ball delivers more
momentum to girl.

(b) about 4 cm/sec; more massive ball delivers

more momentum to girl.

(c) about 1 cm/sec; uath same gain in momen-
tum, more massive girl gains less speed.

(d) about 4 cm/sec; momentum change of ball is

greater if its direction reverses.

(These answers assume the mass of the ball is

much less than the mass of the girl.)

It can be applied to situations where only

masses and speeds can be determined.

FAf = Sp'

Al

= 50

15

= 3.3N

Conservation of mass: No substances are added

or allowed to escape.

Conservation of momentum: No net force from

outside the system acts upon any body consi-

dered to be part of the system.

None of these is em isolated system. In cases (a)

and (b), the earth exerts a net force on the

system. In case (c), the sun exerts a net force on

the system.

You know that the total mass of the system will

be 22 kg and the total momentum of the system

udll be 30 kg m/sec up. You cannot tell what the

individual masses or momenta will be.

Answer (c) (Perfectly elastic collisions can only

occur between atoms or subatomic particles.)

Answer (d) (This assumes mass is always

positive.)

Answer (c)

(a) It becomes stored as the object rises.

(b) It becomes "dissipated among the small

parts" that form the earth and the object.

Chapter 10

1. Answer (b)

2. Answer (b)

3. Answer (c)

4. Answer (c); the increase in potential enei^
equals the work done on the spring.

6. Answer (e); you must do work on the objects to

push them closer together.

6. Answer (e); kinetic energy increases as gravita-
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tional potential enei^ decreases. Their sum
remains the same (if air resistance is negligible).

7. Potential energy is greatest at extreme position

where the speed of the string is zero. Kinetic

energy is greatest at midpoint where the string

is unstretched.

8. The less massive treble string will gain more

speed although both gain the same amount of

kinetic energy (equal to elastic potential ener^
given by guitarist).

9. Multiply the weight of the boulder (estimated

from density and volume) by the approximate

distance above ground level.

10. None. Centripetal force is directed inward along

the radius, which is always perpendicular to the

direction of motion for a circuleir orbit.

11. same, if initial and final positions are identical

12. same, if fnctional forces are negligible; less if

frictional forces between skis and snow are

taken into account.

13. Answer (c)

14. Answer (c)

15. Answer (b)

16. Nearly all. A small amount was transformed into

kinetic energy of the slowly descending weights;

the water container would also have been

warmed.
17. Answer (b)

18. Answer (d)

19. Answer (a)

20. Answer (bl

21. Answer (a)

22. Answer (e)

23. The statement means that the energ\' that the

lion obtains from eating comes ultimately from

sunlight. The lion eats animals, which eat

plants, whiih grow by absorlwKl sunlight

24. Answer (c)

25. Answer (a)

26. Answer (c)

27. Answer (c)

28. A£ is the change in the total ener^' of the

system; AW is the net work (the work done on

the system minus the work done by the system);

AH is the net heat exchange (heat added to the

system minus heat lost by the system).

29. 1. heating (or cooling) it

2. doing work on it (or allowing it to do work)

30. Answer (bl

Chapter 11

1. Answer (c)

2. true

3. false

4. a working model; a theoretical model; discus-

sion

8. 10'" particU's; 10 '" m in tlianieler; 10' ni/sr«-:

disonliMfd v»'lncities and clinM-tion.s distnhuted

unifonnU': lln'sc particles might !>«• atoms,

rnolcciile.s. or dust particles

8. Answi-r (b)

7. In gases, the molecules are far enough apart so

thta the rather complicated intermolecular

forces can safely be neglected.

8. Answer (b)

9. Answer (b)

10. Answer (d)

11. The atom had been described formerly in vague

terms. His estimate put some real numbers into

the theory and showed its usefulness in making

predictions.

12. Answer (c)

13. When the piston is pushe?d in. work is done on

the individual particles, thus increasing their

kinetic energv' Since the temperature is propor-

tional to this kinetic ener^gy, the temperature

must rise

14. Low-density gases not near a phase change to a

liquid or solid.

18. Answer (a)

16. An irreversible process is one in which order

decreases and therefore the entropy increases.

17. Answers a, b, and c are correct

18. The stove could warm up ewn more as the

water molecules passed their kinetic enengv to

it. The second law of thermodv-namics afFirms

that heat v\ill not flow from a cool body to a hot

body by itself The second law (a statistical law)

does not apply to indKidual molecules.

19. (a) unbroken egg

(bl a glass of ice and warm water

20. la) true

(bl false

Ic) false

21. .Answer (hi

Chapter 12

1. transverse, longitudinal, and torsional

2. longitudinal: fluids can be compressed but they

are not stiff enough to be bent or twisted

3. transverse

4. No The movement of the bump in the rug

depends on the movement of the mouse; it does

not go on bv itst»lf

8. energv' (Particles of the mediimi are not transfer-

red alot^ the direction of the wave motion i

6. the stiffness and the density

7. less stiff: slower propagation

less mass: faster pro^iagation

8. (II wavelength, amplitude. |Milarization

(21 frequeiKA |x*ri(Kl

the distance between any two succ'essive points

that have identical ^xisitions in the v\-ave pattern

(1) 100 Hz
1 _ 1

9

10,

(21 T = i =
/ 100 Hz

= 0.01 sec

(31 X = = 0.1 m^ V _ lOm/sec ^
/ 100 Hz

11. Answer (bi

12. A, + A,

13. Yes. The resulting displaremrni v\-nul«l In-

5 + (-6) = -1 cm: superposition
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14. cancellation

15. Antinodal lines are formed by a series of

antinodal points. Antinodal points cire places

where waves arrive in phase and maximum
reinforcement occurs. (The amplitude there is

greatest.)

16. Answer (a)

17. when the difference in path lengths to the two

sources is an odd number of half wavelengths

[-K-k,-k.etc.)
2 2 2

18. (a) no motion at the nodes

(b) oscillates with maximum amplitude

19. -
2

ao. 2L, so that one-half wavelength just fits on the

string

21. No. Only frequencies that are whole-number

multiples of the fundamental frequency are

pKJSsible.

22. All points on a wave front have the same phase;

that is, they all correspond to crests or troughs

(or any other set of similar parts of the

wavelength pattern).

23. Every point on a wave front may be considered

to behave as a point source for waves generated

in the direction of the wave's propagation.

24. If the opening is less than one-half a wavelength

wide, the difference in distance to a point P from

the two edges of the opening cannot be equal to

k/2.

25. As the wavelength increases, the diffraction

pattern becomes more spread out cind the

number of nodal lines decreases until the

pattern resembles one-half of that produced by

a p>oint source oscillator.

26. yes to both (Final photograph shows diffraction

without interference; interference occurs

whenever waves pass each other.)

27. A ray is a line drawn perpendicular to a wave

front and indicates the direction of propagation

of the wave.

28. The angles are equal.

29. parabolic

30. The reflected wave fronts are parallel wave

fronts.

31. (1) stays the same
(2) becomes smaller

(3) changes so that the wave fronts are more

nearly parallel to the boundcuy (Or its

direction of propagation becomes closer to

the perpendicular between the media.)

32.

33.

34.

(1) /X = V relationship

(2) reflection

(3) refraction

(4) diffraction

(5) interference

Sound waves are longitudinal.

Chapter 13

1. No. Eventually diffraction begins to widen the

beam. This property is called superposition.

2. Romer based his prediction on the extra time he

had calculated it would require light to cross the

orbit of the earth.

3. Romer showed that light has a finite sp)eed.

4. Experiments carried out by Foucault and Fizeau

showed that light has a lower speed in water

than in air, whereas the particle model required

that light have a higher speed in water.

6. When light enters a more dense medium, its

wavelength and speed decrease, but its fre-

quency remains unchanged.

6. Young's experiments showed that light could be

made to form an interference pattern; such a

pattern could be explained only by assuming a

wave model for light.

7. It was diffraction that spread out the light

beyond the two pinholes so that overlapping

occurred and interference took place between

the two beams.

8. Poisson applied Fresnel's wave equations to the

shadow of a circular obstacle and found that

there should be a bright spot in the center of the

shadow.

9. Newton passed a beam of white light through a

prism and found that the white light was

somehow replaced by a diverging beam of

colored light. Further experiments proved that

the colors could be recombined to form white

light.

10. Newton cut a hole in the screen on which the

sjjectrum was projected and allowed a single

color to pass through the hole and through a

second prism; he found that the light was again

refracted, but no further sepiiration took place.

11. A shirt appeiirs blue if it reflects mainly blue

light and absorbs most of the other colors that

make up white light.

12. The "nature philosophers " were apt to postulate

unifying principles regardless of experimental

evidence to the contrary, and were very un-

happy with the idea that something they had

regarded as unquestionably pure had many
components.

13. The amount of scattering of light by tiny

obstacles is greater for shorter wavelengths than

for longer wavelengths

14. The 'sky' is sunlight scattered by the atmos-

phere. Light of short wavelength (the blue end of

the sf>ectrum) is scattered most. On the moon,

the sky looks dark because there is no atmos-

phere to scatter the light to the observer.
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15. Hooke and Huygens had proposed that light

waves are similar to sound waves. Newton
objected to this view because the familiar

straight-line propagation of light was so diffe-

rent from the behavior of sound. In addition,

Newlon realized that polarization phenomena
could not be accounted for in terms of spherical

pressure waves.

16. reflection, refraction, diffraction, interference,

polarization, color, finite speed, and straight-

line propagation. I This last would be associated

with plane waves.)

17. No.

18. Light had been shown to have wave properties,

and all other knov^n wave motions required a

physical medium to transmit them, so it was

assumed that an "ether" must exist to transmit

light waves.

19. Because light is a transverse wave and propa-

gates at such a high speed, the ether must be a

very stiff solid.

Chapter 14

1. Lodestone continuously attracts or repels only

lodestone or iron. It has two poles IN and SI and

orients itself in a north- south direction. The N
and S poles cannot be isolated. The effects of

lodestone are magnetic.

After beiiig rubbed, amber will attract or repel

many different types of material; the effect

depends on what type of material is used to loib

the amber. These effects are electrical.

2. He showed that the earth and the lodestone

affect a magnetized needle in similar ways

3. Amber attracts many substances: lodestone only

a few Amber needs to be rubbed to attract;

l()dest(jne always attracts Amber attracts to-

ward its center; lodestone attracts toward «'ilher

of its poles.

4. 1. Like charges repel each other. A both- that has

a fief positive charge i-epels an\' bod\' that has

a net fyositivr charge Thai is, two glass nxls

that have both been rubbed will tent! to n'p«'l

each other A bod\' that has a net negaliw

charge repels an\' other bod\ that has a net

negative charge.

2. I 'nhke charges attract eacli other A bods that

has a net fuysitiw charge attracts any body

that has a net negative charge and \ice wrsa

5. A cork hung inside a chatted silver can was not

attracted to the sides of the can. (This implied

thai Ihrre was n(» net eliMtnc force on the cork: a

n-Mill similar to that pni\ed b\ Newlon for

graNitalionai forte inside a hollow sphere.)

8. /•,,, CI 1//J-' and/",,, ^^ q\qn

7. /•,., will lie one-(|uarter as large

H. No. the ampen" is the unit of cunt-nl

9. ''=*(^^) 'toward each otherl

/I: = 9 X 10* N mVC*
Therefore,

F = 9 X 10* N mVC- (
^-^

= 9X10* N

IC X ic,
m'

10. Each point in a scalar field is gi\«n b\' a number
only, whereas each point in a x-ector field is

represented by a number and a direction.

Examples of scalar fields: sound field near a

horn, light intensity- near a bulb, temperature

near a heater. Examples of vector fields: gravita-

tional field of earth, electric fields near chained

bodies, magnetic fields near magnets.

11. To find the gravitational field at a (X)int place a

known mass at the p)oint, and measure both the

direction and magnitude of the force on it The

direction of the force is the direction of the field:

the ratio of the magnitude of force and the ma&s

is the magnitude of the field

To find the electric field, place a known
positiN-e charge at the p>oint, and measure the

direction and magnitude of the force on the

charge. The direction of the force is the

direction of the electric field The ratio of the

magnitude of the force and the charge is the

magnitude of the field

Note: To determine the force in either case,

one could observe the acceleration of a

known mass or determine vs+ial addi-

tional force must be introduced to

balance the original force.

12. The corresponding forces would also be dou-

bled and therefore the ratios of force to mass

and force to charge would be unchanged

13. The negatix'e test bod>- will experience a force

upward.

14.
9
1 X 10 *N
3 X 10 *C

_j= 33 X 10* N/C up
15. 'f'= qE

= (5 X 10 *Clt33 X 10* N/CI

= 1 7N up
16. I'he field concept axwids the necessity- of using

the Coulomb force law to find the force t»et%\tH*n

ex-etA fviir of charged jwrticles w+ien \-ou want to

find the fon~e on a charge at a particular |X)int

17. If the droplets or spheres are charge*! nrgafnrA

they will exjx'rience an electric for»"e in the

<lin*ction op|>osite to the field direction

IH. C^harge comes in Iwsic units: the charge of the

electn»n

19. A negalixT' charge (-> must also appear s<ime

when* inside the same closed s\-stem iFor

example, an electnm se|varates fr«im an atom

leaving the atom ixisitiwK charg«*d i

20. It pniduced a steadv curnMil for a \onf^ period of

time
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21. The voltage between two points is the work

done in moving a charge from one point to the

other divided by the magnitude of the chaise.

22. No. The potential difference is independent of

both the path taken and the magnitude of the

charge moved.

23. An electron volt is a unit of enei^gy.

24. If the voltage is doubled the current is also

doubled.

25. It means that when a voltage is applied to the

ends of the resistor and a current flows through

it, the ratio of voltage to current will be 5 x lO*.

26. Apply several voltages to its ends ^lnd measure

the current produced in each case. Then find

the ratios V// for each case. If the ratios are the

same, Ohm's law applies.

27. The electrical energy is changed into heat

energy and possibly light energy. (If the current

is changing, additional enei^ transformations

occur; this topic will be discussed in Chapter

16.)

28. Doubling the current results in four times the

heat production (assuming the resistance is

constant).

29. The charges must be moving relative to the

magnet. (They must in fact be moving across the

field of the magnet.)

30. It was found to be a "sideways" force!

31. Forces act on a magnetized (but uncharged)

compass needle placed near the current. The

magnetic field at any point near a straight

conductor lies in a plane perpendicular to the

wire and is tangent to a circle that is in that

plane and has its center at the wire. The general

shape of the magnetic field is circular.

32. Ampere susp>ected that two currents should

exert forces on each other.

33. (b), (c), (d)

34. (b), (c), (e)

35. The mcignetic force is not in the direction of

motion of the particle: It is directed off to the

side, at an angle of 90° to the direction of motion.

The magnetic force does not do any work on the

particle, since the force is always perpendicular

to the direction of motion.

36. Gravity always acts toward the center of the

ecirth and is proportional to the mass. (It is

independent of the velocity.)

The electric field acts in the direction of the

field (or opposite to that direction for negative

charges), is proportional to the chai^ge on the

object, and is independent of the velocity of the

object.

The magnetic field acts perpendicularly to

both the field direction and the direction of

motion, is proportional to both the charge and

the velocity, and depends on the direction in

which the object is moving.

Chapter 15

1. The single magnetic pole is free to move, and it

follows a circular line of magnetic force around

the current-carrying wire.

2. Faraday is considered the discoverer of elec-

tromagnetic induction because he was the first

to publish the discovery, and because he did a

series of exhaustive experiments on it.

3. the production of a current by magnetism

4. The loop is horizontal for maximum current,

vertical for minimum. The reason is that the coil

is cutting lines of force most rapidly when
horizontal, and least rapidly when vertical.

5. It reverses the connection of the generator to the

outside circuit at every half-turn of the loop.

6. It comes from the mechanical device that is

turning the coil in the magnetic field.

7. Use a battery to drive current through the coU.

8. Batteries were weak and expensive.

9. An unknown workmcin showed that the dynamo
could run as a motor.

10. too glaring, too expensive, too inconvenient

11. an improved vacuum pump
12. A small current v^ have a large heating effect if

the resistance is high enough.

13. Cities becemie larger, since easy transportation

from one part to another was now possible;

buildings became taller, since elevators could

carry people to upper floors; the hours available

for work in factories, stores, and offices became

much longer.

14. There is less heating loss in the transmission

wires.

15. A current is induced in the secondary coil only

when there is a changing current in the primary

coil.

Chapter 16

1. a magnetic field

2. the small displacement of charges that accom-

panies a changing electric field

3. The four principles are:

(1) An electric current in a conductor produces

magnetic lines of force that circle the

conductor.

(2) When a conductor moves across externally

set up magnetic lines of force, a current is

induced in the conductor.

(3) A changing electric field in space produces a

magnetic field.

(4) A changing magnetic field in space produces

an electric field.

4. It was practicaUy the s<ime as the speed of light

determined by Fizeau; they differed by only a

little more than 1%!

5. "Maxwell's synthesis" is his electromagnetic

theory in which he showed the relationship

between electricity, magnetism, and light.

6. that electromagnetic waves exist, that they travel

at the speed of light, and that they all have the

ordinary properties of light, such as reflection,

refraction, ability to form standing wa\'es, etc.

7. a loop of wire
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8. They have very great wavelengths (&X}m tens to

thousands of meters!

9. The signals travel in nearly straight lines and

would otherwise pass into space instead of

following the earth's curvature.

10. the higher the frequency, the greater is their

penetration of matter

11. A radar wavelength of 1 m is about 2 x lO" (2

million) times that of green light, which is about

5 X 10 ^ m.

12. X rays are produced by the sudden deflection or

stopping of electrons; gamma radiation is

emitted by unstable nuclei of radioactive mate-

rials.

13. It was almost unthinkable that there could be

waves without a medium to transmit them.

14. Albert Kinsteins (in his theoiy of relativity)

Chapter 17

1. The combining cap>acity (or valence) of sulfur in

HjS is -2. In SO3, sulfur has a combining

capacity of +6.

2. In Al,203, aluminum has a combining capacity of

+3.

3. When elements combine, the atomic massy4 las

compared to hydrogen, A = II is related to the

reacting mass m (in grams) and the combining

capacity v as follows:

A = mv
In CH^, the combining capacity of carbon is

V = 4. Therefore, the atomic mass of carbon is

given by

A = mv
= 3gx4
= 12 (compared to one atom of hydrogen)

4. Atomic Combining

Mass Capacity Mass

Element \A) (v) (grams)

1

1

2

2

2

3

Hydrogen
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come.) But the success of the formula does

indicate that there must be something about the

structure of the atom that makes it emit only

discrete frequencies of light.

7. They have a positiv-e electric charge and are

repelled by the positive electric charge in atoms.

The angle of scattering is usually small because

the nuclei cire so tiny that the a particle rarely

gets near enough to be deflected much. How-
ever, once in a while there is a close approach,

and then the forces of repulsion are great

enough to deflect the a peirticle through a large

angle.

8. Rutherford's model located the positively

charged bulk of the atom in a tiny nucleus: in

Thomson s model the positive bulk filled the

entire atom.

9. It is the number iZi of positive units of charge

found in the nucleus, or the number of electrons

around the nucleus.

10. three positive units of change

11. Atoms of a gas emit light of only certain

frequencies, which implies that each atoms
enei-gj' can change onl\' by certain amounts.

12. None. He assumed that electron orbits could

have only certain values of angular momentum,
which implied only certain enei^' states.

13. All hydrogen atoms have the same size because

in all unexcited atoms the electron is in the

innermost allowable orbit.

14. The quantization of the orbits prevents them
from having other arbitrary sizes.

15. Bohr derived his prediction from a physical

model. Balmer onl\- followed a mathematical

analog\-

16. According to Bohr s model, an absorption line

would result from a transition within the atom
from a lower to a higher energ\' state ithe energv'

being absorbed from the radiation passing

through the matericill.

17. (a) 4.0 eV (bl 0.1 eV (cl 2.1 eV
18. The electron arrangements in noble gases are

very- stable. When an additional nuclear charge

and an additional electron are added, the added
electron is bound very weakly to the atom.

19. Period I contains the elements with electrons in

the K shell only. Since only two electrons can

exist in the K shell, Period I will contain only the

two elements with one electron and two

electrons, respectively. Period II elements have

electrons in the K (full I and L shells. The L shell

can accommodate eight electrons, so those

elements with only one through eight electrons

in the L shell will be in Period II: and so forth.

20. It predicted some results that disagreed with

experiment: and it predicted others that could

not be tested in any known way. It did, however,

give a satisfactory explanation of the observed

frequency of the hydrogen spectral lines, and it

provided a first physical picture of the quantum
states of atoms.

Chapter 20

1. It increases, without limit.

2. It increases, approaching ever nearer to a

limiting value, the speed of light.

3. Photon momentum is directly proportional to

the frequency of the associated wave.

4. The Compton effect is the scattering of light (or

X ray) photons from electrons in such a way that

the photons transfer a part of their energv' and
momentum to the electrons, and thus emerge as

lower-frequenc>' radiation. It demonstrated that

photons resemble matericd particles in posses-

sing momentum as well as energ>'; both energy

and momentum are conserved in collisions

involving photons and electrons.

5. by analogv' with the same relation for photons
6. The regular spacing of atoms in crystals is about

the same as the wavelength of low-enei^
electrons.

7. Bohr invented his postulate just for the purpose.

Schrodinger's equation was derived from the

wave nature of electrons and explained many
phenomena other than hv'drogen spectra.

8. It is almost entirely mathematical: no physical

picture or models can be made of it.

9. It can. But less energetic photons have longer

associated wavelengths, so that the location of

the particle becomes less precise.

10. It can. But the more ener-getic photons will

disturb the particle more and make measure-

ment of velocity less precise.

11. They are regions where there is a high probabil-

ity of quanta arriving.

12. As with all probabilitv' laws, the average behavior

of a large collection of particles can be predicted

v\ith great precision.

Chapter 21

1. It was phosphorescent. Becquerel wrapped a

photographic plate in thick black paper to keep

light out. Then he placed a small piece of the

uranium compound on top of the black paper

and allowed sunlight to fall on it. L'pon

developing the plate he found the silhouette of

the mineral sample recorded on the plate. When
he tried putting metcillic objects between the

sample and the plate, he found their outlines

recorded even when a layer of glass was also

introduced to eliminate possible chemical ac-

tion.

2. No treatment was needed: the emission was
spontaneous.

3. They were puzzling because they needed

nothing to start them, and there was nothing

that could stop them. They were similar to X

rays in that both were very penetrating radia-

tions, and both could ionize.

4. It is not, although slight differences might be

observed because of the other element absorb-

ing some of the radiation.
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5. The radioactivity was much greater than ex-

pected for the amount of uranium in the ore.

6. separating it from harium, which is almost

identical chemically

7. From most to least penetrating: y, /3, a.

Penetrating power is inversely related to ioniz-

ing power hecause rays that are easily stopped

(have low penetrating power) are so because

they are expending their energy ionizing many
atoms of the slopping material (high ionizing

power), and vice versa.

8. Beta particles were found to have the same q/m
ratio as electrons.

9. Alpha rays were deflected much less than /3 rays

by a magnetic field.

10. Its emission spectrum, when caused to glow by

an electric discharge, was the same as helium's.

11. It occurs when only a single pure element is

present, and is not affected by chemical

combinations of that element.

12. An example would be the decay of radon into

polonium with the emission of an a particle (Rn
—» Po + He). It was contrary to the ideas of

indivisibility of atoms held by nineteenth cen-

tury chemists.

13. (1) Many of the substances in a series have

similar chemical properties.

(2) There are only small percentage differences

in atomic mass.

(3) Many of the substances decayed veiy rapidly

into something else; all three kinds of rays

are given off by the mixture.

14. At the start, the emission will be relativ'ely slow

and will consist entirely of a particles. Later, the

emission will bo greater and will contain,

besides alpha particles, /3 and y rays.

15. The law of radioactivi* decay is a statistical law: it

says nothing about how long it will take any

given atom to decay. To s|>ecih' a "life time
"

would be to predict when the last atom would

decay. Scientists do not know any way of doing

that.

16. 1/16 of it.

17. We do not know. The statistical half-life laws do

not apply to small numbers of atoms, and no

other laws make pnnlictions al)uut individual

atoms, or e\iMi about small numbers of atoms

Chapter 22

1. 1 hey wri^ chfniiriilly the siiini- as pn'\iousl\

known elements.

2. The atomic mass ecjuals 12 amu It occupies

|H)sition B in the list of I'leinents

3. decreases 4 units: stays essentially the same
4. DecnMses b\' 2 + charges: incnMses In 1

-»-

charge

5. The niles anv

(1) In a decay, the mass number decn-asi's In- 4.

and the atomic number ilecn-ases b\ 2

(2) In fi dtH-ay, the mass number remains the

sjune. and the atomic number incn<aM>s by 1.

(3) In y decay, both the mass number and the

atomic number remain the same.

In the Rutherford - Bohr model of the atom, the

entire positive chaise and almost the entire

mass are contained in the nucleus Since a, fi.

and y rays are ejected from the nucleus, they

will carry away from it both mass and chaise

The a particle carries 2 positive charges and 4

amu: hence rule H) The /3 panicle carries 1

negative chaise and negligible mass; hence rule

(2). The y ray has no mass and is uncharged;

hence rule (3).

6. by subtracting a p>article masses from the mass

of the parent of the decay series

7. It must have a "velocity selector" that v*iU allow

only ions of a single speed to enter the ma^etic
field This can be done with crossed electric and

magnetic fields.

8. (1) faint second line in mass spectrum of pure

neon

(2) different atomic masses of samples of neon

separated by diffusion

(3) more intense second line in mass spectrum

of one of the samples separated b> diffusion

9. .More massive atoms have a lower average speed

and so diffuse more slowly than the less massive

ones.

10. tbPi"*^; platinum

11. \A — 4). The rule is: Emission of an a particle

results in a decrease in A of 4 units

12. (Z -t- II The rule is: Emission of a negative ft

particle results in an increase in Z of 1 unit

13. an isotope of hvdrogen VNilh twice the atomic

mass of ortlinan- hvdrogen

14. Heavy water is the compound D.O In other

words, it is made with heavy hvdrogen
uleuteriumi rathc-r than ortlinar^ hvclntgen.

15. rin' third isolj)|)«' has a \rr\- low abundance
16. «(!'-' is the current standard It was chosen

mainlv because it readilv forms manv com-
(lounds and so is available fur measuring other

masses by mass spectrograph techniques,

which are much more accurate than chemical

methods

Chapter 23

1. S«'veral atomic masses (which wen' not recog-

nized as the average of several isoto|Jcsi were

not close to whole multiples of the atomic mass
of hydn>gen

2. 12 protons and 6 electrons

3. Nes. roughly .He' would contain 4 pn)ton» and

2 elettrons inside tlw nucleus lit does nnl wi»rk

out. howwvr, when vvr> carefiil mass mea-

surements an- made I

4. Ihe numlM'r of tracks obwrvvtl in a cloud

chamlM*r did not include any that would
com-sjHind to the original a j>article breaking

up into fragments

H. Kor y ravs the wa\ it kni>rk«Ml protons out of

(MrafTin would l>»" a violation of the pnnciples of

enei|^ and momentum conservation
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6. A neutron has no charge, and so is not deflected

by magnetic or electric fields; nor does it leave a

track in a cloud chamber.

7. The laws of conservation of momentum and
kinetic energy were applied to neutron - proton

and neutron- nitrogen head-on collisions. This

yielded four equations in the four vciriables: rrin,

^n' *'n (proton collision I, and Vn' (nitrogen

collision). The latter three were eliminated, and
m„ found.

8. 7 protons and 7 neutrons

9. a nucleus of 2 protons and 2 neutrons,

surrounded by 2 electrons

10. A neutron in the nucleus changes into a proton

and a /3 particle, which immediately escapes.

11. V\ithout the extra particle, there was no way to

explain the disappearance of energy in /3 decay.

12. The repulsive electric force exerted by the lai-ge

charge of the hea\y nucleus on an a particle

prevents it ftxjm reaching the nucleus.

13. Protons have only a single charge.

14. Some devices for producing projectiles are: Van

de Graaff generators, linear accelerators, cyclot-

rons, synchrotrons. Devices that detect nuclear

reactions cire: cloud chambers, spark chambers,

photographic emulsions, and bubble chambers.

15. They have no electric chai-ge and so are not

repelled by nuclei.

16. uSi-*

17. gC; 7 protons, 6 neutrons before; 6 protons, 7

neutrons after

Chapter 24

1. No. In some nuclear reactions energy' is ab-

sorbed.

2. It can go off as y rays or as the kinetic energy of

the product particles.

3. The binding energy of the deuteron nucleus is

the enei^ that would be required to breaik up

10.

11

the nucleus into its constituent particles: a

proton and a neutron.

4. A nuclide with a high average binding energy is

more stable.

5. No. Light nuclei are lower on the curve than

heavy nuclei.

6. capture of a neutron by a uranium nucleus,

followed by the /3 decay of the new nucleus

7. neutrons

8. a substance that slows down neutrons

9. It slows dov%Ti neutrons well (because of the

abundance of H atomsl, but it cdso absorbs many
(to form "heavA'" waterl.

by control rods made of a material that absorbs

neutrons: the farther in the rods, the slower the

reaction.

The positively charged nuclei repel each other;

high speeds cire necessary for the nuclei to come
near enough in collisions to fuse.

12. Since at very high temperatures the gas is

ionized, a properly shaped magnetic field could

deflect the chained particles away fix)m the

walls.

13. decreasing

14. The protons in a nucleus repel each other with

intense electric forces.

15. The average binding energy curve suggests that

each particle in the nucleus is bound only by its

immediate neighbors.

16. An excited nucleus becomes distorted in shape;

electric repulsion between bulges then forces

them apart.

17. In the case of LT-^", the excitation ener^ due to

neutron capture alone is less than the activation

energy required for fission. For U-^"', the excita-

tion energy is greater than the activation energy.

They correspond to completed shells (or sets of

energy statesi of protons and neutrons in the

nucleus.

Neither. They each have different strengths and

weaknesses.

18

19

Brief Answers to

Study Guide Questions
Chapter 1

1. information

2. speed = v = Id/ It

Uniform speed occurs when the ratio distance/

time is constant.

average speed = v^^ = total distance/total time

slope = Ay/ \^
Instantaneous speed (the speed at a given mo-

ment) is shown by the slope of the speed line at

that moment.
average acceleration = a^y = change in speed/

time interval for the change

average speed Vgv = 20 m/sec

(a) 6 cm/sec (b) 24 km (ci 025 min (d) 3 cm/sec, 24

cm (e) 64 km/hr (f) 64 km/hr; 192 km (g) 5.5 sec (h)

8.8 m
She falls 228 m in 19sec.Afterafurther25sec,she

has fallen a total of 528 m.

(ai 1.7 m/sec (bi 3.0 m/sec

The rabbit wins by 368 sec.

3.6 X 10^ km
discussion

(a) 9.5 X 10'-' m (b) 2.7 x 10" sec or 8.5 vt (c)-(gl

discussion

For the blue bicycle, v'a^ = 16.7 m/sec.
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12.

13.

a^v for 5 sec isGm/sec. Afteran additional 5 sec (a

total of 10 sec), v = 60 m/sec.

(a) (1) 5 m/sec, (2) 5 m/sec, 13) 5 m/sec, (4) 5 m/sec

(b) The straight line for distance versu* time

shows that the speeds were equal at all times (ci

The instantaneous speed is 5 m/sec The slope is

the same at all times.

14. la) fastest in section CD; slowest in section BC (b)

v^H = 44 m/sec; Vf^ = 3.6 m/sec; v, „ = 136 m/sec;

^Ai> - 37.9 m/sec (c) Instantaneous sp>eed at point

/ = 136 m/sec.

'a' *'inji
- 0.5 m/sec (at 10-sec mark); v,n„ = 1.5

m/sec (at 25-sec mark) (b) a^^ = 0.06 m/sec^

25.6 m
graph

discussion

19. Between 1 and 4.5 sec, 1.3 m/sec (b) 0.13 m/sec

(c) 0.75 m/sec (d) 1.0 m/sec (e) 0.4 m (approx.)

20. (a) DE was covered fastest; BC was covered

slowest, (b) The line repnisenting tF (a resting

interval) should be parallel to the horizontal axis.

(c) Vaj for 8 weeks is 75 km/week, (d) The instan-

taneous speeds at points P and Q are: Vp = 60

km/week, Vy = 200 km/week.

21. (a) graph lb) graph

22. 795,454 cm/sec

23. graphs; d versus f : 0, 9, 22, 39.5, 60.5, 86 cm (ap-

prox.) at intervals of02 sec; v versus / : 45, 65, 87.5,

105, 127 cm/sec (approx.) at intervals of 0.2 sec

24. discussion

26. discussion '

Chapter 2

IS.

16.

17.

18.

20. (a) 20 m/sec (b) -20 m/sec (c) 4 sec (dl 80 m (e)

(f) -40 m/sec

21. la) -2 m/sec' (b) 2 m/sec (c) 2 m/sec (d) 4 m (el -2

m/sec If) 4 sec

22. discussion

23. (a) 4.3 welfe/suiig' (b) 9.8 m/sec*

24. derivation

25. derivation

26. derivation

27. discussion

28. discussion

29. discussion

30. (a) a = 2.5 m/sec* (b) d = 397 m (ifa, = 10 m/sec*,

d = 405 m) (c) The block slides for 43 sec. and its

final velocity is 9 m/sec. (di The distance is 330 m
north and the final velocity is 58 m/sec north

le) The final speed is 4 m/sec if) The final speed

is 8 m/sec. ig) The acceleration is 15 m/sec^

Ih) The initial sjjeed of the ball thrown upward is

31 m/sec.

31. (a) The average speed v^,, = 2-5 m/sec and v, ^ =

7.5 m/sec. lb) The average speed v^, = 2-5 m/sec.

The average acceleration a = 2S m/sec*. (c) dis-

cussion

32. la) graph A: constant velocity: graph B: accelera-

tion: graph C: acceleration: graph D: negatKe ac-

celeration (deceleration) (bi graph A: backward:

graph B: forward: graph C: backward: graph D:

backward

Chapter 3

1.
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18. discussion

19. (c) 24 N out (d) 14.8 N left (e) 0.86 N north (f) 9.0 kg

(g) 0.30 kg (h) 0.20 kg (i) 3 m/secr east (j) 2.5 m/sec-

left (k) 2.50 m/sec- down
20. (a) 2.0 X 10- m/sec-; 7.8 x 10- m/sec (b) discussion

(c) 2.4 X 10- m/sec-

21. discussion

22. 2.0 kg

23. discussion

24. (ai 1 kg, 9.81 \ in Paris, 9.80 N in Washington (bl

indixidual calculations

25. (al Since the pound is a unit of force (weight! and

the kilogram is a unit of mass, they cannot be

directly con\erted. V\'eight is a measure of the

earth's gra\itational attraction at its surface and

therefore comparisons can only be made on

earth. Ibl Student answers will varv'. (cl Student

answers will vary . (For each 1 kg of mass lifted, 9.8

N of force are required.)

26. discussion

27. (al -5 X 10-3 m/sec- (b) 10 m/sec (c) 10 x 10 -'

m/sec

28. The acceleration of the girl is 2 m/sec-. The force

on the boy is 80 N, and his acceleration is 1.14

m/sec-

.

29. discussion

30. discussion

31. (a) diagram (b) 1.7 x lO" m/sec- (c) (6 x 10")/1

(d) diagram

32. (al 862 N, 750 N, 638 \ (bl The same as in (a) for a

scale calibrated in nev\1ons. (cl discussion

33. hints for sohing motion problems

34. (a) The object will mo\e 150 m to the right, (bl The

speed will be 40 m/sec, (c) The net force is 16 X.

(dl The mass is 5 kg. (el 16 m/sec- (f) 5 sec (g) zero

Chapter 4

1. information

2. 3.8 m/sec*, 5.1 sec, mass decreases

3. discussion

4. (a)

8

10

5

20

15

25

10 sec

40 m

30 m

50 m
5 m/sec

Horizontal distance

Iv, = 4 m/sec)

Vertical distance

(Vy = 3 m/sec)

(b) Total distance

(c) Total velocity

5. derivation

6. 1.3 m, at an angle of 67° below the horizontal; 5.1

m/sec, 79° below the horizontal

7. (a) fx = 2.5 sec (b) dj = 30.6 m ic) v^ 12.5 m/sec

8. f = 3.1 sec; time of fall does not depend on hori-

zontal velocity.

9. (a) t = 4.1 sec (b) The time of fall is independent of

the horizontal velocity, (c) Vj = 40 m/sec (dl v,

remains at 8 m/sec.

10. discussion

11. discussion

12. discussion

13. discussion

14. 6.0 X 10"-min, 3.0 x 10 -min,2.2 x lo -min,1.3

X 10 - min
15. discussion

16. discussion

17. table completion

18. (a) 2.2 X 10 '" m/sec- (bl 4 x 10-" N (c)

approximatelyl/100

19. approximately 10^ N
20. discussion

21. (a) V = 6J2 m/sec (b) a, = 19.2 m/sec- (c) F,. = 38.4

N
22. V = 3.2 m/sec

23. T = 3.4 sec; because no force is considered, no
mass is involved.

24. a = 1,970 m/sec-

25. (al Syncom 2 (bl Lunik 3 (c) Luna 4 (dl does not

change

26. V = 7,690 m/sec; the orbital speed does not de-

pend on mass.

27. F = 683 \
28. The accelerating force is 114 N. T = 931 min
29. 5.1 X 10^ sec or 85 min, 7.9 X 10^ m/sec

30. discussion

31. 7.1 X 10* sec or 120 min
32. (a) 3.6 X 10- sec (b) 36 km (c) discussion

33. Al = im/F) (vo - v)

34. discussion

35. essav

Chapter 5
1. intormation

2. discussion

3. (al 674 sec (bl 0.0021%

4. table

5. discussion

6. discussion

7. discussion

8. 102°, 78°, 78° 102° starting with the upper right

quadremt

9. (a) 15° (bl geometric proof and calculation; about

12,100 km
10. a, b, c, d, e, f

11. discussion

12. discussion

Chapter 6

1. information

2. diagram construction

3. discussion

4. 11 times; derivation

5. Copernicus calculated the distances of the

planetcuy orbits from the sun and the periods of

planetary' motion around the sun. The Copemi-

can system was more simple and harmonious

than that of Ptolemy. In addition, the orbits

began to seem like the paths of real planets,

rather than mathematical combinations of cir-

cles used to compute positions.

6. The Copemican system led to a change in the

order of importance of the earth and sun. The
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sun became dominant while the earth became
"just another planet " These philosophical re-

sults were more imfxirtant than the geometrical

change.

7. discussion

8. discussion

9. 2.8 X 10'' AU
10. discussion

11. discussion

12. discussion

13. discussion

14. discussion

Chapter 7

information

about 1/8 of a degree; about 1/4 of the moon's

diameter

discussion

discussion

8. a + c

7. If the two foci (tacks) are placed at the same point,

you will draw a circle. As the foci are separated,

the ellipse becomes longer and thinner.

8. e = da = 5/9 = 0.556

9. la) same as sketch in question 6 (b) c = A - P, a =

A + P,A = (a +c)/2, P = (a -c)/2(c)fl,v =a/2 = (A

+ P)/2

10. The second focus is empty.

11. discussion

12. (a) 43 (b) P = 2.5 cm; A = 7.5 cm (c) A = 45 cm, c

= 40 cm, a = 50 cm
13. 0J209

14. 0.594/1

15. (a) 17.9 AU (b) 35.3 AU (c) 0.54 AU (d) 66/1

16. T = 249 years

17. k = 1.0 for all three planets

18. discussion

19. 7Vfl' = 8.9 X 10 '* secVm'
20. Tj = 8 T,

21. n = 4.03 X 10" m
22. 8.9 X 10 '* secVm-^ for each satellite

23. (a) student sketches lb) student calculations Id

Yes, Kepler's law of [leriods applies.

24. discussion

25. (lisciission

26. Kepler expected the lhi't)r\' lo Irad to pn'cli( lions

agn*ring closely with new observations Kepler

sought algebraic patterns rather than geometric

patterns Kepler sought physical causes for ob-

servetl motions.

27. Kmpirical laws are generalizations based on ob-

servations. They an* n'liablo bases for theonMical

speculations

C'hapter 8

1. infonnation

2. la) a straight line at uniform speed lb) caused the

planets to de\iali> tntiii a straight line lii dinn-ted

lowartl a center (the suni (d I varies inwrwly with

the squan> of the distance 11//!')

6.

7.

8.

9.

10.

11.

12.

lal It did not fall down, " but toward the center

of the earth lb) 1/60^ of the earth's attraction on

the apple; 2 7 = 10 * m/sec* (c) a, = 2.71 x 10*

m/sec^. The two values almost agree.

The Newlonian question is really "What holds

the moon down?
"

Every object in the universe attracts eveiy other

object with a gravitational force F = C(Afm/fl*l,

where F is the force between objects, M and m
are the masses of the objects. R is the distance

between the centers of the objects, and G = 6£7
X 10 " Nm'/kg' Available evidence show^ no

change in G with time or p>osition.

yes, to about 1% agreement

discussion

discussion

derivation

J-; = /47r'v n'

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

2M.

29.

30.

\ G ) m
F = 6.67 X 10-*N;a,.ooo = 6 67 x 10 " m/»ec*;a,»

= 6.67 X 10"'* m/sec*; these accelerations are

veiy small; they might be measurable with a tor-

sion p>endulum or a modem optical device.

Unexplained irregularities in the motion of

Uranus led to the prediction that one or more
outer planets existed Calculations led to pre-

dicted positions that were rather accurate for

Neptune and approximate for Pluto The belief

that such planets existed led to the svslematic

search for them.

lal 1.05 X 10^ daysVAU* lb) discussion Id discus-

sion

42.600 km
5 98 X 10^* kg

6 04 X 10^« kg

The moons tidal force on the water on the dis-

tant side of the earth is less than on the solid

earth. As a result, the earth is pulled awav from

the water.

The ineriial motion is along a straight line. ,k =

vr. The accelerated motion is toward the earths
1.center, v -at'

(a) 5.52 X 10* kg/m* Ibl discussion

730 X 10*» kg

(a) 5 99 X 10* sec, or 1 66 h (bl 355 km/sec (d

collisions

table

alxiut 170 times as great

17 7 AU: 60 AU; 34.8 AU
tierivations

discussion

discussion: no

discussion

II IS useful today.

tliscussion

Chapter 9

1 infonnation

2. discussion
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

(a) yes (b) the solar system

discussion

no

discussion

(ai 2202 g (b) The mass of the solids before and

after the reactions cire equal.

(al The mass is 60 g on the earth and on the moon.
(b) Mass is an attribute of material. Weight de-

scribes a gra\itational attraction, (cl Nothing is

reported about masses.

la) no change in total momentum
(b) Disk A 40 kgm/sec west

Disk B 150 kgm/sec north

Disk C 20 kgm/sec east

Disk D 20 kgm/sec east

(c) The final velocit\' v., = 6 m/sec north, (di

Momentum is a vector quantity', and opposing

vectors can cancel, as in part (b) where A cancels

IC + D).

(al all except Va' (which =Vb')

Id 0.8 m/sec

dictionaiy comment
3.3 X 10'' kg

discussion

discussion

yes

(al Af = 4 sec lb) Final velocit\' = 20 m/sec by

both solutions. Ic) Some problems are easier to

solve with the momentum fonnula, but it is not

more basic.

discussion

12 X l(f kgm/sec; 4 x lO- N; 30 m
lal about 100 m/sec lb) about 4.6 kg m/sec (c) less

than 0.003 sec id) at least 1-5 x lO^ N
yes

derivation

Kinetic

la)
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37. 1/4 kg

3H. 21 5 days

39. discussion

40. discussion

41. discussion

42. discussion

43. HIT, - TjjT.Tj

44. (a) discussion lb) greater in lower orbit Ic) less (dl

less (e) discussion

la) discussion lb) i: all three; ii: all three; iii: A/Y; iv:

AH; v: all three; vi: AH
discussion

derivation

48. ice: 12 kJ/°K; water -12 kJ/IC; no change in the

universe

45.

46

47

Chapter 11

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

IS.

16.

17.

18.

19.

20.

21.

22.

23.

24.

2S.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

3H.

information

discussion

discussion

A distribution is a statistical description.

discussion

no

discussion

la) 10" m lb) 10 » m
la) 10^' lb) 10'"

Zero meters

10.5 km
la) P = 66 N/m^ lb) T = lOQ-C

shoes: about 1/7 atm; skis: about 1/60 atm; skates:

about 3 atm
derivation

P = VJrr, therefore, P oc D, P oc T, and D a 1/T

when the other property is constant. The ideal

gas law does not apply to veiy dense gases, or to

gases when they liquil^.

discussion

discussion

discussion

derivation

no change

pressure, mass, volume, temperature

discussion

disi'ussion

di.scussion

discussion

discussion

derivation

discussion

Temperature will rise.

no

discussion

discussion

discussion

The mclling of ice is an im'xiTsilile pn)crss Ix*-

«"ause thr onlni'd arrangi'iiifnt of iii()li*('ulf*s in

the ice <r\stals is lost and entropy increases

discussion

(lis<-ussion

(li.s( ii.ssion

(li.scii.ssion

39. discussion

40. derivation

41. derivation

Chapter 12

1.
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Chapter 13

1. information

2. 7.5 cm
3. discussion

discussion

(a) 4.4 X 10" m (b) 3.0 X 10" m/sec (c» positive

deviations; conjunction cycle

1.8 X 10" m
(a) 9.5 X 10'^m (b) 4,300years (c) 30 times as great

derivation

9. discussion

10. 0.9 m; no, no

11. discussion

12. diagrams

13. (a) diagram (b) discussion

14. proof

15. (a) (m + 1/2) when m = 0, 1, 2 (b) greater (c)

increased separation of fringes (d) increased sep-

aration of fringes le) fainter but more extensive

for violet,/ = 7.5 x lO'Vsec; for red,/ = 4.2 x

lO'Vsec

d = 1.6 X 10"^ m
18. d = 1 X 10"' m
19. discussion

discussion

discussion

6 X 10'^ Hz; 10" times AM frequencies; 10' times

FM frequencies

23. verticfd

24. discussion

16

17

20
21

22

Chapter 14

1. information

2. (a) tripled (b) halved (c) no change

3. 95 km
4. discussion

5. yes; discussion; sketches

6. (a)1.6N/kg(b)4.2 x 10'* N/kg (c) directly propor-

tional to Vr
7. discussion

8. vector diagraims

9. (a) F = k(Q,Q2)/fl2

WhenQ2= Sqe-/' = 2 76 x 10 " N east

Q2 = 6qe. F = 5.5 X 10" N east

Q2 = 10 fle. F = 92 X 10" N east

Q2 = 34q^,F = 3.1 X 10- '» N east

(b) 5.76 X 10' N/C. The same values for the force F

are found as given in (a) for the various charges

Qj. (c) The field concept specifies the field at emy

point that will interact with a charge at that point,

as in (b).

10. (a) 10« C (b) 10-« C/m^

11. sketch (normal to surfaces)

12. help

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

625 X 10'* electrons

3.4 X 10*^

(a)l/2mv2 = i/2/cq7fl(b)1.2 x l0-"'J(c)1.5 x 10"

m/sec

Metals are conductors.

30 V
same or zero

derivation

3 X lO*' V/m
10' V/m
(a) 12 V (b) zero (c) 12 V

(a) 1.6 X 10" J (b) 5.7 X 10* m/sec

(a) / = E/R = 12/3 = 4 A; if the voltage is doubled,

the current / is doubled to 8 A. (b) Voltage de-

scribes a potential difference between two
points. Current describes a flow of charge

through a conductor.

fl = 25 ft; when / = 2 A, = £ 50 V. If Ohms law
does not apply, and you do not know another

relation between voltage, current, and resistance,

you cannot relate current to voltage.

P = 150 W; fl = 16.7 n
Power before the cut is 5,825 W, current is 48.5 A.

Power after the 5% cut is 5,534 W, current is 48.5 A.

You are not cheated, since you pay for power in

watts.

The power limit of the circuit breaker is 1,200 W.

You can add four lamps drawong 150 W each.

(a) 4 A (b) 5 n (c) 15 V

(a) 10' V (b) 5 X 10* J

discussion

20 W
(a) 8 W (b) 20 W (c) 45 W
magnetic field vertical at surface

(a) north (b) 1 A, north

(a) An ampere is defined as the amount of current

in each of two long, straight parallel wires, set 1 m
apart, that causes a force of exactly 2 x 10 ' N to

act on each meter of each ware. The unit of force

between the wires is N/mA^(b)F =4.8 x 10"^ N
(a) derivation (b) v, B, and fl

derivation

west

discussion

Chapter 15

1. information

2. discussion

3. yes

4. all except (d)

5. sketch

6. (a) exercise (b) upward (d) downward
7. Lenz's law

8. outside magnet

9. opposite

10. discussion

11. (a) the series circuit (b) the series circuit (c) the

parallel circuit (d) In a parellel circuit, added

resistors decrease the total effective resistance

and the total current and power increase.
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12. In series, each resistor carrries 5 A. In series, the

total resistance is 8 il and the total current is 1^

A. For each resistor, the current is 1 5 A at 6 V. In

parallel, the total resistance is 2 il and the cur-

rent is 6 A. For each resistor, the voltage is 6 V and

the current is 4 A.

13. In series, the total resistance is 15 O and the

current is 3.3 A in each resistor. The voltage ac-

ross the 5 fi resistor is 1G.7 V at 33 A. The voltage

across the 10nresistoris33.3V and the current is

3.3 A. In parallel, the total voltage is 50 Vand the

total current is 15 A, The voltage is 50 V across

both resistors. The current through the 5 il resis-

tor is 10 A and through the 10 il resistor it is 5 A.

14. (a) 1 A (b) 10 n (c) bum out

15. (a) 1/12 A (b) 1,440 il, the same
16. (a) 1 A (b) 1/5 W (c) 1/2 A; 1/20 W (d) 0.97 A; 0.19 W;

5.6 W, 0.50 A, 0.05 W, 6 W
17. 5 A
18. derivation

19. The constantly changing magnetic field of the

primary coils induces a constantly changing cur-

rent in the transformer core and the coils of the

secondary circuit by electromagnetic induction.

20. low voltage coil

21. discussion

22. discussion

23. report

24. discussion

25. The efficiency of electric power plants is limited

by the second law of thermodynamics. Modem
power plants can achieve about 38-40?i effi-

ciency for fossil fuel plants and 30?o for nuclear

plants (the maximum possible efficiency is 60%

for fossil fuel plants and 50% for nuclear plants).

Chapter 16

1. information

2. symmetry

3. no

4. accelerating charge, mutual induction

5. (a I height (bl pressure (c) field strength

6. deflector orientation

7. light properties

8. discussion

9. discussion

10. 5 X 10* m; 600 m and 193 m; 11 m
11. 10 m to 100 m
12. discussion

13. discussion

14. (a)TVor FM: 10" Hz (frequency), 1 m (wawlength);

r«(l light: lO'Mlz. 10 *m; infrared: lO'Uiz, 10 'm:

electric wires: 10' Hz, 10* m (b) 1\' or VM: little

diffraction; red light: shaqi shadow; infrared:

shaqi shadow: electric wires: gn>at diffraction

15. discussion

16. ionospheric r«»flection of shorter wavelength

radiation

17. 42.400 km
IH. phase differtMue betwiHMi dinnt and reflected

waves

19. 2 6 sec

20. absorption

21. e\'olution

22. ultraviolet and infrared

23. discussion

24. unnecessary

25. discussion

26. discussion

27. discussion

28. essay

29. essay

Chapter 17

1. information

2. 80.3% zinc; 19.7% OJ^gen

3. 47.9% zinc

4.13 9 times mass of H atom; same

5. 986 g nitrogen; 214 g hydrogen

6. (a) 14.1 (b) 282 (c) 7S)

7. Na;l M3 P;5 Ca2 Sn;4

8. graph; discussion

9. 8.0 g: 0.895 g
10. (a) 0.05 g Zn (b) 030 g Zn (c) 12 g Zn

11. (a) 0.88 g CI (b) 3 14 g I (c) discussion (d) discus-

sion

12. 35 45 g
13. discussion

14. discussion

Chapter 18

1. infonnation

2. (a) 2 X 10' m/sec (b) 18 x 10" C/kg

3. proof

4. discussion

5. discussion

6. 2000 A; ultraviolet

7. 4 X 10 ''J; 4 X 10 "J
8. 2.6 X 10 '»; 1.6 eV

9. 4.9 X iQ'Vsec

10. (a) 6 X lO'Vsec (b) 4 x lO '• J (c) 25 x io*»

photons (d) 2-5 photons/sec le) 04 sec (f) 2-5 x

10'" photon (g) 6 25 x 10'" electrons/sec;

1 A
11. 13 x 10" photons

12. (a) 6 X 10" elections (b) 54 x 10*' copper

atoms/cm* (c) 12 x lO " cm* (d) 23 x lo *

13. (a) 2;k = nX (b) 2;c = any odd number of half

wavelengths (c) cos 6 = Zd/k for f\rs\ order

14. 12 X lO'Vsec

15. discussion

16. 12 X 10* \: 19 X 10 '« J; 12 x lO* e\

17. glossary

18. discussion

Chapter 19

1. information

2. <ILs(-iis.sion

3. Fiw are listed in the 7>.t(. but theoretically an

infinite number. Four lines in visible region
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4. n X 8; X = 3880 A
n X 10; X = 3790 A
n X 12; X = 3740 A

5. (a) yes (b) n, x x (c) Lyman series 910 A; Balmer
series 3650 A; Paschen series 8200 A (dl 21.8 x
10'* J, 13.6 eV

6. discussion

7. discussion

8. 2.6 x lO-'« m
9. (al discussion (b) 10"Vl

10. 3.5 m
11. derivation

12. discussion

13. list

14. diagram

lS-21. discussion

22. essay

Chapter 22

1. information

2. discussion

3. discussion

4. (a) discussion (b) discussion

5. (a) fl = ^, Rvm (b) 5.4 cm (c) 5.640 m
Bq

Id) 0.004« m
6. equations

7. chart

8. diagram

9. diagram

10. 4,000 years; 23,000 years

11. (a) 12.011 amu (b) 6.941 amu (c) 2072 amu
12. 4.0015 amu
13. la) X 1/4 (b) about x 1/2

(c) about 225 x 10* years Id) yes

Chapter 20

1. information

2. 0.14 c or 42 X lo" m/sec
3. 3.7 X 10-'^ N
4. p = m„v and KE = m„v-/2

5. la) changes are too small lb) 1.1 x lO"'^ kg

6. la) 2.7 X ltf» J lb) 3.0 x io'« kg Ic) 5 x 10"^% Id) rest

mass
7. (a) 12 X 10--- kg m/sec lb) 1.1 x lO"" kg m/sec

(c)2.4 X 10---kgm/secld)l.l x lO"" kg m/sec

8. p = 1.7 X 10--' kg m/sec; v = 1.9 x 10^ m/sec

9. discussion

10. diagram

11. 6.6 X lO*' m/sec

12. 3.3 X 10"^ m
13. X becomes larger

14. la) 3.3 X 10"" m/sec lb) 5.0 x lO"' m/sec Ic) 3.3 x
10* m/sec Id) 3.3 x 10* m/sec

15. discussion

16. 3 x 10-3' j„

17 — 24. discussion

Chapter 21

1. information

2. discussion

3. la) 12 X 10" J lb) 0.75 MeV
4. la) 5.7 X 10"^ m lb) 210 m Ic) R = 3,700 R^

5. Charges are positive; field is into the page.

6. la) 1.8 X 10^ N/C lb) 1.8 x lO^ V Ic) undeflected

7. la) y lb) a Ic) a Id) y le) -y If) a or -y Ig) /3 Ih) a

li) a Ij) /3

8. discussion

9. la) one-half lb) three-quarters (c) discussion

10. 10%

11. (a) graph lb) proof Ic) 5.0 x lo^" atoms

12. (a) 5.7 xiO'^ J/disintegration lb) 45 W
13. 3.70 x 10' disintegration/sec

14. 2The number remains constant.

15. la) about 4 days (b) discussion

16-19. activity

Chapter 23

1. information

2. discussion

3. 235 protons; 143 electrons

4. equations

5. equations

6. la) y lb) Al^"* Ic) Mg--" Id) Mg-^

7. la) discussion lb) in Unit 3 under conservation

laws.

8. 1.10 amu, 52%
9. table

10. la) 78 lb) 79 Ic) 80 Id) 80

11. la) iiNa-"* lb) ,,Na-^ Ic) ..Na^'' Id) nNa^-*

12-15. discussion

16. Less by 0.02758 amu
17. acti\ity

Chapter 24

1. information

2. 4.95 MeV
3. 7.07 MeV/nucleon

4. opposite directions, each 8.65 MeV
5. absorbed, 1.19 MeV
6. 0.56 MeV
7. 8.61 meV
8. neutron capture, /3-decay, /3-decay

9. Ba'*' is 1180 MeV; Kr^ is 800 MeV;
U"* is 1790 MeV. discussion

10. 208 MeV
11. diagram
12—14. discussion

15. 26.7 MeV
16. lal 4 33 X 10* kg/sec (b) 523 x lO" horsepower

17. equations

18. 1.59 MeV released

19. IP^ is fissionable

20. Pu-^' is fissionable

21. discussion

22. essay

23. activity
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Faraday, and electrochemical reac-

tions, 212

Faraday disk dynamo (activity),

206-207
Forc;e, between magnet and cur-

rent (experiment), 187- 190

central (film loop), 98-99
centripetal, 32-33
on currents (experiment), 183-

187

electric (experiments), 179-183
inverse-square, 99

magnetic, 192

nuclear, 235

on a pendulum (activity), 92- 93

variation in wire length and, 196

FORTRAN, 97

Foundations of Modern Physical

Science (Holton and Roller),

204

Frames of reference (activity),

89-90
fixed and moving, 44-45

Franck- Hertz effect, 229

Free fall, 42-43
acceleration in, 18-21
from aircraft, 46- 47

from mast of ship, 45-46
Frequencies, measuring unknown

(activity), 42

of waves, 139

Friction, on rotating disk, 34

Galilean relativity (film loops).

45-47
Galileo (activity), 90

inclined plane experiment.
18-21

Galileo (Brecht), 90

"Galileo: Antagonist," Physics
Teacher, 90

"Galileo Galilei: An Outline of His

Life," Physics Teacher, 90

Galileo Quadricenlennial Supplc-

mcrnt , Sky and Irli'scoiw . 90

Galileo and the Scientific llevolu-

tion (Femii), 90

Gas(e8), behavior of (experiment),

137- 138

pn^ssun^ of, 137- 138

standing waves in (film loop).

170-171
tcmpeiatiire of, 138

volume and pressure (experi-

ment), 137- 138

volume and temperalun* (exper-

imenll, 138

(Jas Ihennonu'ler 128

Gauss. 205

(iay Lussac 's law. nMalioii between
tempernlun' and volmne
137

Geiger counter 238

(ient'ralor demonstration of larii\-

ity), 209

bicy«le (activity). 209

(ieneialor jump rope (aclivilyi 207

Geocentric model of universe, 94

Gilbert's versorium (activity), 203-
204

Gliders, collisions of, 103, 120-121

Graph, drawing of 18

Gravitational potential energy 'film

loop), 164-165
Gravity, acceleration caused by

(film loop), 42-43
measuring acceleration of (ex-

periment). 21-24
Great Nebula, in Andromeda and

Orion. 66

Half-life (experiments). 243-248
Halleys comet, plotting orbit of

(experiment), 79-82
Handkerchief diffraction grating

(activity), 200

Heat, conversion to mechanical
energy (activity), 148-149

exchange and transfer of (exper-

iment), 132

latent, of melting ice (experi-

ment), 132

mechanical equivalent of (activ-

ity), 149-150
Heat capacity, measurement of,

130-131
Heat energy, conversion of (activ-

ity). 148-149
measuring of. 128- 132

Height of Piton. a mountain on the

moon (experiment). 57-60
H«'liocentric model of universe,

94-95
Heliocentric system, 63

Histogram. 238-239
Horizontal motion, measurement

of. 47

Horsepower, student (activity), 148

Hurdle race, analysis of. I and II

(film loops). 47- 48

Hvadt's. observations of 66

Hvclrogen atom, calculating eneq^
levc!ls for. 225

Ice, calorimetry (experiment).
131-132

latent heal of melting. 132

Ice lens, construction of lai ii\iivi

203

Icosahedral dice. 237

Images, n-al. 63-64
IncidcMice. angle of. 176

Inclination, of Mars c>r<)it. 70-72
Inclined air track in enei^ffk cc»n-

servation experiment,
120- t21

Inclined-plane exjx'rimeni 18-21

Inelastic collisions 106

onc'-dimensional ililm IcKipl. 157

tv\(i-climc>nsional (film Icxipl. 158

Inertia and gravitation. 28

Intrarecl pholographv (actixitv I 201

Instanlaiieoiis s|>ec-cl. 42

Interference, ultra&ound (experi-

ment). 146

wave. 139: ^experiment). 140, 144

Interference pattern (experiment),

141-142
of light lexperiment), 178

Inverse-square force, 99

Ionization, measurement of (actK--

ity), 229-230
Ionization enei^. 229. 248

Ionosphere. 198

Irregular areas, measurement of

(activityi. 91

Isolated north magnetic p>oIe (activ-

ityi. 206

Iterated blows. 98-99
Iteration of orbits, 76

Julian Day. 53

Jupiter mass of, 97

observations of 65-66
positions of 60-61
satellite orbit (film loop), 95-97

Kepler's laws (film loop), 99-100
satellite orbit and. 90

Kinetic ener^gv- (film loop), 165- 166

calculation of (film loop), 160

see also Enei^'

LaboratoPk' notebook report, 2-3
L^nd effect. 202

Land two-color demonstrations
(activityi. 202

Lapis Polaris Magnes (activityi.

209-210
Latent heat, measurement of (ex-

periment!, 130- 131

Latent Image iNewhalli 201

Latex squares, electron microg-
raph of 217

Lead nitrate, in conservation of

mass experiment, 147

Least enei^^k' (experiment). 124-

125

Lenses, in telescope (experimenll,

63-67
Light, angles of incidence and re-

fraction 176

diffraction of 222

dis|M>rsiun into s|)(>ctra. 222- 223

effiHt on metal surface (experi-

ment i. 219-222
interfen-nc-e patterns of (experi-

menll. 178

pholcH'lcMtric eflFecl of (experi-

ment!. 219-222
|)olanA4Hi. 202-203
rainbow effe<t (activity!. 201 - 202

scattered lactKit> i. 201

wave and particle models of.

13- 16

wavelength of (experimenll,

177-179
st'c alstt ("cilcjr \\avr(»l

Ijghl tM*am n>traction of (experi-

nu-nli 175-176
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Line of nodes, 80

Liquids, mixing hot and cold (ex-

periment), 129

Liquid-surface accelerometer,
35-37

Literature, Elizabethan world view
in (activity), 89

Longitudinal wave pulse, 139

Lunar eclipses (table), 12

Mach, Ernst, and inertia, 28
Magnesium flashbulb, in conserva-

tion of mass activity, 147

Magnet(s), interactions of, 119- 120
modeling atoms with (activity),

230-231
Magnetic field, deflection of elec-

tron beam by, 192; (experi-

ment), 214-217
measuring intensity of (activity),

204-205
Magnetic pole (activity), 206

Marbles, collision probability for a

gas of (experiment), 133-
134

inferring size of, 133-134
Mars, inclination of orbit (experi-

ment), 70-72
orbit of (experiment), 67- 70

positions of, 60-61
Mass, conservation of (activity), 147

inertial, 28

measuring of (experiment),
27-28

neutron, 253
weight and (experiment), 28

Mathew Brady (Horan), 201

Mean free path, between collision

squares (experiment),
134-135

Measurement(s), of acceleration

(experiment), 25— 28

of acceleration in free fall, 18-21
of acceleration of gravity, 21-24
angular (activity), 83- 84

of elementary charge (experi-

ment), 217-219
of enei^ (film loop), 164

of energy of beta (/3) radiation

(experiment), 250-252
of irregular areas (activity), 91

of magnetic field intensity (activ-

ity), 204-205
ofmass and weight (experiment),

27-28
of momentum, 156-157
precision in, 16—18
of speed of sound (experiment),

154-155
of uniform motion (experiment),

14-18
of unknown frequencies (activ-

ity), 42

of wavelength (experiment),
178-179

Mechanical energy, conversion of

heat to (activity), 148-149

Mechanical wave machines (expjer-

iment), 155

Melting, 130

Mercury, elongations of, 73

orbit of (experiment), 72- 75

Metal plate, vibrations of (film

loop), 173-174
Meters, construction of (activity),

207-208
Method of beats, 195

Microwaves, interference of re-

flected, 197-198
properties of (experiment),

196-197
reflected, 197-198
signals and (experiment), 198-

199

Microwave transmission systems
(activity), 210

Millikan, oU drop experiment, 217

Modeling atoms with magnets (ac-

tivity), 230-231
Model ofthe orbit of Halley's comet

(experiment), 79- 82

"Moire Patterns" (Oster and
Nishijima), Scientific

American, 154

Moire wave patterns (experiment),

153-154
Molecular collisions, Monte Carlo

experiment on, 132-135
Momentum, conservation of,

110- 112, 157- 158; (activity),

147- 148

measurement of, 156-157
Momentum devices, exchange of

(activity), 147-148
Monte Carlo method in moleculiir

collisions experiment,
132-135

Moon, crater names of (activity), 89

distance to (experiment), 57

height of mountain on (experi-

ment), 57-60
observations of, 66; (experiment),

10-11, 51

phases of, 51

surface of, 58-59
"Moon Illusion, The," Scientific

American, 84

Motion, on inclined plane (experi-

ment), 18-20, 20-21
Neuron's second law of (experi-

ment), 25-28
perpetual (activity), 150—151
relative (film loop), 44-45
retrograde (experiment), 60-61
in a rotating reference frame (ac-

tivity), 40-41
uniform (experiment), 14-18
see also Acceleration; Speed;

Velocity

Motor, construction of (activity),

208
demonstration of (activity), 209

Motor- generator demonstration
(activity), 208-209

Music, and speech (experiment),

154

wave patterns of (experiment),

154

Nails, in measurement of kinetic

energy experiment, 165-
166

Naked-eye astronomy (experi-

ment), 7-12, 50-54
Net count rate, 245

Neutron, calculating mass of, 253
New Handbook of the Heavens, 65

Newton's second law (experiment),

25-28
Nodal lines, 141

Nodes, 141, 172

North magnetic pole (activity), 206
North star (Polaris), 9

Nuclear force, 235

Objective lens, 64

Occultation, 96

One-dimensional collisions (exper-

iment), 102-109
(film loop), 156-157
stroboscopic photographs of,

104-110
Orbital eccentricity, Ccilculation of,

74-75
Orbits, comet (activity), 91

computer program of, 97- 98
earth's, 79

five elements of, 72

of Halley's comet (experiment),

79-82
of Jupiter satellite (film loop),

95-97
of Mars (experiment), 67-70
of Merciory (experiment), 72-75
parabolic (activity), 91- 92

pendulum, 92- 93

of planets, 53-54, 65-75
satellite (activity), 90

stepwise approximation to (ex-

periment), 75-79
unusual (film loop), 100-101

Orion, Great Nebula in, 66

Oscillator, calibration of, 28
Out ofMy Later Years (Einstein), 227

Parabola, in least energy experi-

ment, 124-126
waterdrop, photograph of (activ-

ity), 39

Parabolic orbit, drawing of (activ-

ity), 91-92
Parallax, 57, 186

Partially elastic collisions (film

loop), 162-163
Particle and wave models of light,

13-16
Pendulum, ballistic, 122- 123

forces on (activity), 92- 93

measuring gravity by (experi-

ment), 22-23
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Pendulum accelerometer (activity),

38

Pendulum swing, energ>' analysis

of lexptifiment), 124-126

Penny and coathanger laciivity), 42

Perfectly inelastic collision, 106

Perihelion, advance of, 101

Periodic wave, 139

Perpetual Motion and Modern Re-

search for Cheap Power
(Smedile), 205

Perpetual motion machines (activ-

ity), 150-151, 205-206
"Perpetual Motion Machines," Sci-

entific American, 205

Perturbation, 100-101

Photoelectric effect (activity),

227-228
(experiment), 219-222

Photoelectric equation, 222

Photoelectric tube, 219-220
Photographic activities, 201

Photography, history of (activity),

201

infrai-ed, 201

measuring gravity by, 23

Polaroid, 4-5
Schlieren, 201

of spectrum (experiment), 223-

224

stroboscopic, measuring gravity

by (experim«mt), 24

of waterdi-op parabola, 23-24
Physics collage (activity), ?tf9

"Physics and Music," Scientific

American, 153, 154

Physics for Entertainment (Perel-

man), 203

Physics of Television (Fink and Lu-

tyens), 210

"Physics of Violins, The," Scientific

American, 154

"Physics of Woodwinds, The," Sci-

entific American, 154

Picket fence analog\', and polarized

light. 203

Piton, height of (experiment I,

57-60
Planck's constant, 222

Planet(s), locating and graphing

(experiment), 53-54
observ'ati{)ns of lexperiment). 11

Planetaiy longitudes Itablel, 53

Planetary notes Itablel, 12

Pleides, observations of. 66

Poissons spot (activity), 201

Polaris (North Star), 9

»»olari/,e«l light (activity). 202-203

Poliirir^'d Lifiht (Shurx-liflf and Hal-

lartl), 202

PolaiDid l,.ind camera, use of. 4-5
Pole vault itllm loop). 166-167

IH)lonium. disintegration of, 247-

248

IV)stag«' stamps honoring scientists

(activity). 228-229
Polenlial eiieiXV. 124-126

Power, output of (activity), 148

Pressure, atomospheric (activity),

149-150
volume of gas and (experiment),

137-138
Principia (Newton), 91

Program orbit, I and II (film loops),

97-98
Proiectile(s), ballistic cart (activity),

39-40
fired vertically (film loop), 47

speed of, 122- 123

Projectile motion demonstration

(activity), 38

Projectile trajectories, photograph-

ing of (activity), 39- 40

Pucks, in collision experiment, 111

Pulls and jerks (activity), 35

Pulses, 139

see also Wave(s)

Quantum Electronics (Pierce), 210

Radiation, heal exchange by. 132

elect rxjmagnetic and microwave,

197-198
Radio transmitter, generation of

electromagnetic waves by,

211

Radioactive decay, .see Half-life

Radioactive isotopes, half-life of,

245-246
as tracers. 248-250

Radioactive tracers (experiment).

248-250
Rainbow effect (activity). 201-202

Raisin pudding" atom model. 230

Random event)s) (experiment).

236-240
Random event disks. 236-237. 243

Random two-digit nirmbers (table).

136

Reading suggestions (activit>'). 210

Real images, 63-64
Recoil (film loop). 162

Recoi-d-kee|)ing. 4-5
Rectification, of diode. 193-194
Refer-erue. in astronomy. 7-10
Reflection, soirnd iex|>erimentl. 143

irltrasound (experiment). 145

wave (experiment). 140 152- 153

Refraction, angle of. 176

of colors. 176- 177

of a light beam (experiment),

175-177
Refraction, sound (experiment).

143

wavv, 139. 140

Regirlarity. aird time (experiment),

12

Relativflv prirniple. 46

Resonant cirxuitsiexiJorimenti. 15HJ

Retnigrade motion (ex|>eriment),

60-61
epicycles and (activity). 84-86
giMicentric model of (film loop).

94

heliocentric model of (film loop),

94-95

Right ascension. 86

Ripple tank. wav«s in (exp>eriment),

140

Role of Music in Galileo's Experi-

ments. The, " Scientific

American, 20

Rotating disk, friction on. 34

Rotating reference frame, moving
objfH-t in (activity). 40-41

Rubber hose, vibrations of (film

loop), 172-173
Rubber tubing and welding rod

wave machine. 155

RutherfortI nuclear model. 230-

231

scattering experiment and (film

loop). 234-235

Satellite orbits, demonstrating of

(activity). 90

of Jupiter. 95-96
"Satellite Ortiit Simulator." Scien-

tific .American 90

Saturn, observations of. 65

Scale model of the solar svstem (ac-

tivity), 88

Scattered light (activity). 201

Scattering of a cluster of objects

(film loop). 158-159

Schlieren photography (activityl,

201

Science ofMoire Patterns, The (0»-

terl. 154

Science of Sounds, The ' Bell

Telephone Laboratories . 154

Science from Your Airplane Win-

dow (V\'ood). 202

.S'cienf//ic American, activities from.

227

Scientific method, 4-S
Scientists on stamps (activityl,

228-229
Seventeenth Centur\- Background

(Willev ). 89

Sha|M* of the earths orbit (experi-

ment), 61-63
Siden'al day lactKityi 87

Signals and micnnvavvs (exfieri-

menti, 198- 199

Similarities in Wave Behavior
iShivv), 155

Single-elcvtnKle plating (actKit>i,

226-227
Sinusoidal curvvs. 168- 170

Size of the earth (experiment).

54-56
Sodiirm pnHhrction b\- elet-troK'sis

(film liMip) 233

Solar iTlrpsrs (table) 12

Solar svstem. scale model of lactiv-

it>), 88

Sound (ex|»erimpnl), 142-144

calculating s|)«>«'<l of 144

Sounil vvavrs tliffr-action of lexjirr-

iment), 143
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reflection of, 143

refraction of (experiment), 143

speed of (experiment), 144,

154-155
transmission of, 143

see also Ultrasound; Wave(s)

Specific heat capacity, 131

Spectra, creating and analyzing,

222-225
Spectroscopy (experiment), 222-

225

Speech, and music (experiment),

154

Speech wave patterns (experi-

ment), 154

Speed, of bullet (experiment),
122-124; (film loop), 160-
162

constant, 26

electron charge, 192

instantaneous, 42

of sound (experiment), 144,

154-155
of a stream of water (activity),

38-39
ultrasound (experiment), 146

Stamps, scientists on (activity),

228-229
Standard deviation, 237

Standard error, 237

Standing wave(sl, on a band saw
blade (activity), 231

on a drum and xaolin (experi-

ment), 152, 153

electromagnetic (film loop), 211

in a gas (film loop), 170-171
on a string (film loop), 170

in a wire ring, 232

Stars, chart of, 8

observations of (experiment), 11

Steel balls, in collision experiment,

104-109, 157-159
Stepwise approximation of an orbit

(experiment), 75-79
Stonehenge (activity), 88-89
Stonehenge Decoded ( Hawkins and

White), 89

"Stonehenge Physics," Physics To-

day, 89

Stopping voltage, 220

String, standing waves on (film

loop), 170

Stroboscopic photography, mea-
suring gravity by, 24

of one-dimensional collision,

104-110
of two-dimensional collision,

113-118, 121-122
Sun, earths orbit around, 63

observations of (experiment), 10,

50-51
Sundial, building of (activity), 88

Sundials (Mayall and Mayall), 88

Sunspots, observation of, 66-67
Superposition (film loop), 168- 170

Tagged atoms, 248-249

Telescope," aiming and focusing of,

64-65
making of (experiment), 63- 67
observations with, 64-67

Temperature, of gas (exp>eriment),

138

thermometers and (experiment),

126-128
Temperature scale, defined, 126-

127

Terminator, 58

Thermometers, comparison of,

127-128
constant pressure gas, 128

making of, 126-127
temperature and (experiment),

126-128
Thin film interference (activity), 200

Thomson, J. J., and cathode rays,

192

model of the atom and (film

loop), 233-234
"raisin pudding" atomic model

and, 230

Thorium decay series, 246-247
Threshold frequency, 222

Time, and regularity (experiment),

12

reversibility of (film loop), 168

Tire pressure gauge, weighing a car

with (activity), 150

Total internal reflection, 177

Tracers, in chemical reactions, 250

radioactive (experiment), 248-
250

Trajectories, curves of (experi-

ment), 28-30
prediction of (experiment),

30-32
Transistor amplifier (activity), 206
Transit, 96

Transmission, of sound (experi-

ment), 143

ultrasound (experiment), 145

Transverse wave, 139

Trial of Copernicus (activity), 93

Triode, characteristics (experi-

ment), 193-194
Turntable, centripetal force on (ac-

tivity), 33-34
measuring gravity by (experi-

ment), 24

Turntable oscillator patterns, and
de Broglie waves (activity),

231

Turntable oscillators in wave-
communication experi-

ment, 195

Twentieth-century version of

Galileo's experiment (exper-

iment), 20-21
Two-dimensional collisions, I and

II (experiment), 110-118;
(film loop), 157-158

stroboscopic photographs of,

113-118, 121-122

TVvo Mew Sciences (Galileo), 45

Ultrasound (experiment), 144-146
speed of (experiment), 146

Uniform motion, measuring of (ex-

periment), 14-18
Unusual orbits (film loop), 100- 101

Vacuum tubes, characteristics of,

193-194
Vector addition (film loop), 43-44
Velocity, of a boat (film loop), 43-44

recoil, 162

see also Speed
Velocity time graph, 163

Venus, and earth- sun distance

(activity), 91

observations of, 65

Vernal equinox, 67, 86

Versorium, Gilbert's (activity),

203-204
Vertical motion, measurement of,

46

Vibrations, of a drum (film loop),

173

of a metal plate (film loop), 173-
174

of a rubber hose (film loop),

172-173
of a uire, 232; (film loop), 171-

172

see also Wave patterns

Violin, standing waves on, 152, 153

wave patterns of, 170

Volta, and electrochemical reac-

tions, 212

Voltaic pile, construction of (activ-

ity), 204

Volume, and pressure ofgas (exper-

iment), 137-138
temperature of a gas and (expei^

iment), 138

Water electrolysis of (activity), 226

interference pattern in, 141-142
speed of stream of (activity),

38-39
VVaterdrop( s), measuring gravity by,

23-24
V\'aterdrop parabola, photograph-

ing of (activity), 39

Water wave(s), reflection of (exper-

iment), 152-153
Wave(s), and communication (ex-

periment), 195-199
de Broglie, 231

diffraction (experiment), 140

electromagnetic, 211

frequency, 139

interference (experiment), 140,

144

interference pattern (experi-

ment), 141-142
longitudinal. 139

microwaves, interference of,

197-198
periodic, 139

properties (experiment), 139
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reflection (experiment), 140,

197-198
refraction (experiment I, 140

sinusoidal, 168-170
sound, sec Sound waves
standing, 141, 143- 144, 152; (film

loop), 211

transverse, 139

water, 152- 153

see also Light; Sound; Standing

waves
Wave fniquencies, 139

Wavelength, 139

of light, 177-179

measuring of (experiment), 141,

145, 178-179
of sound (experiment), 143-144

Wave machines (experiment), 155

Waves and Messages (Pierce), 210

Wave and particle models of light,

13-16
Wave patterns («;xperiment), 152,

153

moire (experiment), 153- 154

music and sjjeech (experiment),

154

violin. 170

Weight, and mass, 28

measuring of (experiment),
27-28

Wire, vibrations of. 232; (film loop),

171-172
Wire ring, standing waves in (activ-

ity), 232

Work, output of (activity), 148

X rays, fixjm a Crookes lube (activ-

ity). 228

Young's experiment: the

wavelength of light (experi-

nienli 177- 179
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