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This is not a physics textbook. Rather, it is a physics

reader, a collection of some of the best articles and

book passages on physics. A few are on historic events

in science, others contain some particularly memorable

description of what physicists do; still others deal with

philosophy of science, or with the impact of scientific

thought on the imagination of the artist.

There are old and new classics, and also some little-

known publications; many have been suggested for in-

clusion because some teacher or physicist remembered

an article with particular fondness. The majority of

articles is not drawn from scientific papers of historic

importance themselves, because material from many of

these is readily available, either as quotations in the

Project Physics text or in special collections.

This collection is meant for your browsing. If you follow

your own reading interests, chances are good that you

will find here many pages that convey the joy these

authors have in their work and the excitement of their

ideas. If you want to follow up on interesting excerpts,

the source list at the end of the reader will guide you

for further reading.
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An outstanding contemporary theoretical physicist rem-

inisces informally about science and its role in society.

Feynman stresses the importance in science, and else-

where, of admitting that one does not know all the an-

swers.

The Value of Science

Richard P. Feynman

An excerpt from Frontiers of Science, 1 958.

From time to time, people suggest to me that scientists ought

to give more consideration to social problems—especially that

they should be more responsible in considering the impact of

science upon society. This same suggestion must be made to

many other scientists, and it seems to be generally believed that

if the scientists would only look at these very difficult social

problems and not spend so much time fooling with the less vital

scientific ones, great success would come of it.

It seems to me that we do think about these problems

from time to time, but we don't put full-time effort into them—
the reason being that we know we don't have any magic for-

mula for solving problems, that social problems are very much
harder than scientific ones, and that we usually don't get any-

v/here when we do think about them.

I believe that a scientist looking at nonscientific problems is

just as dumb as the next guy—and when he talks about a non-

scientific matter, he will sound as naive as anyone untrained in

the matter. Since the question of the value of science is not a

scientific subject, this discussion is dedicated to proving my
point—by example.

The first way in which science is of value is famihar to every-

one. It is that scientific knowledge enables us to do all kinds

of things and to make all kinds of things. Of course if we make
good things, it is not only to the credit of science; it is also to

the credit of the moral choice which led us to good work. Sci-

entific knowledge is an enabling power to do either good or

bad—but it does not carry instructions on how to use it. Such
power has evident value—even though the power may be negated

by what one does.

I learned a way of expressing this common human problem

on a trip to Honolulu. In a Buddhist temple there, the man in

charge explained a little bit about the Buddhist religion for

tourists, and then ended his talk by telling them he had some-

thing to say to them that they would never forget—and I have
never forgotten it. It was a proverb of the Buddhist religion:



"To every man is given the key to the gates of heaven; the

same key opens the gates of hell."

What then, is the value of the key to heaven? It is true that

if we lack clear instructions that determine which is the gate to

heaven and which the gate to hell, the key may be a dangerous
object to use, but it obviously has value. How can we enter

heaven without it?

The instructions, also, would be of no value without the key.

So it is evident that, in spite of the fact that science could
produce enormous horror in the world, it is of value because it

can produce something.

Another value of science is the fun called intellectual enjoy-

ment which some people get from reading and learning and
thinking about it, and which others get from working in it. This
is a very real and important point and one which is not con-

sidered enough by those who tell us it is our social responsi-

bility to reflect on the impact of science on society.

Is this mere personal enjoyment of value to society as a

whole? No! But it is also a responsibihty to consider the value
of society itself. Is it, in the last analysis, to arrange things so

that people can enjoy things? If so, the enjoyment of science is

as important as anything else.

But I would like not to underestimate the value of the world

view which is the result of scientific effort. We have been led

to imagine all sorts of things infinitely more marvelous than
the imaginings of poets and dreamers of the past. It shows that

the imagination of nature is far, far greater than the imagination

of man. For instance, how much more remarkable it is for us

all to be stuck—half of us upside down—by a mysterious attrac-

tion, to a spinning ball that has been swinging in space for bil-

lions of years, than to be carried on the back of an elephant
supported on a tortoise swimming in a bottomless sea.

I have thought about these things so many times alone that

I hope you will excuse me if I remind you of some thoughts
that I am sure you have all had—or this type of thought—which
no one could ever have had in the past, because people then
didn't have the information we have about the world today.

For instance, I stand at the seashore, alone, and start to think.

There are the rushing waves . . . mountains of molecules, each
stupidly minding its own business . . . trillions apart . . . yet
forming white surf in unison.

Ages on ages . . . before any eyes could see . . . year after

year . . . thunderously pounding the shore as now. For whom,
for what? ... on a dead planet, with no life to entertain.

Never at rest . . . tortured by energy . . . wasted prodigiously
by the sun . . . poured into space. A mite makes the sea roar.

Deep in the sea, all molecules repeat the patterns of one
another till complex new ones are formed. They make others

like themselves . . . and a new dance starts.



The Value of Science

Growing in size and complexity . . . living things, masses

of atoms, DNA, protein . . . dancing a pattern ever more intricate.

Out of the cradle onto the dry land . . . here it is standing

. . . atoms with consciousness . . . matter with curiosity.

Stands at the sea . . . wonders at wondering ... I ... a uni-

verse of atoms ... an atom in the universe.

THE GRAND ADVENTURE

The same thrill, the same awe and mystery, come again

and again when we look at any problem deeply enough. With

more knowledge comes deeper, more wonderful mystery, luring

one on to penetrate deeper still. Never concerned diat the an-

swer may prove disappointing, but with pleasure and confidence

we turn over each new stone to find unimagined strangeness

leading on to more wonderful questions and mysteries—certainly

a grand adventure!

It is true that few unscientific people have this particular

type of religious experience. Our poets do not write about it;

our artists do not try to portray this remarkable thing. I don't

know why. Is nobody inspired by our present picture of the

universe? The value of science remains unsung by singers, so

you are reduced to hearing—not a song or a poem, but an eve-

ning lecture about it. This is not yet a scientific age.

Perhaps one of the reasons is that you have to know how to

read the music. For instance, the scientific article says, perhaps,

something hke this: "The radioactive phosphorus content of

the cerebrum of the rat decreases to one-half in a period of

two weeks." Now, what does that mean?

It means that phosphorus that is in the brain of a rat (and

also in mine, and yours) is not the same phosphorus as it was

two weeks ago, but that all of the atoms that are in the brain

are being replaced, and the ones that were there before have

gone away.

So what is this mind, what are these atoms with conscious-

ness? Last week's potatoes! That is what now can remember

what was going on in my mind a year ago—a mind which has

long ago been replaced.

That is what it means when one discovers how long it takes

for the atoms of the brain to be replaced by other atoms, to

note that the thing which I call my individuality is only a pat-

tern or dance. The atoms come into my brain, dance a dance,

then go out; always new atoms but always doing the same

dance, remembering what the dance was yesterday.

THE REMARKABLE ffiEA

When we read about this in the newspaper, it says, *TTie

scientist says that this discovery may have importance in the

cure of cancer." The paper is only interested in the use of the

idea, not the idea itself. Hardly anyone can understand the



importance of an idea, it is so remarkable. Except that, possibly,

some children catch on. And when a child catches on to an

idea like that, we have a scientist. These ideas do filter down ( in

spite of all the conversation about TV replacing thinking), and

lots of kids get the spirit—and when they have the spirit you

have a scientist. It's too late for them to get the spirit when they

are in our universities, so we must attempt to explain these ideas

to children.

I would now like to turn to a third value that science has.

It is a little more indirect, but not much. The scientist has a

lot of experience with ignorance and doubt and uncertainty,

and this experience is of very great importance, I think. When
a scientist doesn't know the answer to a problem, he is ig-

norant. When he has a hunch as to what the result is, he is

uncertain. And when he is pretty dam sure of what the result

is going to be, he is in some doubt. We have found it of para-

mount importance that in order to progress we must recog-

nize the ignorance and leave room for doubt. Scientific knowl-

edge is a body of statements of varying degrees of certainty-

some most unsure, some nearly sure, none absolutely certain.

Now, we scientists are used to this, and we take it for granted

that it is perfectly consistent to be unsure—that it is possible

to live and not know. But I don't know whether everyone real-

izes that this is true. Our freedom to doubt was bom of a

struggle against authority in the early days of science. It was a

very deep and strong struggle. Permit us to question—to doubt,

that's all—not to be sure. And I think it is important that we
do not forget the importance of this struggle and thus perhaps

lose what we have gained. Here lies a responsibility to society.

We are all sad when we think of the wondrous potentialities

human beings seem to have, as contrasted with their small ac-

comphshments. Again and again people have thought that we
could do much better. They of the past saw in the nightmare

of their times a dream for the future. We, of their future, see

that their dreams, in certain ways surpassed, have in many ways

remained dreams. The hopes for the future today are, in good
share, those of yesterday.

EDUCATION, FOR GOOD AND EVIL

Once some thought that the possibilities people had were
not developed because most of those people were ignorant

With education universal, could all men be Voltaires? Bad can

be taught at least as eflBciently as good. Education is a strong

force, but for either good or evil.

Communications between nations must promote understand-

ing: so went another dream. But the machines of communication
can be channeled or choked. What is communicated can be
truth or lie. Communication is a strong force also, but for

either good or bad.



The Value of Science

The applied sciences should free men of material problems

at least. Medicine controls diseases. And the record here seems

all to the good. Yet there are men patiently working to create

great plagues and poisons. They are to be used in warfare to-

morrow.

Nearly everybody dislikes war. Our dream today is peace. In

peace, man can develop best the enormous possibilities he

seems to have. But maybe future men will find that peace, too,

can be good and bad. Perhaps peaceful men will drink out of

boredom. Then perhaps drink will become the great problem

which seems to keep man from getting all he thinks he should

out of his abilities.

Clearly, peace is a great force, as is sobriety, as are material

power, communication, education, honesty and the ideals of

many dreamers.

We have more of these forces to control than did the ancients.

And maybe we are doing a little better than most of them

could do. But what we ought to be able to do seems gigantic

compared with our confused accomplishments.

Why is this? Why can't we conquer ourselves?

Because we find that even great forces and abilities do not

seem to carry with them clear instructions on how to use them.

As an example, the great accumulation of understanding as to

how the physical world behaves only convinces one that this

behavior seems to have a kind of meaninglessness. The sciences

do not directly teach good and bad.

Through all ages men have tried to fathom the meaning of

life. They have realized that if some direction or meaning could

be given to our actions, great human forces would be unleashed.

So, very many answers must have been given to the question

of the meaning of it all. But they have been of all different

sorts, and the proponents of one answer have looked with horror

at the actions of the believers in another. Horror, because from

a disagreeing point of view all the great potentialities of the

race were being channeled into a false and confining blind

alley. In fact, it is from the history of the enormous monstrosities

created by false belief that philosophers have realized the ap-

parently infinite and wondrous capacities of human beings. The
dream is to find the open channel.

What, then, is the meaning of it all? What can we say to

dispel the mystery of existence?

If we take everything into account, not only what the an-

cients knew, but all of what we know today that they didn't

know, then I think that we must frankly admit that we do

not know.

But, in admitting this, we have probably found the open
channel.

This is not a new idea; this is the idea of the age of reason.

This is the philosophy that guided the men who made the



democracy that we live under. The idea that no one really knew
how to run a government led to the idea that we should ar-

range a system by which new ideas could be developed, tried

out, tossed out, more new ideas brought in; a trial and error

system. This method was a result of the fact that science was

already showing itself to be a successful venture at the end

of the i8th century. Even then it was clear to socially-minded

people that the openness of the possibihties was an opportunity,

and that doubt and discussion were essential to progress into

the unknown. If we want to solve a problem that we nave

never solved before, we must leave the door to the unknown
ajar.

OUR RESPONSEBILTTY AS SCIENTISTS

We are at the very beginning of time for the human race.

It is not unreasonable that we grapple with problems. There

are tens of thousands of years in the future. Our responsibihty

is to do what we can, leam what we can, improve the solutions

and pass them on. It is our responsibility to leave the men of

the future a free hand. In the impetuous youth of humanity,

we can make grave errors that can stunt our growth for a long

time. This we will do if we say we have the answers now, so

young and ignorant; if we suppress all discussion, all criticism,

saying, "This is it, boys, man is savedl" and thus doom man for

a long time to the chains of authority, confined to the limits

of our present imagination. It has been done so many times

before.

It is our responsibility as scientists, knowing the great prog-

ress and great value of a satisfactory philosophy of ignorance,

the great progress that is the fruit of freedom of thought, to

proclaim the value of this freedom, to teach how doubt is not

to be feared but welcomed and discussed, and to demand this

freedom as our duty to all coming generations.



This chapter from a science fiction novel by a present-

day astronomer offers some non-fiction insight Into the

way the scientist works. Another chapter from this

same novel is in the Unit 2 Reader.

2 Close Reasoning

Fred Hoyle

A chapter from his book The Black Cloud, 1957.

It is curious in how great a degree human
progress depends on the individual. Humans, numbered in

thousands of milhons, seem organised into an ant-Hke so-

ciety. Yet this is not so. New ideas, the impetus of all

development, come from individual people, not from cor-

porations or states. New ideas, fragile as spring flowers,

easily bruised by the tread of the multitude, may yet be

cherished by the solitary wanderer.

Among the vast host that experienced the coming of the

Cloud, none except Kingsley arrived at a coherent under-

standing of its real nature, none except Kingsley gave the

reason for the visit of the Cloud to the solar system. His first

bald statement was greeted with outright disbelief even by

his fellow scientists—Alexandrov excepted.

Weichart was frank in his opinion.

"The whole idea is quite ridiculous," he said

Marlowe shook his head.

"This comes of reading science fiction."

"No bloody fiction about Cloud coming straight for

dam' Sun. No bloody fiction about Cloud stopping. No
bloody fiction about ionisation," growled Alexandrov.

McNeil, the physician, was intrigued. The new develop-

ment was more in his line than transmitters and aerials.

"I'd like to know, Chris, what you mean in this context

by the word 'alive.'
"

"Well, John, you know better than I do that the distinc-

tion between animate and inanimate is more a matter of

verbal convenience than anything else. By and large, inani-

mate matter has a simple structure and comparatively

simple properties. Animate or living matter on the other

hand has a highly complicated structure and is capable of

very involved behaviour. When I said the Cloud may be

alive I meant that the material inside it may be organised

in an intricate fashion, so that its behaviour and conse-

quently the behaviour of the whole Cloud is far more

complex than we previously supposed."



"Isn't there an element of tautology there?"—from

Weichart.

"I said that words such as 'animate' and 'inanimate'

are only verbal conveniences. If they're pushed too far they

do appear tautological. In more scientific terms I expect the

chemistry of the interior of the Cloud to be extremely

complicated—complicated molecules, complicated structures

built out of molecules, complicated nervous activity. In

short I think the Cloud has a brain."

"A dam' straightforward conclusion," nodded Alexan-

drov.

When the laugh had subsided, Marlowe turned to Kings-

ley.

"Well, Chris, we know what you mean,* at any rate we
know near enough. Now let's have your argument. Take
your time. Let's have it point by point, and it'd better be

good."

"Very well then, here goes. Point number one, the tem-

perature inside the Cloud is suited to the formation of

highly complicated molecules."

"Rightl First point to you. In fact, the temperature is

perhaps a little more favourable than it is here on the

Earth."

"Second point, conditions are favourable to the forma-

tion of extensive structures built out of complicated mole-

cules."

"Why should that be so?" asked Yvette Hedelfort.

"Adhesion on the surface of solid particles. The density

inside the Cloud is so high that quite large lumps of solid

material—probably mostly ordinary ice—are almost certainly

to be found inside it. I suggest that the complicated mole-

cules get together when they happen to stick to the surfaces

of these lumps."

"A very good point, Chris," agreed Marlowe.

"Sorry, I don't pass this round." McNeil was shaking

his head. "You talk of complicated molecules being built

up by sticking together on the surface of solid bodies. Well,

it won't do. The molecules out of which living material is

made contain large stores of internal energy. Indeed, the

processes of life depend on this internal energy. The trou-

ble with your sticking together is that you don't get energy

into the molecules that way."

Kingsley seemed unperturbed.

"And from what source do the molecules of living crea-

tures here on the Earth get their internal supplies of en-

ergy?" he asked McNeil.

"Plants get it from sunlight, and animals get it from

plants, or from other animals of course. So in the last

analysis the energy always comes from the Sun."

"And where is the Cloud getting energy from now?"

The tables were turned. And as neither McNeil nor any-

one else seemed disposed to argue, Kingsley went on:



Close Reasoning

"Let's accept John's argument. Let's suppose that my
beast in the Cloud is built out of the same sort of molecules

that we are. Then the light from some star is required in

order that the molecules be formed. Well, of course star-

light is available far out in the space between the stars, but

it's very feeble. So to get a really strong supply of light the

beast would need to approach close to some star. And
that's just what the beast has donel"

Marlowe became excited.

"My God, that ties three things together, straight away.

The need for sunlight, number one. The Cloud making a

bee-line for the Sun, number two. The Cloud stopping

when it reached the Sun, number three. Very good,

Chris."

"It is a very good beginning, yes, but it leaves some
things obscure," Yvette Hedelfort remarked. "I do not

see," she went on, "how it was that the Cloud came to be

out in space. If it has need of sunlight or starlight, surely it

would stay always around one star. Do you suppose that

this beast of yours has just been born somewhere out in

space and has now come to attach itself to our Sun?"

"And while you're about it, Chris, will you explain how
your friend the beast controls its supplies of energy? How
did it manage to fire off those blobs of gas with such

fantastic speed when it was slowing down?" asked Leices-

ter.

"One question at a timel I'll take Harry's first, because

it's probably easier. We tried to explain the expulsion of

those blobs of gas in terms of magnetic fields, and the expla-

nation simply didn't work. The trouble -was that the re-

quired fields would be so intense that they'd simply burst

the whole Cloud apart. Stated somewhat differently, we
couldn't find any way in which large quantities of energy

could be localised through a magnetic agency in compara-

tively small regions. But let's now look at the problem
from this new point of view. Let's begin by asking what
method we ourselves would use to produce intense local

concentrations of energy."

"Explosions!" gasped Barnett.

"That's right, explosions, either by nuclear fission, or

more probably by nuclear fusion. There's no shortage of

hydrogen in this Cloud."

"Are you being serious, Chris?"

"Of course I'm being serious. If I'm right in supp>osing

that some beast inhabits the Cloud, then why shouldn't he
be at least as intelligent as we are?"

"There's the slight difficulty of radioactive products.

Wouldn't these be extremely deleterious to living ma-
terial?" asked McNeil.

"If they could get at the living material, certainly they

would. But although it isn't possible to produce explosions

with magnetic fields, it is possible to prevent two samples of



material mixing with each other. I imagine that the beast

orders the material of the Cloud magnetically, that by

means of magnetic fields he can move samples of material

wherever he wants inside the Cloud. I imagine that he takes

very good care to keep the radioactive gas well separated

from the living material—remember I'm using the term

'living' for verbal convenience. I'm not going to be drawn
into a philosophical argument about it."

"You know, Kingsley," said Weichart, "this is going

far better than I thought it would. What I suppose you
would say is that whereas basically we assemble materials

with our hands, or with the aid of machines that we have

made with our hands, the beast assembles materials with

the aid of magnetic energy."

"That's the general idea. And I must add tliat the beast

seems to me to have far the better of it. For one thing he's

got vastly more energy to play with than we have."

"My God, I should think so, billions of times more, at

the very least," said Marlowe. "It's beginning to look,

Chris, as if you're winning this argument. But we objectors

over here in this corner are pinning our faith to Yvette's

question. It seems to me a very good one. What can you
offer in answer to it?"

"It is a very good question, Geoff, and I don't know
that I can give a really convincing answer. The sort of idea

I've got is that perhaps the beast can't stay for very long

in the close proximity of a star. Perhaps he comes in pe-

riodically to some star or other, builds his molecules, which
form his food supply as it were, and then pushes off again.

Perhaps he does this time and time again."

"But why shouldn't the beast be able to stay perma-

nently near a star?"

"Well, an ordinary common or garden cloud, a beastless

cloud, if it were permanently near a star, would gradually

condense into a compact body, or into a number of com-

pact bodies. Indeed, as we all know, our Earth probably

condensed at one time from just such a cloud. Obviously

our friend the beast would find it extremely embarrassing to

have his protective Cloud condense into a planet. So

equally obviously he'll decide to push off before there's

any danger of that happening. And when he pushes off

he'll take his Cloud with him."

"Have you any idea of how long that will be?" asked

Parkinson.

"None at all. I suggest that the beast will push off

when he's finished recharging his food supply. That might

be a matter of weeks, months, years, millennia for all I

know."
"Don't I detect a slight smell of rat in all this?"

Barnett remarked.

"Possibly. I don't know how keen your sense of smell is,

Bill. What's your trouble?"
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Close Reasoning

"I've got lots of troubles. I should have thought that
your remarks about condensing into a planet apply only to

an inanimate cloud. If we grant that the Cloud is able to

control the distribution of material within itself, then it

could easily prevent condensation from taking place. After
all, condensation must be a sort of stability process and I

would have thought that quite a moderate degree of con-

trol on the part of your beast could prevent any condensa-

tion at all."

"There are two replies to that. One is that I believe the

beast will lose his control if he stays too long near the Sun.

If he stays too long, the magnetic field of the Sun will

penetrate into the Cloud. Then the rotation of the Cloud
round the Sun will twist up the magnetic field to blazes. All

control would then be lost."

"My God, that's an excellent point."

"It is, isn't it? And here's another one. However dif-

ferent our beast is to life here on Earth, one point he

must have in common with us. We must both obey the

simple biological rules of selection and development. By
that I mean that we can't suppose that the Cloud started

oflE by containing a fully-fledged beast. It must have started

with small beginnings, just as life here on Earth started

with small beginnings. So to start with there would be no
intricate control over the distribution of material in the

Cloud. Hence if the Cloud had originally been situated

close to a star, it could not have prevented condensation

into a planet or into a number of planets."

"Then how do you visualise the early beginnings?"

"As something that happened far out in interstellar

space. To begin with, life in the Cloud must have depended
on the general radiation field of the stars. Even that would
give it more radiation for molecule-building purposes than

life on the Earth gets. Then I imagine that as intelligence

developed it would be discovered that food supplies—i.e.

molecule-building—could be enormously increased by mov-

ing in close to a star for a comparatively brief i)eriod-

As I see it, the beast must be essentially a denizen of

interstellar space. Now, Bill, have you any more troubles?"

"Well, yes, I've got another problem. Why can't the

Cloud manufacture its own radiation? Why bother to

come in close to a star? If it understands nuclear fusion to

the point of producing gigantic explosions, why not use

nuclear fusion for producing its supply of radiation?"

"To produce radiation in a controlled fashion requires a

slow reactor, and of course that's just what a star is. The
Sun is just a gigantic slow nuclear fusion reactor. To pro-

duce radiation on any real scale comparable with the Sun,
the Cloud would have to make itself into a star. Then the

beast would get roasted. It'd be much too hot inside."

"Even then I doubt whether a cloud of this mass could
produce very much radiation," remarked Marlowe. "Its

mass is much too small. According to the mass-luminosity

11



relation it'd be down as compared with the Sun by a

fantastic amount. No, you're barking up a wrong tree

there, Bill."

"I've a question that I'd like to ask," said Parkinson.

"Why do you always refer to your beast in the singular?

Why shouldn't there be lots of little beasts in the

Cloud?"

"I have a reason for that, but it'll take quite a while to

explain."

"Well, it looks as if we're not going to get much sleep

tonight, so you'd better carry on."

"Then let's start by supposing that the Cloud contains

lots of little beasts instead of one big beast. I think you'll

grant me that communication must have developed be-

tween the difiEerent individuals."

"Certainly."

"Then what form will the communication take?"

"You're supposed to be telling us, Chris."

"My question was purely rhetorical. I suggest that com-
munication would be impossible by our methods. We com-
municate acoustically."

"You mean by talking. That's certainly your method all

right, Chris," said Ann Halsey.

But the point was lost on Kingsley. He went on.

"Any attempt to use sound would be drowned by the

enormous amount of background noise that must exist in-

side the Cloud. It would be far worse than trying to talk in

a roaring gale. I think we can be pretty sure that communi-
cation would have to take place electrically."

"That seems fair enough,"

"Good. Well, the next point is that by our standards the

distances between the individuals would be very large, since

the Cloud by our standards is enormously large. It would
obviously be intolerable to rely on essentially D.C. methods
over such distances."

"D.C. methods? Chris, will you please try to avoid jar-

gon."

"Direct current."

"That explains it, I supposel"

"Oh, the sort of thing we get on the telephone. Roughly

speaking the difference between D.C. communication and

A.C. communication is the difference between the tele-

phone and radio."

Marlowe grinned at Ann Halsey.

"What Chris is trying to say in his inimitable manner is

that communication must occur by radiative propaga-

tion."

"If you think that makes it clearer. . .
."

"Of course it's clear. Stop being obstructive, Ann. Radi-

ative propagation occurs when we emit a light signal or a

radio signal. It travels across space through a vacuum at a

speed of 186,000 miles per second. Even at this speed it

would still take about ten minutes for a signal to travel

across the Cloud.
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Close Reasoning

"My next point is that the volume of information that

can be transmitted radiatively is enormously greater than

the amount that we can communicate by ordinary sound.

We've seen that with our pulsed radio transmitters. So if

this Cloud contains separate individuals, the individuals

must be able to communicate on a vastly more detailed

scale than we can. What we can get across in an hour of

talk they might get across in a hundredth of a second."

"Ah, I begin to see light," broke in McNeil. "If com-

munication occurs on such a scale then it becomes some-

what doubtful whether we should talk any more of separate

individuals!"

"You're home, John I"

"But I'm not home," said Parkinson.

"In vulgar parlance," said McNeil amiably, "what

Chris is saying is that individuals in the Cloud, if there are

any, must be highly telepathic, so telepathic that it becomes
rather meaningless to regard them as being really separate

from each other."

"Then why didn't he say so in the first place?"—from

Ann Halsey.

"Because like most vulgar parlance, the word 'telepa-

thy' doesn't really mean very much."
"Well, it certainly means a great deal more to me."

"And what does it mean to you, Ann?"
"It means conveying one's thoughts without talking, or

of course without writing or winking or anything like

that."

"In other words it means—if it means anything at all

—communication by a non-acoustic medimn."
"And that means using radiative propagation,"

chipped in Leicester.

"And radiative propagation means the use of alter-

nating currents, not the direct currents and voltages we use

in our brains."

"But I thought we were capable of some degree of

telepathy," suggested Parkinson.

"Rubbish. Our brains simply don't work the right way
for telepathy. Everything is based on D.C. voltages, and
radiative transmission is impossible that way."

"I know this is rather a red herring, but I thought these

extrasensory people had established some rather remarkable

correlations," Parkinson |>ersisted.

"Bloody bad science," growled Alexandrov. "Correla-

tions obtained after experiments done is bloody bad. Only

prediction in science."

"I don't follow."

"What Alexis means is that only predictions really count

in science," explained Weichart. "That's the way Kings-

ley downed me an hour or two ago. It's no good doing a

lot of experiments first and then discovering a lot of correla-

tions afterwards, not unless the correlations can be used for
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making new predictions. Otherwise it's like betting on a

race after it's been run."

"Kingsley's ideas have many very interesting neurologi-

cal implications," McNeil remarked. "Communication
for us is a matter of extreme difficulty. We ourselves have to

make a translation of the electrical activity—essentially D.C.

activity—in our brains. To do this quite a bit of the brain is

given over to the control of the lip muscles and of the vocal

cords. Even so our translatioi. is very incomplete. We
don't do too badly perhaps in conveying simple ideas, but

the conveying of emotions is very difficult. Kingsley's little

beasts could, I suppose, convey emotions too, and that's

another reason why it's rather meaningless to talk of sepa-

rate individuals. It's rather terrifying to realise that every-

thing we've been talking about tonight and conveying so

inadequately from one to another could be communicated
with vastly greater precision and understanding among
Kingsley's little beasts in about a hundredth of a second."

"I'd like to follow the idea of separate individuals a

little further," said Barnett, turning to Kingsley. "Would
you think of each individual in the Cloud as building a

radiative transmitter of some sort?"

"Not as building a transmitter. Let me describe how I

see biological evolution taking place within the Cloud. At
an early stage I think there would be a whole lot of more
or less separate disconnected individuals. Then communica-
tion would develop, not by a deliberate inorganic building

of a means of radiative transmission, but through a slow

biological development. The individuals would develop a

means of radiative transmission as a biological organ, rather

as we have develojied a mouth, tongue, lips, and vocal

cords. Communication would improve to a degree that we
can scarcely contemplate. A thought would no sooner be

thought than it would be communicated. An emotion
would no sooner be experienced than it would be shared.

With this would come a submergence of the individual and
an evolution into a coherent whole. The beast, as I visual-

ise it, need not be located in a particular place in the

Cloud. Its different parts may be spread through the

Cloud, but I regard it as a neurological unity, interlocked

by a communication system in which signals are transmitted

back and forth at a speed of 186,000 miles a second."

"We ought to get down to considering those signals

more closely. I suppose they'd have to have a longish

wave-length. Ordinary light presumably would be useless

since the Cloud is opaque to it," said Leicester.

"My guess is that the signals are radio waves," went on
Kingsley. "There's a good reason why it should be so. To
be really efficient one must have complete phase control in a

communication system. This can be done with radio waves,

but not so far as we know with shorter wave-lengths."
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Close Reasoning

McNeil was excited.

"Ovir radio transmissions!" he exclaimed. "They'd have

interfered with the beast's neurological control."

"They would if they'd been allowed to."

"What d'you mean, Chris?"

"Well, the beast hasn't only to contend with our tranv

missions, but with the whole welter of cosmic radio waves.

From all Quarters of the Universe there'd be radio waves

interfering with its neurological activity unless it had devel-

oped some form of protection."

"What sort of protection have you in mind?"
"Electrical discharges in the outer part of the Cloud

causing sufficient ionisation to prevent the entry of external

radio waves. Such a protection would be as essential as the

skull is to the human brain."

Aniseed smoke was rapidly filling the room. Marlowe sud-

denly found his pipe too hot to hold and put it down
gingerly.

"My God, you think this explains the rise of ionisation

in the atmosphere, when we switch on our transmitters?"

"That's the general idea. We were talking earlier on
about a feedback mechanism. That I imagine is just what
the beast has got. If any external waves get in too deeply,

then up go the voltages and away go the discharges until

the waves can get in no farther."

"But the ionisation takes place in our own atmos-

phere."

"For this purpose I think we can regard our atmosphere

as a part of the Cloud. We know from the shimmering of

the night sky that gas extends all the way from the Earth to

the denser parts of the Cloud, the disk-like parts. In short

we're inside the Cloud, electronically speaking. That, I

think, explains our communication troubles. At an earlier

stage, when we were outside the Cloud, the beast didn't

protect itself by ionising our atmosphere, but through its

outer electronic shield. But once we got inside the shield

the discharges began to occur in our own atmosphere. The
beast has been boxing-in our transmissions."

"Very fine reasoning, Chris," said Marlowe.

"Hellish fine," nodded Alexandrov.

"How about the one centimetre transmissions? They
went through all right," Weichart objected.

"Although the chain of reasoning is getting rather long

there's a suggestion that one can make on that. I think it's

worth making because it suggests the next action we might

take. It seems to me most unlikely that this Cloud is

unique. Nature doesn't work in unique examples. So let's

suppose there are lots of these beasts inhabiting the Galaxy.

Then I would expect communication to occur between one
cloud and another. This would imply that some wave-

lengths would be required for external communication pur-
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poses, wave-lengths that could penetrate into the Cloud and
would do no neurological harm."
"And you think, one centimetre may be such a wave-

length?"

"That's the general idea."

"But then why was there no reply to our one centimetre

transmission?" asked Parkinson.

"Perhaps because we sent no message. There'd be no
point in replying to a perfectly blank transmission."

"Then we ought to start sending pulsed messages on the

one centimetre," exclaimed Leicester. "But how can we
expect the Cloud to decipher them?"

"That's not an urgent problem to begin with. It will be

obvious that our transmissions contain information—that

will be clear from the frequent repetition of various pat-

terns. As soon as the Cloud realises that our transmissions

have intelligent control behind them I think we can expect

some sort of reply. How long will it take to get started,

Harry? You're not in a position to modulate the one centi-

metre yet, are you."

"No, but we can be in a couple of days, if we work
night shifts. I had a sort of presentiment that I wasn't

going to see my bed tonight. Come on, chaps, let's get

started."

Leicester stood up, stretched himself, and ambled out.

The meeting broke up. Kingsley took Parkinson on one
side.

"Look, Parkinson," he said, "there's no need to go

gabbling about this until we know more about it."

"Of course not. The Prime Minister suspects I'm ofiE

my head as it is."

"There is one thing that you might pass on, though. If

London, Washington, and the rest of the political circus

could get ten centimetre transmitters working, it's just pos-

sible that they might avoid the fade-out trouble."

When Kingsley and Ann Halsey were alone later that

night, Ann remarked:

"How on earth did you come on such an idea, Chris?"

"Well, it's pretty obvious really. The trouble is that

we're all inhibited against such thinking. The idea that the

Earth is the only possible abode of life runs pretty deep in

spite of all the science fiction and kid's comics. If we had
been able to look at the business with an impartial eye we
should have spotted it long ago. Right from the first, things

have gone wrong and they've gone wrong according to a

systematic sort of pattern. Once I overcame the psychologi-

cal block, I saw all the difficulties could be removed by one
simple and entirely plausible step. One by one the bits of

the puzzle fitted into place. I think Alexandrov probably

had the same idea, only his English is a bit on the terse

side."
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Close Reasoning

"On the bloody terse side, you mean. But seriously, do
you think this communication business will work?"

"I very much hoj>e so. It's quite crucial that it

should."

"Why do you say that?"

"Think of the disasters the Earth has suffered so far,

without the Cloud taking any purposive steps against us. A
bit of reflection from its surface nearly roasted us. A short

obscuration of the Sun nearly froze us. If the merest tiny

fraction of the energy controlled by the Cloud should be

directed against us we should be wiped out, every plant and
animal."

"But why should that happen?"

"How can one tell? Do you think of the tiny beetle or

the ant that you crush under your foot on an afternoon's

walk? One of those gas bullets that hit the Moon three

months ago would finish us. Sooner or later the Cloud will

probably let fly with some more of 'em. Or we might be

electrocuted in some monstrous discharge."

"Could the Cloud really do that?"

"Easily. The energy that it controls is simply monstrous.

If we can get some sort of a message across, then perhaps

the Cloud will take the trouble to avoid crushing us under

its foot."

"But why should it bother?"

"Well, if a beetle were to say to you, 'Please, Miss

Halsey, will you avoid treading here, otherwise I shall be

crushed,' wouldn't you be willing to move your foot a

trifle?"
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Scientists often stress that there Is no single scientific

method. Bridgman emphasizes this freedom to choose

between many procedures, a freedom essential to sci-

ence.

On Scientific Method

Percy W. Bridgman

An excerpt from his book Reflections of a Pfiysicist, 1955.

It seems to me that there is a good deal of ballyhoo

about scientific method. I venture to think that the

people who talk most about it are the people who
do least about it. Scientific method is what working

scientists do, not what other people or even they

themselves may say about it. No working scientist,

when he plans an experiment in the laboratory, asks

himself whether he is being properly scientific, nor

is he interested in whatever method he may be using

as method. When the scientist ventures to criticize

the work of his fellow scientist, as is not inicommon,

he does not base his criticism on such glittering

generalities as failure to follow the "scientific

method," but his criticism is specific, based on some

feature characteristic of the particular situation. The
working scientist is always too much concerned with

getting down to brass tacks to be willing to spend

his time on generalities.

Scientific method is something talked about by

people standing on the outside and wondering how
the scientist manages to do it. These people have

been able to uncover various generalities applicable

to at least most of what the scientist does, but it

seems to me that these generalities are not very pro-

found, and could have been anticipated by anyone

who knew enough about scientists to know what is

their primary objective. I think that the objectives

18 of all scientists have this in common—that they are



On Scientific Method

all trying to get the correct answer to the particular

problem in hand. This may be expressed in more

pretentious language as the pursuit of truth. Now if

the answer to the problem is correct there must be

some way of knowing and proving that it is correct

—the very meaning of truth implies the possibility

of checking or verification. Hence the necessity for

checking his results always inheres in what the

scientist does. Furthermore, this checking must be

exhaustive, for the truth of a general proposition

may be disproved by a single exceptional case. A
long experience has shown the scientist that various

things are inimical to getting the correct answer. He

has found that it is not sufficient to trust the word

of his neighbor, but that if he wants to be sure, he

must be able to check a result for himself. Hence

the scientist is the enemy of all authoritarianism.

Furthermore, he finds that he often makes mistakes

himself and he must learn how to guard against

them. He cannot permit himself any preconception

as to what sort of results he will get, nor must he

allow himself to be influenced by wishful thinking

or any personal bias. All these things together give

that "objectivity" to science which is often thought

to be the essence of the scientific method.

But to the working scientist himself all this ap-

pears obvious and trite. What appears to him as

the essence of the situation is that he is not con-

sciously following any prescribed course of action,

but feels complete freedom to utilize any method or

device whatever which in the particular situation

before him seems likely to yield the correct answer.

In his attack on his specific problem he suffers no

inhibitions of precedent or authority, but is com-

pletely free to adopt any course that his ingenuity is

capable of suggesting to him. No one standing on

the outside can predict what the individual scien-

tist will do or what method he will follow. In short,

science is what scientists do, and there are as many

scientific methods as there are individual scientists.
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This is Polya's one-page summary of his book in which
he discusses strategies and techniques for solving prob-

lems. Polya's examples are from mathematics, but his

ideas are useful in solving physics problems also.

How to Solve It

George Polya

An excerpt from his book How To Solve It, 1945.

UNDERSTANDING THE PROBLEM
What is the unknown? What are the data? What is the condition?

Is it possible to satisfy the condition? Is the condition sufficient to
determine the unknown? Or is it insufiBcient? Or redundant? Or
contradictory?

Draw a figure. Introduce suitable notation.

Separate the various parts of the condition. Can you write them down?

First.

You have to understand

the problem.

Second.

Find the connection between
the data and the unknown.

You may be obliged

to consider auxiliary problems
if an immediate connection

cannot be found.

You should obtain eventually

a plan of the solution.

DEVISING A PLAN

Have you seen it before? Or Jiave you seen the same problem in a
slightly different form?

Do you know a related problem? Do you know a theorem that could
be useful?

Look at the unknown! And try to think of a familiar problem having
the same or a similar unknown.

Here is a problem related to yours and solved before. Could you use it?

Could you use its result? Could you use its method? Should you intro-
duce some auxiliary element in order to make its use possible?

Could you restate the problem? Could you restate it still differently?
Go back to definitions.

If you cannot solve the proposed problem try to solve first some related
problem. Could you imagine a more accessible related problem? A
more general problem? A more special problem? An analogous problem?
Could you solve a part of the problem? Keep only a part of the condi-
tion, drop the other part; how far is the unknown then determined,
how can it vary? Could you derive something useful from the data?
Could you think of other data appropriate to determine the unknown?
Could you change the unknown or the data, or both if necessary, so
that the new unknown and the new data are nearer to each other?

Did you use all the data? Did you use the whole condition? Have you
taken into account all essential notions involved in the problem?

Third.

Carry out your plan.

CARRYING OUT THE PLAN
Carrying out your plan of the solution, check each step. Can you see
dearly that the step is correct? Can you prove that it is correct?

Fourth.

Examine the solution obtained.

LOOKING BACK

Can you check the result? Can you check the argument?
Can you derive the result differently? Can you see it at a glance?

Can you use the result, or the method, for some other problem?
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The advice is directed primarily to the student planning

a career in the'sciences, but it should be of interest to

a wider group.

5 Four Pieces of Advice to Young People

Warren Weaver

Part of a talk given in Seattle during the Arches of Science Award Seminars, 1966.

One of the great prerogatives of age is the right to give advice to the young.

Of course, the other side of the coin is that one of the prerogatives of youth

is to disregard this advice. But. . . I am going to give you four pieces of ad-

vice, and you may do with all four of them precisely what you see fit.

The first one is this: I urge each one of you not to decide prematurely what

field of science, what specialty of science you are going to make your own.

Science moves very rapidly. Five years from now or ten years from now there

will be opportunities in science which are almost not discernible at the pres-

ent time. And, I think there are also, of course, fads in science. Science

goes all out at any one moment for work in one certain direction and the

other fields are thought of as being rather old-fashioned. But, don't let that

fool you. Sometimes some of these very old problems turn out to be extremely

significant.

May I just remind you that there is no physical entity that the mind of man has

thought about longer than \he phenomenon of light. One would ordinarily say

that it would be simply impossible at the present day for someone to sit down
and get a brand new idea about light, because think of the thousands of

scientists that have worked on that subject. And yet, you see this is what

two scientists did only just a few years ago when the laser was invented. They

got a brand new idea about light and it has turned out to be a phenomenally

important idea.

So, I urge you not to make up your minds too narrowly, too soon. Of course,

that means that what you ought to do is to be certain that you get a very solid

basic foundation in science so that you can then adjust yourselves to the

opportunities of the future when they arise. What is that basic foundation?
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Well, of course, you don't expect me to say much more than mathematics, do

you? Because I was originally trained as a mathematician and mathematics is

certainly at the bottom of all this. But 1 also mean the fundamentals of physics

and the fundamentals of chemistry. These two. Incidentally, are almost

indistinguishable nowadays from the fundamentals of biology.

The secondpieceof advice that I will just mention to you because maybe some

of you are thinking too exclusively in terms of a career in research. In my
judgment there is no life that is possible to be lived on this planet that is more

pleasant and more rewarding than the combined activity of teaching and

research.

I hope very much that many of you look forward to becoming teachers. It is a

wonderful life. I don't know of any better one myself, any more pleasant one,

or any more rewarding one. And the almost incredible fact is that they even

pay you for it. And, nowadays, they don't pay you too badly. Of course,

when I started, they did. But, nowadays, the pay is pretty good.

My third piece of advice—may I urge every single one of you to prepare your-

self not only to be a scientist, but to be a scientist-citizen. You have to

accept the responsibilities of citizenship in a free democracy. And those are

great responsibilities and because of the role which science plays in our modern

world, we need more and more people who understand science but who are also

sensitive to and aware of the responsibilities of citizenship.

And the final piece of advice is—and maybe this will surprise you: Do not

overestimate science, do not think that science is all that there is, do not

concentrate so completely on science that you end up by living a warped sort

of life. Science is not all that there is, and science is not capable of solving

all of life's problems. There are also many more very Important problems that

science cannot solve.

And so I hope very much there's nobody in this room who Is going to spend the

next seven days without reading some poetry. I hope that there's nobody In

this room that's going to spend the next seven days without listening to some

music, some good music, some modern music, some music. I hope very much
that there's nobody here who is not Interested in the creative arts, Interested in

drama, interested in the dance. I hope that you interest yourselves seriously in

religion, because if you do not open your minds and open your activities to this

range of things, you are going to lead too narrow a life.
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The size of an animal is related to such physical factors

as gravity and temperature. For most animals there ap-

pears to be an optimum size.

On Being the Right Size

J. B. S. Haldane

An excerpt from his book Possible Worlds, 1928.

From what has already been demonstrated, you can plainly see the impossi-

bility of increasing the size of structures to vast dimensions either in art

or in nature; likewise the impossibility of building ships, palaces, or temples

of enormous size in such a way that their oars, yards, beams, iron bolts,

and, in short, all their other parts will hold together; nor can nature pro-

duce trees of extraordinary size because the branches would break down

under their own weight, so also it would be impossible to build up the bony

structures of men, horses, or other animals so as to hold together and per-

form their normal functions if these animals were to be increased enor-

mously in height; for this increase in height can be accomplished only by

employing a material which is harder and stronger than usual, or by en-

larging the size of the bones, thus changing their shape until the form and

appearance of the animals suggest a monstrosity. This is perhaps what our

wise Poet had in mind, when he says, in describing a huge giant:

"Impossible it is to reckon his height

So beyond measure is his size." —Galileo Galilei

THE most obvious diflferences between different animals are differences

of size, but for some reason the zoologists have paid singularly little atten-

tion to them. In a large textbook of zoology before me I find no indication

that the eagle is larger than the sparrow, or the hippopotamus bigger than

the hare, though some grudging admissions are made in the case of the

mouse and the whale. But yet it is easy to show that a hare could not

be as large as a hippopotamus, or a whale as small as a herring. For

every type of animal there is a most convenient size, and a large change

in size inevitably carries with it a change of form.

Let us take the most obvious of possible cases, and consider a giant man
sixty feet high—about the height of Giant Pope and Giant Pagan in the

illustrated Pilgrim's Progress of my childhood. These monsters were not

only ten times as high as Christian, but ten times as wide and ten times as

thick, so that their total weight was a thousand times his, or about eighty

to ninety tons. Unfortunately the cross sections of their bones were only

a hundred times those of Christian, so that every square inch of giant bone

had to support ten times the weight borne by a square inch of human
bone. As the human thigh-bone breaks under about ten times the human
weight, Pope and Pagan would have broken their thighs every time they

took a step. This was doubtless why they were sitting down in the picture

I remember. But it lessens one's respect for Christian and Jack the Giant

Killer.
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To turn to zoology, suppose that a gazelle, a graceful little creature with

long thin legs, is to become large, it will break its bones unless it does one

of two things. It may make its legs short and thick, like the rhinoceros,

so that every pound of weight has still about the same area of bone to

support it. Or it can compress its body and stretch out its legs obliquely to

gain stability, like the giraffe. I mention these two beasts because they

happen to belong to the same order as the gazelle, and both are quite suc-

cessful mechanically, being remarkably fast runners.

Gravity, a mere nuisance to Christian, was a terror to Pope, Pagan,

and Despair. To the mouse and any smaller animal it presents practically

no dangers. You can drop a mouse down a thousand-yard mine shaft;

and, on arriving at the bottom, it gets a slight shock and walks away. A
rat would probably be killed, though it can fall safely from the eleventh

story of a building; a man is killed, a horse splashes. For the resistance

presented to movement by the air is proportional to the surface of the

moving object. Divide an animal's length, breadth, and height each by

ten; its weight is reduced to a thousandth, but its surface only to a hun-

dredth. So the resistance to falling in the case of the small animal is

relatively ten times greater than the driving force.

An insect, therefore, is not afraid of gravity; it can fall without danger,

and can cling to the ceiling with remarkably little trouble. It can go in for

elegant and fantastic forms of support like that of the daddy-long-legs. But

there is a force which is as formidable to an insect as gravitation to a

mammal. This is surface tension. A man coming out of a bath carries with

him a film of water of about one-fiftieth of an inch in thickness. This

weighs roughly a pound. A wet mouse has to carry about its own weight

of water. A wet fly has to lift many times its own weight and, as every

one knows, a fly once wetted by water or any other liquid is in a very

serious position indeed. An insect going for a drink is in as great danger

as a man leaning out over a precipice in search of food. If it once falls

into the grip of the surface tension of the water—that is to say, gets wet

—

it is likely to remain so until it drowns. A few insects, such as water-

beetles, contrive to be unwettable, the majority keep well away from their

drink by means of a long proboscis.

Of course tall land animals have other difficulties. They have to pump

their blood to greater heights than a man and, therefore, require a larger

blood pressure and tougher blood-vessels. A great many men die from

burst arteries, especially in the brain, and this danger is presumably still

greater for an elephant or a giraffe. But animals of all kinds find difficul-

ties in size for the following reason. A typical small animal, say a micro-

scopic worm or rotifer, has a smooth skin through which all the oxygen

it requires can soak in, a straight gut with sufficient surface to absorb its

food, and a simple kidney. Increase its dimensions tenfold in every direc-

tion, and its weight is increased a thousand times, so that if it is to use

its muscles as efficiently as its miniature counterpart, it will need a thou-

sand times as much food and oxygen per day and will excrete a thousand

times as much of waste products.

Now if its shape is unaltered its surface will be increased only a hun-

dredfold, and ten times as much oxygen must enter per minute through
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On Being the Right Size

each square millimetre of skin, ten times as much food through each

square miUimetre of intestine. When a Umit is reached to their absorptive

powers their surface has to be increased by some special device. For ex-

ample, a part of the skin may be drawn out into tufts to make gills or

pushed in to make lungs, thus increasing the oxygen-absorbing surface in

proportion to the animal's bulk. A man, for example, has a hundred

square yards of lung. Similarly, the gut, instead of being smooth and

straight, becomes coiled and develops a velvety surface, and other organs

increase in complication. The higher animals are not larger than the lower

because they are more complicated. They are more complicated because

they are larger. Just the same is true of plants. The simplest plants, such

as the green algae growing in stagnant water or on the bark of trees, are

mere round cells. The higher plants increase their surface by putting out

leaves and roots. Comparative anatomy is largely the story of the struggle

to increase surface in proportion to volume.

Some of the methods of increasing the surface are useful up to a point,

but not capable of a very wide adaptation. For example, while vertebrates

carry the oxygen from the gills or lungs all over the body in the blood,

insects take air directly to every part of their body by tiny blind tubes

called tracheae which open to the surface at many different points. Now,

although by their breathing movements they can renew the air in the

outer part of the tracheal system, the oxygen has to penetrate the finer

branches by means of diffusion. Gases can diffuse easily through very

small distances, not many times larger than the average length travelled

by a gas molecule between collisions with other molecules. But wnen such

vast journeys—from the point of view of a molecule—as a quarter of an

inch have to be made, the process becomes slow. So the portions of an

insect's body more than a quarter of an inch from the air would always

be short of oxygen. In consequence hardly any insects are much more

than half an inch thick. Land crabs are built on the same general plan as

insects, but are much clumsier. Yet like ourselves they carry oxygen

around in their blood, and are therefore able to grow far larger than any

insects. If the insects had hit on a plan for driving air through their

tissues instead of letting it soak in, they might well have become as large

as lobsters, though other considerations would have prevented them from

becoming as large as man.

Exactly the same difficulties attach to flying. It is an elementary prin-

ciple of aeronautics that the minimum speed needed to keep an aeroplane

of a given shape in the air varies as the square root of its length. If its

linear dimensions are increased four times, it must fly twice as fast. Now
the power needed for the minimum speed increases more rapidly than the

weight of the machine. So the larger aeroplane, which weighs sixty-four

times as much as the smaller, needs one hundred and twenty-eight times

its horsepower to keep up. Applying the same principles to the birds, we

find that the limit to their size is soon reached. An angel whose muscles

developed no more power weight for weight than those of an eagle or a

pigeon would require a breast projecting for about four feet to house the

muscles engaged in working its wings, while to economize in weight, its

legs would have to be reduced to mere stilts. Actually a large bird such as
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an eagle or kite does not keep in the air mainly by moving its wings. It

is generally to be seen soaring, that is to say balanced on a rising column

of air. And even soaring becomes more and more difficult with increasing

size. Were this not the case eagles might be as large as tigers and as

formidable to man as hostile aeroplanes.

But it is time that we passed to some of the advantages of size. One

of the most obvious is that it enables one to keep warm. All warm-blooded

animals at rest lose the same amount of heat from a unit area of skin, for

which purpose they need a food-supply proportional to their surface and

not to their weight. Five thousand mice weigh as much as a man. Their

combined surface and food or oxygen consumption are about seventeen

times a man's. In fact a mouse eats about one quarter its own weight of

food every day, which is mainly used in keeping it warm. For the same

reason small animals cannot live in cold countries. In the arctic regions

there are no reptiles or amphibians, and no small mammals. The smallest

mammal in Spitzbergen is the fox. The small birds fly away in the winter,

while the insects die, though their eggs can survive six months or more

of frost. The most successful mammals are bears, seak, and walruses.

Similarly, the eye is a rather inefficient organ until it reaches a large

size. The back of the human eye on which an image of the outside world

is thrown, and which corresponds to the film of a camera, is composed

of a mosaic of 'rods and cones' whose diameter is little more than a length

of an average light wave. Each eye has about half a million, and for two

objects to be distinguishable their images must fall on separate rods or

cones. It is obvious that with fewer but larger rods and cones we should

see less distinctly. If they were twice as broad two points would have to be

twice as far apart before we could distinguish them at a given distance.

But if their size were diminished and their number increased we should

see no better. For it is impossible to form a definite image smaller than a

wave-length of light. Hence a mouse's eye is not a small-scale model of a

human eye. Its rods and cones are not much smaller than ours, and there-

fore there are far fewer of them. A mouse could not distinguish one

human face from another six feet away. In order that they should be of

any use at all the eyes of small animals have to be much larger in pro-

portion to their bodies than our own. Large animals on the other hand

only require relatively small eyes, and those of the whale and elephant

are little larger than our own.

For rather more recondite reasons the same general principle holds

true of the brain. If we compare the brain-weights of a set of very similar

animals such as the cat, cheetah, leopard, and tiger, we find that as we

quadruple the body-weight the brain-weight is only doubled. The larger

animal with proportionately larger bones can economize on brain, eyes,

and certain other organs.

Such are a very few of the considerations which show that for every

type of animal there is an optimum size. Yet although Galileo demon-

strated the contrary more than three hundred years ago, people still

believe that if a fllea were as large as a man it could jump a thousand feet

into the air. As a matter of fact the height to which an animal can jump

is more nearly independent of its size than proportional to it. A flea can
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On Being the Right Size

jump about two feet, a man about five. To jump a given height, if we

neglect the resistance of the air, requires an expenditure of energy pro-

portional to the jumper's weight. But if the jumping muscles form a

constant fraction of the animal's body, the energy developed per ounce of

muscle is independent of the size, provided it can be developed quickly

enough in the small animal. As a matter of fact an insect's muscles, al-

though they can contract more quickly than our own, appear to be

less efficient; as otherwise a flea or grasshopper could rise six feet into

the air.

And just as there is a best size for every animal, so the same is true

for every human institution. In the Greek type of democracy all the citi-

zens could listen to a series of orators and vote directly on questions of

legislation. Hence their philosophers held that a small city was the largest

possible democratic state. The English invention of representative gov-

ernment made a democratic nation possible, and the possibility was first

realized in the United States, and later elsewhere. With the development

of broadcasting it has once more become possible for every citizen to

listen to the political views of representative orators, and the future may

perhaps see the return of the national state to the Greek form of democ-

racy. Even the referendum has been made possible only by the institution

of daily newspapers.

To the biologist the problem of socialism appears largely as a problem

of size. The extreme socialists desire to run every nation as a single busi-

ness concern. I do not suppose that Henry Ford would find much diffi-

culty in running Andorra or Luxembourg on a socialistic basis. He has

already more men on his pay-roll than their population. It is conceivable

that a syndicate of Fords, if we could find them, would make Belgium Ltd.

or Denmark Inc. pay their way. But while nationalization of certain in-

dustries is an obvious possibility in the largest of states, I find it no easier

to picture a completely socialized British Empire or United States than

an elephant turning somersaults or a hippopotamus jumping a hedge.
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Not only the scientist Is Interested In motion. This ar-

ticle comments briefly on references to motion In poetry,

Motion in Words

James B. Gerhart and Rudi H. Nussbaum

An excerpt from their monograph, Motion, 1966.

Man began describing movement
with words long before there were
physicists to reduce motion to laws.

Our age-old fascination with moving
things is attested to by the astonish-
ing number of words we have for motion.
We have all kinds of words for all

kinds of movement : special words for

going up, others for coming down; words
for fast motion, words for slow motion.
A thing going up may rise, ascend,
climb, or spring. Going down again, it

may fall or descend; sink, subside, or
settle; dive or drop; plunge or plop;
topple, totter, or merely droop. It

may twirl, whirl, turn and circle;
rotate, gyrate; twist or spin; roll,
revolve and wheel. It may oscillate,
vibrate, tremble and shake; tumble or
toss, pitch or sway; flutter, jiggle,
quiver, quake; or lurch, or wobble,
or even palpitate. All these words
tell some motion, yet every one has
its own character. Some of them you
use over and over in a single day.
Others you may merely recognize. And
still they are but a few of our words
for motion. There are special words
for the motions of particular things.
Horses, for example, trot and gallop
and canter while men run, or stride,
or saunter. Babies crawl and creep.
Tides ebb and flow,, balls bounce, arm-

ies march . Other words tell the qual-
ity of motion, words like swift or
fleet, like calm and slow.

Writers draw vivid mental pictures
for the reader with words alone. Here
is a poet's description of air flowing
across a field on a hot day:

There came a wind like a bugle:

It quivered through the grass,

and a green chill upon the heat

so ominous did pass.

Emily Dickinson

Or again, the motion of the sea caused

by the gravitational attraction of the

moon :

The western tide crept up along

the sand,

and o'er and o'er the sand,

and round and round the sand,

as far as the eye could see.

Charles Kingsley,

The Sands of Dee

Or, swans starting into flight:

I saw . . . all suddenly mount

and scatter wheeling in great

broken rings
upon their clamorous wings.

W. B. Yeats,
The Wild Swans at Coole

Sometimes just a single sentence will

convey the whole idea of motion:
Lightly stepped a yellow star

to its lofty place

Emily Dickinson

Or, this description of a ship sailing:

She walks the water like a thing
of life

Byron, The Corsair
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Motion in Words

How is it that these poets de-

scribe motion? They recall to us what

we have seen; they compare different

things through simile and metaphor;

they rely on the reader to share their

own emotions, and they invite him to

recreate an image of motion in his own

mind. The poet has his own precision

which is not the scientist's precision

Emily Dickinson well knew it was the

grass, not the wind, that quivered,

and that stars don't step. Byron never

saw a walking boat. But this is irrel-

evant . All of us can appreciate and

enjoy their rich images and see that

they are true to the nature of man's
perception, if not to the nature of

motion itself .

From time to time a physicist
reading poetry will find a poem which

describes something that he has

learned to be of significance to his,

the physicist's description. Here is

an example :

A ball will bounce, but less and

less. It's not a light-hearted
thing, resents its own resilience.

Falling is what it loves, . . .

Richard Wilbur, Juggler

Relativity is implicit in this next

example :

The earth revolves with me, yet

makes no motion.
The stars pale silently in a coral

sky .

In a whistling void I stand before
my mirror unconcerned, and tie

my tie.
Conrad Aiken,

Morning Song of Senlin

The poet's description of motion
is a rich, whole vision, filled with

both his perceptions and his responses
Yet complete as it is, the poetic de-

scription is far from the scientific
one. Indeed, when we compare them, it

is easy to forget they deal with the

same things. Just how does the scien-
tific view of motion differ? And to

what purpose? Let's try to answer
these questions by shifting slowly
from the poet's description to the

scientist's. As a first step, read
this excerpt from a biography of a

Fig. 1.10 Multiple- flash photograph show-

ing the precession of a top.

physicist of the last century. Lord
Kelvin. The biographer is trying to

convey the electric quality of Kelvin's
lectures to his University classes." He
describes a lecture on tops (referred
to as gyrostats here) :

The vivacity and enthusiasm of the
Professor at that time was very
great. The animation of his coun-
tenance as he looked at a gyrostat
spinning, standing on a knife edge
on a glass plate in front of him,

and leaning over so that its center
of gravity was on one side of the
point of. support; the delight with
which he showed that hurrying of

the precessional motion caused the
gyrostat to rise, and retarding the

precessional motion caused the gy-

rostat to fall, so that the freedom
to precess was the secret of its

not falling; the immediate applica-
tion of the study of the gyrostat
to the explanation of the preces-
sion of the equinoxes, and illustra-
tion by a model ... - all these
delighted his hearers, and made the

lecture memorable.

Andrew Gray, Lord Kelvin, An

Account of his Scientific
Life and Work

This paragraph by Gray deals with

motion, but still it is more concerned
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with human responses - Kelvin's obvi-
ous pleasure in watching the top, and

his student's evident delight in watch-

ing both Kelvin and Kelvin's top. At

the same time it says much about the

top's movement, hints at the reasons
behind it, and mentions how under-
standing the top has led to under-
standing the precession of the earth's
axis in space.

Gray used some of the everyday
words for motion: rise, fall, spin,
hurry, retard. But he used other words
and other phrases, too - more techni-
cal, less familiar: precess, center
of gravity, equinoxes. Technical words
are important for a scientific descrip-
tion of motion. When the scientist has
dissected a motion and laid out its

components, the need for new terms
enters, the need for words with more
precise meanings, words not clothed
with connotations of emotional re-

sponse. Still, the scientist never can
(and never really wants to) , lose the
connotations of common words entirely.
For example, here is Lord Kelvin's at-

tempt to define precession (see Fig.

1.10), in the sense that Gray used it:

This we call positive precessional
rotation. It is the case of a com-

mon spinning-top (peery), spinning
on a very fine point which remains
at rest in a hollow or hole bored
by itself; not sleeping upright,
nor nodding, but sweeping its axis
round in a circular cone whose
axis is vert ical

.

William Thomson (Lord Kelvin)
and P. G. Tait, Treatise

on Natural Philosophy

This definition is interesting in

several ways. For one thing, it seems
strange today that Kelvin, a Scot,
should feel the need to explain "spin-
ning-top" by adding "peery," an ob-
scure word to most of us, but one that
Kelvin evidently thought more collo-
quial. Think for a moment of how
Kelvin went about his definition. He

used the words of boys spinning tops
for fun, who then, and still today,
say a top sleeps when its axis is

nearly straight up, and that it nods
as it slows and finally falls. He re-

minded his readers of something they

all had seen and of the everyday words
for it. (He obviously assumed that
most of his readers once played with
tops.) In fact, this is the best way
to define new words - to remind the

reader of something he knows already
and with words he might use himself.
Having once given this definition
Kelvin never returns to the picture he

employed. It is clear, though, that
when he wrote, "positive precessional
rotation," he brought this image to

his own mind, and that he expected his

readers to do the same.

Of course, it is not necessary to
use as many words as Kelvin did to de-
fine precession. Another, more austere,
and to some, more scientific defini-
tion is this :

When the axis of the top travels
round the vertical making a con-
stant angle i with it, the motion
is called steady or precessional.

E. J. Routh, Treatise on the

Dynamics of a System of

Riffid Bodies

All that refers to direct, human ex-
perience is missing here. The top is

now just something with an axis, no
longer a bright-painted toy spinning
on the ground. And it is not the top
that moves, but its axis, an imagined
line in space, and this line moves
about another imagined line, the ver-
tical. There is no poetry here, only
geometry. This is an exact, precise,
and economical definition, but it is

abstract, and incomplete. It does not
describe what anyone watching a real
top sees. In fact, it is only a few
abstractions from the real top's mo-
tion on which the physicist-def iner
has concentrated his attention.
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The treatment of speed and acceleration demonstrates the

value of simple calculus in analyzing and describing motion.

8 Motion

Richard P. Feynman, Robert B. Leighton and Matthew Sands

A chapter from The Feynman Lectures on Physics—Volume 1, 1963.

8-1 Description of motion

In order to find the laws governing the various changes tnat take place in

bodies as time goes on, we must be able to describe the changes and have some way
to record them. The simplest change to observe in a body is the apparent change

in its position with time, which we call motion. Let us consider some solid object

with a permanent mark, which we shall call a point, that we can observe. We
shall discuss the motion of the little marker, which might be the radiator cap of an

automobile or the center of a falling ball, and shall try to describe the fact that it

moves and how it moves.

These examples may sound trivial, but many subtleties enter into the descrip-

tion of change. Some changes are more difficult to describe than the motion of

a point on a solid object, for example the speed of drift of a cloud that is drifting

very slowly, but rapidly forming or evaporating, or the change of a woman's

mind. We do not know a simple way to analyze a change of mind, but since the

cloud can be represented or described by many molecules, perhaps we can describe

the motion of the cloud in principle by describing the motion of all its individual

molecules. Likewise, perhaps even the changes in the mind may have a parallel

in changes of the atoms inside the brain, but we have no such knowledge yet.

At any rate, that is why we begin with the motion of points; perhaps we should

think of them as atoms, but it is probably better to be more rough in the begin-

ning and simply to think of some kind of small objects—small, that is, compared

with the distance moved. For instance, in describing the motion of a car that is

going a hundred miles, we do not have to disdnguish between the front and the

back of the car. To be sure, there are slight differences, but for rough purposes we

say "the car," and likewise it does not matter that our points are not absolute

points; for our present purposes it is not necessary to be extremely precise. Also,

while we take a first look at this subject we are going to forget about the three

dimensions of the world. We shall just concentrate on moving in one direction,

as in a car on one road. We shall return to three dimensions after we see how to

describe motion in one dimension. Now, you may say, "This is all some kind of

trivia," and indeed it is. How can we describe such a one-dimensional motion

—

let us say, of a car? Nothing could be simpler. Among many possible ways, one

would be the following. To determine the position of the car at diff'erent times,

we measure its distance from the starting point and record all the observations.
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Table 8-1

/ (min) sift)

1 1200

2 4000

3 9000

4 9500

5 9600

6 13000

7 18000

8 23500

9 24000

Fig. 8-1. Graph of distance versus

time for the car.

S 15000 •

2 4 6
TIME IN MINUTES

In Table 8-1, s represents the distance of the car, in feet, from the starting point,

and / represents the time in minutes. The first line in the table represents zero

distance and zero time—the car has not started yet. After one minute it has started

and has gone 1200 feet. Then in two minutes, it goes farther—notice that it picked

up more distance in the second minute—it has accelerated; but something hap-

pened between 3 and 4 and even more so at 5—it stopped at a light perhaps? Then

it speeds up again and goes 13,000 feet by the end of 6 minutes, 18,000 feet at the

end of 7 minutes, and 23,500 feet in 8 minutes; at 9 minutes it has advanced to

only 24,000 feet, because in the last minute it was stopped by a cop.

That is one way to describe the motion. Another way is by means of a graph.

If we plot the time horizontally and the distance vertically, we obtain a curve some-

thing like that shown in Fig. 8-1. As the time increases, the distance increases,

at first very slowly and then more rapidly, and very slowly again for a little while

at 4 minutes; then it increases again for a few minutes and finally, at 9 minutes,

appears to have stopped increasing. These observations can be made from the

graph, without a table. Obviously, for a complete description one would have to

know where the car is at the half-minute marks, too, but we suppose that the graph

means something, that the car has some position at all the intermediate times.

The motion of a car is complicated. For another example we take something

that moves in a simpler manner, following more simple laws: a falling ball.

Table 8-2 gives the time in seconds and the distance in feet for a falling body.

At zero seconds the ball starts out at zero feet, and at the end of 1 second it has

fallen 16 feet. At the end of 2 seconds, it has fallen 64 feet, at the end of 3

seconds, 144 feet, and so on; if the tabulated numbers are plotted, we get the

nice parabolic curve shown in Fig. 8-2. The formula for this curve can be written

as

s = 16/2. (g j^

This formula enables us to calculate the distances at any time. You might say

there ought to be a formula for the first graph too. Actually, one may write such

a formula abstractly, as

s = fit), (8.2)

meaning that s is some quantity depending on / or, in mathematical phraseology,
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Motion

Table 8-2

/ (sec) ^(ft)

1 16

2 64

3 144

4 256

5 400

6 576

Fig. 8-2. Graph of distance versus

time for a falling body.

400-

2 3 4
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5 is a function of /. Since we do not know what the function is, there is no way we

can write it in definite algebraic form.

We have now seen two examples of motion, adequately described with very

simple ideas, no subtleties. However, there are subtleties—several of them. In

the first place, what do we mean by time and space ? It turns out that these deep

philosophical questions have to be analyzed very carefully in physics, and this

is not so easy to do. The theory of relativity shows that our ideas of space and

time are not as simple as one might think at first sight. However, for our present

purposes, for the accuracy that we need at first, we need not be very careful about

defining things precisely. Perhaps you say, "That's a terrible thing—I learned that

in science we have to define everything precisely." We cannot define anything

precisely! If we attempt to, we get into that paralysis of thought that comes to

philosophers, who sit opposite each other, one saying to the other, "You don't

know what you are talking about!" The second one says, "What do you mean

by know ? What do you mean by talking ? What do you mean by you ?,'" and so on.

In order to be able to talk constructively, we just have to -agree that we are talking

about roughly the same thing. You know as much about time as we need for the

present, but remember that there are some subtleties that have to be discussed;

we shall discuss them later.

Another subtlety involved, and already mentioned, is that it should be possible

to imagine that the moving point we are observing is always located somewhere.

(Of course when we are looking at it, there it is, but maybe when we look away

it isn't there.) It turns out that in the motion of atoms, that idea also is false

—

we cannot find a marker on an atom and watch it move. That subtlety we shall

have to get around in quantum mechanics. But we are first going to learn what the

problems are before introducing the complications, and then we shall be in a better

position to make corrections, in the light of the more recent knowledge of the

subject. We shall, therefore, take a simple point of view about time and space.

We know what these concepts are in a rough way, and those who have driven a

car know what speed means.

8-2 Speed

Even though we know roughly what "speed" means, there are still some
rather deep subtleties; consider that the learned Greeks were never able to adequately

describe problems involving velocity. The subtlety comes when we try to compre-
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hend exactly what is meant by "speed." The Greeks got very confused about this,

and a new branch of mathematics had to be discovered beyond the geometry and

algebra of the Greeks, Arabs, and Babylonians. As an illustration of the diffi-

culty, try to solve this problem by sheer algebra: A balloon is being inflated so

that the volume of the balloon is increasing at the rate of 100 cm ^ per second;

at what speed is the radius increasing when the volume is 1000 cm^? The Greeks

were somewhat confused by such problems, being helped, of course, by some very

confusing Greeks. To show that there were difficulties in reasoning about speed

at the time, Zeno produced a large number of paradoxes, of which we shall men-

tion one to illustrate his point that there are obvious difficulties in thinking about

motion. "Listen," he says, "to the following argument: Achilles runs 10 times as

fast as a tortoise, nevertheless he can never catch the tortoise. For, suppose that

they start in a race where the tortoise is 100 meters ahead of Achilles; then when
Achilles has run the 100 meters to the place where the tortoise was, the tortoise has

proceeded 10 meters, having run one-tenth as fast. Now, Achilles has to run

another 10 meters to catch up with the tortoise, but on arriving at the end of that

run, he finds that the tortoise is still 1 meter ahead of him; running another meter,

he finds the tortoise 10 centimeters ahead, and so on, ad infinitum. Therefore, at

any moment the tortoise is always ahead of Achilles and Achilles can never catch

up with the tortoise." What is wrong with that? It is that a finite amount of time

can be divided into an infinite number of pieces, just as a length of line can be

divided into an infinite number of pieces by dividing repeatedly by two. And so,

although there are an infinite number of steps (in the argument) to the point at

which Achilles reaches the tortoise, it doesn't mean that there is an infinite amount

of time. We can see from this example that there are indeed some subtleties in

reasoning about speed.

In order to get to the subtleties in a clearer fashion, we remind you of a joke

which you surely must have heard. At the point where the lady in the car is caught

by a cop, the cop comes up to her and says, "Lady, you were going 60 miles an

hour!" She says, "That's impossible, sir, I was travelling for only seven minutes.

It is ridiculous—how can I go 60 miles an hour when I wasn't going an hour?"

How would you answer her if you were the cop ? Of course, if you were really the

cop, then no subtleties are involved; it is very simple: you say, "Tell that to the

judge!" But let us suppose that we do not have that escape and we make a more

honest, intellectual attack on the problem, and try to explain to this lady what

we mean by the idea that she was going 60 miles an hour. Just what do we mean?
We say, "What we mean, lady, is this: if you kept on going the same way as you

are going now, in the next hour you would go 60 miles." She could say, "Well,

my foot was off the accelerator and the car was slowing down, so if I kept on going

that way it would not go 60 miles." Or consider the falling ball and suppose we

want to know its speed at the time three seconds if the ball kept on going the way

it is going. What does that mean—kept on accelerating, going faster? No—kept

on going with the same velocity. But that is what we are trying to define! For if

the ball keeps on going the way it is going, it will just keep on going the way it is

going. Thus we need to define the velocity better. What has to be kept the same?

The lady can also argue this way: "If I kept on going the way I'm going for one

more hour, I would run into that wall at the end of the street!" It is not so easy to

say what we mean.

Many physicists think that measurement is the only definition of anything.

Obviously, then, we should use the instrument that measures the speed—the
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speedometer—and say, "Look, lady, your speedometer reads 60." So she says,

"My speedometer is broken and didn't read at all." Does that mean the car is

standing still? We believe that there is something to measure before we build

the speedometer. Only then can we say, for example, "The speedometer isn't

working right," or "the speedometer is broken." That would be a meaningless

sentence if the velocity had no meaning independent of the speedometer. So we
have in our minds, obviously, an idea that is independent of the speedometer,

and the speedometer is meant only to measure this idea. So let us see if we can get

a better definition of the idea. We say, "Yes, of course, before you went an hour,

you would hit that wall, but if you went one second, you would go 88 feet; lady,

you were going 88 feet per second, and if you kept on going, the next second it

would be 88 feet, and the wall down there is farther away than that." She says,

"Yes, but there's no law against going 88 feet per second! There is only a law

against going 60 miles an hour." "But," we reply, "it's the same thing." If it is

the same thing, it should not be necessary to go into this circumlocution about

88 feet per second. In fact, the falling ball could not keep going the same way

even one second because it would be changing speed, and we shall have to define

speed somehow.

Now we seem to be getting on the right track; it goes something like this:

If the lady kept on going for another 1/1000 of an hour, she would go 1/1000 of

60 miles. In other words, she does not have to keep on going for the whole hour;

the point is that /or a moment she is going at that speed. Now what that means

is that if she went just a little bit more in time, the extra distance she goes would

be the same as that of a car that goes at a steady speed of 60 miles an hour. Per-

haps the idea of the 88 feet per second is right; we see how far she went in the last

second, divide by 88 feet, and if it comes out 1 the speed was 60 miles an hour.

In other words, we can find the speed in this way: We ask, how far do we go in a

very short time? We divide that distance by the time, and that gives the speed.

But the time should be made as short as possible, the shorter the better, because

some change could take place during that time. If we take the time of a falling

body as an hour, the idea is ridiculous. If we take it as a second, the result is

pretty good for a car, because there is not much cl^ange in speed, but not for a

falling body; so in order to get the speed more and more accurately, we should

take a smaller and smaller time interval. What we should do is take a millionth

of a second, and divide that distance by a millionth of a second. The result gives

the distance per second, which is what we mean by the velocity, so we can define

it that way. That is a successful answer for the lady, or rather, that is the definition

that we are going to use.

The foregoing definition involves a new idea, an idea that was not available

to the Greeks in a general form. That idea was to take an infinitesimal distance

and the corresponding infinitesimal time, form the ratio, and watch what happens

to that ratio as the time that we use gets smaller and smaller and smaller. In other

words, take a limit of the distance travelled divided by the time required, as the

time taken gets smaller and smaller, ad infinitum. This idea was invented by

Newton and by Leibnitz, independently, and is the beginning of a new branch

of mathematics, called the differential calculus. Calculus was invented in order to

describe motion, and its first application was to the problem of defining what is

meant by going "60 miles an hour."

Let us try to define velocity a little better. Suppose that in a short time,

e, the car or other body goes a short distance x; then the velocity, v, is defined as
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V = x/e,

an approximation that becomes better and better as the e is taken smaller and

smaller. If a mathematical expression is desired, we can say that the velocity

equals the limit as the € is made to go smaller and smaller in the expression x/e, or

V = lim - .

(8.3)

We cannot do the same thing with the lady in the car, because the table is in-

complete. We know only where she was at intervals of one minute; we can get

a rough idea that she was going 5000 ft/min during the 7th minute, but we do not

know, at exactly the moment 7 minutes, whether she had been speeding up and the

speed was 4900 ft/min at the beginning of the 6th minute, and is now 5100 ft/min,

or something else, because we do not have the exact details in between. So only

if the table were completed with an infinite number of entries could we really

calculate the velocity from such a table. On the other hand, when we have a com-

plete mathematical formula, as in the case of a falling body (Eq. 8.1), then it is

possible to calculate the velocity, because we can calculate the position at any time

whatsoever.

Let us take as an example the problem of determining the velocity of the

falling ball at the particular time 5 seconds. One way to do this is to see from

Table 8-2 what it did in the 5th second; it went 400 — 256 = 144 ft, so it is going

144 ft/sec; however, that is wrong, because the speed is changing; on the average

it is 144 ft/sec during this interval, but the ball is speeding up and is really going

faster than 144 ft/sec. We want to find out exactly how fast. The technique in-

volved in this process is the following: We know where the ball was at 5 sec.

At 5.1 sec, the distance that it has gone all together is 16(5.1)^ = 416.16 ft (see

Eq. 8.1). At 5 sec it had already fallen 400 ft; in the last tenth of a second it fell

416.16 - 400 = 16.16 ft. Since 16.16 ft in 0.1 sec is the same as 161.6 ft/sec,

that is the speed more or less, but it is not exactly correct. Is that the speed at

5, or at 5.1, or halfway between at 5.05 sec, or when is that the speed? Never mind

—the problem was to find the speed at 5 seconds, and we do not have exactly

that; we have to do a better job. So, we take one-thousandth of a second more than

5 sec, or 5.001 sec, and calculate the total fall as

s = 16(5.001)2 = 16(25.010001) = 400.160016 ft.

In the last 0.001 sec the ball fell 0.160016 ft, and if we divide this number by 0.001

sec we obtain the speed as 160.016 ft/sec. That is closer, very close, but it is

still not exact. It should now be evident what we must do to find the speed exactly.

To perform the mathematics we state the problem a little more abstractly: to

find the velocity at a special time, to, which in the original problem was 5 sec.

Now the distance at to, which we call ^o, is 16/o, or 400 ft in this case. In order

to find the velocity, we ask, "At the time /q + (a little bit), or to + €, where is

the body?" The new position is 16(/o + e)^ = 16/o + 32/oe + 166^. So it is

farther along than it was before, because before it was only 16/o. This distance

we shall call sq + (a little bit more), or .Sq + ^ (i^ ^ is the extra bit). Now if we

subtract the distance at to from the distance at to + e, we get x, the extra distance

gone, as X = 32/o • e + \(>e^- Our first approximation to the velocity is

V = - = 32/0 + 16c. (8.4)
e
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The true velocity is the value of this ratio, x/e, when € becomes vanishingly small.

In other words, after forming the ratio, we take the limit as e gets smaller and

smaller, that is, approaches 0. The equation reduces to,

V (at time to) = 32/o.

In our problem, to = 5 sec, so the solution is y = 32 X 5 = 160 ft/sec. A few

lines above, where we took e as 0.1 and 0.01 sec successively, the value we got for

V was a little more than this, but now we see that the actual velocity is precisely

160 ft/sec.

8-3 Speed as a derivative

The procedure we have just carried out is performed so often in mathematics

that for convenience special notations have been assigned to our quantities e and x.

In this notation, the e used above becomes At and x becomes As. This At means

"an extra bit of /," and carries an implication that it can be made smaller. The
prefix A is not a multiplier, any more than sin 6 means s • i • n • 6—it simply

defines a time increment, and reminds us of its special character. As has an

analogous meaning for the distance s. Since A is not a factor, it cannot be can-

celled in the ratio As/At to give s/t, any more than the ratio sin ^/sin 26 can be

reduced to 1/2 by cancellation. In this notation, velocity is equal to the limit of

As/At when At gets smaller, or

V = lim ^. (8.5)

This is really the same as our previous expression (8.3) with e and x, but it has the

advantage of showing that something is changing, and it keeps track of what is

changing.

Incidentally, to a good approximation we have another law, which says that

the change in distance of a moving point is the velocity times the time interval,

or As = V At. This statement is true only if the velocity is not changing during

that time interval, and this condition is true only in the limit as At goes to 0.

Physicists like to write it ds = v dt, because by dt they mean At in circumstances

in which it is very small; with this understanding, the expression is valid to a close

approximation. If At is too long, the velocity might change during the interval,

and the approximation would become less accurate. For a time dt, approaching

zero, ds = v dt precisely. In this notation we can write (8.5) as

,= lim ^ = ^.
^<-*o A/ dt

The quantity ds/dt which we found above is called the "derivative of s with

respect to ?" (this language helps to keep track of what was changed), and the com-

plicated process of finding it is called finding a derivative, or differentiating.

The ds's and dt's which appear separately are called differentials. To familiarize

you with the words, we say we found the derivative of the function 16/^, or the

derivative (with respect to /) of 16/^ is 32/. When we get used to the words, the

ideas are more easily understood. For practice, let us find the derivative of a more

complicated function. We shall consider the formula s = At^ -\- Bt + C, which
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might describe the motion of a point. The letters A, B, and C represent constant

numbers, as in the famihar general form of a quadratic equation. Starting from

the formula for the motion, we wish to find the velocity at any time. To find

the velocity in the more elegant manner, we change / to / + A/ and note that

s is then changed to s + some A^; then we find the As in terms of At. That is to

say,

s + As = A(t -\- Atf + B(t + AO + C

but since

we find that

= At^ -\- Bt + C -j- 3At^At -\- BAt -\- 3At(At)^ + A(At)\

s = At^ + 5/ + C,

A5 = 2>At^ At -\- BAt + 3At(At)^ + A(At)^.

But we do not want As—we want As divided by At. We divide the preceding equa-

tion by At, getting

^ = 3^/2 + 5 + 3At(At) + A(At)^.

As At goes toward the limit of As/At is ds/dt and is equal to

3At^ + B.
ds^

dt

This is the fundamental process of calculus, diff'erentiating functions. The process

is even more simple than it appears. Observe that when these expansions con-

tain any term with a square or a cube or any higher power of A/, such terms may be

dropped at once, since they will go to when the limit is taken. After a little prac-

tice the process gets easier because one knows what to leave out. There are many
rules or formulas for diff'erentiating various types of functions. These can be

memorized, or can be found in tables. A short list is found in Table 8-3.

Table 8-3. A Short Table of Derivatives

s, u, V, w are arbitrary functions of / ; a, b, c, and n are arbitrary constants

Function Derivative

s =r'*
dt

ds du
s = cu

dt ~ ^
~dt

s = u -{- V -'r w -\- • •

di
~

'dt
'^ dt '^ dt

'^

s = c
dt

ds /^ ^"
1 * '^

1 ^ ^^
1 . . . ]

di-
~

^y'i^'di ^ V dt'^ w dt~^ /
s = U V w . . .
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Table ^-4

Velocity of a Falling Ball

r(sec) V (ft/sec)

1 32

2 64

3 96

4 128

8-4 Distance as an integral

Now we have to discuss the inverse problem. Suppose that instead of a table of

distances, we have a table of speeds at different times, starting from zero. For the

falling ball, such speeds and times are shown in Table 8-4. A similar table could

be constructed for the velocity of the car, by recording the speedometer reading

every minute or half-minute. If we know how fast the car is going at any time, can

we determine how far it goes? This problem is just the inverse of the one solved

above ; we are given the velocity and asked to find the distance. How can we find

the distance if we know the speed? If the speed of the car is not constant, and the

lady goes sixty miles an hour for a moment, then slows down, speeds up, and so

on, how can we determine how far she has gone? That is easy. We use the same

idea, and express the distance in terms of infinitesimals. Let us say, "In the first

second her speed was such and such, and from the formula As = v At we can

calculate how far the car went the first second at that speed." Now in the next

second her speed is nearly the same, but slightly different; we can calculate how
far she went in the next second by taking the new speed times the time. We pro-

ceed similarly for each second, to the end of the run. We now have a number

of little distances, and the total distance will be the sum of all these little pieces.

That is, the distance will be the sum of the velocities times the times, or s =
'^v At, where the Greek letter ^ (sigma) is used to denote addition. To be more

precise, it is the sum of the velocity at a certain time, let us say the /-th time,

multiplied by At.

s = Zv(ti)At. (8.6)

The rule for the times is that ti+i = ?i + At. However, the distance we obtain

by this method will not be correct, because the velocity changes during the time

interval At. If we take the times short enough, the sum is precise, so we take them

smaller and smaller until we obtain the desired accuracy. The true s is

s = lim Ev(ti)At. (8.7)
At-*0 i

The mathematicians have invented a symbol for this limit, analogous to the symbol

for the differential. The A turns into a. d to remind us that the time is as small as

it can be; the velocity is then called v at the time /, and the addition is written

as a sum with a great "5,"
J (from the Latin summd), which has become distorted

and is now unfortunately just called an integral sign. Thus we write

5 == j v(t) dt. (8.8)
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This process of adding all these terms together is called integration, and it is the

opposite process to differentiation. The derivative of this integral is v, so one

operator (d) undoes the other (J). One can get formulas for integrals by taking

the formulas for derivatives and running them backwards, because they are re-

lated to each other inversely. Thus one can work out his own table of integrals

by differentiating all sorts of functions. For every formula with a differential,

we get an integral formula if we turn it around.

Every function can be differentiated analytically, i.e., the process can be carried

out algebraically, and leads to a definite function. But it is not possible in a simple

manner to write an analytical value for any integral at will. You can calculate it,

for instance, by doing the above sum, and then doing it again with a finer interval

A/ and again with a finer interval until you have it nearly right. In general, given

some particular function, it is not possible to find, analytically, what the integral

is. One may always try to find a function which, when differentiated, gives some

desired function ; but one may not find it, and it may not exist, in the sense of being

expressible in terms of functions that have already been given names.

8-5 Acceleration

The next step in developing the equations of motion is to introduce another

idea which goes beyond the concept of velocity to that of change of velocity,

and we now ask, "How does the velocity change?'' In previous chapters we have

discussed cases in which forces produce changes in velocity. You may have heard

with great excitement about some car that can get from rest to 60 miles an hour

in ten seconds flat. From such a performance we can see how fast the speed

changes, but only on the average. What we shall now discuss is the next level of

complexity, which is how fast the velocity is changing. In other words, by how
many feet per second does the velocity change in a second, that is, how many feet

per second, per second? We previously derived the formula for the velocity of

a falling body as y = 32/, which is charted in Table 8-4, and now we want to

find out how much the velocity changes per second; this quantity is called the

acceleration.

Acceleration is defined as the time rate of change of velocity. From the

preceding discussion we know enough already to write the acceleration as the

derivative dv/dt, in the same way that the velocity is the derivative of the distance.

If we now differentiate the formula /' = 32/ we obtain, for a falling body,

a = ~ = 32. (8.9)
at

[To differentiate the term 32/ we can utilize the result obtained in a previous

problem, where we found that the derivative of Bt is simply B (a constant). So

by letting B = 32, we have at once that the derivative of 32/ is 32.] This means

that the velocity of a falling body is changing by 32 feet per second, per second

always. We also see from Table 8-4 that the velocity increases by 32 ft/sec in

each second. This is a very simple case, for accelerations are usually not constant.

The reason the acceleration is constant here is that the force on the falling body

is constant, and Newton's law says that the acceleration is proportional to the force.

As a further example, let us find the acceleration in the problem we have

already solved for the velocity. Starting with
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s ^ At^ + Bt -^ C

we obtained, for v = ds/dt,

V = 3/4/2 ^ ^

Since acceleration is the derivative of the velocity with respect to the time, we need

to differentiate the last expression above. Recall the rule that the derivative of the

two terms on the right equals the sum of the derivatives of the individual terms.

To differentiate the first of these terms, instead of going through the fundamental

process again we note that we have already differentiated a quadratic term when

we differentiated I6t^, and the effect was to double the numerical coefficient and

change the /" to /; let us assume that the same thing will happen this time, and you

can check the result yourself. The derivative of 3At^ will then be 6At. Next we
differentiate B, a constant term; but by a rule stated previously, the derivative of

B is zero; hence this term contributes nothing to the acceleration. The final

result, therefore, is a = dv/dt = 6At.

For reference, we state two very useful formulas, which can be obtained by
integration. If a body starts from rest and moves with a constant acceleration,

g, its velocity v at any time / is given by

V = gt.

The distance it covers in the same time is

s = igt^

Various mathematical notations are used in writing derivatives. Since velocity

is ds/dt and acceleration is the time derivative of the velocity, we can also write

e)
d's

" = 7\7,) - W-' (S'O)

which are common ways of writing a second derivative.

We have another law that the velocity is equal to the integral of the accelera-

tion. This is just the opposite oi a = dv/dt\ we have already seen that distance is

the integral of the velocity, so distance can be found by twice integrating the ac-

celeration.

in the foregoing discussion the motion was in only one dimension, and space

permits only a brief discussion of motion in three dimensions. Consider a particle

P which moves in three dimensions in any manner whatsoever. At the beginning

of this chapter, we opened our discussion of the one-dimensional case of a moving

car by observing the distance of the car from its starting point at various times.

We then discussed velocity in terms of changes of these distances with time, and

acceleration in terms of changes in velocity. We can treat three-dimensional motion

analogously. It will be simpler to illustrate the motion on a two-dimensional

diagram, and then extend the ideas to three dimensions. We establish a pair of

axes at right angles to each other, and determine ihe position of the particle at any

moment by measuring how far it is from each of the two axes. Thus each position

is given in terms of an ;c-distance and a >'-distance, and the motion can be described

by constructing a table in which both these distances are given as functions of time.
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(Extension of this process to tiiree dimensions requires only another axis, at right

angles to the first two, and measuring a third distance, the z-distance. The dis-

tances are now measured from coordinate planes instead of lines.) Having con-

structed a table with x- and >'-distances, how can we determine the velocity?

We first find the components of velocity in each direction. The horizontal part of

the velocity, or x-component, is the derivative of the x-distance with respect to

the time, or

iv, = dx/dt. (8.11)

Similarly, the vertical part of the velocity, or >'-component, is

Vy = dy/dt.

v^ = dz/dt.

In the third dimension,

(8.12)

(8.13)

Now. given the components of velocity, how can we find the velocity along the

actual path of motion? In the two-dimensional case, consider two successive

positions of the particle, separated by a short distance A5 and a short time in-

terval t2 — ti = ^t. In the time A/ the particle moves horizontally a distance

Ax ~ Tj- A/, and vertically a distance ^y ~ Vy^t. (The symbol "~" is read

"is approximately.") The actual distance moved is approximately

^s ~ v'(Aa:)2 ^ (^^y)'^ (8.14)

as shown in Fig. 8-3. The approximate velocity during this interval can be obtained

by dividing by A/ and by letting A/ go to 0, as at the beginning of the chapter.

We then get the velocity as

ds
V = j^

= V{dx/dty + (dy/dt^) = Vvfhvl (8.15)

For three dimensions the result is

= VV^ + ^,2 + y (8.16)

Asw^Ax)* + (Ay)'

Fig. 8-3. Description of the motion

of a body in two dimensions and the

computation of its velocity.

Fig. 8-4. The parabola described by
a falling body with an initial horizontal

velocity.
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In the same way as we defined velocities, we can define accelerations: we have

an A:-component of acceleration a^, which is the derivative of Vx, the jc-component

of the velocity (that is, Ox = d'^x/dt^, the second derivative of x with respect to

/), and so on.

Let us consider one nice example of compound motion in a plane. We shall

take a motion in which a ball moves horizontally with a constant velocity u, and

at the same time goes vertically downward with a constant acceleration —g',

what is the motion ? We can say dx/dt = Vx = u. Since the velocity Vx is constant,

X = ut, (8.17)

and since the downward acceleration —^ is constant, the distance y the object

falls can be written as

y = -hgt'- (8.18)

What is the curve of its path, i.e., what is the relation between y and x? We can

eliminate / from Eq. (8.18), since t = x/u. When we make this substitution we
find that

y= -^2^'- (819)

This relation between ;; and x may be considered as the equation of the path of

the moving ball. When this equation is plotted we obtain a curve that is called a

parabola; any freely falling body that is shot out in any direction will travel in

a parabola, as shown in Fig. 8-4.

43



The twentieth century artist has been able to exploit

his interest in motion in various ways in works of art.

9 Representation of Movement

Gyorgy Kepes

A chapter from his book Language of Vision, 1944.

Matter, the physical basis of all spatial experience and thus the source

material of representation, is kinetic in its very essence. From atomic hap-

penings to cosmic actions, all elements in nature are in perpetual interac-

tion—in a flux complete. We are living a mobile existence. The earth

b rotating; the sun is moving; trees are growing; flowers are opening

and closing; clouds are merging, dissolving, coming and going; light and

shadow are hunting each other in an indefatigable play; forms are appear-

ing and disappearing; and man, who is experiencing all this, is himself

subject to all kinetic change. The perception of physical reality cannot

escape the quality of movement. The very understanding of spatial facts,

the meaning of extension or distances, involves the notion of time—

a

fusion of space-time which is movement. "Nobody has ever noticed a

place except at a time or a time except at a place,*' said Minkowsky in his

Principles of Relativity.

The sources of movement perception

As in a wild jungle one cuts new paths in order to progress further, man

builds roads of perception on which he is able to approach the mobile

world, to discover order in its relationships. To build these avenues of

perceptual grasp he relies on certain natural factors. One is the nature

of the retina, the sensitive surface on which the mobile panorama is pro-

jected. The second is the sense of movement of his body—the kinesthetic

sensations of his eye muscles, limbs, head, which have a direct correspond-

ence with the happenings around him. The third is the memory association

of past experience, visual and non-visual; his knowledge about the laws

of the physical nature of the surrounding object-world.

The shift of the retinal image

We perceive any successive stimulation of the retinal receptors as move-

ment, because such progressive stimulations are in dynamic interaction

with fixed stimulations, and therefore the two different types of stimulation

can be perceived in a unified whole only as a dynamic process, movement.

II the retina is stimulated with stationary impacts that follow one another
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in rapid succession, the same sensation of optical movement is induced.

Advertising displays with their rapidly flashing electric bulbs are per-

ceived in continuity through the persistence of vision and therefore pro-

duce the sensation of movement, although the spatial position of the light

bulbs is stationary. The movement in the motion picture is based upon

the same source of the visual perception.

The changes of any optical data indicating spatial relationships, such as

size, shape, direction, interval, brightness, clearness, color, imply motion.

If the retinal image of any of these signs undergoes continuous regular

change, expansion or contraction, progression or graduation, one per-

ceives an approaching or receding, expanding or contracting movement. If

one sees a growing or disappearing distance between these signs, he

perceives a horizontal or vertical movement.

"Suppose for instance, that a person is standing still in a thick woods,

where it is impossible for him to distinguish, except vaguely and roughly

in a mass of foliage and branches all around him, what belongs to one

tree and what to another, and how far the trees are separated. The moment

he begins to move forward, however, everything disentangles itself and

immediately he gets an apperception of the content of the woods and the

relationships of objects to each other in space."*

From a moving train, the closer the object the faster it seems to move. A

far-away object moves slowly and one very remote appears to be station-

ary. The same phenomenon, with a lower relative velocity, may be noticed

in walking, and with a still higher velocity in a landing aeroplane or in a

moving elevator.

The role of relative velocity

The velocity of motion has an important conditioning effect. Motion

can be too fast or too slow to be perceived as such by our limited sensory

receiving set. The growth of trees or of man, the opening of flowers, the

evaporation of water are movements beyond the threshold of ordinary

visual grasp. One does not see the movement of the hand of a watch, of

a ship on a distant horizon. An aeroplane in the highest sky seems to

hang motionless. No one can see the traveling of light as such. In certain

less rapid motions beyond the visual grasp, one is able, however, to

observe the optical transformation of movement into the illusion of a

solid. A rapidly whirled torch loses its characteristic physical extension,

but it submerges into another three-dimensional-appearing solid—into the

virtual volume of a cone or a sphere. Our inability to distinguish sharply

beyond a certain interval of optical impacts makes the visual impressions

a blur which serves as a bridge to a new optical form. The degree of

velocity of its movement will determine the apparent density of that new

form. The optical density of the visible world is in a great degree con-

ditioned by our visual ability, which has its particular limitations.

• Helmhollz, Physiological Optics 45



The kinesthetic gensation

When a moving object comes into the visual field, one pursues it by a

corresponding movement of his eyes, keeping it in a stationary or nearly

stationary position on the retina. Retinal stimulation, then, cannot alone

account for the sensation of movement. Movement-experience, which is

undeniably present in such a case, is induced by the sensation of muscle

movements. Each individual muscle-fibre contains a nerve end, which

registers every movement the muscle makes. That we are able to sense

space in the dark, evaluate direction-distancess in the absence of contacted

bodies, is due to this muscular sensation—the kinesthetic sensation.

E. G. Lukacs. A<:lion

from Herbert Bayer De<isn Class H. L. C.iirpeiiler. yiuremenl •

• fTork done for the author's course in Visual Fundamentals.
PhiiI Riiiid. Cover Design
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Memory sources

Experience teaches man to distinguish things and to evaluate their physi-

cal properties. He knows that bodies have weight: unsupported they

will of necessity fall. When, therefore, he sees in midair a body he

knows to be heavy, he automatically associates the direction and velocity

of its downward course. One is also accustomed to seeing small objects

as more mobile than large ones. A man is more mobile than a mountain;

a bird is more frequently in motion than a tree, the sky. or other visible

units in its background. Everything that one experiences is perceived in

a polar unity in which one pole is accepted as a stationary background

and the other as a mobile, changing figure.

Through all history painters have tried to suggest movement on ihe

^tationary picture surface, to translate some of the optical signs of move-

ment-experience into terms of the picture-image. Their efforts, however,

have been isolated attempts in which one or the other sources of move-

ment-experience were drawn upon; the shift of the retinal image, the
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kinesthetic experience, or the memory of past experiences were suggested

in two-dimensional terms.

These attempts were conditioned mainly by the habit of using things

as the basic measuring unit for every event in nature. The constant

characteristics of the things and objects, first of all the human body,

animals, sun, moon, clouds, or trees, were used as the first fixed points of

reference in seeking relationships in the optical turmoil of happenings.

Therefore, painters tried first to represent motion by suggesting the

visible modifications of objects in movement. They knew the visual

characteristics of stationary objects and therefore every observable change

served to suggest movement. The prehistoric artist knew his animals,

knew, for example, how many legs they had. But when he saw an

animal in really speedy movement, he could not escape seeing the visual

modification of the known spatial characteristics. The painter of the

Altamiro caves who pictures a running reindeer with numerous legs, or

the twentieth century cartoonist picturing a moving face with many

superimposed profiles, is stating a relationship between what he knows and

what he sees.

Other painters, seeking to indicate movement, utilized the expressive dis- ch. d. Gibson.

tortion of the moving bodies. Michaelangelo, Goya, and also Tintoretto, ^'"' ^''•""—«"'» W''""""" -• i^oo

by elongating and stretching the figure, showed distortion of the face

under the expression of strains of action and mobilized numerous other

psychological references to suggest action.

The smallest movement is more possessive of the attention than the

greatest wealth of relatively stationary objects. Painters of many different

periods observed this well and explored it creatively. The optical vitality

of the moving units they emphasized by dynamic outlines, by a vehement

interplav of vigorous contrast of light and dark, and by extreme contrast

of colors. In various paintings of Tintoretto, Maffei, Veronese, and Goya,

the optical wealth and intensity of the moving figures are juxtaposed

against the submissive, neutral, visual pattern of the stationary back-

ground.

The creative exploitation of the successive stimulations of the retinal

receptors in terms of the picture surface was another device many painters

found useful. Linear continuance arrests the attention and forces the eye

into a pursuit movement. The eye, following the line, acts as if it were

on the path of a moving thing and attributes to the line the quality of

movement. When the Greek sculptors organized the drapery of their

figures which they represented in motion, the lines were conceived as

optical forces making the eye pursue their direction.

We know that a heavy object in a background that does not offer sub-

stantial resistance will fall. Seeing such an object we interpret it as action.
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Haruiiobu. Windy Day Under Willow
j

Courtesy of The Art Institute oj Chicago

MafTei. Painting

We make a kind of psychological qualification. Every object seen and in-

terpreted in a frame of reference of gravitation is endowed with potential

action and could appear as falling, rolling, moving. Because we custom-

arily assume an identity between the horizontal and vertical directions on

the picture surface and the main directions of space as we perceive them

in our everyday experiences, every placing of an object representation on

the picture surface which contradicts the center of gravity, the main direc-

tion of space—the horizontal or vertical axis—causes that object to appear

to be in action. Top and bottom of the picture surface have a significance

in this respect.

Whereas the visual representation of depth had found various complete

systems, such as linear perspective, modelling by shading, a parallel devel-

opment had never taken place in the visual representation of motion.

Possibly this has been because the tempo of life was comparatively slow;

therefore, the ordering and representation of events could be compressed

without serious repercussions in static formulations. Events were meas-

ured by things, static forms identical with themselves, in a perpetual

fixity. But this static point of view lost all semblance of validity when

daily experiences bombarded man with a velocity of visual impacts in

which the fixity of the things, their self-identity, seemed to melt away.
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G. McVicker. Study of Linear Movenieiil

Work done lor the author's course

in Visual Fundamentals

Sponsored by The Art Director s Club
ol Chicago. 1938

Lee King. Study of Movement Represenlnlion

Work done for the author's course
in Visual Fundamentals

School ol Design in Chicago
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The more complex life became, the more dynamic relationships confronted

man, in general and in particular, as visual experiences, the more neces-

sary it became to revaluate the old relative conceptions about the fixity of

things and to look for a new way of seeing that could interpret man's

surroundings in their change. It was no accident that our age made the

first serious search for a reformulation of the events in nature into

dynamic terms. This reformulation of our ideas about the world included

almost all the aspects one perceives. The interpretation of the objective

world in the terms of physics, the understanding of the living organism,

the reading of the inner movement of social processes, and the visual

interpretation of events were, and still are, struggling for a new gauge

elastic enough to expand and contract in following the dynamic changes

of events.

The influence of the technological conditions

The environment of the man living today has a complexity which cannot

be compared with any environment of any previous age. The skyscrapers,

the street with its kaleidoscopic vibration of colors, the window-displays

with their multiple mirroring images, the street cars and motor cars,

produce a dynamic simultaneity of visual impression which cannot be

perceived in the terms of inherited visual habits. In this optical turmoil

the fixed objects appear utterly insufficient as the measuring tape of the

events. The artificial light, the flashing of electric bulbs, and the mobile

game of the many new types of light-sources bombard man with kinetic

color sensations having a keyboard never before experienced. Man,

the spectator, is himself more mobile than ever before. He rides in street-

cars, motorcars and aeroplanes and his own motion gives to optical impacts

a tempo far beyond the threshold of a clear object-perception. The ma-

chine man operates adds its own demand for a new way of seeing. The

complicated interactions of its mechanical parts cannot be conceived in a

static way; they must be perceived by understanding of their movements.

The motion picture, television, and, in a great degree, the radio, require

a new thinking, i.e., seeing, that takes into account qualities of change,

interpenetration and simultaneity.

Man can face with success this intricate pattern of the optical events only

as he can develop a speed in his perception to match the speed of his

environment. He can act with confidence only as he learns to orient

himself in the new mobile landscape. He needs to be quicker than the

event he intends to master. The origin of the word "speed" has a revealing

meaning. In original form in most languages, speed is intimately con-

nected with success. Space and speed are, moreover, in some early forms

of languages, interchangeable in meaning. Orientation, which is the basis

of survival, is guaranteed by the speed of grasping the relationships of

the events with which man is confronted.

50



Representation of Movement

Social and pgychological motivations

Significantly, the contemporary attempts to represent movement were made

in the countries where the vitality of living was most handicapped by

outworn social conditions. In Italy, technological advances and their eco-

nomical-social consequences, were tied with the relics of past ideas, institu-

tions. The advocates of change could see no clear, positive direction.

Change as they conceived it meant expansion, imperialist power policy.

The advance guard of the expanding imperialism identified the past with

the monuments of the past, and with the keej>ers of these monuments;

and they tried to brejik, with an uninhibited vandalism, everything which

seemed to them to fetter the progress toward their goals. "We want to

free our country from the fetid gangrene of professors, archaeologists,

guides and antique shops," proclaimed the futurist manifesto of 1909.

The violence of imperialist expansion was identified with vitality; with

the flux of life itself. Everything which stood in the way of this desire

of the beast to reach his prey was to be destroyed. Movement, speed,

velocity became their idols. Destructive mechanical implements, the

armoured train, machine gun, a blasting bomb, the aeroplane, the motor

car', boxing, were adored symbols of the new virility they sought.

In Russia, where the present was also tied to the past and the people

were struggling for the fresh air of action, interest also focused on the

dynamic qualities of experience. The basic motivation of reorientation

toward a kinetic expression there was quite similar to that of the Italian

futurists. It was utter disgust with a present held captive by the past.

Russia's painters, writers, like Russia's masses, longed to escape into a

future free from the ties of outworn institutions and habits. Museums,

grammar, authority, were conceived of as enemies; force, moving masses,

moving machines were friends. But this revolt against stagnant traditions,

this savage ridiculing of all outworn forms, opened the way for the

building of a broader world. The old language, which as Mayakovsky said

"was too feeble to catch up with life," was reorganized into kinetic

idioms of revolutionary propaganda. The visual language of the past,

from whose masters Mayakovsky asked with just scorn, "Painters will

you try to capture speedy cavalry with the tiny net of contours?" was

infused with new living blood of motion picture vision.

In their search to find an optical projection which conformed to the

dynamic reality as they sensed and comprehended it, painters uncon-

sciously repeated the path traced by advancing physical science.

Their first step was to represent on the same picture-plane a sequence of

positions of a moving body. This was basically nothing but a cataloging of

stationary spatial locations. The idea corresponded to the concept of

classical physics, which describes objects existing in three-dimensional

space and changing locations in sequence of absolute time. The concept

of the object was kept. The sequence of events frozen on the picture-
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plane only amplified the contradiction between the dynamic reality and the

fixity of the three-dimensional object-concept.

Their second step was to fuse the different positions of the object by

filling out the pathway of their movement. Objects were no longer con-

sidered as isolated, fixed units. Potential and kinetic energies were

included as optical characteristics. The object was regarded to be either

in active motion, indicating its direction by "lines of force," or in potential

motion, pregnant with lines of force, which pointed the direction in which

the object would go if freed. The painters thus sought to picture the

mechanical point of view of nature, devising optical equivalents for mass,

force, and gravitation. This innovation signified important progress,

because the indicated lines of forces could function as the plastic forces

of two-dimensional picture-plane.

The third step was guided by desire to integrate the increasingly compli-

cated maze of movement-directions. The chaotic jumble of centrifugal

line of forces needed to be unified. Simultaneous representation of the

numerous visible aspects composing an event was the new representational

technique here introduced. The cubist space analysis was synchronized

with the line of forces. The body of the moving object, the path of its

movement and its background were portrayed in the same picture by
fusing all these elements in a kinetic pattern. The romantic language of

the futurist manifestos describes the method thus: "The sinmltaneosity

of soul in a work of art; such is the exciting aim of our art. In painting

a figure on a balcony, seen from within doors, we shall not confine the

view to what can be seen through the frame of the window; we shall give

the sum total of the visual sensation of the street, the double row of

houses extending right and left the flowered balconies, etc. ... in other

words, a simultaneity of environment and therefore a dismemberment
and dislocation of objects, a scattering and confusion of details inde-

pendent of one and another and without reference to accepted logic," said

Marinetti. This concept shows a great similarity to the idea expressed by
Einstein, expounding as a physicist the space-time interpretation of the

general theory of relativity. "The world of events can be described by a
static picture thrown onto the background of the four dimensional time-

space continuum. In the past science described motion as happenings in

lime, general theory of relativity interprets events existing in space-time."
The closest approximation to representation of motion in the genuine
terms of the picture-plane was achieved by the utilization of color planes
as the organizing factor. The origin of color is light, and colors on the

picture surface have an intrinsic tendency to return to their origin. Motion,
therefore, is inherent in color. Painters intent on realizing the full motion
potentialities of color believed that the image becomes a form only in the

progressive interrelationships of opposing colors. Adjacent color-surfaces

exhibit contrast effects. They reinforce each other in hue, saturation, and
intensity.
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Ciacotno Balla. Dog on Leath 1912. Courtesy oj The Museum of Modern Art

Giacomo Balla. Automobile and ISohe. Courtesy ol An ol This Century
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Marcrl Durhainp.

Made Descending the Sluirt I91'i

Keproduclion Courtesy

The An Insiiiiife ol Chirne«

Marcel Duchamp. Sad Young Man in a Trai

Courtesy ol Art ol This Century
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W^-

Gyorgy Kepes. Advertising Design 1938

Courtesy of Container Corporation of America

^ CONTAINER CORPORATION OF AMERICA

Herbert Mailer. Advertising Design

Courtesy oj Container Corporation of America

CONTAINER CORPORATION OF AMERICA
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Harold E. Edgerton. Golfer

Soviet Poster
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E. McKnight KaufTer. The Early Bird 1919

Courtesy of The Museum ol Modern Art
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Driauney. Circular Rhythm Courtesy of The Guggenheim \1iiseum ol ,\onObjective Art
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Representation of Movement

The greater the intensity of the color-surfaces achieved by a carefully

organized use of simultaneous and successive contrast, the greater their

spatial movement color in regard to picture-plane. Their advancing,

receding, contracting and circulating movement on the surface creates a

rich variety, circular, spiral, pendular, etc., in the process of moulding

them into one form which is light or, in practical terms, grey. "Form

is movement," declared Delaunay. The classical continuous outline of the

objects was therefore eliminated and a rhythmic discontinuity created by

grouping colors in the greatest possible contrast. The picture-plane,

divided into a number of contrasting color-surfaces of different hue, satu-

ration, and intensity, could be perceived only as a form, as a unified

whole in the dynamic sequence of visual perception. The animation of the

image they achieved is based upon the progressive steps in bringing oppos-

ing colors into balance.

The centrifugal and centripetal forces of the contrasting color-planes

move forward and backward, up and down, left and right, compelling the

spectator to a kinetic participation as he follows the intrinsic spatial-

direction of colors. The dynamic quality is based upon the genuine

movement of plastic forces in their tendency toward balance. Like a spin-

ning top or the running wheel of a bicycle, which can find its balance

only in movement, the plastic image achieves unity in movement, in per-

petual relations of contrasting colors.

A. M. (!«•>» iiilrr. Poster
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In his witty and provocative book. About Vectors, from which

this opening chapter is taken, Banesh HofFmann confesses that

he seeks here "to instruct primarily by being disturbing and

annoying."

10 Introducing Vectors

Banesh Hoffmann

A chapter from his book About Vectors, 1966.

Making good definitions is not easy. The story goes that when the philos-

opher Plato defined Man as "a two-legged animal without feathers," Diogenes

produced a plucked cock and said "Here is Plato's man." Because of this, the

definition was patched up by adding the phrase "and having broad nails";

and there, unfortunately, the story ends. But what if Diogenes had countered

by presenting Plato with the feathers he had plucked?

Exercise 1 .1 What? [Note that Plato would now have feathers.]

Exercise 1 .2 Under what circumstances could an elephant qualify as

a man according to the above definition?

A vector is often defined as an entity having both magnitude and direction.

But that is not a good definition. For example, an arrow-headed line segment

like this

has both magnitude (its length) and direction, and it is often used as a draw-

ing of a vector; yet it is not a vector. Nor is an archer's arrow a vector, though

it, too, has both magnitude and direction.

To define a vector we have to add to the above definition something

analogous to "and having broad nails," and even then we shall find ourselves

not wholly satisfied with the definition. But it will let us start, and we can try

patching up the definition further as we proceed—and we may even find our-

selves replacing it by a quite different sort of definition later on. If, in the end,

we have the uneasy feeling that we have still not found a completely satisfac-

tory definition of a vector, we need not be dismayed, for it is the nature of

definitions not to be completely satisfactory, and we shall have learned pretty

well what a vector is anyway, just as we know, without being able to give a

satisfactory definition, what a man is—well enough to be able to criticize

Plato's definition.

Exercise 1 .3 Define a door.

Exercise 1 .4 Pick holes in your definition of a door.

Exercise 1 .5 According to your definition, is a movable partition

between two rooms a door?
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2. THE PARALLELOGRAM LAW

The main thing we have to add to the magnitude-and-direction definition

of a vector is the following:

*^P

Figure 2.1

Let us think of vectors as having definite locations. And let the arrow-headed

line segments OP and OQ in Figure 2.1 represent the magnitudes, directions,

and locations of two vectors starting at a common point O. Complete the

parallelogram formed by OP and OQ, and draw the diagonal OR. Then, when

taken together, the two vectors represented by OP and OQ are equivalent to

a single vector represented by the arrow-headed line segment OR. This vector

is called the resultant of the vectors represented by OP and OQ, and the above

crucial property of vectors is called the parallelogram law of combination of

vectors.

Exercise 2.1 Find (a) by drawing and measurement, and (b) by

calculation using Pythagoras' theorem, the magnitude and direction of

the resultant of two vectors OP and OQ if each has magnitude 3, and OP
points thus —> while OQ points perpendicularly, thus ] .[Ans. The

magnitude is 3v^, or approximately 4.2, and the direction bisects the

right angle between OP and OQ.]

Exercise 2.2 Show that the resultant of two vectors OP and OQ
that point in the same direction is a vector pointing in the same direction

and having a magnitude equal to the sum of the magnitudes of OP and

OQ. [Imagine the parallelogram in Figure 2.1 squashed flat into a line.]

Exercise 2.3 Taking a hint from Exercise 2.2, describe the resultant

of two vectors OP and OQ that point in opposite directions.

Exercise 2.4 In Exercise 2.3, what would be the resultant if OP and

OQ had equal magnitudes? [Do you notice anything queer when you

coropare this resultant vector with the definition of a vector?]

Exercise 2.5 Observe that the resultant of OP and OQ is the same

as the resultant of OQ and OP. [This is trivially obvious, but keep it in

mind nevertheless. We shall return to it later.]

In practice, all we need to draw is half the parallelogram in Figure 2.1—
either triangle OPR or triangle OQR. When we do this it looks as if we had

combined two vectors OP and PR (or OQ and QR) end-to-end like this, even

^P
Figure 2.2 (For clarity, the arrow heads meeting

at R have been slightly displaced. We shall occa-

sionally displace other arrow heads under similar

circumstances.) "'



though they do not have the same starting point. Actually, though, we have

merely combined OP and OQ by the parallelogram law.* But suppose we
were dealing with what are called free vectors—vectors having the freedom to

move from one location to another, so that OP and QR in Figure 2.2, for

example, which have the same magnitude and the same direction, are officially

counted not as distinct vectors but as the same free vector. Then we could indeed

combine free vectors that were quite far apart by bringing them end-to-end,

like OPand PR in Figure 2.2. But since we could also combine them accord-

ing to the parallelogram law by moving them so that they have a common

starting point, like OP and OQ m Figure 2.1, the parallelogram law is the

basic one. Note that when we speak of the same direction we mean just that,

and not opposite directions—north and south are not the same direction.

Have you noticed that we have been careless in sometimes speaking of "the vector

represented by OP," at other times calling it simply "the vector OP," and now calling it

just "OP''? This is deliberate—and standard practice among mathematicians. Using

meticulous wording is sometimes too much of an effort once the crucial point has been

made.

Exercise 2.6 Find the resultant of the three vectors OA, OB, and

OC in the diagram.

Solution We first form the resultant, OR, of OA and OB like this

:

and then we form the resultant, OS, of OR and OC like this

:

This figure looks complicated. We can simplify it by drawing only half of

each parallelogram, and then even omitting the line OR, like this:

From this we see that the resultant OS can be found quickly by thinking

of the vectors as free vectors and combining them by placing them end-

to-end; /I/?, which has the same magnitude and direction as 05, starts

where OA ends; and then RS, which has the same magnitude and direction

as OC, starts where AR ends.
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Exercise 2.7 Find, by both methods, the resultant of the vectors in

Exercise 2.6, but by combining OB and OC first, and then combining

their resultant with OA. Prove geometrically that the resultant is the

same as before.

Exercise 2.8

The above diagram looks like a drawing of a box. Show that if we drew

only the lines OA, AR, RS, and OS we would have essentially the last

figure in Exercise 2.6; that if we drew only the lines OB, BT, TS, and OS
we would have a corresponding figure for Exercise 2.7; and that if we

drew only OA, AU, US, and OS we would have a figure corresponding to

our having first combined OA with OC and then their resultant with OB.

Exercise 2.9 In Exercises 2.6, 2.7, and 2.8, is it essential that the

three vectors OA, OB, and OC lie in a plane? Give a rule for finding the

resultant of three noncoplanar vectors OA, OB, and OC that is analogous

to the parallelogram law, and that might well be called the parallelepiped

law. Prove that their resultant is the same regardless of the order in

which one combines them.

Exercise 2.10 Find the resultant of the three vectors 0^4, 05, and

OC below by combining them in three different orders, given that vectors

OA and OC have equal magnitudes and opposite directions. Draw both

the end-to-end diagrams and the full parallelogram diagrams for each

case.

C-*- ^A

3. JOURNEYS ARE NOT VECTORS

It is all very well to start with a definition. But it is not very enlightening.

Why should scientists and mathematicians be interested in objects that have

magnitude and direction and combine according to the parallelogram law?

Why did they even think of such objects? Indeed, do such objects exist at all

—outside of the imaginations of mathematicians?

There are, of course, many objects that have both magnitude and direc-

tion. And there are, unfortunately, many books about vectors that give the

reader the impression that such objects obviously and inevitably obey the

parallelogram law. It is therefore worthwhile to explain carefully why most

such objects do not obey this law, and then, by a process of abstraction, to

find objects that do.
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Suppose that I live at A and my friend lives 10 miles away at B. I start

from A and walk steadily at 4 m.p.h. for 2| hours. Obviously, I walk 10 miles.

But do I reach 5?
You may say that this depends on the direction I take. But what reason is

there to suppose that I keep to a fixed direction? The chances are overwhelm-
ing that I do not—unless I am preceded by a bulldozer or a heavy tank.

Most likely I walk in all sorts of directions; and almost certainly, I do not

arrive at B. I may even end up at home.

Exercise 3.1 Where are all the possible places at which I can end,

under the circumstances?

Now suppose that I start again from A and this time end up at B. I may
take four or five hours, or I may go by bus or train and get there quickly.

Never mind how I travel or how long I take. Never mind how many times I

change my direction, or how tired I get, or how dirty my shoes get, or whether

it rained. Ignore all such items, important though they be, and consider the

abstraction that results when one concentrates solely on the fact that I start at

A and end at B. Let us give this abstraction a name. What shall we call it?

Not a "journey." That word reminds us too much of everyday life—of rain,

and umbrellas, and vexations, and lovers meeting, and all other such items

that we are ignoring here; besides, we want to preserve the word "journey"

for just such an everyday concept. For our abstraction we need a neutral,

colorless word. Let us call it a shift.

Here are routes of four journeys from A to B:

Figure 3.1

All four journeys are different—with the possible but highly improbable

exception of (b) and (c).

Exercise 3.2 Why "highly improbable"?

But though the four journeys are not all the same, they yield the same

shift. We can represent this shift by the arrow-headed line segment AB. It has

both magnitude and direction. Indeed, it seems to have little else. Is it a

vector? Let us see.

Consider three places A, B, and C as in Figure 3.2. If I walk in a straight

Figure 3.2

line from A to B and then in a straight line from B to C,l make a journey

from A to C, but it is not the same as if I walked directly in a straight line

from A to C: the scenery is different, and so is the amount of shoe leather

consumed, most likely, and we can easily think of several other differences.
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Exercise 3.3 Why "most likely"?

Thus, though we could say that the walks from A io B and from 5 to C
combine to give a "resultant" journey from A to C, it is not a journey in a

straight line from ^ to C: the walks do not combine in a way reminiscent of

the way in which vectors combine; they combine more in the tautological

sense that 2+1=2+1 than 2+1=3.
Journeys, then, are not vectors. But when we deal with shifts we ignore

such things as the scenery and the amount of shoe leather consumed. A shift

from A to B followed by a shift from 5 to C is indeed equivalent to a shift

from A to C. And this reminds us so strongly of the vectorial situation in

Figure 2.2 that we are tempted to conclude that shifts are vectors. But there

is a crucial difference between the two situations. We cannot combine the

above shifts in the reverse order (compare Exercise 2.5). There is no single

equivalent to the shift from 5 to C followed by the shift from A to B. We can

combine two shifts only when the second begins where the first ends. Indeed,

in Figure 2.1, just as with journeys, we cannot combine a shift from O to P
with one from O to g in either order. Thus shifts are not vectors.

4. DISPLACEMENTS ARE VECTORS

Now that we have discovered why shifts are not vectors, we can easily see

what further abstraction to make to obtain entities that are. From the already

abstract idea of a shift, we remove the actual starting point and end point and

retain only the relation between them : that B lies such and such a distance from

A and in such and such a direction.* Shifts were things we invented in order

to bring out certain distinctions. But this new abstraction is an accepted ma-

thematical concept with a technical name : it is called a displacement. And it is

a vector, as we shall now show.

In Figure 4.1, the arrow-headed line segments AB and LM are parallel and

Figure 4.1

of equal length. Any journey from y4 to 5 is bound to be different from a

journey from L to M. Also, the shift from A to B is different from that from

L to M because the starting points are different, as are the end points. But the

two shifts, and thus also the various journeys, yield the same displacement:

if, for example, 5 is 5 miles north-northeast of A, so too is M 5 miles north-

northeast of L, and the displacement is one of 5 miles in the direction north-

northeast.

Exercise 4.1 Starting from a point A, a man bicycles 10 miles due

east to point B, stops for lunch, sells his bicycle, and then walks 10 miles

due north to point C. Another man starts from B, walks 4 miles due north

and 12 miles due east and then, feeling tired, and having brought along

*We retain, too, the recollection that we are still linked, however tenuously, with

journeying, for we want to retain the idea that a movement has occurred, even though we

do not care at all how or under what circumstances it occurred.
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a surplus of travellers' checks, buys a car and drives 6 miles due north

and 2 miles due west, ending at point D in the pouring rain. What dis-

placement does each man undergo? [Ans. lOV^ miles to the northeast.]

Now look at Figure 2.1. The shift from O to P followed by the shift from

P to R is equivalent to the shift from O to R. The shift from P to R gives a

displacement PR that is the same as the displacement OQ. Therefore the

displacement OP followed by the displacement OQ is equivalent to the dis-

placement OR.

Exercise 4.2 Prove, similarly, that the displacement OQ followed

by the displacement OP is also equivalent to the displacement OR.

Thus, displacements have magnitude and direction and combine according

to the parallelogram law. According to our definition, they are therefore

vectors. Since displacements such as AB and LM in Figure 4.1 are counted as

identical, displacements are free vectors, and thus are somewhat special. In

general, vectors such as AB and LM are not counted as identical.

5. WHY VECTORS ARE IMPORTANT

From the idea of a journey we have at last come, by a process of succes-

sive abstraction, to a specimen of a vector. The question now is whether we
have come to anything worthwhile. At first sight it would seem that we have

come to so pale a ghost of a journey that it could have little mathematical signifi-

cance. But we must not underestimate the potency of the mathematical process

of abstraction. Vectors happen to be extremely important in science and

mathematics. A surprising variety of things happen to have both magnitude

and direction and to combine according to the parallelogram law; and many
of them are not at all reminiscent of journeys.

This should not surprise us. The process of abstraction is a powerful one.

It is, indeed, a basic tool of the mathematician. Take whole numbers, for

instance. Like vectors, they are abstractions. We could say that whole numbers

are what is left of the idea of apples when we ignore not only the apple trees,

the wind and the rain, the profits of cider makers, and other such items that

would appear in an encyclopedia article, but also ignore even the apples them-

selves, and concentrate solely on how many there are. After we have extracted

from the idea of apples the idea of whole numbers, we find that whole numbers
apply to all sorts of situations that have nothing to do with apples. Much the

same is true of vectors. They are more complicated than whole numbers—so

are fractions, for example—but they happen to embody an important type of

mathematical behavior that is widely encountered in the world around us.

To give a single example here: forces behave like vectors. This is not

something obvious. A force has both magnitude and direction, of course. But

this does not mean that forces necessarily combine according to the parallelo-

gram law. That they do combine in this way is inferred from exp>eriment.

It is worthwhile to explain what is meant when we say that forces combine

according to the parallelogram law. Forces are not something visible, though

their effects may be visible. They are certainly not arrow-headed line segments,

though after one has worked with them mathematically for a while, one almost
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comes to think they are. A force can be represented by an arrow-headed line

segment OP that starts at the point of application O of the force, points in the

direction of the force, and has a length proportional to the magnitude of the

force—for example, a length of x inches might represent a magnitude of x

pounds. When a force is represented in this way, we usually avoid wordiness

by talking of "the force OP." But let us be more meticulous in our wording

just here. To verify experimentally that forces combine according to the paral-

lelogram law, we can make the following experiment. We arrange stationary

weights and strings, and pulleys A and B, as shown, the weight W being the

Wz£^

Figure 5.1

sum of the weights W^ and W^. Then along OA we mark off a length OP of W^

inches, where W^ is the number of pounds in the weight on the left and, thus,

a measure of the force with which the string attached to it pulls on the point

O where the three pieces of string meet. Similarly, we mark off on OB a length

OQ of W2 inches. We then bring a vertical piece of paper up to the point O,

and on it complete the parallelogram defined by OP and OQ. We find that

the diagonal OR is vertical and that its length in inches is W, the number of

pounds in the weight in the middle. We conclude that the resultant of the

forces W^ and W^ in the strings would just balance the weight W. Since the

forces W^ and W2 also just balance the weight W, we say that the resultant is

equivalent to the two forces. We then do the experiment over again, with

different weights, and reach a similar conclusion. After that, we do it yet

again; and we keep at it till our lack of patience overcomes our skepticism,

upon which we say that we have proved experimentally that forces combine

according to the parallelogram law. And we bolster our assertion by pointing

to other experiments, of the same and different types, that indicate the same

thing.

We all know that it is much easier to get through a revolving door by

pushing near the outer edge than by pushing near the central axis. The effect

of a force depends on its location. Home runs are scarce when the bat fails to

make contact with the ball. Thus forces do not behave like free vectors.

Unlike displacements, vectors representing forces such as AB and LM in Figure

4.1, though they have the same magnitude and the same direction, are not

counted as equivalent. Such vectors are called bound vectors.

Perhaps it worries us a little that there are different kinds of vectors. Yet

we have all, in our time, survived similar complications. Take numbers, for

example. There are whole numbers and there are fractions. Perhaps you feel

that there is not much difference between the two. Yet if we listed the prop-

erties of whole numbers and the properties of fractions we would find con-

siderable differences. For instance, if we divide fractions by fractions the results

are always fractions, but this statement does not remain true if we replace the

word "fractions" by "whole numbers." Worse, every whole number has a
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next higher one, but no fraction has a next higher fraction, for between any

two fractions we can always slip infinitely many others. Even so, when trying

to define number we might be inclined to insist that, given any two different

numbers, one of them will always be the smaller and the other the larger. Yet

when we become more sophisticated and expand our horizons to include

complex numbers like 2 + 3V— 1, we have to give up even this property of

being greater or smaller, which at first seemed an absolutely essential part of

the idea of number. With vectors too, not only are there various tyf)es, but

we shall learn that not every one of their attributes that seems at this stage to

be essential is in fact so. One of the things that gives mathematics its power

is the shedding of attributes that turn out not to be essential, for this, after

all, is just the process of abstraction.

Exercise 5.1 Find the resultants of the following displacements:

(a) 3 ft. due east and 3 ft. due north. [Ans. 3yfY ft. to the northeast.]

jn
(b) 5 ft. due north and 5 ft. due east.

(c) 9 cm. to the right and 9V^cm. vertically upwards. [Ans. 18 cm. in

an upward direction making 60° with the horizontal towards the

right.]

(d) 9 cm. to the left and 9a/T cm. vertically downward.

(e) the resultants in parts (c) and (d).

(f ) X units positively along the x-axis and y units positively along the y-

axis. [Ans, Vx" + y'^ units in the direction making an angle

ian' y/x with the positive x-axis.]

Exercise 5.2 Like Exercise 5.1 for the following:

(a) 8 km. to the left and 3 km. to the left.

(b) 5 fathoms vertically downward and 2 fathoms vertically upward.

(c) a units to the right and /9 units to the left. [There are three different

cases. What are they? Show how they can be summed up in one

statement.]

(d) h miles 60° north of east and h miles 60^ south of east.

Exercise 5.3 What single force is equivalent to the following three

horizontal forces acting on a particle at a point O? (1) magnitude 1 lb.

pulling to the north; (2) magnitude 1 lb. pulling to the east; (3) magnitude

V 2 lb. pulling to the northwest. [Ans. 2 lbs. acting at point O and

pulling to the north.]

Exercise 5.4 What force combined with a force at a point of 1 lb.

pulling to the east will yield a resultant force of 2 lbs. pulling in a direc-

tion 60° north of east?

Exercise 5.5 Vector OP has magnitude 2a and points to the right

in a direction 30° above the horizontal. What vector combined with it

will yield a vertical resultant, OR, of magnitude 2v^a?
Exercise 5.6 Find two forces at a point O, one vertical and one

horizontal, that have a resultant of magnitude h, making 45° with the

horizontal force. [Ans. The forces have magnitude h/\/^.]

Exercise 5.7 Find two forces at a point O, one vertical and one

horizontal, that have a resultant of magnitude h that makes an angle of
30° with the horizontal force.
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Exercise 5.8 Find two displacements, one parallel to the x-axis and

the other to the ^'-axis, that yield a resultant displacement of magnitude

h ft. making a positive acute angle a with the positive x-direction.

Exercise 5.9 What is the resultant of n vectors, each starting at the

point O, each having magnitude h, and each pointing to the pole star?

[We could have shortened this by asking for the resultant of n equal

vectors. But we have not yet defined "equal" vectors—even though we
have already spoken of the equality of free vectors! You may find it

instructive to try to do so here; but be warned that it is not as easy as it

seems, and that there is something lacking in the wording of the ques-

tion.]

Exercise 5.10 A particle is acted on by two forces, one of them to

the west and of magnitude 1 dyne, and the other in the direction 60°

north of east and of magnitude 2 dynes. What third force acting on the

particle would keep it in equilibrium (i. e., what third force would make
the resultant of all three forces have zero magnitude)? [Ans. Magnitude

V~3 dynes pointing due south.]

6. THE SINGULAR INCIDENT OF THE VECTORIAL TRIBE

It is rumored that there was once a tribe of Indians who believed that

arrows are vectors. To shoot a deer due northeast, they did not aim an arrow

in the northeasterly direction; they sent two arrows simultaneously, one due

north and the other due east, relying on the powerful resultant of the two

arrows to kill the deer.

Skeptical scientists have doubted the truth of this rumor, pointing out that

not the slightest trace of the tribe has ever been found. But the complete

disappearance of the tribe through starvation is precisely what one would

expect under the circumstances; and since the theory that the tribe existed

confirms two such diverse things as the Nonvectorial Behavior of Arrows
and the Darvv'inian Principle of Natural Selection, it is surely not a

theory to be dismissed lightly.

Exercise 6. 1 Arrow-headed line segments have magnitude and direc-

tion and are used to represent vectors. Why are they nevertheless not

vectors?

Exercise 6.2 Given the three vectors represented by OP, OQ, and

OR in Figure 2.1, form three new entities having the same respective

directions, but having magnitudes equal to five times the magnitudes of

the respective vectors. Prove geometrically that these new entities are so

related that the third is a diagonal of the parallelogram having the other

two as adjacent sides.

Exercise 6.3 If in Exercise 6.2 the new entities had the same

respective directions as the vectors represented by OP, OQ, and OR, but

had magnitudes that were one unit greater than the magnitudes of the

corresponding vectors, show that the new entities would not be such that

the third was a diagonal of the parallelogram having the other two as

adjacent sides.
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Exercise 6.4 Suppose we represented vectors by arrow-headed line

segments that had the same starting points and directions as the vectors,

but had lengths proportional to the squares of the magnitudes of the

vectors, so that, for example, if a force of 1 lb. were represented by a seg-

ment of length 1 inch, then a force of 2 lbs. would be represented by one of

4 inches. Show that, in general, these representations of vectors would not

obey the parallelogram law. Note that the statement of the parallelogram

law in Section 2 therefore needs amending, and amend it accordingly. [If

you think carefully, you will realize that this is a topsy-turvy question

since, in proving the required result, you will assume that the vectors,

when "properly" represented, obey the parallelogram law; and thus, in a

sense, you will assume the very amendment you are seeking. But since

you have probably been assuming the amendment all this while, you will

be able to think your way through. The purpose of this exercise is to

draw your attention to this rarely mentioned, usually assumed amend-

ment.]

7. SOME AWKWARD QUESTIONS

When are two vectors equal? The answer depends on what we choose to

mean by the word "equal"—we are the masters, not the word. But we do

not want to use the word in an outrageous sense: for example, we would not

want to say that two vectors are equal if they are mentioned in the same

sentence.

Choosing a meaning for the word "equal" here is not as easy as one might

imagine. For example, we could reasonably say that two vectors having the

same magnitudes, identical directions, and a common starting point are equal

vectors. And if one of the vectors were somehow pink and the other green,

we would probably be inclined to ignore the colors and say that the vectors

were still equal. But what if one of the vectors represented a force and the

other a displacement? There would then be two difficulties.

The first difficulty is that the vector representing a displacement would be

a free vector, but the one representing the force would not. If, in Figure 4.1,

we counted free vectors represented by AB and LM as equal, we might find

ourselves implying that forces represented by AB and LM were also equal,

though actually they have different effects. [Even so, it is extremely convenient

to say such things as "a force acts at A and an equal force acts at L." We shall

not do so in this book. But one can get by with saying such things once one

has explained what is awkward about them, just as, in trigonometry one gets

by with writing sin^ 6 after one has explained that this does not stand for

sin(sin B) but (sin Of.]

As for the second difficulty about the idea of the equality of vectors, it

takes us back to the definition of a vector. For if, in Figure 2.1, OP represents

a force and OQ a displacement, the two vectors will not combine by the paral-

lelogram law at all. We know this from experiments with forces. But we can

appreciate the awkwardness of the situation by merely asking ourselves what

the resultant would be if they did combine in this way. A "disforcement"?*

[Compare Exercise 5.9.]

Actually, of course, lack of a name proves no more than that if the resultant exists,

it has not hitherto been deemed important enough to warrant a name.
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If two vectors are to be called equal, it seems reasonable to require that

they be able to combine with each other. The situation is not the same as it is

with numbers. Although 3 apples and 3 colors are different things, we can say

that the numbers 3 are equal in the sense that, if we assign a pebble to each

of the apples, these pebbles will exactly suffice for doing the same with the

colors. And in this sense we can indeed combine 3 apples and 3 colors—not

to yield 6 apples, or 6 colors, or 6 colored apples [it would surely be only 3

colored apples], but 6 items. There does not seem to be a corresponding sense

in which we could reasonably combine a vector representing a force with one

representing a displacement, quite apart from the question of bound versus

free vectors: there does not seem to be a vectorial analogue of the numerical

concept of a countable item.*

Though OP and O^ do not combine according to the parallelogram law

if, for example, OP represents a force and OQ a. displacement, they never-

theless represent vectors. Evidently our definition of a vector needs even

further amendment. We might seek to avoid trouble by retreating to the

definition of a vector as "an entity having both magnitude and direction,"

without mentioning the parallelogram law. But once we start retreating, where

do we stop? Why not be content to define a vector as "an entity having

direction," or as "an entity having magnitude," or, with Olympian simplicity,

as just "an entity"? Alternatively, we could make the important distinction

between the abstract mathematical concept of a vector and entities, such as

forces, that behave like these abstract vectors and are called vector quantities.

This helps, but it does not solve the present problem so much as sweep it

under the rug. We might amend our definition of a vector by saying that

vectors combine according to the parallelogram law only with vectors of the

same kind : forces with forces, displacements with displacements, accelerations

(which are vectors) with accelerations, and so on. But even that is tricky since,

for example, in dynamics we learn that force equals mass times acceleration.

So we would have to allow for the fact that though a force does not combine

with an acceleration, it does combine with a vector of the type mass-times-

acceleration in dynamics.

We shall return to this matter. (See Section 8 of Chapter 2.) But enough of

such questions here. If we continue to fuss with the definition we shall never

get started. Even if we succeeded in patching up the definition to meet this

particular emegency, other emergencies would arise later. The best thing to do

is to keep an open mind and learn to live with a flexible situation, and even

to relish it as something akin to the true habitat of the best research.

*Even with numbers there are complications. For example, 3 ft. and 3 inches can be

said to yield 6 items ; yet in another sense they yield 39 inches, 3^ ft., and so on—and

each of these can also be regarded as a number of items, though the 3^ involves a further

subtlety. Consider also 3 ft. and 3 lbs., and then 2.38477 ft. and 2.38477 lbs.
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Galileo uses a thought experiment in discussing projec-

tile motion, a typical device of the scientist to this day.

Galileo's book was originally published in 1632.

11 Galileo's Discussion of Projectile Motion

Gerald Helton and Duane H. D. Roller

An excerpt from their book Foundations of Modern Physical Science, 1958.

3.1 Galileo's discussion of projectile motion. To this point we have

been solely concerned with the motion of objects as characterized by their

speed; we have not given much consideration to the direction of motion, or

to changes in direction of motion. Turning now to the more general prob-

lem of projectile motion, we leave the relatively simple case of bodies

moving in a straight line only and expand our methods to deal with pro-

jectiles moving along curved paths. Our understanding of this field will

hinge largely on a far-reaching idea: the observed motion of a projectile

may be thought of as the result of two separate motions, combined and

occurring simultaneously; one component of motion is in a horizontal

direction and without acceleration, whereas the other is in a vertical direc-

tion and has a constant acceleration downward in accordance with the

laws of free fall. Furthermore, these two components do not interfere with

each other; each component may be studied as if the other were not present.

Thus the whole motion of the projectile at every moment is simply the

result of the two individual actions.

This principle of the independency of the horizontal and vertical com-

ponents of projectile motion was set forth by Galileo in his Dialogue on the

great world systems (1632). Although in this work he was principally con-

cerned with astronomy, Galileo already knew that terrestrial mechanics

offered the clue to a better understanding of planetary motions. Like the

Two new sciences, this earlier work is cast in the form of a discussion among
the same three characters, and also uses the Socratic method of the Platonic

dialogues. Indeed, the portion of interest to us here begins with Salviati

reiterating one of Socrates' most famous phrases, as he tells the AristoteUan

Simplicio that he, Simplicio, knows far more about mechanics than he is

aware:*

Salviati: . . . Yet I am so good a midwife of minds that I will make you con-

fess the same whether you will or no. But Sagredus stands very quiet, and yet,

if I mistake not, I saw him make some move as if to speak.

Sagredo: I had intended to speak a fleeting something; but my curiosity

*These extracts from Galileo's Dialogue on the great world systems, as well as
those appearing in later chapters, are taken from the translation of T. Salusbury,
edited and corrected by Giorgio de Santillana (University of Chicago Press,
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aroused by your promising that you would force Simplicius to uncover the

knowledge which he conceals from us has made me depose all other thoughts.

Therefore I pray you to make good your vaunt.

Salviati: Provided that Simplicius consents to reply to what I shall ask him,

I will not fail to do it.

Simplicio: I will answer what I know, assured that I shall not be much put

to it, for, of those things which I hold to be false, I think nothing can be

known, since Science concerns truths, not falsehoods.

Salviati: I do not desire that you should say that you know anything, save

that which you most assuredly know. Therefore, tell me; if you had here a

flat surface as polished as a mirror and of a substance as hard as steel that

was not horizontal but somewhat inclining, and you put upon it a perfectly

spherical ball, say, of bronze, what do you think it would do when released?

Do you not believe (as for my part I do) that it would lie still?

Simplicio: If the surface were inclining?

Salviati: Yes, as I have already stated.

Simplicio: I cannot conceive how it should lie still. I am confident that it

would move towards the declivity with much propenseness.

Salviati: Take good heed what you say, Simplicius, for I am confident that

it would lie still in whatever place you should lay it.

Simplicio: So long as you make use of such suppositions, Salviatus, I shall

cease to wonder if you conclude most absurd conclusions.

Salviati: Are you assured, then, that it would freely move towards the

declivity?

Simplicio: Who doubts it?

Salviati: And this you verily believe, not because I told you so (for I

endeavored to persuade you to think the contrary), but of yourself, and upon

your natural judgment?

Simplicio: Now I see your game; you did not say this really believing it, but

to try me, and to wrest words out of my mouth with which to condemn me.

Salviati: You are right. And how long and with what velocity would that

ball move? But take notice that I gave as the example a ball exactly round,

and a plane exquisitely polished, so that all external and accidental impedi-

ments might be taken away. Also I would have you remove all obstructions

caused by the air's resistance and any other causal obstacles, if any other

there can be.

Simplicio: I understand your meaning very well and answer that the ball

would continue to move in infinitum if the inclination of the plane should last

so long, accelerating continually. Such is the nature of ponderous bodies that

they acquire strength in going, and, the greater the declivity, the greater

the velocity will be.

Simplicio is next led to express his belief that if he observed the ball

rolling up the inclined plane he would know that it had been pushed or

thrown, since it is moving contrary to its natural tendencies. Then Sal-

viati turns to the intermediate case:

Salviati: It seems, then, that hitherto you have well explained to me the

accidents of a body on two different planes. Now tell me, what would befall

the same body upon a surface that had neither acclivity nor declivity?

Simplicio: Here you must give me a little time to consider my answer. There
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being no declivity, there can be no natural inclination to motion; and there

being no acclivity, there can be no resistance to being moved. There would

then arise an indifference between propulsion and resistance; therefore, I think

it ought naturally stand still. But I had forgoi myself; it was not long ago

that Sagredus gave me to understand that it would do so.

Salviati: So I think, provided one did lay it down gently; but, if it had an

impetus directing it towards any part, what would follow?

Simplicio: That it should move towards that part.

Salviati: But with what kind of motion? Continually accelerated, as in

declining planes; or successively retarded, as in those ascending?

Simplicio: I cannot tell how to discover any cause of acceleration or re-

tardation, there being no declivity or acclivity.

Salviati: Well, if there be no cause of retardation, even less should there be

any cause of rest. How long therefore would you have the body move?

Simplicio: As long as that surface, neither inclined nor declined, shall last.

Salviati: Therefore if such a space were interminate, the motion upon it

would likewise have no termination, that is, would be perpetual.

Simplicio: I think so, if the body is of a durable matter.

Salviati: That has been already supposed when it was said that all external

and accidental impediments were removed, and the brittleness of the body in

this case is one of those accidental impediments. Tell me now, what do you

think is the cause that that same ball moves spontaneously upon the inclining

plane, and does not, except with violence, upon the plane sloping upwards?

Simplicio: Because the tendency of heavy bodies is to move towards the

center of the Earth and only by violence upwards towards the circumference.

[This is the kernel of the Scholastic viewpoint on falling bodies (see Section

2.3). Salviati does not refute it, but turns it to Galileo's purposes.]

Salviati: Therefore a surface which should be neither declining nor ascending

ought in all its parts to be equally distant from the center. But is there any

such surface in the world?

Simplicio: There is no want of it, such is our terrestrial globe, for example,

if it were not rough and mountainous. But you have that of the water, at

such time as it is calm and still.

Here is the genesis of one of the fundamental principles of the new
mechanics: if all "accidental" interferences with an object's motion are

removed, the motion will endure. The "accidents" are eliminated in this

thought experiment by: (1) proposing the use of a perfectly round, per-

fectly hard ball on a perfectly smooth surface, and (2) by imagining the

surface to be a globe whose surface is everywhere equidistant from the

center of the earth, so that the ball's "natural tendency" to go downward is

balanced by the upward thrust of the surface. (We shall return to this

latter point in our discussion of isolated systems in Chapter 16.) Note

carefully the drastic change from the Scholastic view: instead of asking

"What makes the ball move?" Galileo asks "What might change its

motion?"

Having turned the conversation to smooth water, Galileo brings in the

motion of a stone dropping from the mast of a moving ship. Since the

stone is moving horizontally with the ship before it is dropped, it should

continue to move horizontally while it falls.
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Galileo's Discussion of Projectile Motion

Sagredo: If it be true that the

impetus with which the ship moves

remains indeUbly impressed in the

stone after it is let fall from the

mast; and if it be further true that

this motion brings no impediment

or retardment to the motion directly

downwards natural to the stone,

then there ought to ensue an effect

of a very wonderful nature. Suppose

a ship stands still, and the time of

the falling of a stone from the mast's

round top to the deck is two beats

of the pulse. Then afterwards have

the ship under sail and let the same

stone depart from the same place.

According to what has been prem-

ised, it shall still take up the time of

two pulses in its fall, in which time

the ship will have gone, say, twenty

yards. The true motion of the stone

then will be a transverse line [i.e., a

curved line in the vertical plane, see

Fig. 3.1], considerably longer than

the first straight and perpendicular

line, the height of the mast, and

yet nevertheless the stone will have

passed it in the same time. Increase

the ship's velocity as much as you

will, the falling stone shall describe

its transverse lines still longer and

longer and yet shall pass them all in

those selfsame two pulses. In this

same fashion, if a cannon were lev-

eled on the top of a tower, and fired point-blank, that is, horizontally, and

whether the charge were small or large with the ball falling sometimes a

thousand yards distant, sometimes four thousand, sometimes ten, etc., all

these shots shall come to ground in times equal to each other. And every

one equal to the time that the ball would take to pass from the mouth of the

piece to the ground, if, without other impulse, it falls simply downwards in

a perpendicular line. Now it seems a very admirable thing that, in the

same short time of its falling perpendicularly down to the ground from the

height of, say, a hundred yards, equal balls, fired violently out of the piece,

should be able to pass four hundred, a thousand, even ten thousand yards.

All the balls in all the shots made horizontally remain in the air an equal
time [Fig. 3.2].

Salviati: The consideration is very elegant for its novelty and, if the effect

be true, very admirable. Of its truth I make no question, and, were it not for

the accidental impediment of the air, I verily believe that, if at the time of the
ball's going out of the piece another were let fall from the same height directly

downwards, they would both come to the ground at the same instant, though
one should have traveled ten thousand yaids in its range, and another only a
hundred, presupposing the surface of the Earth to be level. As for the impedi-

FiG. 3.1. A stone dropped from the

mast of a ship in uniform motion. From
the shore the trajectory of the stone is

seen to be a curved line (parabola).
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Fig. 3.2. For cannon balls fired horizontally with different initial forward

speeds, "all the balls in all the shots made horizontally remain in the air an

equal time."

ment which might come from the air, it would consist in retarding the extreme
swift motion of the shot.
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This chapter from a beginning college physics text is not

simple, but the reward of this numerical approach to

Newtonian mechanics is a more powerful understanding

of how the laws of motion work.

12 Newton's Laws of Dynamics

Richard P. Feynman, Robert B. Leighton and Matthew Sands

A chapter from their textbook The Feynman Lectures on Physics, Volume 1, 1963.

9-1 Momentum and force

The discovery of the laws of dynamics, or the laws of motion, was a dramatic

moment in the history of science. Before Newton's time, the motions of things

like the planets were a mystery, but after Newton there was complete under-

standing. Even the slight deviations from Kepler's laws, due to the perturbations

of the planets, were computable. The motions of pendulums, oscillators with

springs and weights in them, and so on, could all be analyzed completely after

Newton's laws were enunciated. So it is with this chapter: before this chapter we
could not calculate how a mass on a spring would move; much less could we
calculate the perturbations on the planet Uranus due to Jupiter and Saturn. After

this chapter we will be able to compute not only the motion of the oscillating mass,

but also the perturbations on the planet Uranus produced by Jupiter and Saturn!

Galileo made a great advance in the understanding of motion when he

discovered the principle of inertia: if an object is left alone, is not disturbed, it

continues to move with a constant velocity in a straight line if it was originally

moving, or it continues to stand still if it was just standing still. Of course this

never appears to be the case in nature, for if we slide a block across a table it stops,

but that is because it is not left to itself—it is rubbing against the table. It required

a certain imagination to find the right rule, and that imagination was supplied

by Galileo.

Of course, the next thing which is needed is a rule for finding how an object

changes its speed if something is affecting it. That is the contribution of Newton.

Newton wrote down three laws: The First Law was a mere restatement of the

Galilean principle of inertia just described. The Second Law gave a specific way

of determining how the velocity changes under difl'erent influences called forces.

The Third Law describes the forces to some extent, and we shall discuss that at
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another time. Here we shall discuss only the Second Law, which asserts that the

motion of an object is changed by forces in this way: the time-rate-of-change of a

quantity called momentum is proportional to the force. We shall state this mathe-

matically shortly, but let us first explain the idea.

Momentum is not the same as velocity. A lot of words are used in physics,

and they all have precise meanings in physics, although they may not have such

precise meanings in everyday language. Momentum is an example, and we must

define it precisely. If we exert a certain push with our arms on an object that is

light, it moves easily; if we push just as hard on another object that is much heavier

in the usual sense, then it moves much less rapidly. Actually, we must change the

words from "light" and "heavy" to less massive and more massive, because there

is a diff'erence to be understood between the weight of an object and its inertia.

(How hard it is to get it going is one thing, and how much it weighs is something

else.) Weight and inertia are proportional, and on the earth's surface are often

taken to be numerically equal, which causes a certain confusion to the student.

On Mars, weights would be different but the amount offeree needed to overcome

inertia would be the same.

We use the term mass as a quantitative measure of inertia, and we may
measure mass, for example, by swinging an object in a circle at a certain speed and

measuring how much force we need to keep it in the circle. In this way we find a

certain quantity of mass for every object. Now the momentum of an object is a

product of two parts: its mass and its velocity. Thus Newton's Second Law may
be written mathematically this way:

F=~{mv). (9.1)

Now there are several points to be considered. In writing down any law such as

this, we use many intuitive ideas, implications, and assumptions which are at

first combined approximately into our "law." Later we may have to come back

and study in greater detail exactly what each term means, but if we try to do this

too soon we shall get confused. Thus at the beginning we take several things for

granted. First, that the mass of an object is constant; it isn't really, but we shall

start out with the Newtonian approximation that mass is constant, the same all

the time, and that, further, when we put two objects together, their masses add.

These ideas were of course implied by Newton when he wrote his equation, for

otherwise it is meaningless. For example, suppose the mass varied inversely as the

velocity; then the momentum would never change in any circumstance, so the law

means nothing unless you know how the mass changes with velocity. At first

we say, // does not change.

Then there are some implications concerning force. As a rough approximation

we think of force as a kind of push or pull that we make with our muscles, but

we can define it more accurately now that we have this law of motion. The most

important thing to realize is that this relationship involves not only changes in

the magnitude of the momentum or of the velocity but also in their direction.
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Newton's Laws of Dynamics

If the mass is constant, then Eq. (9.1) can also be written as

F = m
-J

= ma. (9.2)

The acceleration a is the rate of change of the velocity, and Newton's Second

Law says more than that the effect of a given force varies inversely as the mass;

it says also that the direction of the change in the velocity and the direction of the

force are the same. Thus we must understand that a change in a velocity, or an

acceleration, has a wider meaning than in common language: The velocity of a

moving object can change by its speeding up, slowing down (when it slows down,

we say it accelerates with a negative acceleration), or changing its direction of

motion. An acceleration at right angles to the velocity was discussed in Chapter 7.

There we saw that an object moving in a circle of radius R with a certain speed v

along the circle falls away from a straightline path by a distance equal to ^(v^/R)t^

if / is very small. Thus the formula for acceleration at right angles to the motion is

a = v^R, (9.3)

and a force at right angles to the velocity will cause an object to move in a curved

path whose radius of curvature can be found by dividing the force by the mass to

get the acceleration, and then using (9.3).

iZ

Fig. 9-1. A small displacement of an object.

9-2 Speed and velocity

In order to make our language more precise, we shall make one further

definition in our use of the words speed and velocity. Ordinarily we think of speed

and velocity as being the same, and in ordinary language they are the same. But in

physics we have taken advantage of the fact that there are two words and have

chosen to use them to distinguish two ideas. We carefully distinguish velocity,

which has both magnitude and direction, from speed, which we choose to mean

the magnitude of the velocity, but which does not include the direction. We can

formulate this more precisely by describing how the x-, y-, and z-coordinates of

an object change with time. Suppose, for example, that at a certain instant an

object is moving as shown in Fig. 9-1. In a given small interval of time At it
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will move a certain distance Ax in the A:-direction, Ay in the >'-direction, and Az in

the z-direction. The total effect of these three coordinate changes is a displacement

As along the diagonal of a parallelepiped whose sides are Ax, Ay, and Az. In terms

of the velocity, the displacement Ax is the x-component of the velocity times At,

and similarly for Ay and Az:

Ax VxAt, Ay = Vy At, Az = Vz At. (9.4)

9-3 Components of velocity, acceleration, and force

In Eq. (9.4) we have resolved the velocity into components by telling how fast the

object is moving in the x-direction, the >'-direction, and the z-direction. The

velocity is completely specified, both as to magnitude and direction, if we give the

numerical values of its three rectangular components:

Vj = dx/dt, Vy = dy/dt, v^ = dz/dt. (9.5)

On the other hand, the speed of the object is

ds/dt = \v\ = v^' + 1-; + vi (9.6)

Next, suppose that, because of the action of a force, the velocity changes to

some other direction and a different magnitude, as shown in Fig. 9-2. We can

analyze this apparently complex situation rather simply if we evaluate the changes

in the x-, y-, and z-components of velocity. The change in the component of the

velocity in the A-direction in a time At is Ar^ = Oj. At, where Uj- is what we call the

.v-component of the acceleration. Similarly, we see that Avy = Oy At and Av^ =

Qz At. In these terms, we see that Newton's Second Law, in saying that the force

is in the same direction as the acceleration, is really three laws, in the sense that

the component of the force in the x-. r-, or z-direction is equal to the mass times

/
Fig. 9-2. A change in velocity in

which both the magnitude and direction

change.
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the rate of change of the corresponding component of velocity:

F^ = m{dvjdt) = m{d'^x/dt-) = ma^,

Fy = m{dvy/dt) = m(d^y/dt^.) = may, (9.7)

F, = m{dvjdt) = m{d'h/dt^) = ma^.

Just as the velocity and acceleration have been resolved into components by
projecting a line segment representing the quantity and its direction onto three

coordinate axes, so, in the same way, a force in a given direction is represented

by certain components in the x-, y-, and z-directions:

Fj, = F cos {x, F),

Fy = F COS (y,F), (9.8)

Fz = F cos (z, F).

where F is the magnitude of the force and {x, F) represents the angle between the

jc-axis and the direction of F, etc.

Newton's Second Law is given in complete form in Eq. (9.7). If we know the

forces on an object and resolve them into x-, y-, and z-components, then we can

find the motion of the object from these equations. Let us consider a simple

example. Suppose there are no forces in the y- and z-directions, the only force

being in the x-direction, say vertically. Equation (9.7) tells us that there would be

changes in the velocity in the vertical direction, but no changes in the horizontal

direction. This was demonstrated with a special apparatus in Chapter 7 (see

Fig. 7-3). A falling body moves horizontally without any change in horizontal

motion, while it moves vertically the same way as it would move if the horizontal

motion were zero. In other words, motions in the ;c-, y-, and z-directions are

independent if Xht forces are not connected.

9^ What is the force?

In order to use Newton's laws, we have to have some formula for the force;

these laws %2iy pay attention to the forces. If an object is accelerating, some agency

is at work; find it. Our program for the future of dynamics must be Xo find the

laws for the force. Newton himself went on to give some examples. In the case

of gravity he gave a specific formula for the force. In the case of other forces he

gave some part of the information in his Third Law, which we will study in the

next chapter, having to do with the equality of action and reaction.

Extending our previous example, what are the forces on objects near the

earth's surface? Near the earth's surface, the force in the vertical direction due

to gravity is proportional to the mass of the object and is nearly independent of

height for heights small compared with the earth's radius i?: F = GmM/R"^ = mg,

where g = GM/R^ is called the acceleration of gravity. Thus the law of gravity

tells us that weight is proportional to mass; the force is in the vertical direction

and is the mass times g. Again we find that the motion in the horizontal direction
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,-i Fig. 9-3. A mass on a spring.

is at constant velocity. The interesting motion is in the vertical direction, and

Newton's Second Law tells us

mg = m{d'^xldt\ (9.9)

Cancelling the w's, we find that the acceleration in the ;c-direction is constant and

equal to g. This is of course the well known law of free fall under gravity, which

leads to the equations

Vx = ^0 + ^t,

X = xo + 1^0/ + \gt'^- (9.10)

As another example, let us suppose that we have been able to build a gadget

(Fig. 9-3) which applies a force proportional to the distance and directed oppositely

—a spring. If we forget about gravity, which is of course balanced out by the

initial stretch of the spring, and talk only about excess forces, we see that if we

pull the mass down, the spring pulls up, while if we push it up the spring pulls

down. This machine has been designed carefully so that the force is greater, the

more we pull it up, in exact proportion to the displacement from the balanced

condition, and the force upward is similarly proportional to how far we pull down.

If we watch the dynamics of this machine, we see a rather beautiful motion—up,

down, up, down, . . . The question is, will Newton's equations correctly describe

this motion? Let us see whether we can exactly calculate how it moves with this

periodic oscillation, by applying Newton's law (9.7). In the present instance,

the equation is

-kx = m{dvjdt). (9.11)

Here we have a situation where the velocity in the x-direction changes at a rate

proportional to x. Nothing will be gained by retaining numerous constants, so

we shall imagine either that the scale of time has changed or that there is an

accident in the units, so that we happen to have kim = 1. Thus we shall try to

solve the equation

dvjdt = -X. (9.12)

To proceed, we must know what Vj, is, but of course we know that the velocity is

the rate of change of the position.

9-5 Meaning of the dynamical equations

Now let us try to analyze just what Eq. (9.12) means. Suppose that at a

given time / the object has a certain velocity r^ and position x. What is the velocity
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and what is the position at a sUghtly later time / + 6? If we can answer this

question our problem is solved, for then we can start with the given condition and

compute how it changes for the first instant, the next instant, the next instant, and

so on, and in this way we gradually evolve the motion. To be specific, let us suppose

that at the time / = we are given that x = 1 and Vx = 0. Why does the object

move at all? Because there is a force on it when it is at any position except x = 0.

If x > 0, that force is upward. Therefore the velocity which is zero starts to

change, because of the law of motion. Once it starts to build up some velocity

the object starts to move up, and so on. Now at any time /, if e is very small,

we may express the position at time / + e in terms of the position at time / and

the velocity at time / to a very good approximation as

x(t + e) = x(t) + €v,(t). (9.13)

The smaller the e, the more accurate this expression is, but it is still usefully accurate

even if e is not vanishingly small. Now what about the velocity? In order to get

the velocity later, the velocity at the time / + €, we need to know how the velocity

changes, the acceleration. And how are we going to find the acceleration? That

is where the law of dynamics comes in. The law of dynamics tells us what the

acceleration is. It says the acceleration is —x.

v,(t + e) = v,0) + eax(t) (9.14)

= vAO - €x(t). (9.15)

Equation (9.14) is merely kinematics; it says that a velocity changes because of

the presence of acceleration. But Eq. (9.15) is dynamics, because it relates the

acceleration to the force; it says that at this particular time for this particular

problem, you can replace the acceleration by —x(t). Therefore, if we know both

the X and y at a given time, we know the acceleration, which tells us the new

velocity, and we know the new position—this is how the machinery works. The

velocity changes a little bit because of the force, and the position changes a little

bit because of the velocity.

9-6 Numerical solution of the equations

Now let us really solve the problem. Suppose that we take e = 0.100 sec.

After we do all the work if we find that this is not small enough we may have to

go back and do it again with e = 0.010 sec. Starting with our initial value x(0) =
1.00, what is a:(O.I)? It is the old position x(0) plus the velocity (which is zero)

times 0.10 sec. Thus x(0.\) is still 1.00 because it has not yet started to move.

But the new velocity at 0.10 sec will be the old velocity i'(O) = plus e times the

acceleration. The acceleration is —x(0) = —1.00. Thus

/•(O.l) = 0.00 - 0.10 X 1.00 = -0.10.
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Now at 0.20 sec

x(0.2) = x(O.l) + €^0.1)

= 1.00 - 0.10 X 0.10 = 0.99

and

r(0.2) = KO.l) + 6a(0.1)

= -0.10 - 0.10 X 1.00 = -0.20.

And so, on and on and on, we can calculate the rest of the motion, and that is

just what we shall do. However, for practical purposes there are some little tricks

by which we can increase the accuracy. If we continued this calculation as we have

started it, we would find the motion only rather crudely because e = 0.100 sec

is rather crude, and we would have to go to a very small interval, say e = 0.01.

Then to go through a reasonable total time interval would take a lot of cycles of

computation. So we shall organize the work in a way that will increase the pre-

cision of our calculations, using the same coarse interval e = 0.10 sec. This can

be done if we make a subtle improvement in the technique of the analysis.

Notice that the new position is the old position plus the time interval e times

the velocity. But the velocity when? The velocity at the beginning of the time

interval is one velocity and the velocity at the end of the time interval is another

velocity. Our improvement is to use the velocity halfway between. If we know
the speed now, but the speed is changing, then we are not going to get the right

answer by going at the same speed as now. We should use some speed between

the "now" speed and the "then" speed at the end of the interval. The same

considerations also apply to the velocity: to compute the velocity changes, we

should use the acceleration midway between the two times at which the velocity

is to be found. Thus the equations that we shall actually use will be something

like this: the position later is equal to the position before plus e times the velocity

at the time in the middle of the interval. Similarly, the velocity at this halfway point

is the velocity at a time e before (which is in the middle of the previous interval)

plus e times the acceleration at the time /. That is, we use the equations

x{t + €) = x{t) + ev{i + €/2),

v{t + €/2) = lit - 6/2) + ea{t\ (9.16)

a{t) = -x{t).

There remains only one slight problem: what is t'(e/2)? At the start, we are given

t'(0), not i'(— e/2). To get our calculation' started, we shall use a special equation,

namely, v{e/2) = r(0) + (€/2)a(0).

Now we are ready to carry through our calculation. For convenience, we
may arrange the work in the form of a table, with columns for the time, the position,

the velocity, and the acceleration, and the in-between lines for the velocity, as

shown in Table 9-1 . Such a table is, of course, just a convenient way of representing

the numerical values obtained from the set of equations (9.16), and in fact the

equations themselves need never be written. We just fill in the various spaces in
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Table 9-1

Solution of c^yi/J/ = —x

Interval: e = 0.10 sec

/ X Vx Ox

0.0 1.000 0.000

-0.050

-1.000

0.1 0.995

-0.150

-0.995

0.2 0.980

-0.248

-0.980

0.3 0.955

-0.343

-0.955

0.4 0.921

-0.435

-0.921

0.5 0.877
A CT5

-0.877

0.523 —

0.6 0.825

-0.605

-0.825

0.7 0.764

-0.682

-0.764

0.8 0.696

-0.751

-0.696

0.9 0.621

-0.814

-0.621

1.0 0.540
f\ O/'O

-0.540

1.1 0.453

U.ODO

-0.913

-0.453

1.2 0.362

-0.949

-0.362

1.3 0.267

-0.976

-0.267

1.4 0.169

-0.993

-0.169

1.5 0.070

1.000-

-0.070

1.6 -0.030 +0.030

the table one by one. This table now gives us a very good idea of the motion

:

it starts from rest, first picks up a little upward (negative) velocity and it loses

some of its distance. The acceleration is then a little bit less but it is still gaining

speed. But as it goes on it gains speed more and more slowly, until as it passes

a: = at about t = 1.50 sec we can confidently predict that it will keep going,

but now it will be on the other side; the position x will become negative, the ac-
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celeration therefore positive. Thus the speed decreases. It is interesting to compare

these numbers with the function x = cos /, which is done in Fig. 9-4. The agree-

ment is within the three significant figure accuracy of our calculation! We shall

see later that x = cos / is the exact mathematical solution of our equation of

motion, but it is an impressive illustration of the power of numerical analysis that

such an easy calculation should give such precise results.

9-7 Planetary motions

The above analysis is very nice for the motion of an oscillating spring, but

can we analyze the motion of a planet around the sun? Let us see whether we

can arrive at an approximation to an ellipse for the orbit. We shall suppose that

the sun is infinitely heavy, in the sense that we shall not include its motion. Suppose

a planet starts at a certain place and is moving with a certain velocity; it goes

around the sun in some curve, and we shall try to analyze, by Newton's laws of

motion and his law of gravitation, what the curve is. How? At a given moment
it is at some position in space. If the radial distance from the sun to this position

is called r, then we know that there is a force directed inward which, according to

the law of gravity, is equal to a constant times the product of the sun's mass and

the planet's mass divided by the square of the distance. To analyze this further

we must find out what acceleration will be produced by this force. We shall need

the components of the acceleration along two directions, which we call x and y.

Thus if we specify the position of the planet at a given moment by giving x and y
(we shall suppose that z is always zero because there is no force in the z-direction

and, if there is no initial velocity v^, there will be nothing to make z other than

zero), the force is directed along the line joining the planet to the sun, as shown

in Fig. 9-5.

From this figure we see that the horizontal component of the force is related

to the complete force in the same manner as the horizontal distance x is to the

complete hypotenuse r, because the two triangles are similar. Also, i( x is positive.
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F^ is negative. That is, Fj./\F\ = —x/r,orF^ = —\F\x/r = —GMmx/r\ Now
we use the dynamical law to find that this force component is equal to the mass of

the planet times the rate of change of its velocity in the x-direction. Thus we find

the following laws:

m{dvjdt) = -GMmx/r\

m{dvy/dt) = -GMmy/r\ (9.17)

r = Vx^ + y'.

This, then, is the set of equations we must solve. Again, in order to simplify the

numerical work, we shall suppose that the unit of time, or the mass of the sun, has

been so adjusted (or luck is with us) that GM = I. For our specific example we
shall suppose that the initial position of the planet is at x = 0.500 and y = 0.000,

and that the velocity is all in the j^-direction at the start, and is of magnitude

1.6300. Now how do we make the calculation? We again make a table with

columns for the time, the x-position, the x-velocity r^, and the x-acceleration a^;

then, separated by a double line, three columns for position, velocity, and accelera-

tion in the >^-direction. In order to get the accelerations we are going to need

Eq. (9.17); it tells us that the acceleration in the x-direction is —x/r'\ and the

acceleration in the >^-direction is —y/r'\ and that r is the square root of jc^ + y^.

Thus, given x and y, we must do a little calculating on the side, taking the square

root of the sum of the squares to find r and then, to get ready to calculate the two

accelerations, it is useful also to evaluate l/r'\ This work can be done rather

easily by using a table of squares, cubes, and reciprocals: then we need only

multiply X by l/r^, which we do on a slide rule.

y

• = '°^. . . . .

:/'
«0.5

t
= l.5—

y^
. •0.5

•

•

1 = 20-1,.

1 1 J 1 1 1 1 1 1 1 1 1 ^ . 1 1 1 1

• t=o

-10 -05 SUN as X

,=0 Fig- 9-6. The calculated motion of a

planet around the sun.

Our calculation thus proceeds by the following steps, using time intervals

€ = 0.100: Initial values at / = 0:

jc(0) = 0.500

vAO) = 0.000

>;(0) = 0.000

Vy(0) = +1.630

From these we find:

/-(O) = 0.500 lA'^(O) = 8.000

a, = -4.000 a„ = 0.000

87



Thus we may calculate the velocities y;c(0.05) and Vy(0.05):

r^(0.05) = 0.000 - 4.000 X 0.050 = -0.200;

i'j,(0.05) = 1.630 + 0.000 X 0.100 = 1.630.

Now our main calculations begin:

a:(0.1) = 0.500 - 0.20 X 0.1 = 0.480

y(0.l) = 0.0 + 1.63 X 0.1 = Q.163

r = VOASO^ + 0.163^ = 0.507

1/r'' = 7.67

aAO.l) = 0.480 X 7.67 = -3.68

^^(0.1) = -0.163 X 7.70 = -1.256

t';,(0.15) = -0.200 - 3.68 X 0.1 = -0.568

/',X0.15)
= 1.630 - 1.26 X 0.1 = 1.505

a:(0.2) - 0.480 - 0.568 X 0.1 = 0.423

y{0.2) = 0.163 + 1.50 X 0.1 = 0.313

etc.

In this way we obtain the values given in Table 9-2, and in 20 steps or so we have

chased the planet halfway around the sun! In Fig. 9-6 are plotted the x- and

>'-coordinates given in Table 9-2. The dots represent the positions at the succession

of times a tenth of a unit apart; we see that at the start the planet moves rapidly

and at the end it moves slowly, and so the shape of the curve is determined. Thus

we see that we really do know how to calculate the motion of planets!

Now let us see how we can calculate the motion of Neptune, Jupiter, Uranus,

or any other planet. If we have a great many planets, and let the sun move too,

can we do the same thing? Of course we can. We calculate the force on a particular

planet, let us say planet number /, which has a position x„ yi, Zi (i = 1 may repre-

sent the sun,/ = 2 Mercury, / = 3 Venus, and so on). We must know the positions

of all the planets. The force acting on one is due to all the other bodies which

are located, let us say, at positions Xj, yj, Zj. Therefore the equations are

dvix v^ Gnji/nXxi — Xj)
nii —;— = > — — '

,„,^ = t- ^'"•'"'^l'

- ^'>
(9.18)

dvj^ _ v^ _ Gmjmjizi - z,)
'"'

"dt
~ ^ ;:3^ *
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Newton's Laws of Dynamics

Table 9-2

Solution of (/vxM = -x/r^,dvy/dt = -y/r^.

Interval: < = 0.100

Orbit Vy =1.63 v, = x = 0.5 y =

r = Vx' + y'

at 1=0

1 X fx o. y "v ay r l/r'

0.0 0.500

-0.200

-4.00 0.000

1.630

0.00 0.500 8.000

0.1 0.480

-0.568

-3.68 0.163

1.505

-1.25 0.507 7.675

0.2 0.423

-0.859

-2.91 0.313

1.290

-2.15 0.526 6.873

0.3 0.337

-1.055

-1.96 0.442

1.033

-2.57 0.556 5.824

0.4 0.232

-1.166

-1.11 0.545

0.771

-2.62 0.592 4.81

0.5 0.115

-1.211-

-0.453 0.622

- 0.526-

-2AS 0.633 3.942

0.6 -0.006 4-0.020 0.675 -2.20 0.675 3.252

-1.209 0.306

0.7 -0.127

-1.175

+0.344 0.706

0.115

-1.91 0.717 2.712

0.8 -0.245

-1.119

+0.562 0.718

-0.049

-1.64 0.758 2.2%

0.9 -0.357

-1.048

+0.705 0.713

-0.190

-1.41 0.797 1.975

1.0 -0.462

-0.968-
+0.796 0.694

-0.310-

-1.20 0.834 1.723

1.1 -0.559 +0.858 0.663 -1.02 0.867 1.535

-0.882 -0.412

1.2 -0.647

-0.792

+0.90 0.622

-0.499

-0.86 0.897 1.385

1.3 -0.726

-0.700

+0.92 0.572

-0.570

-0.72 0.924 1.267

1.4 -0.796

-0.607

+0.93 0.515

-0.630

-0.60 0.948 1.173

1.5 -0.857

- -0.513-

+0.94 0.452

- -0.680-

-0.50 0.969 1.099

1.6 -0.908 +0.95 0.384 -0.40 0.986 1.043

-0.418 -0.720

1.7 -0.950

-0.323

+0.95 0.312

-0.751

-0.31 1.000 1.000

1.8 -0.982

-0.228

+0.95 0.237

-0.773

-0.23 1.010 0.970

1.9 -1.005

-0.113

+0.95 0.160

-0.778

-0.15 1.018 0.948

2.0 -1.018

- -0.037-

+0.96 0.081

- -0.796-

-0.08 1.021 0.939

2.1 -1.022 +0.95 0.001 0.00 1.022 0.936

+0.058 -0.796

2.2 -1.016 +0.96 -0.079

-0.789

+0.07 1.019 0.945

2.3

Crossed x-axis at 2.101 sec, . period = 4.20 sec.

Vx = at 2.086 sec.

1.022 + 0.500
Cross X at 1.022, . . semimajor axis =

f„ = 0.796.

= 0.761.

Predicted time 7r(0.761)^' 2 = ir(0.663) = 2.082.
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Further, we define rij as the distance between the two planets / andy; this is equal to

r,, = V{^- x,y^ + {y, - y,y + (z, - z,)^. (9.19)

Also, X! means a sum over all values of y—all other bodies—except, of course,

fory = /. Thus all we have to do is to make more columns, lots more columns.

We need nine columns for the motions of Jupiter, nine for the motions of Saturn,

and so on. Then when we have all initial positions and velocities we can calculate

all the accelerations from Eq. (9.18) by first calculating all the distances, using

Eq. (9.19). Hov, long will it take to do it? If you do it at home, it will take a

very long time! But in modern times we have machines which do arithmetic very

rapidly; a very good computing machine may take 1 microsecond, that is, a

millionth of a second, to do an addition. To do a multiplication takes longer,

say 10 microseconds. It may be that in one cycle of calculation, depending on

the problem, we may have 30 multiplications, or something like that, so one cycle

will take 300 microseconds. That means that we can do 3000 cycles of computation

per second. In order to get an accuracy, of, say, one part in a billion, we would

need 4 X 10' cycles to correspond to one revolution of a planet around the sun.

That corresponds to a computation time of 130 seconds or about two minutes.

Thus it take only two minutes to follow Jupiter around the sun, with all the

perturbations of all the planets correct to one part in a billion, by this method!

(It turns out that the error varies about as the square of the interval e. If we make

the interval a thousand times smaller, it is a million times more accurate. So, let

us make the interval 10,000 times smaller.)

So, as we said, we began this chapter not knowing how to calculate even the

motion of a mass on a spring. Now, armed with the tremendous power of Newton's

laws, we can not only calculate such simple motions but also, given only a machine

to handle the arithmetic, even the tremendously complex motions of the planets,

to as high a degree of precision as we wish!
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An experimental study of a complex m.otion, that of a

golf club, is outlined. If you do not have a slow-motion

movie camera, similar measurements can be made using

the stroboscopic picture.

13 The Dynamics of a Golf Club

C. L Stong

An article from Scientific American, 1964.
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With the aid of a slow-motion

movie camera and a co-opera-

tive friend any golf player can

easily explore the dynamics of his club

head during the split second of the drive

that separates the sheep from the goats

of golfdom. The procedure, as applied

by Louis A. Graham, a consulting en-

gineer in Naples, Fla., analyzes the travel

of the club head throughout the swing,

including its velocity and acceleration

at the critical moment of impact—factors

that determine whether a squarely struck

ball will merely topple off the tee or go

a history-making 445 yards to match the

performance of E. C. Bliss in August,

1913.

"The procedure is essentially simple,"

writes Graham, "but the reliability of

the results will reflect the care with

which certain measurements are made.

I pick a sunny day for the experiment

and, having arrived at the golf course

with my co-operative friend and acces-

sories, tee my ball. Then I place a tee

marker precisely four feet in front of

the ball and another four feet behind it

to make a line that points toward the

first green. My friend stations the tripod-

mounted camera for a medium close-up

shot on a line that intersects the ball at

right angles to the tee markers. I address

the bail, facing the camera. My friend

photographs the complete drive from

address to follow-through at the rate of

48 frames per second. The known dis-

tance between the tee markers and their

position in relation to the club head

scales the pictures with respect to dis-

tance. The exposure rate—the number of

frames per second—of the camera pro-

vides the time dimension. (If the expo-

sure rate is not known accurately, it can

be calibrated by photographing a phono-

graph turntable marked with a chalk line

and turning at 45 or 78 revolutions per

minute.

)

"The film is developed and analyzed.

One can use either a film-editing device

that projects an enlarged image of each

frame or a set of enlarged prints of each

frame, mounted serially and numbered
for identification.

"The next step is to plot the position

of the club head during the course of the

swing. Since a point in a plane is deter-

mined by its distance from two other

known points, the position of the club

head can be plotted in relation to that of

the two tee markers [see illustration be-

low]. First, I draw a base line near the

bottom of a sheet of graph paper ruled

with rectangular co-ordinates and on it

locate three equally spaced points: the

tee marker P, the ball (O) and the

tee marker Q. 1 usually space these

points four inches apart, thus establish-

ing a scale of 12 inches of club head

travel per inch of graph paper.

"The location of the club head (C)

with respect to that of the tee markers

can be transferred to the graph by one

of three methods. Proportional dividers

are handy for transferring the scaled

distance from P to C and from C to Q.

Alternatively, the angles CPQ and CQP
can be measured with a protractor and

reconstructed on the graph, point C be-

ing located at the intersection of lines

projected from P and Q. If no protractor

is at hand, the vertical and horizontal

distances between C, P and Q can be

measured with a square and ruler and

similarly transferred to the graph.

"Plot enough points to establish a rea-

sonably smooth track, skipping several

frames during slow portions of the

swing. The resulting graph is of course

not extremely accurate. The plane in

which the club head swings, for example,

is inclined to the plane of the film. The
track plotted from the image therefore

diff^ers slightly from the true excursion

of the club head, but the error is not

large and can be ignored. By the same

token, the travel of the club head from

Graph of successive club head positions
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The Dynamics of a Golf Club

50 52 5d

Selected frames from slow-motion film of a golf swing

point to point is subsequently measured

along stiaiglit lines, whereas the club

head actually follows a cursed path.

Error introduced by this source can be

minimized by speeding up the camera.

My camera, an inc.xpensi\e one, is limit-

ed to a maximum speed of 48 frames per

second, a rate that records the event

adefjuately for the objectives of this ex-

periment.

"The total distance traveled by the

club head and its velocity and accelera-

tion are derived from a second set of

graphs prepared from the grapli of club

head position. On a second sheet of

graph paper ruled with rectangular co-

ordinates di\ide the abscissa into a series

of uniform increments equal to the total

number of frames occupied by the su ing

and note the corresponding time inter-

vals in seconds as well as the frame num-

bers. The ordinate will carry two scales:

club head travel in feet and club head

speed in miles per hour. The scales of the

ordinate should provide for a total club

head travel of 36 feet and a maximum
velocity of about 80 miles per hour.

Graphs of convenient proportion result

when the length of the ordinate repre-

senting 36 feet equals the length repre-

senting one second on the abscissa. The

maximum velocity of 80 miles per hour

need not occupy more than half of the

ordinate scale, as shown in the accom-

panying graph [tipper illustration on

page 94].
"Data for plotting club head travel

against time are derived by measuring

the graph of club head position. Make

a table of three columns, for frame num-

ber, time and distance. Beginning with

the point on the graph of club head

travel that shows the head addressing the

ball, scale the distance to the next point

and convert to equivalent feet by refer-

ring the measurement to the base line

that includes P, O and Q. Measure and

tabulate the remaining position points

in the same way. When the table is com-

plete, add the distance increments pro-

gressively, plot distance against time and

draw a smooth curve through the points.

"The speed of the club head at any

point is found from this graph by the

familiar graphical method of slopes. To

find the speed of the club head at about

tiie point of impact (frame No. 43),

draw a tangent LKM of arbitrary length

through K. The sides MN and LN are

found by referring to the scale to equal

11.2 feet and .11 second respectively.

The speed of the club head at this instant

is equal to the ratio 11.2/. 11, or 102

feet per second. The result can be

expressed in miles per hour by multi-
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plying it by the number of seconds

per hour and dividing the product by

the number of feet per mile: 102 X
3,600/5,280 = 70 miles per hour. Re-

pe.it the procedure for each of the

frames, tabulate the results, plot speed

versus time and draw a smooth cur\e

through the points.

"Club head acceleration can be

graphed in the same way or merely com-

puted from the graph of club head speed

at frames of particular interest, such as

the frame showing the moment of im-

pact. For example, to determine the ac-

celeration of the club head depicted by

frame No. 38, draw a tangent to the

graph at this point. Then, at some arbi-

trary point above, say at the point cor-

responding to a velocity of .56 miles per

hour, drop a perpendicular MN from the

tangent. At anothei arbitrary point be-

low, say at the point corresponding to a

velocity of 12 miles per hour, draw a

line LN parallel to the abscissa and in-

tersecting both the tangent and MS.
Inspection of the abscissa discloses that

the length LN is analogous to a time

interval of .1 second. Acceleration is

defined as the rate of change of velocity

and is equal to the difference between

the final velocity and initial velocity

divided by the time interval between

the two. In this example the velocity

difference is 56 miles per hour minus

12 miles per hour, or, expressed in feet

per second: (.56 - 12) X 5,280/3,600

= 64 feet per second. The acceleration

is 64/. 1 = 640 feet per second per sec-

ond. The acceleration of gravity (g)

amounts to 32 feet per second per sec-

ond. The acceleration of the club head at

frame No. 38 in terms of g is accord-

ingly 640/32, or 20 g!

"Having performed this rainy-after-

noon portion of the procedure, what

reward awaits the dufler? For one thing,

he can see at a glance why his drives do

not match those of a professional golfer.

The graphs discussed so far show the

performance of golf professional Dick

Bull using an iron. His swing from ad-

dress to follow-through required 1.17

seconds. The club head traveled 31 feet.

His backswing occupied .6 second. He
paused at the top about .1 second. More
interesting than these figures, in my
opinion, are those of the club head speed

and acceleration Bull achieved: the in-

crease in club head speed during the

.1 second before impact from 15 miles

per hour to an amazing 70 miles per

hour, representing an acceleration of

slightly over 20 g. Graphs of Bull's per-

formance with a driver, although differ-

ent in many respects from tJiose of his

irons, show exactly the same figure foi

speed, 70 miles per hour, and an accel-

eration of 22 g, a remarkably uniform

performance. Similar analysis of the per-

formance of a fairly good amateur using

a driver shows precisely half the veloc-

ity of Bull's club, 35 miles per hour, and

an acceleration at impact of only seven g
[see lower illuntration helow].

"Although these methods of analyzing

motion are routine in engineering cir-

cles, I am not familiar with their prior

application to the game of golf. As with

many procedures, they are easier to ap-

ply than to describe. I find them interest-

ing because they clearly reveal why Bull

and other professionals achieve their

long drives. Duffers with movie cameras

may well begin asking each other,

'How's your v and g?'
"

.15 .50 .75

time in seconds

J.25

24 30 36

frames

Speed and acceleriition graph for u prolessioniil's swing

.25 .50 .75

time in seconds
J.25

Similar graph for an amateur's performance
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Athletic events involve measurements of distance and

time, and so bring In the same error considerations that

one also meets in the laboratory.

14 Bad Physics in Athletic Measurements

P. Klrkpatrick

An article from The American Journal of Physics, 1944.

THE physics teacher has been accustomed to

find in athletic activities excellent problems

involving velocities, accelerations, projectiles and

impacts. He has at the same time overlooked a

rich source of illustrations of fictitious precision

and bad metrology. When the student is told

that the height of a tree should not be expressed

as 144.632 ft if the length of its shadow has been

measured only to the nearest foot, the student

may see the point at once and yet ask, "What
difference does it make?" But when shown that

common procedures in measuring the achieve-

ments of a discus thrower could easily award a

world's record to the wrong man, the student

agrees that good technic in measurement is

something more than an academic ideal. The
present discussion^ has been prepared partly to

give the physics teacher something to talk about,

but also to start a chain of publicity which may
ultimately make athletic administrators better

physicists and so make their awards more just.

If physicists were given charge of the measure-

ments of sport, one may feel sure that they

would frown upon the practice of announcing the

' Some of the material in this article appeared in a pap)er

by the author in Scientific American, April 1937, and is

incorporated here by permission of the editors.

speed of a racing automobile in six or seven

digits—see, for example, the World Almanac for

any year—when neither the length of the course

nor the elapsed time is known one-tenth so

precisely. They could and would point out such

inconsistencies as that observed in some of the

events of the 1932 Olympic games when races

were electrically and photographically timed to

0.01 sec, but with the starting gun fired from
such a position that its report could not reach

the ears of the waiting runners until perhaps

0.03 to 0.04 sec after the official start of the race.

In this case, electric timing was used only as an
unofficial or semi-official supplement to 0.1-sec

hand timing; but it is easy to see that a sys-

tematic error of a few hundredths of a second will

frequently cause stopwatch timers to catch the

wrong tenth.

Scientific counsel on the field would immedi-
ately advise judges of the high jump and pole

vault to measure heights from the point of take-

off instead of from an irrelevant point directly

below the bar which should be at the same level

but sometimes isn't. Physicists would suggest

equipping field judges with surveying instru-

ments for determining after each throw, not only

how far the weight traveled but also the relative
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elevation of the landing point and the throwing

circle. Certainly it is meaningless if not deceptive

to record weight throws to a small fraction of an

inch when surface irregularities may be falsifying

by inches the true merit of the performance.

In shot-putting, for example, a measured

length will be in error by practically the same

amount as the discrepancy between initial and

final elevations, since the flight of the shot at its

terminus is inclined at about 45° to the hori-

zontal. For the discus the effect is some three

times as serious because of the flatter trajectory

employed with this missile, while broad jumpers

under usual conditions must be prepared to give

or take as much as 0.5 ft, according to the luck

of the pit. Meanwhile, the achievements in these

events go down in the books with the last eighth

or even the last sixteenth of an inch recorded.

At the 1932 Olympic Games an effective device

was used to grade the broad-jumping pit to the

level of the take-off board before each leap, but

the practice has not become general. Athletic

regulations, indeed, recognize the desirability of

proper leveling in nearly all the field events, but

in actual usage not enough is done about it.

Since sprinters are not credited with records

achieved when blown along before the wind,

there is no obvious reason why weight hurlers

should be permitted to throw things down hill.

The rule books make no specification as to the

hardness of the surface upon which weights shall

be thrown, but this property has a significant

effect upon the measured ranges of the shot and

hammer, since it is prescribed that measurement

shall be made to the near side of the impression

produced by the landing weight. In a soft surface

this impression may be enlarged in the backward

direction enough to diminish the throw by several

times the ostensible precision of the measurement.

A physicist would never check the identity of

three or four iron balls as to mass by the aid of

grocers' scales or the equivalent and then pretend

that there was any significance in the fact that

one of them was thrown a quarter of an inch

farther than the others. In measuring the length

of a javelin throw, no physicist who wanted to

be right to | in. would be content to establish his

perpendicular from the point of fall to the

scratchline by a process of guesswork, but this

is the way it is always done by field judges, even

in the best competition.

Among the numerous errors afflicting measure-

ments in the field sports, there is none which is

more systematically committed, or which could

be more easily rectified, than that pertaining to

the variation of the force of gravity. The range

of a projectile dispatched at any particular angle

of elevation and with a given initial speed is a

simple function of g. Only in case the end of the

trajectory is at the same level as its beginning

does this function become an inverse proportion-

ality; but in any case the relationship is readily

expressed, and no physicist will doubt that a

given heave of the shot will yield a longer put in

equatorial latitudes than it would in zones where

the gravitational force is stronger. Before saying

that the 55-ft put achieved by A in Mexico City

is a better performance than one of 54 ft, 11 in.

which B accomplished in Boston, we should

surely inquire about the values of g which the

respective athletes were up against, but it is

never done. As a matter of record, the value of g

in Boston exceeds that in Mexico City by j per-

cent, so the shorter put was really the better.

To ignore the handicap of a larger value of g is

like measuring the throw with a stretched tape.

The latter practice would never be countenanced

under AAU or Olympic regulations, but the

former is standard procedure.

Rendering justice to an athlete who has had to

compete against a high value of g Involves ques-

tions that are not simple. It will be agreed that

he is entitled to some compensation and that in

comparing two throws made under conditions

similar except as to g, the proper procedure would

be to compare not the actual ranges achieved,

but the ranges which would have been achieved

had some "standard" value of g—say 980 cm/

sec^—prevailed in both cases. The calculation of

exactly what would have happened is probably

impossible to physics. Although it is a simple

matter to discuss the behavior of the implement

after it leaves the thrower's hand and to state

how this behavior depends upon g, the depend-

ence of the initial velocity of projection upon g

depends upon the thrower's form and upon char-

acteristics of body mechanics to which but little

attention has so far been devoted.
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Bad Physics in Athletic Measurements

The work done by the thrower bestows upon

the projectile both potential and kinetic energy.

In a strong gravitational field, the imparted

potential energy is large and one must therefore

suppose the kinetic energy to be reduced, since

the thrower's propelling energy must be dis-

tributed to both. We have no proof, however,

that the total useful work is constant despite

variation of g, nor do we know the manner of its

inconstancy, if any. The muscular catapult is not

a spring, subject to Hooke's law, but a far more

complicated system with many unknown charac-

teristics. The maximum external work which one

may do in a single energetic shove by arms, legs

or both obviously depends partly upon the re-

sisting force encountered. Only a little outside

work can be done in putting a ping-pong ball

because the maximum possible acceleration,

limited by the masses and other characteristics

of the bodily mechanism itself, is too slight to

call out substantial inertial forces in so small a

mass. The resisting force encountered when a

massive body is pushed in a direction that has an

upward component, as in shot-putting, does of

course depend upon g; and until we know from

experiment how external work in such an effort

varies with resisting force, we shall not be able

to treat the interior ballistics of the shot-putter

with anything approaching rigor.

Several alternative assumptions may be con-

sidered. If we suppose that the velocity of de-

livery, or "muzzle velocity," v, of the missile is

unaffected by variations of g, we have only the

external effect to deal with. Adopting the ap-

proximate range formula R = v'^/g (which neg-

lects the fact that the two ends of the trajectory

are at different levels and which assumes the

optimum angle of elevation) we find that the

increment of range dR resulting from an in-

crement dg is simply —Rdg/g. On the more

plausible assumption that the total work done on

the projectile is independent of g, this total to

include both the potential and kinetic energies

imparted, one obtains as a correction formula,

dR
2h\ dg/ ^n\ ag

(1)

where h is the. vertical lift which the projectile

gets while in the hand of the thrower. A third

assumption, perhaps the most credible of all,

would hold constant and independent of g the

total work done upon the projectile and upon a

portion of the mass of the thrower's person. It is

not necessary to decide how much of the thrower's

mass goes into this latter term; it drops out and

we have again Eq. (1), provided only that the

work done on the thrower's body can be taken

into account by an addition to the mass of the

projectile.

These considerations show that a variation of g
affects the range in the same sense before and
after delivery, an increase in g reducing the

delivery velocity and also pulling the projectile

down more forcibly after its flight begins. They
indicate also that the latter effect is the more
important since, in Eq. (1), l>2h/R by a factor

of perhaps five in the shot-put and more in the

other weight-throwing events.

One concludes that the least which should be

done to make amends to a competitor striving

against a large value of g is to give him credit

for the range which his projectile would have

attained, for the same initial velocity, at a

location where g is "standard." This is not quite

justice, but it is a major step in the right direc-

tion. The competitor who has been favored by a

small value of g should of course have his achieve-

ment treated in the same way.

The corrections so calculated will not be

negligible magnitudes, as Fig. 1 shows. They are

extremely small percentages of the real ranges,

but definitely exceed the ostensible probable

errors of measurement. It is not customary to

state probable errors explicitly in connection

with athletic measurements, but when a throw

is recorded as 57 ft, 1^ in., one naturally con-

cludes that the last thirty-second inch, if not

completely reliable, must have been regarded as

having some significance.

ROTATION OF THE EARTH

It is customary to take account of the effects

of terrestrial rotation when aiming long-range

guns, but athletes and administrators of sport

have given little or no attention to such effects

in relation to their projectiles. As a matter of

fact they should, for at low latitudes the range of

a discus or shot thrown in an eastward direction
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Fig. 1 . Graphs for normalizing
shot-put ranges to the common
value g = 980 cm/sec'. Ranges
achieved where g = 980 cm/sec*
are not in need of adjustment,
but a range of 50 ft (see inclined

line marked 50') achieved at

Glasgow, whereg = 981 .6cm/sec?,
is entitled to a premium of 1 J in.

which should be added before
comparing the put with one
achieved elsewhere. Distances
accomplished where g<980
cm/sec' should be subjected to

the deductions indicated by
graphs in the third quadrant.

exceeds that of a westward throw by more than

the ostensible precision of such measurements.

The difference between the range of a projectile

thrown from the surface of the real earth and
the range of one thrown from a nonrotating earth

possessing the same local value of g is given by^

IV sin 2a 4co Fo«
Range = 1

Xsin a[4 cos' a— 1] cos X sin fi, (2)

where g is the ordinary acceleration due to

weight, Vo is the initial speed of the projectile,

a is the angle of elevation of initial motion

(measured upward from the horizontal in the

direction of projection), co(rad/sec) is the angular

speed of rotation of the earth, X is the geographic

latitude of the point of departure of the pro-

jectile, and n is the azimuth of the plane of the

trajectory, measured clockwise from the north

point.

A derivation of this equation (though not the

first) is given in reference 2, along with a dis-

cussion of its application to real cases. The
approximations accepted in the derivation are

such as might possibly be criticized where long-

' P. Kirkpatrick, Am. J. Phys. 11, 303 (1943).

range guns are considered, but they introduce no

measurable errors into the treatment of athletic

projectiles.

The first term of the right-hand member of

Eq. (2) is the ordinary elementary range ex-

pression, and naturally it expresses almost the

whole of the actual range. The second term is a

small correction which is of positive sign for

eastbound projectiles (0</x<180°) and negative

for westbound. The correction term, being pro-

portional to Fo', increases with Vo at a greater

rate than does the range as a whole. Hence the

percentage increase or decrease of range, because

of earth rotation, varies in proportion to \'\ or to

the square root of the range itself. Evidently this

effect is a maximum at the equator and zero at

the poles. Inspection of the role of a shows that

the correction term is a maximum for a 30"

angle of elevation and that it vanishes when the

angle of elevation is 60°.

By the appropriate numerical substitiTtions in

Eq. (2), one may show that a well-thrown discus

in tropic latitudes will go an inch farther east-

ward than westward. This is many times the

apparent precision of measurement for this event,

and records have changed hands on slimmer

margins. Significant effects of the same kind,

though of lesser magnitude, appear in the cases
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Bad Physics in Athletic Measurements

of the javelin, hammer, shot and even the broad

jump, where the east-west differential exceeds the

commonly recorded sixteenth of an inch.

Figures 1 and 2 are types of correction charts

that might be used to normalize the performances

of weight throwers to a uniform value of g and

a common direction of projection. Figure 1 has

been prepared with the shot-put in mind, but is

not restricted to implements of any particular

mass. The inclined straight lines of this figure are

graphs of —dR versus dg from Eq. (1). Values of

the parameter R are indicated on the graphs.

The uniform value 100 cm has been adopted for

h, an arbitrary procedure but a harmless one in

view of the insensitivity of dR to h.

Figure 2, particularly applicable to the hammer
throw, furnishes means for equalizing the effect

of earth spin upon athletes competing with the

same implement but directing their throws vari-

ously as may be necessitated by the lay-out of

their respective fields. An angle of elevation of

45** has been assumed in the construction of these

curves, a somewhat restrictive procedure which

finds justification in the fact that no hammer
thrown at an angle significantly different from
45° is likely to achieve a range worth correcting.

These curves are plotted from Eq. (2); their

application to particular cases is described in the

figure legend.

Upon noticing that some of these corrections

are quite small fractions of an inch, the reader

may ask whether the trouble is worth while.

This is a question that is in great need of

clarification and one that may not be answered

with positiveness until the concept of the prob-

able error of a measurement shall have become
established among the metrologists of sport.

Physicists will agree that to every measurement
worth conserving for the attention of Record

Committees should be attached a statement of

its probable error; without such a statement

there will always be the danger of proclaiming a

new record on the basis of a new performance

that is apparently, though not really, better than

the old. If the corrections of Fig. 2 exceed the

probable error to be claimed for a measurement,

then those corrections must be applied.

The aim of the American Athletic Union in

these matters is hard to determine. Watches
must be "examined," "regulated" and "tested"

by a reputable jeweler or watchmaker, but one

finds no definition of what constitutes an accept-

able job of regulation. Distances must be meas-

ured with "a steel tape." The Inspector of

^—
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Fig. 2. Curves for rendering throws in various directions comparable. The
assumed latitude is 30°, either north or south, and the assumed angle of elevation
is 45°. Since the range has a maximum for about this angle of elevation, the
curves also apply well to angles several degrees on either side. The curves show,
for example (circled point), that a missile thrown 200 ft in a direction 30° south
of east should have ^ in. subtracted from its range in order to bring it into fair

comparison with unadjusted northward or southward throws or with throws in

any other direction which have been adjusted by reference to curves of this type
appropriately constructed for their respective latitudes.
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Implements must find the weights of the imple-
ments "correct." Such ideals of perfection are not
realistic, and the only alternative is to recognize
the existence of error and state its magnitude.
The minimum permissible weight for each im-
plement is prescribed both in pounds and in

kilograms by AAU rules, but in no instance are
the prescriptions exactly equivalent. A discus
thrower whose implement just satisfies the metric
specification will use a discus 4 gm, or \ percent,

lighter than that of a competitor whose discus

just passes as judged by an inspector using per-

fect scales calibrated in British units. Those 4 gm
will give the former athlete two or three extra

inches of distance, an advantage that might be
decisive.

Similar comments could be made about the
rules of competition of the ICAAAA, where one
reads that the javelin throw is measured from
the point at which the point of the javelin first

strikes the ground. This is a mark that cannot in

general be determined to the often implied i in.

since it is obliterated by the subsequent penetra-
tion of the implement. Any javelin throw as

correctly measured by ICAAAA rules will show
a greater distance than if measured by AAU
rules, but few field judges know this nor could
they do much about it if they did. It is probable
that the rules do not say what was meant in

these cases. It is interesting that whereas the
hammer, shot and discus must be thrown upon a
level surface, there is no such requirement in the
case of the javelin.

Any serious attempt to put the measurements
of sport upon a scientific basis would be met with
vast inertia if not positive hostility. The training

of athletes is still very largely an art, and there
is no reason to suppose that those who are at
present practicing this art with success will be
predisposed to changes involving ways of thought
which, however commonplace in other disciplines,

are novel in athletic competition. One eminent
track and field coach, a producer of national,
Olympic and world champions, told the writer
that he had no interest in hairsplitting; that
leveling the ground accurately would be too

much trouble; that common sense is better than
a wind gage for estimating the effect of wind
conditions on sprinters; that a man can't put the
shot by theory—it's all in the feeling; that the
exact angle of elevation is unimportant as long
as he gets it in the groove.

A few years ago, the writer published some
criticisms along the lines of the present article

and sent reprints to each of the several hundred
National Committeemen of the AAU. One ac-
knowledgment was received, but no reactions to
the subject matter. In a sense, this indifference
was only just recompense for the writer's habit
of ignoring communications from nonphysicists
proposing novel theories of the atom, or other-

wise instructing the physicist as to the founda-
tions of his science.

There probably exists a general feeling that
part of the charm of sport resides in accident and
uncertainty. Any discussion of the possibility of

replacing the balls-and-strikes umpire in base-
ball by a robot will bring out the opinion that
the fallibilities of the umpire are part of the

entertainment for which the public pays. An
optical instrument for determining from the side-

lines whether or not a football has been ad-

vanced to first down was tried out in California

a few years ago. It was technically successful,

but a popular failure. The crowd was suspicious

of a measurement that it did not understand
and could not watch; the players begrudged the

elimination of the breather which a chain meas-
urement affords; and even the linemen protested

the loss of their dramatic moment.
Though entertained by such attitudes, the

physicist will hardly be able to dismiss a feeling

that in any field of popular importance or in-

terest, it is improper to keep up the appearances

of accurate and comparable measurement with-

out doing what might be done to gain the reality.

In the matter of athletic records, he and very
few others know what to do about it.'

'The author will be pleased to furnish reprints of this
article to readers who would find interest in bringing it to
the attention of athletic authorities.
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Observation of nature by Renaissance artists and crafts-

men was a precursor of the new scientific outlook. This

in turn accelerated technology, leading to the industrial

revolution.

15 The Scientific Revolution

Herbert Butterfield

An article from Scientific American, 1960.

The preceding article leaves Homo
sapiens in about 2500 B.C., after

his invention of the city-state.

Our story does not really get under way

until some 4,000 years later. Thus, in

turning to the next major revolution in

man's impact on his environment, we
seem to pass over almost all of recorded

human history. No revolution is without

its antecedents, however. Although the

scientific-industrial age is a recent and

original achievement of Western man,

it has deep historical roots.

Western civilization is unique in its

historical-mindedness as well as in its

scientific character. Behind it on the one

hand are the ancient Jews, whose re-

ligious literature was largely historical,

who preached a God of history, and

taught that history was moving to a

mighty end, not merely revolving in

cycles of growth and decay. On the

other hand are the ancient Greeks. Their

literature has provided a training in

logic, a stimulus to the exercise of the

critical faculties and a wonderful

grounding in mathematics and the phys-

ical sciences.

In western Europe civilization had a

comparatively late start. For thousands

ANATOMY, studied by Renaissance artists, wag the first of the

sciences to be placed on a modern footing. This drawing is from a

copy of Albrecht Diirer's work De Symmetria Partium Humanorum
Corporum in the Metropolitan Museum of Art in New York.
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of years the lands at the eastern end of

the Mediterranean had held the leader-

ship in that whole section of the globe.

It was in the West, furthermore, that the

Roman Empire really collapsed, and was

overrun by "barbarian invaders." Here

much of the ancient culture was lost, and

society reverted to comparatively primi-

tive forms. In the meantime a high By-

zantine civilization had its center in Con-

stantinople, and a brilliant Arabian one

in Baghdad. It would be interesting to

know why Western man, though he

started late, soon proved himself to be

so much more dynamic than the peoples

farther to the east.

In the formative period of a civiliza-

tion religion plays a more important part

than we today can easily understand.

After the fall of the Roman Empire the

comparatively primitive peoples in much
of Europe were Christianized by con-

quest or through royal command; in the

beginning it was a case of pagans mere-

Iv changing the names of their gods. But

in the succeeding centuries of the Mid-

dle Ages the Church deepened spiritual

life and moral earnestness. It became the

great educator, recovering ancient schol-

arship and acting as the patron of the

arts. By the 13th century there had de-

veloped a lofty culture, very much
under the presidency of religion, but a

religion that nourished the inner life,

stimulated heart-searchings and exam-

inations of conscience and set an eternal

value upon each individual soul. The

Western tradition acquired a high doc-

trine of personality.

By the year 1500, when the Renais-

sance was at its height, the West had

begun to take the command of world

history. The expansion of Islam had been

contained. The terrible Asian hordes,

culminating in the Mongols and the

Turks, that had overrun the eastern

Mediterranean lands had been stopped

in central Europe. One of the reasons

first for survival and then for progress in

the West was its consolidation into some-

thing like nation-states, a form of polity

more firm and more closely knit than the

sprawling Asiatic empires.

Yet the Renaissance belongs perhaps

to the old (that is, the medieval)

world rather than to the new; it was

still greatly preoccupied with the re-

covery of the lost learning of ancient

Greece and Rome. Its primary interest

was not in scientific studies, but now,

after something like a thousand years

of effort, the West had recaptured virtu-

ally all it ever was to recover of ancient

Greek scholarship and science. Only

after this stage had been reached could
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the really original developments in the

study of the physical universe begin.

The Western mind was certainly becom-
ing less other-worldly. In the later Mid-

dle Ages there was much thought about

the nature of man as well as about the

nature of God, so that a form of Christian

humanism had already been develop-

ing. The Renaissance was essentially

humanistic, stressing man as the image

of God rather than as the doomed sinner,

and it installed in western Europe the

GOTHIC CLOCK, dating from ihe early

16th century, was photographed at the

Smithsonian Institution. Stone at bottom

is the driving weight; arm at top is part

of escapement. Clockworks were among

earliest examples of well-ordered machines.

form of classical education that was to

endure for centuries. The philosophy of

the time dwelt much on the dignity of

man. Oiu" modern Western values there-

fore have deep historic roots.

And the men of the Renaissance were

still looking backward, knowing that the

peak of civilization had been reached

in remote antiquity, and then lost. It

was easy for them to see the natural

process of history as a process of decline.

Signs of something more modern had

begun to appear, but they belong cliieflv

to the realm of action rather than to

that of thought. Theories about the uni-

verse (about the movements of the plan-

ets, for example) had still to be taken

over bodily from the great teachers of

the ancient world. On the other hand, in

action Western man was already proving

remarkably free and adventurous: in his

voyages of discovery, in the develop-

ment of mining and metallurgy and in

the creative work of the Renaissance art-

ists. Under these conditions scientific

thought might make little progress, but

technology had been able to advance.

And perhaps it was the artist rather than

the writer of books who, at the Renais-

sance, was the precursor of the modem
scientist.

The artists had emancipated them-

selves from clerical influence to a great

degree. The Florentine painters, seek-

ing the faithful reproduction of nature,

sharpened observation and prepared the

way for science. The first of the sciences

to be placed on a modern footing—that of

anatom\—was one which the artists cul-

tivated and which was governed by di-

rect observation. It was the artists who
even set up the cr\ that one must not be

satisfied to learn from the ancients or to

take everything from books; one must

examine nature for oneself. The artists

were often the engineers, the designers

of fortifications, the inventors of gadgets,

they were nearer to the artisan than

were the scholars, and their studios often

had the features of a laboratory or work-

shop. It is not surprising to find among
them Leonardo da N'inci—a precursor of

modern science, but onlv a precursor, in

spite of his brilliance, because the mod-

ern scientific method had not yet

emerged.

Records show that in the 1.5tli centur\

a Byzantine scholar drew the attention

of his fellow-countr) men to the techno-

logical superioritN' of the West. He men-

tioned progress in machine saws, ship-

building, textile and glass manufacture

and the production of cast iron. Three

other items should be added to the list:

the compass, gunpowder and the print-

ing press. Although they might not have
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originated in Christendom, they had not

been handed down from classical antiq-

uity. They came to be the first concrete

evidence generally adduced to show that

the moderns might even excel the an-

cients. Before 1500, artillery had assisted

the consolidation of government on

something like the scale of the nation-

state. Printing was to speed up intellectu-

al communication, making possible the

wider spread of a more advanced kind

of education and facilitating the rise of

a lay intelligentsia.

Tn setting the stage for modern develop-

-*- ments the economic situation is of

fundamental importance. By this time a

high degree of financial organization had

been attained. The countryside might

look much as it had done for a thousand

yeajs, but the Renaissance flourished

primarily in the city-states of Italy, the

Netherlands and southern .Germany,

where commerce and industry had made
great advances. The forms of economic

life were calculated to bring out indi-

vidual enterprise; and in the cities the

influence of priests declined—the lay

intelligentsia now took the lead. There

had existed greater cities and even an

essentially urban civilization in ancient

times. What was nev^ was the form of

the economic life, which, by the oppor-

tunities it gave to countless individuals,

possessed dynamic potentialities.

It was a Western world already

steeped in humanism that entered upon

a great scientific and technological de-

velopment. But if Western man decided

now to take a hand in shaping his own
destiny, he did it, as on so many other

occasions, only because he had been

goaded by problems that had reduced

him to desperation. The decisive prob-

lems were not material ones, however.

They were baffling riddles presented to

the intellect.

The authority of ancient scholarship

was shaken when it came to be realized

that the great Greek physician Galen

had been wrong in some of his observa-

tions, primarily in those on the heart.

In the 16th century successive discover-

ies about the heart and the blood vessels

were made in Padua, culminating a little

later in William Harvey's demonstration

in England of the circulation of the

blood. The whole subject was now set on

a right footing, so that a flood of further

discoveries was bound to follow very

quickly. Harvey's work was of the

greatest importance, moreover, because

it provided a pattern of what could be

achieved bv observation and methodical

experiment.

The older kind of science came to

shipwreck, however, over two problems

connected with motion. Aristotle, having

in mind a horse drawing a cart, had

imagined tliat an object could not be kept

moving unless something was pulling or

pushing it all the time. On this view it

was difficult to see why projectiles stayed

in motion after they had become sepa-

rated from the original prppulsive force.

It was conjectured that a flying arrow

must be pushed along by the rush of air

that its previous motion had created, but

this theory' had been recognized to be

unsatisfactory. In the 16th century,

when artillery had become familiar, the

student of motion naturally tended to

think of the projectile first of all. Great

minds had been defeated by this prob-

lem for centuries before Galileo altered

the whole approach and saw motion as

something that continued until some-

thing intervened to check it.

A great astronomical problem still re-

mained, and Copernicus did not solve

it alone. Accepting the recognized data,

he had shown chiefly that the neatest

explanation of the old facts was the

hypothesis of a rotating earth. Toward

the end of the century new appearances

in the sky showed that the traditional

astronomy was obsolete. They demon-
strated that the planets, for example, in-

stead of being fixed to crystalline spheres

that kept them in their proper courses,

must be floating in empty space. There

was now no doubt that comets belonged

to the upper regions of the sky and cut a

path through what had been regarded as

the hard, though transparent, spheres. It

was now not easy to see how the planets

were held on a regular path. Those who
followed Copernicus in the view that

the earth itself moved had to face the

fact that the science of physics, as it then

existed, could not possibly explain how
the motion was produced.

In the face of such problems it began

to be realized that science as a whole

needed renovation. Even in the 16th

century people were beginning to ex-

amine the question of method. In this

case a great historic change was willed

in advance and consciously attempted.

Men called for a scientific revolution be-

fore the change had occurred, and be-

fore they knew exactly what the situa-

tion demanded. Francis Bacon, who
tried to establish the basis for a new
scientific method, even predicted the

magnitude of its possible consequences

—the power that man was going to ac-

COMPASS ROSE is reproduced from The Art of !\avigntion, published in France in 1666.

The invention of the compass, wliich was not an achievement of classical antiquity, en-

couraged the men of the Renaissance to believe that they might come to excel the ancients.

103



MOVABLE TYPE CAST FROM MATRICES was contribution of Johann Gutenberg to

art of printing. Sample of his type, enlarged about four diameters, is from his Bible, printed

about 1456. Bible in which this type appears is in Pierpont Morgnn Library in New York.

quire over nature. It was realized, fur-

thermore, that the authority of tlje

ancient world, as well as that of the Mid-

dle Ages, was in question. The French

philosopher Rene Descartes insisted

that thinking should be started over

again on a clean slate.

rphe impulse for a scientific revolution

-^ came from the pressure of high intel-

lectual needs, but the tools of civilization

helped to give the new movement its di-

rection. In the later Middle Ages men
had become more conscious of the ex-

istence of the machine, particularly

through mechanical clocks. This may
have prepared them to change the for-

mulation of their problems. Instead of

seeking the "essence" of a thing, they

were now more prepared to ask, even of

nature, simply: How does it work?

The student of the physical universe,

like the artists before him, became more

familiar with the workshop, learning

manipulation from the artisan. He in-

terested himself in problems of the prac-

tical world: artillery, pumps, the deter-

mination of longitude. Experimentation

had long existed, but it now became

more organized and methodical as the

investigator became more conscious of

what he was trying to do. In the 1 7th

century, moreover, scientific instruments

such as the telescope and the microscope

came into use.

But theory mattered too. If Galileo

corrected a fallacious view of motion, it

was because his mind was able to change

the formulation of the whole problem. At

least as important as his experimentation

was his mathematical attack on the prob-

lem, which illustrated the potential role

of mathematics in the transformation of

science.

Another momentous factor in devel-

oping the new outlook was the revival

of an ancient view: that matter is com-
posed of infinitesimally small particles.

This view was now at last presented in a

form that seemed consistent with Chris-

tianity (because the combinations of the

particles which produced the varied

world of physical things were no longer

regarded as the mere product of chance)

,

so that the atomic theory was able to ac-

quire a wide currency. It led to a better

appreciation of the intricate texture of

matter, and it proved to be the source of

innumerable new hypotheses. The the-

ory seemed to open the way to a purely

mechanical explanation of the universe,

which should account for everything by
the shape, the combination and the mo-

tion of the particles. Long before such

an explanation had been achieved, men
were aspiring to it. Even religious men
were arguing that Creation itself would

have been imperfect if God had not

made a universe that was a perfectly

regular machine.

fivgram frW
i2L'»>.

NEW COSMOLOGY OF COPERNICUS placed a fixed sun (Sol) at the renter of the

universe. The sphere of the fixed stars (/.) and the spheres of the six known planets re-

volved around the sun. Circle inscribed around the earth (Terra) is the lunar sphere. This

woodcut appears in Copernicus's On the Revolution of the Celestinl Spheres (1543).
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The civilization that Iiad begun its

westward shift in the later Middle

Ages was moving north and west. At the

Renaissance Italy still held the primacy,

but with the Reformation the balance

shifted more definitely to the north. By

the closing decades of the 17th century

economic, technological and scientific

progress centered on the English Chan-

nel. The leadership now belonged to

England, France and the Netherlands,

the countries that had been galvanized

by the commerce arising from the over-

seas discoveries of the 15th century. And
the pace was quickening. Technique was

developing apace, economic life was ex-

panding and society was moving for-

ward generally in an exhilarating way.

The solution of the main problems of

motion, particularly the motion of the

earth and the heavenly bodies, and the

establishment of a new notion of scien-

tific method, took a hundred years of

effort after the crisis in the later decades

of the 16th century. A great number of

thinkers settled single points, or made
attempts that misfired. In the period

after 1660 a host of workers in Paris and

London were making science fashion-

able and bringing the scientific revolu-

tion to its culmination. Isaac Newton's

Principia in 1687 synthesized the results

of what can now be seen to have been a

century of collaborative effort, and

serves to signalize a new era. Newton
crowned the long endeavor to see the

heavenly bodies as parts of a wonderful

piece of clockwork.

The achievements of ancient Greece

in the field of science had now been un-

mistakably transcended and outmoded.

The authority of both the ancient and

the medieval worlds was overthrown,

and Western man was fully persuaded

that he must rely on his own resources

in the future. Religion had come to a low

ebb after generations of fanaticism,

persecution and war; now it was in a

weak position for meeting the challenge

of the new thought. The end of the 18th

century sees in any case the decisive mo-

ment in the secularization of European

society and culture. The apostles of the

new movement had long been claiming

that there was a scientific method which

could be adapted to all realms of inquiry,

including human studies—history, poli-

tics and comparative religion, for ex-

ample. The foundations of what has

been called the age of reason had now
been laid.

At the same time society itself was

changing rapidly, and man could see it

changing, see it as no longer static but

dynamic. There began to emerge a dif-

ferent picture of the process of things in

TRAJECTORIES OF PROJECTILES were calculated with aid of protractor device (right)

invented by Niccolo Tartaglia, an Italian engineer and mathematician who died in 1377.

Ballistics problems drew attention to the inadequacy of the Aristotelian ideas about motion.

time, a picture of history as the em-

bodiment of progress rather than of de-

cline. The future now appeared to offer

opening vistas and widening horizons.

Man was coming to feel more capable

of taking charge over his own destiny.

It was not merely man's tools, and not

merely natural science, that had carried

the story forward. The whole complex

condition of society was involved, and

movement was taking place on a wide

front. The age of Newton sees the foun-

dation of the Bank of England and the

national debt, as well as the develop-

ment of speculation that was to culmi-

nate in the South Sea Bubble. An eco-

nomic order congenial to individualism

meant that life was sprouting from mul-

titudinous centers, initiatives were being

taken at a thousand points and ingenuity

was in constant exercise through the

pressure of need or the assurance that it

would have its reward. The case is illus-

trated in 17th-century England by the

famous "projectors"—financial promoters

busy devising schemes for making mon-

ey. They slide easily into reformers mak-

ing plans for female education or a so-

cialistic order or a better form of gov-

ernment.

STRENGTH OF A BEAM was one of the problems in which Galileo demonstrated the pow-

er of mathematical methods in science. Illustration is taken from his Discorsi e dimostra-

zioni matematiche, in which he described the "new sciences" of mechanics and motion.
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The whole of Western society was in

movement, science and technology,

industry and agriculture, all helping to

carry one another along. But one of the

operations of society—war—had probably

influenced the general course of things

more than is usually recognized. War
above all had made it impossible for a

king to "live of his own," enabling his

subjects to develop constitutional ma-

chinery, to insist on terms in return for

a grant of money. Because of wars,

kings were allied with advanced cap-

italistic developments from the closing

centuries of the Middle Ages. The

growing demands of governments in

the extreme case of war tightened up

the whole development of the state and

produced the intensification of the idea

of the state. The Bank of England and

the national debt emerge during a con-

flict between England and France,

which almost turned into a financial war

and brought finance into the very struc-

ture of government. In the 17th century

armies had been mounting in size, and

the need for artillery and for vast num-

bers of uniforms had an important effect

on the size of economic enterprises.

The popularity in England of the nat-

ural sciences was paralleled to a degree

by an enthusiasm for anti(juarian pur-

suits. In the later decades of the 17th

century the scientific method began to

affect the development of historical

study. In turn, the preoccupation with

the process of things in time seems to

have had an influence upon scientists

themselves. Perhaps the presiding sci-

entific achievement in the next hundred

years was the application of biology,

geology and allied studies to the con-

struction of a history of the physical uni-

verse. By the end of the period this

branch of science had come almost to

the edge of the Darwinian theory of

evolution. For the rest, if there was fur-

ther scientific "revolution" in the 18th

century, it was in the field of chemistry.

At the beginning of the period it had not

been possible to isolate a gas or even

to recognize clearly that different gases

existed. In the last quarter of the century

Lavoisier reshaped this whole branch of

science; water, which had been regarded

for thousands of years as an element, was

now seen to be a compound of owgen
and hydrogen.

By this time England—the nation of

shopkeepers—was surprising the world

with developments in the industrial field.

A class of men had emerged who were

agile in intellect, capable of self-help and

eager for novel enterprises. They often

lacked the classical education of the

time, and were in a sense cut off from

JtlZ- ^^—^— v^'^-
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DETAILS OF STEAM ENGINE are reproduced from J:inies Wall's patenl of 1769. The

rliange from water to steam power in textile factories intensified llie industrial revolution.

their cultural inheritance; and they no

longer had the passion to intervene in

theological controversy. Science and

craftsmanship, combined \s ith the state

of the market, enabled them, howe\er,

to indulge their zeal for gadgets, me-

chanical improvements and inventions.

A considerable minor literature of the

time gives evidence of the widespread

passion for the production of technical

devices, a passion encouraged sometimes

by the policy of the government. Betw eon

1760 and 1785 more patents were taken

out than in the preceding 60 years; and

of the estimated total of 26,000 patent>

for the whole century, about half wen-

crowded into the 15 years after 1785. In

1761 the Society for the Encourage-

ment of the Arts, Manufactures and

Commerce, established a few years

earlier, offered a prize for an invention

that would enable six threads to be spun

by a single pair of hands. A few years

later Hargreave's spinning jenny ani

Arkwright's water frame appeared. Tlu

first steam engine had emerged at tht

beginning of the century, but textile fac-

tories began by using water power. The

change to steam both here and in the

production of iron greatly intensified the
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industrial revolution that was to alter

the landscape so profoundly in the 19th

century.

'T'he country was able to meet the needs

^ of a rapidly expanding population,

especially as industrial development

was accompanied by an agrarian revolu-

tion—the birth of something like modern

farming. Possibly as a result of a change

in the prevalent type of rat, England

ceased to suffer from the plague that had

ravaged it for centuries. Advances in

public-health techniques helped reduce

the death rate, especially among infants.

During the 18th century the English

population rose from 5.5 to nine million.

And people flocked to swell the growing

industrial towns, as though assured that

they were fleeing from something worse

to something better.

Even in 1700 most Englishmen were

still engaged in occupations of a primary

nature, connected with farming, fishing,

mining and so on. London had perhaps

half a million inhabitants, but Bristol,

which came next, may have had only

20,000. Very few towns had a population

exceeding 10,000. Each country town

had its miller, its brewer, its tanner and

so on; each village had its baker, its

blacksmith and its cobbler. Man\' of the

people who were employed in industry

—in the making of textiles, for example

—carried on the work in their own homes

with hand looms and spinning wheels;

they supplemented their income by

farming.

The coming of the factory system and

the growth of towns represented an un-

precedented transformation of life and

of the human environment, besides

speeding up the rate of all future change.

This denser and more complicated world

required more careful policing, more

elaborate administration and a tremen-

dous increase in the tasks of government.

The mere growth and distribution of

population, and the fresh disposition of

forces that it produced within society,

are fundamental factors in the history

of the 19th century.

With gathering momentum came
railways, the use of electricity, the in-

ternal-combustion engine and today the

world of electronics and nuclear weap-

ons. Science, so long an aid to the in-

ventor, now seems itself to need the en-

gineer and the industrial magnate. And
all the elaborate apparatus of this techni-

cal civilization is easily communicable to

every quarter of the globe. Our scientif-

ic-industrial revolution is a historical

landmark for those peoples to whom
Renaissance and Reformation have no

relevance, since Christianity and Greek

antiquity are not in their tradition. The
material apparatus of our civilization is

more communicable to other continents

than are our more subtle and imponder-

able ideas.

"y/^et the humanism that has its roots so

^ far back in our history has by no

means lost its hold on the world. In the

West, indeed, it now touches vastly wider

classes of peoples than were able to read

at all before the days of the industrial

revolution. That revolution requires the

spread of education, and at the same
time provides the apparatus for it. The
extraordinary speeding-up of communi-

cations and the increased mobility of life

have themselves had colossal educative

results. It was under the ancient order

that the peasantry were sometimes felt

to be like cows; John Wesley\ although

he held so firmly that the lowest classes

were redeemable, himself described

them with astonishing frequency as wild

beasts. The new era has raised the

stature of men, not lowered it, as some

have imagined; and seems to require (or

to produce) a more genuine kind of

moral autonomy.

Great literature is perhaps more wide-

ly appreciated at the present day than

ever in previous history. The rights

and freedoms of man and the indepen-

dence and self-respect of nations have

never been more glorified than in our

own century. And we have transmitted

these ideals to other parts of the globe.

The scientific-industrial revolution has

operated to a great saving of life. At the

same time it has provided a system

which, where it has prevailed, has so

far enabled the expanded population to

live.

The vastness of populations and the

character of the technical revolution it-

self have led, however, to certain dan-

gers. The development of high-powered

organization means that a colossal ma-

chine can now be put at the service of

a possible dictatorship. It is not yet clear

that the character of the resulting civil-

ization will necessarily undermine the

dictatorship and produce the re-estab-

lishment of what we call Western values.

In this sense the elaborate nature of the

system may come to undermine that

wonderful individualism that gave it its

start. At the same time, when nations

SPINNING FRAME, patented by Richard Arkwright in 1769, produced superior yarn. In

his application the inventor said the machine would be of "great utility" to manufacturers

and to the public "by employing a great number of poor people in working said machinery."
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are ranged against one another, each lution, but it may eventually prove a

may feel forced to go on elaborating and necessary concomitant of that revolu-

enlarging ever more terrible weapons, tion, wherever the revolution may
though no nation wants them or ever in- spread. At this point we simply do not

tends to use them. Weapons may then know. There are certain things we can-

defeat their own ends, and man may find not achieve without tools. But the tools

himself the slave of the machine. in themselves do not necessarily deter-

The Western ideal of democracy is mine our destiny,

older than the scientific-industrial revo-
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The effect of the rise of physics in the age of Galileo

and Newton, particularly on literature and religion, is

discussed in this brief article.

16 How the Scientific Revolution of the Seventeenth Century

Affected Other Branches of Thought

Basil Willey

An article from A Short History of Science, Origins and Results

of tfie Scientific Revolution, ^951.

IN order to get a bird's-eye view of any century it is quite

useful to imagine it as a stretch of cotintry, or a land-

scape, which we are looking at from a great height, let us

say from an aeroplane. If we view the seventeenth century

in this way we shall be struck immediately by the great

contrast between the scenery and even the climate of its

earUer and that of its later years. At first we get movmtain

ranges, torrents, and all the picturesque interplay of alter-

nating storm and brightness; then, further on, the land

slopes down to a richly cultivated plain, broken for a while

by outlying heights and spurs, but finally becoming level

coimtry, watered by broad rivers, adorned with parks and

mansions, and fit up by steady sunshine. The mountains

connect backwards with the central medieval Alps, and the

plain leads forwards with Utde break into our own times. To
drop the metaphor before it begins to be misleading, we
may say that the seventeenth century was an age of transi-

tion, and although every century can be so described, the

seventeenth deserves this label better than most, becaxise it

hes between the Middle Ages and the modem world. It

witnessed one of the greatest changes which have ever

taken place in men's ways of thinking about the world they

five in.

I happen to be interested in literature, amongst other

things, and when I turn to this century I cannot help no-

ticing that it begins with Shakespeare and Donne, leads on

to Milton, and ends with Dryden and Swift: that is to say,

it begins with a Uteratiu-e full of passion, paradox, imagina-

tion, curiosity and complexity, and ends with one dis-

tinguished rather by clarity, precision, good sense and

definiteness of statement. The end of the century is the be-

ginning of what has been called the Age of Prose and

Reason, and we may say that by then the qtialities neces-

sary for good prose had got the upper hand over those

which produce the greatest kinds of poetry. But that is not
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all: we find the same sort of thing going on elsewhere. Take
architecture, for example; you all know the style of build-

ing called Elizabethan or Jacobean—it is quaint and fanci-

ful, sometimes rugged in outline, and richly ornamented

with carving and decoration in which Gothic and classical

ingredients are often mixed up together. Well, by the end

of the century this has given place to the style of Christo-

pher Wren and tlie so-called Queen Anne architects, which
is plain, well proportioned, severe, and purely classical

without Gothic trimmings. And here there is an important

point to notice: it is true that the seventeenth centiiry begins

with a blend of medieval and modem elements, and ends

with the trivmiph of the modem; but observe that in those

days to be 'modem' often meant to be 'classical', that is,

to imitate the Greeks and Romans. We call the age of

Dryden, Pope and Addison the 'Augustan' Age, and the

men of that time really felt that they were living in an epoch
like that of the Emperor Augustus—an age of enlighten-

ment, learning and true civilisation—and congratulated

themselves on having escaped from the errors and super-

stitions of the dark and monkish Middle Ages. To write and
build and think like the ancients meant that you were rea-

sonable beings, cultivated and urbane—that you had aban-

doned the shadow of the cloister for the cheerful light of

the market place or the coflFee house. If you were a scientist

(or 'natural philosopher') you had to begin, it is true, by

rejecting many ancient theories, particiJarly those of Aris-

totle, but you knew all the while that by thinking inde-

pendently and taking nothing on trust you were following

the ancients in spirit though not in letter.

Or let us glance briefly at two other spheres of interest:

politics and religion, beginning with politics. Here again

you notice that the century begins with Cavalier and

Roimdhead and ends with Tory and Whig—that is to say,

it begins with a division arousing the deepest passions and

prejudices, not to be settled without bloodshed, and ends

with the mere opposition of two political parties, differing

in principle of course, but socially at one, and more ready

to alternate peaceably with each other. The Hanoverians

succeed the Stuarts, and what more need be said? The
divine right of kings is little more heard of, and the scene

is set for prosaic but peaceful development. Similarly in re-

ligion, the period opens with the long and bitter stmggle

between Puritan and Anglican, continuing through civil

war, and accompanied by fanaticism, persecution and exile,

and by the multiplication of hostile sects; it ends with the

Toleration Act, and with the comparatively mild dispute

between the Deists and their opponents as to whether
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Nature was not after all a clearer evidence of God than
Scripture, and the conscience a safer guide than the creeds.

In short, wherever you turn you find the same tale repeated
in varying forms: the ghosts of history are being laid; dark-

ness and tempest are yielding to the hght of common day.

Major issues have been settled or shelved, and men begin
to think more about how to live together in concord and
prosperity.

Merely to glance at this historical landscape is enough
to make one seek some explanation of these changes. If the

developments had conflicted with each other we might
have put them down to a nimiber of different caiises, but
since they all seem to be setting in one direction it is natu-

ral to suppose that they were all due to one common
underlying cause. There are various ways of accounting for

historical changes: some people believe, for instance, that

economic causes are at the bottom of everything, and that

the way men earn their hving, and the way in which wealth

is produced and distributed, determine how men think and

write and worship. Others believe that ideas, rather than

material conditions, are what control history, and that the

important question to ask about any period is what men
then believed to be true, what their philosophy and religion

were like. There is something to be said on both sides, but

we are concerned with a simpler question. We know that

the greatest intellectual change in modem history was com-

pleted during the seventeenth centxuy: was that change of

such a kind as to explain aU those parallel movements we
have mentioned? Would it have helped or hindered that

drift towards prose and reason, towards classicism, enlight-

enment and toleration? The great intellectual change was

that known as the Scientific Revolution, and I think the

answer to these questions is—Yes.

It is not for me to describe that revolution, or to discuss

the great discoveries which produced it. My task is only

to consider some of the effects it had upon men's thoughts,

imaginations and feelings, and consequently upon their

ways of expressing themselves. The discoveries—I am think-

ing mainly of the Copemican astronomy and the laws of

motion as explored by Galileo and fully formiJated by
Newton—shocked men into realising that things were not

as they had always seemed, and that the world they were
living in was really quite different from what they had been

taught to suppose. When the crystal spheres of the old

world-picture were shattered, and the earth was shown to

be one of many planets rolling through space, it was not

everyone who greeted this revelation with enthusiasm as

Giordano Bruno did. Many felt lost and confused, because
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the old picture had not only seemed obviously true to com-
mon sense, but was confirmed by Scripture and by Ar-

istotle, and hallowed by the age-long approval of the

Church. What Matthew Arnold said about the situation in

the nineteenth century applies also to the seventeenth: re-

ligion had attached its emotion to certain supposed facts,

and now the facts were failing it. You can hear this note

of loss in Donne's well-knovra hnes:

And new philosophy calls all in doubt;

The element of fire is quite put out;

The sun is lost, and th' earth, and no man's wit

Can well direct him where to look for it.

Not only 'the element of fire', but the very distinction be-

tween heaven and earth had vanished—the distinction, I

mean, between the perfect and incorruptible celestial bod-

ies from the moon upwards, and the imperfect and cor-

ruptible terrestrial bodies below it. New stars had appeared,

which showed that the heavens could change, and the tele-

scope revealed irregularities in the moon's surface—that is,

the moon was not a perfect sphere, as a celestial body

should be. So Sir Thomas Browne could write:

'While we look for incorruption in the heavens, we
find they are but like the earth;—durable in their main

bodies, alterable in their parts; whereof, besides comets

and new stars, perspectives (i.e. telescopes) begin to tell

tales, and the spots that wander about the sun, with

Phaeton's favour, would make clear conviction.'

Naturally it took a long time for these new ideas to sink

in, and Milton still treats the old and the new astronomies

as equally acceptable alternatives. The Copemican scheme,

however, was generally accepted by the second half of the

century. By that time the laws governing the motion of

bodies on earth had also been discovered, and finally it was
revealed by Newton that the law whereby an apple falls

to the ground is the very same as that which keeps the

planets in their courses. The realisation of this vast unify-

ing idea meant a complete re-focusing of men's ideas about

God, Nature and Man, and the relationships between them.

The whole cosmic movement, in the heavens and on earth,

must now be ascribed no longer to a divine pressure acting

through the Primum Mobile, and angelic intelligences con-

trolling the spheres, but to a gravitational pull which could

be mathematically calculated. The universe turned out to

be a Great Machine, made up of material parts which all

moved through space and time according to the strictest

rules of mechanical causation. That is to say, since every
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effect in nature had a physical cause, no room or need was
left for supernatural agencies, whether divine or diabolical;

every phenomenon was explicable in terms of matter and
motion, and could be mathematically accounted for or pre-

dicted. As Sir James Jeans has said: 'Only after much study

did the great principle of causation emerge. In time it was
foimd to dominate the whole of inanimate nature. . . . The
final establishment of this law . . . was the triumph of the

seventeenth century, the great century of Galileo and New-
ton.' It is true that mathematical physics had not yet con-

quered every field: even chemistry was not yet reduced to

exactitude, and stiU less biology and psychology. But New-
ton said: 'Would that the rest of the phenomena of natin-e

could be deduced by a like kind of reasoning from me-
chanical principles'—and he beheved that they could and

would.

I referred just now to some of the immediate effects of

the 'New Philosophy' (as it was called); let me conclude

by hinting at a few of its vdtimate effects. First, it produced

a distrust of all tradition, a determination to accept nothing

as true merely on authority, but only after experiment and

verification. You find Bacon rejecting the philosophy of the

medieval Schoolmen, Browne writing a long exposure of

popular errors and superstitions (such as the behef that a

toad had a jewel in its head, or that an elephant had no

joints in its legs), Descartes resolving to doubt everything

—even his own senses—until he can come upon something

clear and certain, which he finally finds in the fact of his

own existence as a thinking being. Thus the chief intellec-

tual task of the seventeenth century became the winnowing

of truth from error, fact from fiction or fable. Gradually a

sense of confidence, and even exhilaration, set in; the uni-

verse seemed no longer mysterious or frightening; every-

thing in it was explicable and comprehensible. Comets and

eclipses were no longer dreaded as portents of disaster;

witchcraft was dismissed as an old wives' tale. This new
feeling of security is expressed in Pope's epitaph on New-
ton:

Nature and Nature's laws lay hid in night;

God said, Let Newton be! and all was light!

How did all this affect men's rehgious beliefs? The effect

was very different from that of Darwinism on nineteenth-

century religion. In the seventeenth century it was felt that

science had produced a conclusive demonstration of God,

by showing the evidence of His wisdom and power in the

Creation. True, God came to be thought of rather as an

abstract First Cause than as the personal, ever-present God
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of religion; the Great Machine impHed the Great Mechanic,

but after making the machine and setting it in motion God
had, as it were, retired from active superintendence, and

left it to run by its ovvna laws without interference. But at a

time when inherited religious sentiment was still very pow-
erful, the idea that you could look up through Nature to

Nature's God seemed to oflFer an escape from one of the

worst legacies of the past—rehgious controversy and sec-

tarian intolerance. ReUgion had been endangered by inner

conflict; what could one believe, when the Churches were

all at daggers drawn? Besides, the secular and rational tem-

per brought in by the new science soon began to undermine

the traditional foimdations of behef. If nothing had ever

happened which could not be explained by natural, physi-

cal causes, what about the supernatural and miraculous

events recorded in the Bible? This was a disturbing thought,

and even in the seventeenth century there were a few who
began to doubt the literal truth of some of the biblical nar-

ratives. But it was reserved for the eighteenth century to

make an open attack upon the miraculous elements in

Christianity, and to compare the Old Testament Jehovah

disparagingly with the 'Supreme Being' or 'First Cause' of

philosophy. For the time, it was possible to feel that science

was pious, because it was simply engaged in studying

God's own handiwork, and because whatever it disclosed

seemed a further proof of His almighty skill as designer of

the universe. Addison exactly expressed this feeling when
he wrote:

The spacious firmament on high.

With all the blue ethereal sky,

And spangled heavens, a shining frame.

Their great Original proclaim.

Th' unwearied Sim from day to day

Does his Creator's power display;

And publishes to every land

The work of an Almighty hand.

Science also gave direct access to God, whereas Church and

creed involved you in endless uncertainties and difiBculties.

However, some problems and doubts arose to disturb the

prevailing optimism. If the universe was a material mecha-

nism, how could Man be fitted into it?—Man, who had

always been supposed to have a free will and an immortal

soul? Could it be that those were illusions after all? Not

many faced up to this, though Hobbes did say that the soul

was only a function of the body, and denied the freedom of

the will. What was more immediately serious, especially

for poetry and religion, was the new tendency to discount

114



How the Scientific Revolution of tfie Seventeenth Century

Affected Other Branches of Thought

all the products of the imagination, and all spiritual insight,

as false or fictitious. Everything that was real could be

described by mathematical physics as matter in motion, and

whatever could not be so described was either unreal or

else had not yet been truly explained. Poets and priests had

deceived us long enough with vain imaginings; it was now
time for the scientists and philosophers to take over, and

speak to us, as Sprat says the Royal Society required its

members to do, in a 'naked, natural' style, bringing all

things as close as possible to the 'mathematical plainness'.

Poets might rave, and priests might try to mystify us, but

sensible men would ignore them, preferring good sense, and

sober, prosaic demonstration. It was said at the time that

philosophy (which then included what we call science)

had cut the throat of poetry. This does not mean that no

more good poetry coxild then be produced: after all. Dry-

den and Pope were both excellent poets. But when all has

been said they do lack visionary power: their merits are

those of their age—sense, wit, brilliance, incisiveness and

point. It is worth noticing that when the Romantic move-

ment began a himdred years later, several of the leading

poets attacked science for having killed the universe and
turned man into a reasoning machine. But no such thoughts

worried the men of the Augustan Age; their prevailing feel-

ing was satisfaction at Hving in a world that was rational

through and through, a world that had been explained

favourably, explained piously, and explained by an Eng-

hshman. The modem beUef in progress takes its rise at this

time; formerly it had been thought that perfection lay in

antiquity, and that subsequent history was one long decUne.

But now that Bacon, Boyle, Newton and Locke had arisen,

who could deny that the ancients had been far surpassed?

Man could now hope to control his environment as never

before, and who could say what triumphs might not lie

ahead? Even if we feel that the victory of science was then

won at the expense of some of man's finer faculties, we can

freely admit that it brought with it many good gifts as well

—tolerance, reasonableness, release from fear and super-

stition—and we can pardon, and even envy, that age for its

temporary self-satisfaction.

115



Maxwell, the developer of electromagnetic theory (Unit 4),

wrote light verse. The reference in the first line of the poem

is to the members of the British Association for the Advance-

ment of Science.

17 Report on Tait's Lecture on Force,

at British Association, 1876

James Clerk Maxwell

Verse written in 1876 and published in Life of James Clerk l^axwell, 1884.

Ye British Asses, who expect to lie;a'

Ever some new thiiii;,

I've nothing new to tell, but wliat, I fear,

May be a true thing.

For Tait comes with his plummet and his line,

Quick to detect your
Old bosh new dressed in what you call a tine

Poi)ular lecture.

Whence comes that most peculiar smattering,

Heard in our section ?

Pure nonsense, to a scientific swing
Drilled to j^erfection 1

That small word "Force," they make' a barlier's l)louk,

Ready to put on

Meanings most strange and various, tit to shock

Pupils of Newton.

Ancient ;iud foreign ignorance they tlirow

Into the bargain
;

The shade of Leibnitz- mutters from lielow

Horrible jargon.

The phrases of last century in this

Linger to play tricks

—

Vis Viva and Vis Mortua and Vis

Acceleratrix

:

—

Those long-nebbed words that to our te.xt books still

Cling by their titles,

And from them creep, as entozoa will.

Into our vitals.

But see ! Tait writes in lucid symbols clear

One small equation
;

And Force becomes of Energy a mere
Space-variation.

Force, then, is Force, but mark you ! not a thing,

Only a Vector ;

Thy barbM arrows now have lost their sting,

Impotent spectre !

Thy reign, Force ! is over. Now no more

Heed we thine action
;

Repulsion leaves us where we were before,

So does attraction.

Both Action and Reaction now are gone.

Just ere they vanished,

Stress joined their hands in peace, and made tlicm one

Then they were banished.

The Universe is free from pole to pole.

Free from all forces.

Rejoice ! ye stars—like blessed gods ye roll

On in your courses.

No more the arrows of the Wrangler race,

Piercing shall wound you.

Forces no more, those symbols of disgrace,

Dare to surround you :

But those whose statements baffle all attacks,

Safe by evasion,

—

Whose definitions, like a nose of wax,

Suit each occasion,

—

Whose unreflected rainbow far sur]);vs.«i'd

All our inventions.

Whose very energy appears at last

Sciint of dimensions :

—

Are tliesc the gods in whom ye put your trusi.

Lordlings and ladies ?

The hidden^ potency of cosmic dust

Drives them to Hades.

While you, brave Tait ! who know so well the way
Forces to scatter,

Calmly await the slow but sure decay,

Even of Matter.
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This after-dinner address to the American Physical Society

attempts to point up in a simplified way the amusing, as well as

some of the more serious, problems which arise in connection

with flight into space, including the Impracticality of using the

moon as a military base or of solving the population problem

by colonizing the planets.

18 Fun in Space

Lee A. DuBridge

An article from The American Journal of Physics, 1960.

A WONDERFUL thing has happened during

the past three years. A new subject has

been opened up which even an old-fashioned

physicist can understand. A new subject that

involves no relativity corrections, no strange-

particle theory—not even any Fermi statistics.

Just good old-fashioned Newtonian mechanics!

Space

!

All you have to do is get an object a couple of

hundred miles above the earth and give it a

horizontal speed of 5 or 10 miles/sec, and from

that time on you can tell exactly what's going to

happen to it—maybe even for a billion years—by
just using Newton's laws of motion and his law

of gravitation. The mathematical details get a

little rough now and then, but a good IBM
machine will take care of that— if you can find

someone who knows how to use it. But there is

nothing in principle that any physicist can't

understand.

I personally prefer to talk about space to non-

scientific audiences. In the first place, they can't

check up on whether what you are saying is right

or not. And, in the second place, they can't make
head or tail out of what you are telling them

anyway—so they just gasp with surprise and

wonderment, and give you a big hand for being

smart enough to say such incomprehensible

things. And I never let on that all you have to do

to work the whole thing out is to set the centri-

fugal force equal to the gravitational force and

solve for the velocity. That's all there is to it!

Knowing v, you can find the period of motion, ot

course, and that's practically all you need.

* Text of remarks at the Banquet of the 1960 Spring
Meeting of the American Physical Society, Sheraton Hall,
Washington, D. C, .April 27, 1960.

To show what I mean, let me give a simple

example that I heard discussed at an IRE
meeting a couple of years ago.

Imagine two spacecraft buzzing along in the

same circular orbit around the earth—say 400

miles up—and one ship is 100 yards or so ahead

of the other one. The fellow in the rear vehicle

wants to throw a baseball or a monkey wrench

or a ham sandwich, or something, to the fellow

ahead of him. How does he do it?

It sounds real easy. Since the two ships are in

the same orbit, they must be going at the same

speed—so the man in the rear could give the

baseball a good throw forward and the fellow

ahead should catch it.

But wait! When you throw the ball out, its

speed is added to the speed of the vehicle so now

it is going too fast for that orbit. The centrifugal

force is too great and the ball goes off on a tan-

gent and rises to a higher orbit. But an object in

a higher orbit must go slower. In fact, the faster

he throws the ball, the higher it rises and the

slower it goes. So our baseball pitcher stares in

bewilderment as the ball rises ahead of him, then

seems to stop, go back over his head, and recede

slowly but surely to the rear, captured forever in

a higher and slower and more elliptical orbit

while the pitcher sails on his original course.

You must make a correction, of course, if you

assume the ball's mass is not negligible and you

take account of the conservation of momentum.

Then, as the ball is pitched forward, the vehicle

is slowed down—whercuDon it falls into a lower

orbit where, of course, it goes faster. So in this

case the ball appears to rise higher and fall

behind faster.

But now our ball thrower decides to try again.

This time he is going to be smart. If you can't
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reach the guy ahead by throwing forward, the

obvious thing to do is throw the ball to the rear.

Now its speed is subtracted from that of the

vehicle ; hence it is going too slow for its orbit

;

hence it falls to a lower orbit and goes faster,

passes underneath the rear vehicle, moves forward

and passes underneath the forward vehicle, and

then on into its orbit. It will be left as an exercise

for the student to determine just how the baseball

may be launched in order to hit the forward

vehicle. One way, of course, is to first circle the

earth and come back on the second lap, but there

are other ways.

Now, that's all very simple Newtonian me-

chanics, of course. But you can see how, when

you start to explain that to make an object go

faster you slow it down and to make it go slower

you speed it up, people begin to think you are

either crazy or very smart. However, tonight I

am talking to physicists and they are used to

far crazier things than that—so they will have

no trouble believing me at all.

So let's get on with more serious problems.

For example, last summer there appeared in

a military journal an article on the use of the

moon as a military base. This article is an inex-

haustible source of fascinating problems for your

students.

The first point made by the writer is that

military men have always cherished "high

ground." First a hill or a mountain, then a

balloon, then an airplane, then a higher airplane,

then a ballistic missile, and now—what could be

more logical—the moon. Next, of course (though

the author fails to mention this), comes Venus, then

Mars, then Mercury, then the sun\ Eventually,

of course, we'd like to get out to Alpha Centauri

(the nearest large star). But at the speeds of

present space ships it would take 100 000 years

or so to get to Alpha Centauri. And, who knows,

the war might be over by then.

But let's stick to the moon. Our article suggests

it's a real interesting possibility to hit an enemy
target from the moon. The author does not

mention that it would be a lot quicker, cheaper,

and easier to hit it from Iowa, or Alaska, or

Maine. But the moon is higher—and so is less

vulnerable. Besides—here is the clincher—the

velocity of escape from the moon is only 1.5

miles/sec, while the initial velocity of an ICBM
is nearly 5 miles/sec. Think of all the fuel you

save! Of course, there is a little matter of getting

the rocket and fuel up to the moon in the first

place. But that presumably will be charged to the

Military Air Transp>ort Service and so can be

neglected.

Now you can easily prove that if you fired a

rocket from the moon at just over 1.5 miles/sec,

and did it just right, you could put it into an

elliptical earth orbit which would intersect the

earth's surface after a flight time of about five

days. And, if you timed it just right and the earth

kept spinning at just the right speed, your target

might rotate into position under the point of

entry just as the rocket came in. But if you made
an error of a few percent in the velocity and the

flight took only 4| days—then maybe New York

would appear at the point of impact, or maybe
the middle of the Pacific Ocean, or, more likely,

the ellipse might miss the earth's surface entirely

and the object return to its starting point.

Except, the starting point, the moon—now, 10

days later—won't be there anymore! The moon
will be a third of the way around its orbit!

It is, of course, very unimaginative of me not

to recognize that you could shoot the rocket

faster than 1.5 miles/sec and get the payload to

the earth faster than five days. So you could.

That takes more fuel of course—and soon you

will wonder why you didn't stay home in the

first place. But, the article says, you could reduce

the flight time from moon to earth to a few

minutes if you wished. Again, so you could. All

you need to do is to accelerate to an average

speed of a million miles per hour. That's 275

milcs/scc. That's 55 times as fast as an earth-

bound ICBM, or 3000 times as much kinetic

energy. So, if the ICBM takes 100 000 pounds

of fuel, to launch our rocket from the moon will

take 5.5 million pounds. And that's quite a load

to get off the earth and up to the moon in the

first place. In fact, you'll burn up one billion

pounds of fuel just lifting it off the earth.

Well, you begin to see why space research is so

much fun. And I think it's wonderful to have

something turn up again that's fun. We ahva>s

used to say that we went into physics just because

it was fun. But then, with big machines and big

crews and big budgets, physics research got

deadly serious. I have a physicist friend who is

thinking of going into biolog>' where all he needs

is a microscope and some viruses—and he can

have a lot of fun. But I think space may save him

for physics because that's fun too—especially if

you're a theoretical physicist, as he is. As long

as you don't have to go up into space, but can

just think about it, it is a lot of fun.

There is another bundle of space problems that
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Fun in Space

can be a source of considerable amusement. Have

you ever tried to explain to your wife why it is

that if she were in a space capsule in an orbit

around the earth she would have lost all her

weight. Now the idea of losing a few pounds of

weight might appeal to her, but I am sure the

notion of weightlessness is something incompre-

hensible to most people. If you ask most laymen

why the condition of weightlessness exists, they

would tell you that since you are above the

earth's atmosphere there isn't any gravity and

so, of course, you must be weightless. To such

people one must carefully explain that the force

of gravity 200 miles above the surface of the

earth is only 10% less than it is on the earth's

surface. Even at 4000 miles the gravity is reduced

only to one-quarter of its value on the earth's

surface; and at 8000 miles, to one-ninth. Since it

is obviously gravity that holds a satellite in a

circular orbit, and since the earth's gravity is

even strong enough out at the distance of the

moon—240 000 miles—to hold the moon in its

orbit, the weightlessness in an earth satellite is

evidently not caused by the absence of gravity.

Then what is it caused by? Of course, if you

want to be a real coward, you will choose the

easy way out and simply say that in a circular

orbit the force of gravity is canceled by the

centrifugal force, and the condition of weightless-

ness results. You know very well, of course, that

that isn't the proper explanation. The centrifugal

force is the force that the satellite exerts on the

earth and is not a force on the satellite. The force

on the satellite is toward the earth and, indeed,

it is the force of gravity which supplies the

centripetal force which keeps the satellite in its

orbit. In other words, gravity and centripetal

force are in the same direction, not opi)ositc. So,

when this is pointed out by some unkind person,

you get more sophisticated and say simply,

"Well, in any freely falling object the condition

of weightlessness exists. It would exist, for

example, for passengers in a freely falling

elevator." But, since not many people have been

passengers in a freely falling elevator, this explan-

ation usually falls fairly flat also. At this point I

recommend that the argument be abandoned and

we retreat into technical jargon by saying, "Well,

it's just one of Newton's laws of motion that

whenever the inertial reaction and the acceler-

ating force are equal, no tendency toward further

acceleration can exist, and hence the system

behaves as though no gravitational field were

present." No one can quarrel with that state-

ment. Even if nobody understands it, it's true.

And it even holds for an elliptical orbit where

centrifugal force and gravity are not always

equal, but weightlessness exists anyway.

By this time I suppose you will all be convinced

that I am against space. However, that's not

true. The Caltech Jet Propulsion Laboratory has

a 50-million-dollar-a-year contract to do space

research. I would not dare be against it!

I seriously believe that when all the popular

nonsense on space is swept away, we can soberly

recognize that the achievement of getting man-

made vehicles into space orbits and having them

transmit scientific information back to earth is

one of the great triumphs in the history of

technology. And, as so often happens when a new

technological development occurs, new types of

scientific exploration become possible.

I don't know much about the military value of

space weapons. And the little I do know does not

impress me. Nor do I know much about the

psychological value of space ventures—how all

the people in Asia and Africa think the greatest

nation on earth is the one that puts up the

heaviest satellite. That doesn't impress me
either. But the possibilities of doing scientific

experiments in space vehicles is something I can

get really excited about.

Look at the very first thing that happened

—

the discovery of the Van Allen layers of charged

particles. Think of the many exciting experiments

still ahead to unravel the mysteries which that

discovery opened up. And it's only the start.

Now at last we can explore the earth's gravita-

tional, magnetic, and electric fields ; look down
on its storm patterns; determine the nature of

highly rarefied matter in the space through which

the earth moves, the radiation fields present

throughout space. We can now look, unimpeded,

at the sun, the planets, and the stars—and a new

era in astronomy is in the offing. We'll be able to

examine the moon directly with instruments

landed on its surface—and clear up many
mysteries about the origin of the solar system.

We'll discover somenew mysteries too, no doubt.

Mars and Venus, and eventually other planets,

will soon be in the range of direct examination,

too. We may actually live to see the day when
we will know for sure whether the green patches

on Mars are living plants or not—and, if so,

whether they consist of the same type of organic

molecules with which we are familiar on earth.

One of the most astonishing developments—to

me at least—is that of the art of radio communi-
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cation which makes it possible to transmit infor-

mation over millions of miles of space. Pioneer V
is being heard over 5 million miles away with

only 5 w of power. Its 150-w transmitter should

be heard out to 50 million miles—possibly to

100 million if we get some sensitive new receivers

going in time. Clearly, objects within a distance

equal to the diameter of the earth's orbit can

soon be listened to—out to a quarter of a billion

miles perhaps. I wonder what we can do beyond

that! The inverse-square law is a pretty imposing

barrier. But the ingenuity of the electronic engi-

neer is beyond calculation. (Incidentally, as an

old-time worker in the field of photoelectricity, I

take especial pleasure in watching the develop-

ment of the solar cell. Without it we would be in

real trouble. However, when Professor Hughes

and I wrote our book on Photoelectric Phenomena,

I regarded the photovoltaic cell as such a boring

subject that I was glad to let him write that

chapter. Solar cells flying in space did not occur

to us as being an imminent necessity in 1931.)

One of the most fascinating aspects of the

space age is that it has given birth to a new
science

—

space science. The only trouble is that

no one is very clear about what space science is.

Is it the study of the contents of space itself? If

so, do we mean the space between the stars? The
space between the planets? The space between

the meteorites? The space between the hydrogen

atoms? Or do we include everything? If we mean
everything—then all the astronomers have been

space scientists for 2000 years. And, if I judge

correctly, many astronomers are a little disgusted

with all the Johnny-come-latelys' who act as

though they had discovered space—or even in-

vented it. Or is space science the science you do

with instruments that are in space? Thus, when
you take pictures of the earth's clouds from a

satellite, is that space science? Or is it still

meteorology? When you are interested in the

structure of the planet earth, you are a geologist.

If you are interested in the moon, you are a

selenologist (after Selene, the moon goddess). Is

a selenologist a space scientist? Then why not a

geologist too? If you are interested in Venus, then

you have to look up the Greek word for Venus to

find out what you are. And, since the Greek word

for Venus is "Aphrodite," I still don't know what

' At this point my secretary inserted the following note:
"I suppose, it this is published, we should use 'Johnnies-
come-lately,' although for oral delivery I much prefer the
term you use—it has more style and zip and is more
pleasing phonetically."

to call a Venusian geologist. Maybe "space

science" isn't such a bad term after all!

All I hope is that we don't let the glamor of the

term "space science" confuse us. There is a lot

we can learn about the moon, for example, by

just using lowly earthbound astronomical tele-

scopes. Let's not be seduced into sending expedi-

tions to the moon just to look for things we can

see perfectly well from Palomar Mountain—or

from Kitt Peak or Mt. Hamilton.

Professor Bolton and Mr. Roberts and Mr.

Radhakrishnan, of the Caltech Radio Astronomy
Observatory, in just a few nights observing

recently found that the radio radiation from

Jupiter is partially polarized and that the

polarized part appears to come from a belt which

is separated from the planet's disk. In other

words, they have probably observed synchrotron

radiation from a Van Allen belt around Jupiter.

That's space science for you—and achieved in a

California desert at a cost far less than the cost

of even a very small rocket

!

On the other hand, the Pioneer V package has

measured the earth's magnetic field out to nearly

a million miles. Preliminar>' analysis shows that

it appears to be a pretty good dipole field out to

35 000 km, but beyond that shows small pertur-

bations not yet analyzed. Here, clearly, is space

science at its best—obtaining information avail-

able in no other way. Pioneer V is also observ-

ing charged-particle radiation far away from

the earth's magnetic field—and has observed

fluctuations which are correlated with distur-

bances on the sun. And, of course. Pioneer V is

at last obtaining data on the real primary cosmic

radiation. We have heard some excellent papers

on space physics at this very meeting of the

American Physical Society.

At last I believe the American people are

beginning to realize that these are the real pur-

poses of space research—to obtain scientific

information. At last they are asking not just

whether our satellites weigh more than the

Russians', but whether they provide us with

more information. We can be thankful that

NASA did not yield to hysterical demands to

perform useless stunts in space just to rival the

Russians, but insisted on laying out a long-term

program of space research. It's going to be a slow

program and an expensive one. But, in the long

run, solid scientific achievements will provide

more national prestige than useless tricks. I

believe even the Mercury man-in-space program,

in spite of all the nauseating journalistic publicity
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about the astronauts, has now been converted

into a needed research program to study bio-

logical problems which must be understood by
the time sending men into space becomes a really

useful scientific venture.

Speaking of men in space, I am reminded of the

recent television program on the population

explosion in which a British economist calmly

announced that rising population on earth would

be no problem—we'll just ship the excess ofT

into space! Now there is a concept to provide

real merriment for your space discussions. I am
told that excess population is piling up on earth

at the rate of 45,000,000 people per year, or

123,000 per day. What a passenger business

that's going to be! The first colony will be on the

moon, I suppose. But who is going to lay the

pipeline to get oxygen up to them? And water?

And what about food? And space suits? With a

few million people on the moon, I wonder how
many space suits will get punctured every day.

(A punctured space suit in a perfect vacuum is

a most unpleasant accident.)

Fun in Space

Every day! That reminds me—a day on the

moon is 28 earth-days long. Sunshine for 336
hours, then darkness for 336 hours. A sizzling

temperature of 220°F by day and minus 220° at

night. In view of all the trouble, I propose instead

that we build a huge floating platform all over
the Pacific Ocean and put our excess population
there. It would have just as much area as the

moon. And, if we include the rest of the oceans,

it would have as much as Mars too. And it would
be a lot cheaper. And at least the people would
have air to breathe!

Then we can save the moon for the people who
ought to be there—physicists, chemists, biolo-

gists, geologists, and astronomers. Then, I think

the moon might be an interesting place to visit!

Please forgive me for making jokes about a

serious subject. My only hope is that by laughing

at ourselves a little bit we may get back our sense

of perspective. And a sense of perspective is

important, no matter what problem we are

dealing with.
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In tracing the relation of science to other ports of

modern life, Jacob Bronowski interviews on artist,

Eduardo Paolozzi, an architect, Eero Saarinen, a

physicist, Abdus Salam, and a writer, Lawrence

Durrell

.

19 The Vision of Our Age

J. Bronowski

A chapter from his book, Insight-Ideas of Modern Science, 1964.

This book began at the birth of a child, and traced

its development until it enters 'the gateway to

imagination and reason'. This is the stage when the

child can manipulate objects in thought as well as

with its hands: when it can make images of them.

The child has little knowledge yet, in the ordinary

sense of the word; but it has the mental equipment

to learn and create knowledge. Once a child can make
images, it can also reason, and build for itself a

coherent picture of the world that is more than

separate bundles of sense impressions.

We have just seen that when a child enters 'the

gateway to imagination', it leaves all animals be-

hind. Before it learns to make images, a young
human develops in much the same way as a young

animal. Children and animals alike have to learn to

co-ordinate their various senses and to recognise

objects. But after that, animals fall behind. They have

no power of imagination. That is, they cannot carry

images in the mind; and without imagery, without

an inner language, they cannot manipulate ideas.

The theme of imagination runs through this book.

We have examined some of the great achievements

of science and seen that they are imaginative ideas.

Science does not merely plod on like a surveyor,

laboriously mapping a stretch of country, square

mile by square mile. Of course nature must be sur-

veyed, and very laborious that is at times; but the

survey is not the end. The great moments in science

come when men of imagination sit down and think

about the findings—when they recreate the land-

scape of nature under the survey.

Science must be solidly grounded in fact and in

experiment. But a blind search for experimental

facts is not enough; it could never have discovered

the theory of relativity. Science is a way of looking

at things, an insight, a vision. And the theories of

science are the underlying patterns that this way of

looking at the world reveals. Many of the patterns

are unexpected even at the simplest beginnings. (For

example, common sense would not even have ex-

pected to find that stars and human beings are put

together from the same basic building bricks of

matter.) And the more unexpected the pattern, the

greater the feat of imagination that is needed to see

it for the first time.

What place have these imaginative ideas of science

in our daily thoughts? Science and technology have

transformed the physical world we live in; but have

they yet had much effect on thought? Many people

even dislike the ideas of science, and feel that they

are abstract and mechanical. They reject science

because they fear that it is in some way inhuman.

This book shows that science is as much a creation

of the human imagination as art is. Science and art

are noc opposites; ihey spring from the same human
impulses. In this last chapter, we shall examine their

relations to one another, in the past and today. In

particular, we shall see how both enter and combine

into the way man in the twentieth century sees the

world: the vision of our age. For this purpose, we

shall include personal statements about their own
work by an artist, an architect, a scientist, and a

writer.

The artist is the sculptor Eduardo Paolozzi. The
;

group of pictures show him in his studio, then one
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The Vision of Our Age

of his sculptures being cast in the foundry, then" one
of his finished sculptures called San Sebastian—with

a jet engine standing in the background—and finally

another recent work.

This is what Eduardo Paolozzi had to say about
his work and the world for which it is made.

'I am a sculptor, which means that I make images.

As a sculptor I was taught at the Slade the classical

idea of being an artist. The best one could do would
be to emulate Victorian ideals and to work in a
studio executing portraits or monuments.

'But there has been a rejection now of the class-

ical idea of tracing art out of art, which is in a way
a sort of death process leading to the provincial

gallery, with the atmosphere of the death-watch

beetle—a gilt-edged, sure-thing idea of art.

'In this century we have found a new kind of

freedom—an opening up of what is possible to the

artist as well as to the scientist. So I don'^t make
copies of conventional works of art. Tm not working
for Aunt Maud; I'm trying to do things which have
a meaning for us living today. So I work with

objects which are casual and natural today, that is,

mechanisms and throwaway objects. To me they are

beautiful, as my children are beautiful, though in a

different way. I think they are different definitions of

beauty.

'I haven't got any desire to make a sculpture of

my children; but a wheel, a jet engine, a bit of a

machine is beautiful, if one chooses to see it in that

way. It's even more beautiful if one can improve it,

by incorporating it in one's iconography. For in-

stance, something like the jet engine is an exciting

image if you're a sculptor. I think it can quite fairly

sit in the mind as an art image as much as an
Assyrian wine jar. I think it's a beautifully logical

image, in the sense that anything in its delicate

structure, with its high precision standards, has got

a reason, almost in a way like human anatomy.
'My San Sebastian was a sort of God I made out

of my own necessity; a very beautiful young man
being killed by arrows, which has a great deal of
symbolism in it. I think this is a good thing for young
artists to identify themselves with, in a way that

doing the Madonna and Child may not be a thing

they can identify themselves with. It has two legs,

which are decorated columns, it has a rather open,
symbolical square torso, with disguised, warped,
twisted, mechanic elements. Then the final element
is a sort of drum with a space cut in the middle.

'What I feel about using the human diagram is

that it points up in a more specific way the relation-

ship between man and technology. There isn't any
point in having a good idea in sculpture unless there
is some kind of plastic or formal organisation. So
I don't reproduce the jet engine, I transform it. And
I use the wheel a lot in my sculpture as a symbol.
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as a quickly read symbol, of the man-made object.

This also refers back to my crude peasant idea of

science, which is that the wheel gives the idea of man
being able to get off the ground. The wheel to me is

important, and the clock. I think this is very sig-

nificant—I find the clock moving because I find

modem science moving. I see it as a sort of heroic

symbolism.

'In the last fifty years, science seems to be the

outstanding leading direction, the most considerable

direction that man has taken. It is trying continually

to go beyond what was possible till that very

moment. I think there is a possibility in what I call,

crudely, higher science, a tremendous possibility of

man being free. And I think it can give me a certain

kind of mora! strength, in the sense that art can

move into a similar category of freedom. In my
sculpture I am trying to speak for the way people

are freeing themselves from traditional ideas. I'm a

sculptor and so I put these ideas into images. If I

do this well they'll be heroic images, ones that will

survive and ones which other ages will recognise.

Image making gives me the sense of freedom in a

way that nothing else can.'

A word to which Paolozzi returns several times is

'free'. He feels that science frees man, from his

conventions, from the restrictions of his environ-

ment, from his own fears and self-doubts. If this is

true, then man has gained this growing freedom by

imagination: in science, by imagining things that have

not yet happened. Paolozzi wants to communicate
the same sense of growing freedom in the images of

his sculpture. He wants people to feel that they are

heroic images.

Science and art are both imaginative activities,

and they present two sides of the imagination. The
two sides have often tried and often failed to come
together, in the past and in recent time. This chapter

itself, and this book, is an attempt to help bring

them together. Paolozzi's work is also an attempt to

bring them together, in a different language. He
uses the everyday products of technology (the

stamped shapes in the first picture, for example) as

the raw material of his art, because they seem to him
as natural and expressive in modern civilisation as

the human body itself.

It is interesting to look at the two sides of the

human imagination in an earlier civilisation. We
have evidence for them, long even before writing was

invented. These paintings, in the caves of Lascaux in

southern France, are at least twenty thousand years

old. They are the most famous and the finest ex-

amples of art from the Stone Age. The word 'art'

is not out of place, and yet it is most unlikely that

these pictures were created in the same spirit as
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classical art. The caves of Lascaux were not a Stone

Age art gallery that people came to visit. Art of this

kind was an integral part of the civilisation of

Stone Age man.

The Lascaux paintings are a product of one side

of the imagination of the men who lived twenty

thousand years ago. This picture shows a product of

the other side of their imagination. It is a tool: a

harpoon, cut from bone. It has barbs, like a modem
fish hook, to stop it from being pulled out when it

lodges in an animal.

The next picture shows a tool again, and of a

subtler kind. It does not look as impressive as the

harpoon, yet it is in fact a more far-sighted invention.

For it is a tool for making tools: it is a stone graver

of the sort that must have been used to cut the barbs

in the harpoon. The men who invented this were able

to think beyond the immediate needs of the day

—

killing an animal, cutting it up, scraping its hide.

When they invented a tool for making tools (today

we should call that a machine-tool) they took a new
step of the imagination.

What is the link between paintings on the wall of

a cave, and primitive tools made of bone and flint?

Separated as we are by twenty thousand years from

the men who created both, we can only speculate.

But we are surely right in speculating that the paint-

ings served some purpose other than mere decoration.

Look at another Lascaux painting. It represents

three bulls and (probably) a boar. A bull is being

struck by a spear with barbs—a spear like the one

that we have seen. This is plainly a hunting scene.

Many of the other cave paintings show similar

scenes. The painters were constantly preoccupied

with hunting. This is why most authorities agree that

the paintings were some kind of magic, and were

intended to help the hunter to dominate the animal

before the hunt started.

Unhappily, 'magic' is one of those words

('instinct' is another) that does not really explain

anything. It merely says that we do not know the

explanation. What kind of magic were the painters

making? What did they feel they were doing for the

hunters? How did they think that they were helping

them to dominate the hunted animal?

Here I will give my personal view. I think that the

paintings helped the men who painted them, and

the men who lived in the caves with them, to conquer

their fear of the hunted animal. A bull was (and is)

a dangerous beast, and out in the open there would

not be much time to think about him. By drawing

him you become familiar with him, get used to the

idea of meeting and hunting him, and imagine ways

in which he can be outwitted. The close-up makes

the bull familiar to you; and the familiar is never

as frightening as the unknown.

It is not far-fetched here to draw an analogy with

modem methods of training. Consider, for example,

the training of spacemen. They have to face a

frightening situation, in which what they fear is

simply the unfamiliar and unknown. They will not

survive if they panic; they will do the wrong thing.

So a long and life-like training programme is de-

signed to make them familiar in advance with every

situation that they are likely to encounter. The

spaceman's training is more than a matter of simply

learning to press the right buttons. It is also a

psychological preparation for the unknown.

I believe that the Stone Age cave paintings were

also a psychological preparation for the unknown.
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They helped the Stone Age hunters to dominate

their psychological environment, just as flint and

bone tools helped them to dominate their physical

environment. That is the connecting link between

the two. Both are tools, that is, instruments which

man uses to free himself and to overcome the

limitations of nature. It was Benjamin Franklin who
first defined man as 'the tool-making animal'. He
was right, and the tools are mental as well as

physical.

We move forward now many thousand years, to a

time and place where the two sides of the human
imagination worked more closely together than ever

before, and perhaps ever since. The pictures on the

right come from Athens of the fifth century B.C.

The men who built this city had suddenly burst out

of the confines of the cave and come into the light

of freedom. Their civilisation recognised that man's

most powerful tool in the command of nature is the

human mind. The Greeks named their city, and the

great temple of the Parthenon in it, after the goddess

of wisdom, Athene. Light and reason, logic and

imagination together dominated their civilisation.

Greek architecture, for example, has a strong

mathematical basis, yet it never appears stiff and

mechanical. Look at the Parthenon, as perfect a

creation in architecture as man has made; and it is

dominated by a precise sense of numbers. Numbers
had a mystical significance for the Greeks (Pythag-

oras made them almost into a religion) and this

expressed itself in all they did.

The Parthenon has 8 columns along the front and

17 along each side. That to the Greeks was the ideal

proportion. The number of columns along each side

of a temple should be twice the number along the

front, plus one more. No Greek architect would

have built otherwise.

Numbers that are perfect squares seemed to the

Greeks equally fascinating and beautiful. The Par-

thenon is 4 units wide and 9 units long; for 4 is the

square of 2, and 9 is the square of 3—the two

smallest squares. The ratio of height to width along

the front of the building is also 4 to 9; and so is the

ratio of the thickness of the columns to the distance

between them.

Yet all this arithmetic is not a dead ritual. The
Greeks found it exciting because they found it in

natural objects. To them, it expressed the mystery

of nature, her inner structure. Numbers were a key

to the way the world is put together: this was the

belief that inspired their science and their art

together.

So the Parthenon is nowhere merely a set of

mathematical relations. The architect is guided by

the numbers, but he is never hidebound by them.
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His plan begins with arithmetic, but after that the

architect himself has taken command of the building,

and has given it freedom, lightness and rhythm. For

example, the end columns are closer to their neigh-

bours than are the other columns; and the end

columns are also a little thicker. This is to make the

building compact, to make it seem to look inwards

at the corners. And all the columns lean slightly

inwards, in order to give the eye (and therefore the

building) a feeling of upward movement and of

lightness.

The pictures on the right are of the Erictheum. It

stands close to the Parthenon, but is less famous.

Perhaps that is because the Erictheum is less monu-
mental, more slender, more delicate in its whole

conception. Yet the mathematics is still there. The
porch of the Erictheum, for instance, is designed on
the 'golden section'. That is, the canopy has the same
proportion to the base as the base has to the human
figures which support the canopy. The golden section

was a mathematical relation which was based on
nature: on the proportions of the human body.

The human figures which support the canopy are

made to seem in movement; two rest on the right

foot, two on the left. Everywhere in the Erictheum

there is the feeling of movement. The different levels

of the building are joined together with suppleness

and rhythm. This is what the Erictheum expresses in

architecture: an almost musical sense of rhythm. And
this reminds us that Pythagoras prided himself, right-

ly, on having discovered the mathematical structure

of the musical scale.

The fusion of the mathematical order with the

human, of reason with imagination, was the triumph

of Greek civilisation. The artists accepted the math-

ematics, and the mathematicians did not resent the

architects imposing their individuality on the math-

ematical framework. It was a civilisation which

expressed itself in the way things were put together

—

buildings, ideas, society itself. Greek architecture

survives to illustrate this, perhaps better than any

other record.

All architecture must begin with technical effi-

ciency. Walls have to stand up, roofs have to keep

the rain out. So an architect can never be unpractical,

as can a painter or a sculptor. He cannot be content

with the mere look of the thing. The side of the

human imagination which made the Stone Age tools

cannot be left out. But a bad architect can play it

down, and can take the practical for granted, as a

painter takes his canvas for granted.

The strength of the best architecture today is that

it does not despise the practical purposes of build-

ings. It does not hide the structure and function

under merely elegant decoration. Structure and func-

tion in modern buildings play the same fundamental

part as numbers in Greek architecture. They form
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the framework on which the architect imposes his

individual imagination. And he does not pretend

that the framework is not there.

Our next personal statement comes from a famous

architect, Eero Saarinen. He was born in Finland but

built most of his great buildings in America. The

pictures below show the building that he did

not live to finish, the TWA Air Terminal at Idlewild

Airport in New York. The lines of the building are

very dramatic, and the form is consciously mathe-

matical and aerodynamic. The question is: Is the

bold, flying shape necessary, or is it a romantic

artifice without a true function? I discussed this with

Eero Saarinen during the building, and this is how
he replied.

To really answer your question, I would have to

go a little bit back, and talk philosophically about

architecture. As you know, we all, in architecture,

have been working in this modern style, and certain

principles have grown up within it. The basic prin-

ciples are really three. There is the functional part.

There is the structural part, honestly expressing the

structure of the building. And the third thing is that

the building must be an expression of our time. In

other words, the technology of our time must be

expressed in a building.

'Now those are the principles that we are all

agreed on—the principles that one might have said

ten years ago were the only principles. I think since

that time more thought and maybe some more

principles have grown up. I would say one of these

additional principles, one which I believe in, is that

where buildings have a truly significant purpose they

should also express that purpose.'

Function and purpose were not the same thing in

Saarinen's mind. The TWA Air Terminal has a clear

function: to handle passengers into and out of

aeroplanes. But for Saarinen, it also had a deeper

purpose: from here people were to fly, and he wanted

to give them the sense of freedom and adventure

which flying has for earth-bound men. The vaulted

shapes of the building were well-conceived as struc-

tures, but they were meant to be more: their aero-

dynamic and birdlike look was to express what

Saarinen called the purpose—the sense of going off"

to fly. And the long spurs reaching out from the

building show that it is not something self-contained,

an end-point. They suggest entering the building and

leaving it, which is of course what the passengers do.

Eero Saarinen went on:

'The last thing that I've become convinced of, and

I'm not the only one, there are many others, is that

once you've set the design, it must create an archi-

tectural unity. The idea of the barrel vaults making

the roof of the Air Terminal building is carried

through in all the details, even the furnishings.

'Basically architecture is an art, though it is half-

way between an art and a science. In a way it

straddles the two. I think to a large degree the

motivating force in the designing of architecture

comes from the arts side. If you ask. Are these curves

and everything derived from mathematics? the an-

swer is No. They are sympathetic with the forces

within the vaults, which is mathematical, but there

are so many choices which one has, and these really

come from the aesthetic side.

'To me architecture is terribly important because

it is really an expression of the whole age. After

we're dead and gone, we're going to be judged by

our architecture, by the cities we leave behind us,

just as other times have been. What man does with

architecture in his own time gives him belief in him-

self and in the whole period. Architecture is not just

a servant of society, in a sense it's a leader of

society.'

Architecture straddles art and science. That state-

ment is true of the Greek architecture of two thous-

and years ago as well as of the architecture of today.

In this, the Greek imagination is close to our own.

The Greeks were preoccupied with the idea of struc-

ture; and we have seen in this book that the idea of
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structure is also central to modern science. Like the

Greeks, the modern scientist is always looking at the

way things are put together, the bones beneath the

skin. How often in this book have we used such

phrases as 'the architecture of matter'

!

For example, the Greeks invented the idea of the

atom as the smallest unit of matter from which

everything in the world is built. Plato thought there

were five kinds of atom, and he pictured them as the

five regular solids of geometry. The first four were

the atoms of the four kinds of matter: earth, air,

fire, and water; one of these is shown in the first

picture below. The fifth was the universe itself, the

unity of the other four—we still call it the quintessence;

it is shown, as Plato imagined it, in the second pic-

ture.

This conception is fantastic, and the atoms it

pictures have no relation to the facts. And yet the

fanciful pictures are a first attempt to solve, imagina-

tively, the same problems of structure and behaviour

that the modern physicist faces. The Greek concep-

tion and the modern theories about atoms are both

attempts to explain the bewildering complexity of

the observable world in terms of an underlying,

unifying order. Greek scientific theories are now only

of historical interest. Yet before the Greeks, no one

had thought about the world in this way at all.

Without them, there would have been no modern

science. It was the Greeks who first formulated the

problems that modern science tries to answer.

Our third personal statement comes from a physi-

cist: Professor Abdus Salam, of the Imperial College

of Science in London. He describes some modern

ideas about atoms. They are a long way from Plato's

regular solids; yet, as Professor Salam points out,

that is where they started. Here is what Salam said.

'I am a theoretical physicist, and we theoretical

physicists are engaged on the following problem.

We would like to understand the entire complexity

of inanimate matter in terms of as few fundamental

concepts as possible. This is not a new quest. It's the

quest which humanity has had from the beginning

of time—the Greeks were engaged on it. They con-

ceived of all matter as being made up of fire, water,

earth and air. The Arabs had their ideas about it

too. Scientists have been worried about this all

through the centuries. The nearest man came to

solving this problem was in 1931 when, through the

work done in the Cavendish Laboratory in Cam-
bridge, we believed that all matter consisted of just

two particles—electrons and protons—and all forces

of nature were essentially of two kinds, the gravita-

tional force and the electrical force.

'Now we know that this view of 1931 was erron-

eous. Since that time the number of particles has

increased to thirty, and the number of elementary

forces to four. In addition to the electrical and
gravitational forces, we now believe that there are

two other types of force, both nuclear—one extremely

strong, and the other extremely weak. And the task

we are engaged on is to try to reduce this seeming

complexity to something which is simple and
elementary.

'Now the type of magic which we use in order to

solve our problem is first to rely on the language

which we use throwing up ideas of its own. The

language which we use in our subject is the language

of mathematics, and the best example of the language

throwing up ideas is the work of Dirac in 1928, He
started with the idea that he would like to combine

the theory of relativity and the theory of quantum

mechanics. He proceeded to do this by writing a

mathematical equation, which he solved. And to his

astonishment, and to everyone's astonishment, it was

found that this equation described not only the part-

icles—electrons and protons—which Dirac had de-

signed the equation for, but also particles of so-called

anti-matter—anti-electrons, anti-protons.

'So in one stroke Dirac had increased the number

of particles to twice the number. There are the

particles of matter, there are the particles of anti-

matter. In a sense, of course, this produces simplicity

too, because when I speak of thirty particles, really
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fifteen of them are particles and fifteen of them are

anti-particles. The power of mathematics as a lang-

uage that suggests and leads you on to something,

which we in theoretical physics are very familiar with,

reminds me of the association of ideas which follows

when possibly a great poet is composing poetry. He
has a certain rhyme, and the rhyme itself suggests

the next idea, and so on. That is one type of way in

which invention comes about.

'The second type of idea which we use to solve

our problems is the idea of making a physical picture.

A very good illustration is the work of the Japanese

physicist Yukawa in 1935. Yukawa started to ponder

on the problem of the attractive force between two

protons, and he started with the following picture.

Suppose there are two cricketers, who have a cricket

ball, and they decide to exchange the ball. One
throws the ball and the other catches it, perhaps.

Suppose they want to go on exchanging the ball,

to and fro, between them. Then the fact that they

must go on exchanging the ball means that they

must keep within a certain distance of each other.

'The result is the following picture. If one proton

emits something which is captured by the second

one, and the second one emits something which is

captured by the first one, then the fact that they have

to capture, emit, re-absorb constantly means that

they will remain within a certain distance of each

other. And someone who cannot see this inter-

mediate object, this ball, the object we call the meson,

will think that these two protons have an attractive

force between them. This was Yukawa's way of

explaining the attractive force between two elemen-

tary particles.

'The result of Yukawa's work was that he pre-

dicted that there do exist such particles which play

the role of intermediate objects. And he predicted

that such particles would have a mass about three

hundred times that of electrons. Yukawa made this

prediction in 1935. In 1938 these particles were

discovered, and we now firmly believe that the forces

of nature, all forces of nature, are transmitted by

this type of exchange of intermediary particles.

'Now so far I have been talking about our

methods, but what is really important are our aims.

Our aim in all this is to reduce the complexity of the

thirty elementary particles and the four fundamental

forces into something which is simple and beautiful.

And to do this what we shall most certainly need is a

break from the type of ideas which I have expressed

—a complete break from the past, and a new and

audacious idea of the type which Einstein had at the

beginning of this century. An idea of this type comes

perhaps once in a century, but that is the sort of

thing which will be needed before this complexity is

reduced to something simple.'

The ideas put forward by Salam are vivid. But

more than the specific ideas, we are interested here in

his description of science itself. For him, science is

the attempt to find in the complexity of nature some-

thing which is simple and beautiful. This is quite

different from the usual view that science collects

facts and uses them to make machines and gadgets.

Salam sees science as a truly imaginative activity,

with a poetic language of its own. This is an arresting

point that Salam made: that the mathematics in

science is a poetic language, because it spontaneously

throws up new images, new ideas.

Science can learn from the language of poetry, and

literature can learn from the language of science.

Here we bring in our fourth contributor. He is

Lawrence Durrell, who wrote the four famous books

which make up The Alexandria Quartet. In this four-

fold novel, space and time are treated in an unusual

way, and Durrell began by talking about this

T was hunting for a form which I thought might

deliver us from the serial novel, and in playing

around with the notions of relativity it seemed to me
that if Einstein were right some very curious by-

products of his idea would emerge. For example, that

truth was no longer absolute, as it was to the

Victorians, but was very provisional and very much
subject to the observer's view.

'And while I felt that many writers had been

questing around to find a new form, I think they

hadn't succeeded. I don't know of course, I've only

read deeply in French. There may well be Russian

or German novels which express this far better than

I have.

'But they hadn't expressed what I think Einstein

would call the 'discontinuity' of our existence, in the

sense that we no longer live (if his reality is right)

serially, historically, from youth to middle age, to

death; but in every second of our lives is packed, in

capsule form, a sort of summation of the whole.
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That's one of the by-products of relativity that I got.

'In questing around for a means of actually pre-

senting this in such an unfamiliar form as a novel,

1 borrowed a sort of analogy, perhaps falsely, from

the movie camera. I'd been working with one, and

it seemed to me that when the camera traverses

across a field and does a pan shot, it's a historic shot

in the sense that it goes from A to B to C to D. And

if it starts with a fingernail and backtracks until you

get a whole battlefield, that seemed to me a spa-

tialisation. It was rooted in the time sequence that

it was spatialising; it was still enlarging spatially.

'I tried to mix these two elements together, and

see what would happen to ordinary human charac-

ters in what is after all a perfectly old-fashioned type

of novel—an ordinary novel, only not serial. I found,

somewhat to my own surprise, that I was getting a

kind of stereoscopic narrative, and getting a kind of

stereophonic notion of character. This excited me so

much that I finished it and tried to add the dimension

of time by moving the whole thing forward—you

know, "read our next issue"—five years later. And
there it is, ready for the critics to play with.'

Here are Lawrence Durrell's answers to some
questions about his work:

Q. You said that you got from relativity the feeling

that truth was provisional, or at least depended

very much on the observer.

A. Well, the analogy again is the observer's position

in time and space. It's so to speak the fulcrum

out of which his observation grows, and in that

sense it is not an absolute view, it's provisional.

The subject matter is conditioned by the ob-

server's point of view.

Q. You're really making the point that the most

important thing that relativity says is that there

are no absolutes?

A. I was saying, most important for me. I think that

any average person who's not a mathematician

would assume that that was probably the most

important part of it.

Q. I want to recall another phrase that you've just

used. You said of your novel that 'after all

it's a perfectly old-fashioned novel'. Now I don't

feel that. I feel that your novel could have been

written at no time but in the twentieth century.

A. Yes, in that sense certainly. But I was trying to

distinguish between the form which, I believe, if

it has come off at all, is original, and the content.

When I was building the form I did something

new. I said to myself, this is the shape: there are

three sides of space, one of time. How do I shift

this notion into such an unusual domain as the

novel? And at the back of my mind I wondered

whether we in the novel couldn't escape our

obsession with time only.

Q. Your dimensions, as it were, deepen out each

character as a recession in space. You show how
different he becomes when he is seen by someone
else from another point.

A. Stereoscopically, you see.

Q. I want to ask you a crucial question. Do you feel

that the kind of inspiration that you've drawn
from the scientific idea of relativity here is valid

for everyone? That we can all in some way make
a culture which combines science and the arts?

A. Surely a balanced culture must do that. And I

think all the big cultures of the past have never

made very rigid distinctions. Also I think that

the very great artists, the sort of universal men,

Goethe for example, are as much scientists as

artists. When Goethe wasn't writing poetry he

was nourishing himself on science.

Q. We can't expect everybody to be a Goethe, so

how are we going to unify what is obviously

different—the sense of what the artist is doing

and the sense of what the scientist is doing?

A. I think by understanding that in every generation

the creative part of the population feels called

upon to try and attack this mysterious riddle of

what we're doing, and to give some account of

themselves. We're up against a dualism, because

some people have more intelligence and less

emotion, and vice versa. So the sort of account

they give may suddenly come out in a big poem

like Dante's, or it may come out in a Newtonian

concept. In other words, the palm isn't equally

given in each generation. But I feel that they're

linked hand in hand in this attack on what the

meaning of it all is.

The meaning of it all: the meaning of the pattern

of nature, and of man's place in nature. Durrell's

quest is also Salam's quest, and Saarinen's, and

Paolozzi's. It is the quest of every man, whether

scientist or artist or man in the street.

The driving force in man is the search for freedom

from the limitations which nature has imposed. Man,

unlike the animals, is able to free himself. The first

crude attempts were already made by Stone Age

man with his tools and paintings. Now, twenty

thousand years later, we are still struggling for free-

dom. We try to reach it by understanding the mean-

ing of things. Our age tries to see things from the

inside, and to find the structure, the architecture

which underlies the surface appearance of things.

We command nature by understanding her logic.

Our age has found some unexpected turns in the

logic of nature. How atoms evolve, much like living

species. How living things code and pass on their

pattern of life, much like a machine. How the

rigorous laws of nature are averaged from the million
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uncertainties of atoms and individuals. How time

itself is an averaging and a disordering, a steady loss

of the exceptional.

How life opposes time by constantly re-creating

the exceptional. And how profoundly our ideas of

so safe and absolute a concept as time once seemed

to be can be changed by the vision of one man, who
saw and proved that time is relative.

Above all, our age has shown how these ideas, and

all human ideas, are created by one human gift:

imagination. We leave the animals behind because

they have no language of images. Imagination is the

gift by which man creates a vision of the world.

We in the twentieth century have a vision which

unifies not only the physical world but the world of

living things and the world of the mind. We have a

much greater sense of person than any other age.

We are more free than our ancestors from the

limitations both of our physical and of our psycho-

logical environments.

We are persons in our own right as no-one was

before us. It is not only that we can travel into space

and under the oceans. Nor is it only that psychology

has made us more at home with ourselves. It is a

real sense of unity with nature. We see nature not

as a thing but as a process, profound and beautiful;

and we see it from the inside. We belong to it. This

above all is what science has given us: the vision of

our age.
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In this chapter from her book. The Making of a Scientist, Anne
Roe, on eminent clinical psychologist, reports on her interviews

with several men who became physicists. As these scientists

individually describe their family backgrounds, the interests

and activities of their youth, and their education, it becomes

clear that there is no single pattern.

20 Becoming a Physicist

Anne Roe

An excerpt from her book The Making of a Scientist. 1952.

Here are the stories of several of the men who became physi-

cists. Since the theorists and experimentahsts are quite unhke

in some ways, I shall include both. Again it is true that some

of them knew quite early that the physical sciences were a

vocational possibility, and others did not hear of them in such

a connection until well along in school. You can know that

there is a school subject called physics, and men who teach

it, and you probably will have learned that there have been

famous men called physicists, who found out certain things

about the world, but this is very diflPerent from realizing that

you can make a living at finding out things in this field.

Martin was the son of a consulting engineer, who had had

some college training. His mother had worked as a reporter

for a while after she finished high school. He says,

"I can't remember much about grade school except the fact

that I got reasonably decent grades right along and that I was

fairly interested in science and mathematics. I had a friend

in 7th or 8th grade who was the son of a druggist and we got

a chemistry set between us and played around with it and

almost blew up the house. We spent our spare time memoriz-

ing the table of elements. I never got along in languages, I

couldn't see any sense in memorizing grammar. In history I

read so much I had many more facts than the rest whether

they were right or not. I think probably the interest in science

was partly because of father. When he was home he liked to

do shop work and I used to do some with him. He was rather

meticulous and in some ways this was discouraging for a be-

ginner."

Several things about this statement are very characteristic

of theoretical physical scientists. All of them liked school.
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Most of them preferred mathematics and science to other sub-

jects. A number of them spoke of dabbhng in chemistry, and

of still being surprised that they had not blown up the house,

and many of them did other sorts of things with their hands,

such as the shop work mentioned by Martin. His mention of

memorizing the table of elements reminds me of another of

this group who became interested in mineralogy when he was

a boy and who papered his room with sheets of paper on which

he had copied tables and descriptions of minerals.

Martin goes on to say,

"I was rather sickly. I imagine it was more allergic than

anything else, although it was not recognized at the time, and

I was out sick two or three months each year. One term in

high school I was only there for a month. It was always some-

thing special; my brothers and sisters always had measles and

things like that but those never bothered me. I had tonsils

and adenoids, hay fever, a mastoid, and appendicitis. This

meant that during most of the winter months I didn't get out

and I got to reading fairly early. Since I was in the 8th grade

I've been in the habit of reading 4 books or more a week. I

read pretty much anything. If Tm working hard in physics

I like to relax by reading history or almost anything but phys-

ics. One spell in high school, when I was sick for three months,

I decided I was going to go into history and I spent the time

in drawing up a historical chart beginning with the Egyp-

tians."

His frequent illnesses, and his omnivorous reading are also

characteristic of this group. There were only three who had

had no serious physical problems during childhood, and all

of them read intensely and almost anything they could get

their hands on. Two of them remarked that they thought they

got their first interest in science from reading science fiction.

Reading, of course, is not a very social occupation, and the

physicists, like the biologists, rather tended to be quite shy.

Martin, however, is unlike the others in that he got over this

rather suddenly, although not very early.

"I did very little going out in high school. Mother was very

worried about it. I felt very shy. I started in my junior year

in college and all of a sudden found it interesting and easy

and rather overdid it for a while. Let's see if I can remember

how it happened. I just happened to get in with a group of

fellows and girls who were interested in artistic things. I
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started going to the symphony concerts at that time and we

got in the habit of going Saturdays to Little Italy and sitting

around and drinking wine and talking. Since that time it's

been a thing I could turn on or off at will. There were a num-

ber of periods before my marriage that I did a lot of running

around and other times I'd be too interested in something

else. I've always been self-conscious at social functions and

never cared very much for them. With a few people it's differ-

ent."

In high school one of the teachers had great influence on

him, and this experience oriented him towards science at the

same time that out of school experiences convinced him that

he did not want to be a business man. Not all of these men
had occasion to spend any time in commercial activities, but

quite a few of them did, usually iij the course of making

enough money to go to school. None of them liked business

except one of the biologists who found it of interest but was

glad to go back to science. The extreme competitiveness, the

indifference to fact, the difficulty of doing things personally,

all were distasteful to them.

"The first few years in high school I don't remember any-

thing special about, except that I managed to get fairly de-

cent grades in mathematics. I took physics and didn't like it.

I had taken chemistry before I got there, but there was an

extra course that sounded interesting so I took it and it turned

out there were only four students in the course and a very

interesting teacher. He sort of took personal charge and let

us do pretty much what we wanted except that he was ex-

tremely insistent that we take care and do a good job. We
worked through all of analytical chemistry there and I got a

feeling for looking for small traces of elements, etc. This con-

vinced me that I wanted to be a chemist. A little earlier I had

gotten a job with the phone company which was with a fellow

studying to be a chemist. I read Slosson, Creative Chemistry.

This was the romantic thing to be. I think that teacher had

more individual influence on me than any other."

Some firm, apparently interested in increasing the supply

of chemists, had sent Creative Chemistry around to a num-

ber of high schools, and it seems to have been a very successful

promotion. At least several others of my subjects mentioned

having been influenced by it.
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"when I was still in high school I took a job one summer

at a Yacht Club. It was a navy camp and one of the instructors

had been a radio operator. He got me interested in radio and

we played around a certain amount. That winter he and two

other radio amateurs decided to open a small radio equip-

ment store in town and they asked me to go in. Perhaps they

thought father might help. Dad did put up some money and

we opened a small store and for a while I spent part time

there. When the craze hit in 1922 or 1923 the place was about

swamped, it was the only store in town. What was made on

the store pretty much paid my way through college. While

this episode was interesting I was pretty sure I didn't want

to go into business. You always got essentially people fight-

ing you. During part of this time in addition to working at the

store I had been a part-time radio writer for one of the papers.

While that was interesting, too, it didn't appeal as a life work

either. By then I was convinced I wanted to go on in academic

work.

"College was actually pretty much taken for granted. My
mother was convinced from the beginning that all her chil-

dren were going to college. I just went to college expecting to

be a chemist. I had no very special idea about it. Two things

happened in my freshman year. I took the college chemistry

course plus the lab course. The lab course threw me for a com-

plete loss. I think it was taught by a poor teacher who was

careless of the reagents and they weren't pure. I got traces of

everything and reported it. I didn't like the way the course

was taught because I was told everything I was supposed to

do and it soured me on chemistry.

"I got acquainted with a young man who had just come

there as an astronomer and was teaching mathematics. He
was perhaps the most inspiring teacher I had. He let you go

if you wanted to go. I needed some money so I helped arrange

the library and so I had a chance to look over the mathematics

books. At the end of the year I decided the devil with chem-

istry, I'm going into physics.

"At that time the college had a course in physics which was

not popular. My class had three students and this gave us per-

sonal attention. I thought of going on with it. My father was

very dubious about it. He wasn't sure that physics was a thing

you could get along with but he didn't push it very hard. He
talked to me about it once and said, 'You will have to go on
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in university work and won't make any money.' I said I knew
that and he said If you reahze it, that's all right.' There was

nothing special about the course except at the end of that

year a prize examination was given. At that time physics was

taught practically everywhere without the use of calculus

and still is in many places. We didn't get calculus until our

sophomore year in mathematics and I still can remember the

annoyance and the feeling of being cheated out of an extra

year or so of activity by not having had it earlier. At any rate

the physics course was given with the calculus but didn't use

it. So about the middle of the second term I got disgusted and

decided I wanted to learn physics the right way and asked

the teacher for a text. He smiled and gave me one and I studied

that so when the exam came along I gave it all in calculus

and got the prize. This confirmed me, of course, and the next

two years were extremely pleasant. I divided my time pretty

much between astronomy and physics. There were just three

of us and we'd go to the professor and say we had finished up

this and what should we do next and he would say, 'What

do you want to do?' So we'd tell him and he would give us

manuals and get the old apparatus out and usually it would

have to be cleaned and fixed up, and he would tell us to work

it up and we would have a fine time.

"My teacher felt I should go on to do graduate work. This

was kind of a surprise to the family and a little bit of a worry

because my brothers and sisters were coming along and there

wasn't too much money. But I applied for scholarships at

three places and took the second oflFer. My main danger the

first year was to keep from galloping oflF in 24 different direc-

tions at once. I found it extremely interesting and exciting. I

started work on an experimental problem, but then I would

get an idea for a theoretical paper and work on that for a while,

and then go back to the other.

"I think my teacher in high school had given me a few

nudges in the direction of research. Both the professors at

college wdth whom I was in close personal contact and saw

daily were active in research themselves and I just soaked

that stuff up. I find it hard to think back to the time when the

idea of research and just spending all the time I had available

on trying to understand anything wasn't just there."
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The story of George, who became an experimental physi-

cist is quite a different one, but it is fairly characteristic (rf

the experimentalists. He did some manual things as farm boys

do, but was not particularly interested, and he did not have

radio sets and gadgets of one sort or another. Farm boys didn't

then. Nor did he do any particular amount of reading. So far

as he knows none of his family had gone to college before

him, although some have gone since; his father had had about

a 6th grade education and his mother one year of high school.

He started out in the usual 7 months country school, near

home, but his going on was unusual. He says,

"My father and mother were rather an exception in the

community which can be pointed out in this way. We lived

out in the country about 7 or 8 miles from a high school. The

country school to which we went was very close but when I

finished seventh grade the school was having its usual ups and

downs and the high school was no good. So my father and

mother decided to send me to another school and it required

boarding me away from home, and that was quite the talk of

the area, that they would waste money boarding me.

"My recreations were the usual ones, physical activities.

Whereas most parents in that neighborhood believed that

children when not in school should work along with the hired

help, both father and mother adopted the attitude that they

expected me to do a certain amount of work but didn't care

when I did it. They would lay out a certain amount per day

and if I wanted to get up and work hard and be through with

it that was up to me. That was always criticized because I

was always enticing the other boys away when they were

supposed to be at work. I earned the title of being one of the

laziest boys. Father required only that I do my work and do

it well. He did this with the other help as far as possible, too,

like piece work. From that I learned how to make time on

manual things and at the same time to do as well as required.

But we had no tools and I did no carpentering. Up until I

went to graduate school I never knew I had any ability in

that respect at all. I didn't do a great deal of reading. In those

days the books that were available were novels and I wasn't

particularly interested.

"I think I wanted to go to high school. At least I was per-

fectly willing to go. It came rather suddenly. I don't think
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very much was said about it until possibly a few days before

I went. I suspect my mother had more to do with it, she had

thought it out very well, but I don't think she said much even

to father. His reaction was that as long as I did well he'd help

me go to school. If I failed I could come home and work. He
always thought farming too hard for anyone and that anyone

who had intelligence would get oflF it. The first year or so was

pretty rugged. It was difficult to find a satisfactory place to

stay. We had one little course in physics in high school, not

a lab course, and the usual mathematics. I think I was proba-

bly the top of the class in that.

"There was an incident there that has always been amus-

ing to me. The only time I had any trouble in school was with

the physics teacher. About the middle of the year she was

showing how the water level in the boilers was determined.

She left the gauge open and I said all the water would go out.

The argument got hotter and hotter and finally I volunteered

to show her, at which time I got thrown out of class. There

again it was what father always said, you have to think things

out for yourself."

This is the sort of incident that can happen when a teacher

( or parent ) is so insecure as to be unable to tolerate the sug-

gestion that she might be mistaken, or might lack some par-

ticular piece of knowledge.

The experimentalists are like the theorists in their early

preference for mathematics and science classes, and their dis-

interest in languages, and difiiculty with them is somewhat

greater than that shown by the theorists. Very few of the ex-

perimentalists were avid readers. The teachers at George's

school were all college graduates, and the principal talked a

good deal about going on to college. George was early deter-

mined to go. He liked school work, he did not like farming,

and he had some idea of going into medicine. He tells how

he happened to think of this.

"I started out for medicine. Along about the time I was 14,

there was a young doctor came to the community and he

boarded in my home. I used to drive a car for him and I got

rather interested. My real interest got started from an inci-

dent one afternoon when a colored child had gotten badly

burnt. Neither parent could hold the child and a neighbor

couldn't do it either so he came out to the car and asked me

if I thought I could hold the child and give it ether. It was
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badly burned. Apparently I succeeded because that night he

told my mother she had a young surgeon in the family. Maybe

that started it, but when I went to college I intended to go

into medicine.

"I went to the nearest college. The medicine idea shifted

gradually. Two things happened, I think, that caused a shift.

One was that by pure accident, in the first year mathematics

course I was lucky to be in the section of an exceedingly good

teacher. I always liked to be in the back of the room if I could.

It seemed that during the first week this professor would start

asking questions and begin at the front end, and by the time

it came back to me I would have been able to get the answer,

from the book or by working it out. Then he began another

trick, if he didn't get the answer on the first three or four he

would say, 'How about my old standby?' and call on me so

I felt I had to know it. From that he began to take quite an

interest in my work and before the year was out began talk-

ing about my working up the second year for myself during

the summer. So I promised I'd try and he said he'd give me
an examination in the fall and then I could go into the third

year which he taught. I never have known if I passed it or

if he let me by, but I went on with him. He wanted me to spe-

cialize in mathematics, and along with that there happened

another incident.

"I had become engaged to my wife and she wasn't keen

about being a doctor's wife and undoubtedly that had an in-

fluence on me. She wanted her husband at home a reasonable

amount of the time. As it turned out, especially during the

war, that isn't just what she got. So I gradually drifted in

the direction of mathematics. The second summer I worked

up some other courses and at the end of the third year had

completed four years of mathematics. Along with it I took one

course in physics but I wasn't particularly interested, and I

had one year of chemistry. The last year I found all I lacked

for a B.A. instead of a B.S. which wasn't considered as good a

degree, was a year of Greek so I took that. It was a kind of

training that to my mind is lacking today. I even wound up

with the highest grade in the class.

"The idea of going on to graduate school came from this

math professor. When I started I only intended to go through

for an M.A. I didn't see my way clear further. This professor
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helped me to get a fellowship and that plus my father plus

my wife's working made it possible for me to go. I started out

intending to spend a year and a half and get an M.A. and go

out teaching in mathematics.

"Then again one of these things happened. The first sum-

mer I took two courses in mathematics and for some strange

reason I was assigned a course in physics. The two courses in

mathematics were taught by two foreigners and they were the

two most discouraging courses I've ever had in my life. One

in particular was taught by a famous English mathematician

and he was teaching completely over our heads. I thought it

was my own dumbness. I worked as hard as I ever worked in

my life and accomplished as little. A few days before the exam

I mentioned it to one of the other students and he was feel-

ing the same way. So the next class he had the nerve to go in

before the teacher came in and he went up front and asked

and pretty soon he discovered most of us were in the same

boat so when the professor came in we stopped him and told

him this. He asked around the class and they mostly said the

same. He had assumed we had had two years of mathematics

that we hadn't had and so he gave an exam I could have passed

in high school. I was thoroughly disgusted with mathematics.

The only course that was half decent was the physics course

but I wasn't prepared for that.

"At the end of the summer I thought I wouldn't go on with

graduate school and I decided to go down town and get a

job. If I still felt the same way I'd just continue working in-

stead of going back next term. I got a job as a salesman. That

was another lucky stroke. I went down and started putting

the same effort into that. I began selling boys' shirts and I'd

never bought a shirt in my life, mother always did. So I went

to the library and got out three books on cloth. I read two

that night and by the second day I understood a little more.

I thought that if you wanted to be helpful in selling and it

would be your job to learn what you were selling and it paid

off as far as sales were concerned. Of course then it was said

I was a sales grabber so I was told to take my turn. I said

that was all right and did take my turn but I still maintained

the highest sales, but it was because by then I was selecting

out the good quality. I got called down for that, and they

said there would be a lot of returns, but I asked them to check
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it and there were hardly any. Then I had a run-in with the

buyer and was transferred upstairs to sports goods and the

same thing happened there. It was the same old trouble. No
one ever bothered to study their stuflF. At the end of the month

I saw very clearly that in an industrial job you didn't get any-

where by knowing more or doing more than anyone else. By

that time I was convinced that that side of the world was a

pretty sorry one.

"By then I had also decided I didn't want to go on in mathe-

matics. That one course convinced me that physics was what

I wanted. I had my fellowship transferred and had a long fuss

with the Dean who wanted to assign courses and I wanted to

work up to them. So I started out from there and with essen-

tially undergraduate courses.

"I liked it very much better and I found I somehow had

time on my hands and very soon I wanted to try my hand

in the lab. I had never had any tools in my hand. Again I

had a lucky break. I went down and told the professor and

said I'd like to try and I'd be glad to begin by opening boxes

or anything else. He laughed and said as it happened there

were a lot of boxes to open and so he put me to work. Presuma-

bly lying dormant in my fingers was an ability I didn't know

I had. Within a month I challenged him that I could make an

electroscope work better than he and I won. I've always won-

dered if he let me do it; he never would admit it but I would

not expect him to.

"I found that almost anything in experimental work I had

no difficulty in doing. Glass-blowing and so on just came to

me overnight. I learned mainly just by doing it. Machine work

was all pretty much the same way. Handling the tools just

came naturally as if I had been doing it for years. So much

so that when I came here and took over the shop I said I'd

never ask them to do anything I couldn't do myself. At first

they sometimes said they couldn't do things, but I always

showed them and since then there hasn't been any question."

It is rare to find any planning ahead in the early years.

Mostly the men just go from one thing to another, as occasion

off^ers. The next story is particularly interesting from this point

of view. He had an early bent to mechanical things. He went

to college, largely because of his mother's dreams for him,
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but even there and after he had courses in physics, it was some

time before he found out about research. His story is a par-

ticularly good illustration, too, of a sort of unconsciousness

about many aspects of living that is not uncommon at the col-

lege years, and not unheard of beyond them. Ernest described

himself to me as an experimentalist but one of his colleagues

once told me that his greatest contributions had been theoreti-

cal.

"I really can't say when I got interested in things mechani-

cal but it's just about as early as I can remember. About 6 or

so I was interested in pretty much anything electrical, the

usual things that kids are interested in, autos and so on.

"Father never got even through high school and started

at practically hard labor at 13 and got from that to be a star

salesman. I don't know when he found time for the things

he did. He was quite athletic and at that time there were

amateur athletic groups and he was stroke. I never realized

how good he was at the time but later I found some old papers

and found that his crew was the best anywhere around. All

the training was done after a day's work. Then some time later

some of the books I read when I was a kid were some Inter-

national Correspondence School texts on engineering which

he had studied. That's a lot of work when you are working

hard too. Father was a better man than I was or ever will be.

Even when I was young and strong, my father was much

stronger and tougher than I was always."

References to parents show marked differences in the at-

titudes of the sons. Ernest's respect for his father was very

great, and this is generally characteristic of the physical sci-

entists. It is less characteristic for them to have any great feel-

ing of closeness to their fathers, or great aflFection, but Ernest

and his father seem to have been very close.

"Father had a strong mechanical bent and I learned quite

a bit from him without realizing it. From the age of ten or so

I was entrusted with keeping his car serviced. By the time

I was 12 there were several of us interested in radio and we

made a set. I was sort of leader and I did most of the design-

ing and construction, the others did the operating. This was

a transmitting and receiving station. I was always sure I

wanted to be something of the engineering sort. I had never

heard the word physicist, of course, and neither had either

of my parents. I had fairly large sets. Meccano and Erector,
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at a rather early age. You can get a lot of action for a reasona-

ble amount of money. The folks would buy motors for toys

and when I got to be old enough to be a radio amateur I was

more organized and then it was mainly a question of making

up my mind what I needed. We had all kinds of complicated

arrangements. For a while we formed a small company to

manufacture transformers. It was sort of a joke. The power

company was putting in a lot of new transformers, and so we
got any amount of stuff given us by the uncle of one of the

boys and then we cooked up a deal with another's uncle to

dig a cellar for $20 or $30 worth of wire, and we made some

transformers and sold them. I never worked so hard in my
life. We sure found things out the hard way. We had consider-

able instruction but it was practically all of it from books and

we found out how to do it the wnrong way first always. It just

happened there were no radio amateurs around who knew

more than we did so they learned from us.

"Father never helped me make anything. On the other hand

if I asked him how to do something he always knew and he

had tools around which he got for his own purposes and which

I appropriated so it's hard to describe. He never gave me any

formal instruction but I learned a lot. Not about electricity

but about mechanical things he was very, very good.

"In high school I took chemistry and physics, all there was

of both, about a year of each, and then some odds and ends

of surveying and such courses. I took all there was of math

and some that didn't exist, i.e. the math teachers were very

interested in me and awfully kind to me and gave me instruc-

tion in things that weren't really on the books and I learned

some on the side myself.

"I got through high school quite young and my folks didn't

think I ought to go to college quite so soon so they sent me
for a year to the technical high school there, so I had perhaps

better training than ordinary in that way. That was a well-run

course. I spent most of my time in the machine shop.

"Going to college wasn't taken for granted. My father was

the son of immigrant parents and had his first job as a black-

smith, so college tradition in the family wasn't strong. It was

mother's idea. Her father was a minister and she was of a

fairly well educated family. Among my boy friends none went

to college. I always had had a good time in school and would
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just read anything. I wouldn't say I liked all my studies but I

liked anything scientific or mathematical and was all in favor

of more school. Father was all for it but it was mother's idea

in the first place.

"I got a scholarship and went to college intending to be-

come an electrical engineer that being the nearest thing we

knew of to what I was interested in. Then my money ran out

and I went home and continued in the college there. About

then I had to take sophomore courses in physics and the pro-

fessor thought well of me and he said, 'Why don't you go into

physics?' It seemed a lot of fun and he thought he could stir

me up a job at another college and said there wasn't much dif-

ference between the physics and the electrical engineering

courses and I could change back if I wanted to. I guess he

must have done some considerable wrangling but he got me
a job as assistant when I was a junior, and I came up here and

thought that was a lot of fun.

"I was pretty young and I guess not any too noticing about

some things. I didn't realize there was such a thing as research

either at that time. One fine day I was downstairs and saw

someone wandering down the hall with a soldering iron, some-

thing I recognized. He was a graduate student and didn't

look like he knew what he was going to do so I went with him

to help and spent most of my junior year working on his re-

search and had a high old time working on it.

"This was a small place in those days. No one told me how

things ran. I didn't know about any of the places where peo-

ple gathered. I'd seen this fellow around the teaching labs

but I'd never heard of the idea of research. I'd taken courses

and I thought that teaching was what professors did. The

fellow I assisted for was one of the few that did not do re-

search and I just saw him in his teaching laboratory. I didn't

have any idea of what the student I helped was trying to do.

I could see he was building things that he didn't know how

to do and I did so I helped him for the fun of it.

"There was an International Research Fellow here. He's

a smart guy but pretty excitable and not dependable. By the

time I got to be a senior it got to be recognized that I was

pretty useful in the lab so they gave me to him for research

associate and by that time it got time for me to graduate and

I began to wonder what to do. This research Fellow was of-

fered a job elsewhere and he could bring along anyone he
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wanted so he asked me if I wouldn't like to go and I said sure.

The next day I ran into the department head and told him this

and he didn't say anything about it, but after a couple of

weeks passed I got an offer of an instructorship here and that

surprised me and I accepted. So I stayed here to get a Ph.D. I

was only 20 and just had hardly grown up yet. I took chem-

istry too and got along well in it and had a good time. I'm sure

I would have been happy as a chemist only I just had more

experience of thinking mechanically that made me seem to fit

into physics better.

"As it happened I worked on several problems at once, but

the one I did my thesis on was a joint paper with the head,

so he really suggested the problem and I just worked with

him. It's a very rare student that can tell a good problem when

he sees one, can start it off and carry it through. I certainly

couldn't have."
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Attempts to predict when things will happen, and what will

be available in the future, are as fascinating as they are risky.

Arthur Clarke, a science-fiction writer and scientist, has had

unusual success in predicting future technical advances.

21 Chart of the Future

Arthur C. Clarke

From his book Profiles of tfie Future—An Inquiry into the Limits

of ttie Possible, 1962.

THE PAST
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Communication Materials Biology

Date Transportation Information Manufacturing Chemistry Physics

1800

Locomotive

Camera
Babbage calcu-

lator

Steam engines Inorganic chem-

istry

Urea synthesized

Atomic theory

Steamship Telegraph Machine tools Spectroscope

1850 Conservation of

Electricity Organic chem-

istry

energy

Telephone

Phonograph Electromagnetism

0£Bce machines Evolution

Automobile Diesel engine

1900

Airplane

Gasoline engine Dyes X-rays

Electron

Vacuum tube Mass production

Nitrogen fixa-

Genetics

Vitamins

PlasUcs

Radioactivity

1910

Radio

tion

Chromosomes

Isotopes

Quantum theory

1920 Genes

Relativity

Atomic structure

1930

TV

Language of bees

Hormones Indeterminacy

Wave mechanics

Neutron

1940 Jet

Rocket

Helicopter

Radar

Tape recorders

Electronic com- Magnesium Synthetics Uranium fission

puters from sea Antibiotics Accelerators

Cybernetics Atomic energy Silicones Radio astronomy

1950 Transistor Automation

Satellite Maser Fusion bomb Tranquihzers IG.Y.

GEM Laser Parity overthrown



Chart of the Future

NOW

Communication Materials Biology

Date Transportation Information Manufacturing Chemistry Physics

1960 Spaceship Communication Protein struc- Nucleon struc-

satellite ture ture

THE FUTURE

Space lab

1970 Lunar landing Translating

Nuclear rocket machines EfiBcient electric

storage

Cetacean lan-

guages

1980 Planetary land-

ings Gravity

Personal radio Exobiology waves

1990

Artificial intel-

Fusion power Cyborgs

2000 Colonizing hgence "Wireless" en-

planets ergy Time, perception Sub-nuclear

Global Lbrary Sea mining enhancement structure

2010
Earth probes Telesensory de-

vices Weather control

2020 Logical lan- Nuclear cata-

Interstellar guages Control of lysts

probes Robots heredity

2030

Contact with

extra-terrestri-

als

Space mining

Bioengineering

2040
Transmutation

Intelligent animals

2050 Gravity control

"Space drive"

Memory playback

Planetary

Suspended

animation

2060 Mechanical edu-

cator

Coding of artifacts

engineering

Artificial Lfe

Space, time

distortion

2070

Near-Lght speeds

Climate

control

2080

Interstellar flight

Machine inteUi-

gence exceeds

man's

2090 Matter transmitter Replicator

Meeting with World brain Immortality

2100 extra-terres- Astronomical

trials engineering
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Authors and Artists

PERCY WILLIAMS BRIDGMAN

P. W. Bridgman was born in Cambridge, Massachu-

setts in 1882, entered Harvard in 1900, received

his Ph.D. in physics there in 1908, and in 1913

became Professor. He retired in 1954, and died in

1961. Bridgman's experimental work was in high-

pressure physics, for which he received the Nobel

Prize in 1946. He has made important contributions

to philosophy of science; for example, we owe him

first detailed articulation of the concept of opero-

tional definition.

ARTHUR C. CLARKE

Arthur C. Clarke, British scientist and writer, is a

Fellow of the Royal Astronomical Society. During

World War II he served as technical officer in

charge of the first aircraft ground- control led ap-

prooch project. He has won the Kolinga Prize,

given by UNESCO for the popularization of science.

The feosibility of many of the current space de-

velopments was perceived and outlined by Clarke

in the 1930's. His science fiction novels include

Childhoods End and The City ond the Stars .

JACOB BRONOWSKI LEE DuBRIDGE

Jacob Bronowski, who received his Ph. D. from

Cambridge University in 1933 is now a Fellow of

the Salk Institute of Biological Studies in Califor-

nia. He has served as Director of General Process

Development for the Notional Coal Board of Eng-

land, as the Science Deputy to the British Chiefs

of Staff, and as head of the Projects Division of

UNESCO. In 1953 he was Carnegie Visiting Pro-

fessor at the Massachusetts Institute of Technology.

HERBERT BUTTERFIELD

Lee DuBridge was born in Terre Haute, Indiana in

1901, and educated at Cornell College (Iowa) and

the University of Wisconsin. During World War II

he served as Director of the Radiation Laboratory

at the Massachusetts Institute of Technology,

where Rador was perfected. In 1946 he became the

president of the California Institute of Technology

and served in that capacity until becoming the Ad-

viser to President Nixon on Science and Technol-

ogy. His special fields of interest include bio-

physics, nuclear physics, and photoelectric and

thermionic emission.

Herbert Butterfield is Professor of Modern History

at the University of Cambridge. He graduated from

Cambridge ond was elected a Fellow of Peterhouse

at the same institution in 1923. He become Master

of Peterhouse in 1955 and vice chancellor of the

University in 1959. His writings include books on

the history of religion, international affairs, and

the history of science.

ALEXANDER CALDER

Alexander Colder, the American sculptor and in-

ventor of the mobile, was born in Pennsylvania in

1898. Intending to become an engineer, Colder en-

tered the Stevens Institute of Technology, gradu-

oting in 1919. But by 1926 he had already pub-

lished his first book (Animol Sketches ) and pre-

sented his first exhibition of paintings. A visit

with the Dutch artist Piet Mondrion in 1930

oriented him toward abstraction, and the next year

he produced the first "stabiles," and in 1932, the

first "mobiles." In these mobiles. Colder was

able to incorporate motion into sculpture.

RICHARD PHILLIPS FEYNMAN

Richard Feynmon was born in New York in 1918,

and graduated from the Massachusetts Institute of

Technology in 1939. He received his doctorate in

theoretical physics from Princeton in 1942, and

worked at Los Alamos during the Second World

War. From 1945 to 1951 he taught at Cornell, and

since 1951 has been Tolmon Professor of Physics

at the California Institute of Technology. Professor

Feynmon received the Albert Einstein Award in

1954, and in 1965 was named o Foreign Member of

the Royol Society. In 1966 he was awarded the

Nobel Prize in Physics, which he shared with

Shinichero Tomonago and Julian Schwinger, for

work in quantum field theory.

JAMES BASIL GERHART

James Gerhart is Professor of Physics at the Uni-

versity of Washington in Seattle. Before coming to

Washington, he tought at Princeton, where he re-

ceived his Ph.D. in 1954. Professor Gerhart's

specialty is nuclear physics.
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J. B. S. HALDANE GYORGY KEPES

J. B. S. Haldane was a British geneticist who

served as Professor of Biometry at University

College, London. He pioneered in the application

of mathematics to the study of natural selection

and to other aspects of evolutionary theory. His

broad grounding in mathematics, physics, and

biology has enabled him to moke insightful con-

tributions in many different areas.

BANESH HOFFMANN

Banesh Hoffman, born in Richmond, England in

1906, attended Oxford and Princeton. He has been

a member of the Institute of Advanced Study, elec-

trical engineer at the Federal Telephone and Radio

Laboratories, researcher at King's College, London,

and a consultant for Westinghouse Electric Corpora-

tion's science talent search tests. He has won the

distinguished teacher award at Queens College,

where he is Professor of Mathematics. During the

1966-1967 year he was on the staff of Harvard

Project Physics.

GERALD HOLTON

Gyorgy Kepes was born in 1906 in Selyp, Hungary.

From 1930 to 1936 he worked in Berlin and London

on film, stage, and exhibition design. In 1937 he

came to the United States to head the Light and

Color Department at the Institute of Design in

Chicago. Since 1946 he has been Professor of

Visual Design at the Massachusetts Institute of

Technology. He has written The New Londscope

in Art and Science, Language of Vision
, and edited

several books, including those in the Vision +

Value series. Professor Kepes is one of the major

painters; his work is included in the permanent

collections of many museums.

PAUL KIRKPATRICK

Born in South Dokoto, Paul Kirkpotrick received

his doctorate in physics in 1923. Before reaching

Stanford in 1931, he tought in China and Hawaii.

At Stanford, he was named Professor of Physics in

1937, and became Professor Emeritus in 1959.

Professor Kirkpotrick has served as education ad-

visor with the U.S. Overseas Mission to the Philip-

pines, and with the UNESCO mission to India.

Gerald Holton received his eorly education in

Vienna, at Oxford, and at Wesleyan University,

Connecticut. He has been at Harvard Univer-

sity since receiving his Ph.D. degree in physics

there in 1948; he is Professor of Physics, teach-

ing courses in physics as well os in the history

of science. He was the founding editor of the

quarterly Daedolus . Professor Holton's experi-

mental research is on the properties of matter

under high pressure. He is a co-director of Har-

vard Project Physics, the group that developed

materials on which the Project Physics Course

is based.

FRED HOYLE

Fred Hoyle is an English theoretical astronomer,

born in Yorkshire in 1915. Now Professor of Astro-

nomy at Cambridge University, he is perhaps best

known for one of the major theories on the struc-

ture of the universe, the steady-state theory. Hoyle

is well known for his scientific writing, ond his

success in elucidating recondite matters for the

layman.

JAMES CLERK MAXWELL

James Clerk Maxwell was born in Edinburgh, of a

prominent Scottish family, in 1831. He graduated

second in his class in mathematics at Cambridge,

ond was appointed to a professorship at Aberdeen

in 1856. Shortly thereafter he demonstrated that

Saturn's rings were composed of small particles..

Next, Moxwell considered the mechanics of gases,

and helped develop the kinetic theory. Maxwell's

crowning achievement was his mothematical for-

mulation of the laws of electricity and magnetism.

He showed that electricity and magnetism were re-

lated, and proposed that light was one form of elec-

tromagnetic radiation. In 1871, Maxwell was ap-

pointed first Professor of Experimental Physics at

Cambridge. He died eight years later, his life cut

short by cancer.
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Authors and Artists

HERBERT MATTER DUANE H. D. ROLLER

Herbert Matter was born in Engelberg, Switzerland,

on April 25, 1907. After graduating from college, he

studied painting at L'Ecole des Beaux Arts in

Geneva, and under Fernand Leger in Paris. In 1936

he came to the United States to work as a free-

lance photographer for Harper's Bazaar, Vogue,

and others. Presently he is Professor of Photo-

graphy and Graphic Design at Yale University.

RUDI HANS NUSSBAUM

Rudi Nussbaum was born in Germany in 1922, he

received his Ph.D. from the University of Amster-

dam in experimental physics in 1954. Since then

he has served os UNESCO research fellow ot the

Nuclear Physics Laboratory in Liverpool, as a

senior fellow at CERN in Geneva, and is now

Professor of Physics at Portland State College.

Duane H. D. Roller was educated at Columbia

University, Purdue University ond at Harvard Uni-

versity. Since 1954 Dr. Roller has been at the

University of Oklahoma, where he is McCasland

Professor of the History of Science.

C. L. STONG

C. L. Stong was born in 1902 in Douds, Iowa. He

attended the University of Minnesota, the Armour

Institute in Chicago, ond the University of Michi-

gan (Detroit). For thirty years he was an engineer

with Western Electric. Mr. Stong has also been ir^

volved in movie production, ond in the eorly 1920's

he was a stunt flier. Since 1948 he hos been a con-

tributor to Scientific American , where his column.

The Amoteur Scientist, appears monthly.

GEORGE POLYA WARREN WEAVER

George Polyo was born in Budapest in 1887. He

studied in Vienna, Gottingen, and Budapest, where

he received his doctorate in mathematics in 1912.

He taught in Zurich, and in this country at Brown

University, Smith College, and Stanford University,

where he served as Professor of Mathematics from

1946 to 1953. He is now Professor Emeritus.

JACOPO DA PONTORMO uACOPO CARRUCCI)

Born at Pontormo, Italy, May 24, 1494, Jacopo

Carrucci, later to be known as Jacopo do Pontormo,

wos one of the first of the Florentine Mannerists.

Apprenticed to Leonardo da Vinci ond later to Al-

bertinelli and Piero di Cosimo, Pontormo broke

away from the classical High Renaissance style.

His altarpiece (still in the church of S. Michele

Visdomini, Florence) exemplifies his intensely

emotional style, in contrast to the traditional har-

monically balanced style. Pontormo was buried in

Florence on January 2, 1557.

ANNE ROE

Anne Roe, a psychologist and educator, born in

Denver, Colorado, was educated at the University

of Denver and Columbia University. From 1947 to

1951 she was the director of a psychological study

of scientists, that resulted in the book The Moking

of a Scientist . She is the wife of biologist George

Gaylord Simpson.

Warren Weaver received his Ph.D. in mathematics

and physics from the University of Wisconsin in

1921, and remained at his alma mater, becoming

Professor of Mathematics and Chairman of the De-

partment in 1928. In 1932 he was appointed Direc-

tor of Natural Sciences at the Rockefeller Foundo-

tion, and in 1955 was named Vice-president. He

later wos associated with the Sloon-Kettering In-

stitute, and since 1959 with the Alfred P. Sloan

Foundation. He is the recipient of the Arches of

Science Award given by the Pacific Science Center

of Seattle "for outstanding contributions to the im-

proved public understanding of science."

BASIL WILLEY

Bosil Willey was born in 1897 and later attended

Peterhouse College, Cambridge, where he read his-

tory and English. From 1946 to 1964 he served as

King Edward VII Professor of English Literature

at Cambridge. In 1958 he was selected as Presi-

dent of Pembroke College, Cambridge, and is now

an Honorary Fellow. His published works include

many studies in English and the history of ideas.
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