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This is not a physics textbook. Rather, it is o physics

reader, a collection of some of the best articles and

book passages on physics. A few are on historic events

in science, others contain some particularly memorable

description of what physicists do; still others deal with

philosophy of science, or with the impact of scientific

thought on the imagination of the artist.

There are old and new classics, and also some little-

known publications; many have been suggested for in-

clusion because some teacher or physicist remembered

an article with particular fondness. The majority of

articles is not drawn from scientific papers of historic

importance themselves, because material from many of

these is readily available, either as quotations in the

Project Physics text or in special collections.

This collection is meant for your browsing. If you follow

your own reading interests, chances are good that you

will find here many pages that convey the joy these

authors have in their work and the excitement of their

ideas. If you want to follow up on interesting excerpts,

the source list at the end of the reoder will guide you

for further reading.
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A fictional scientist tells of an apparatus for pro-

ducing silence. Although the proposed scheme is inr

probable, the story has a charming plausibility.

1 Silence, Please

Arthur C. Clarke

An excerpt from his Tales from the White Hart, 1954.

You COME upon the "White Hart" quite unexpectedly in

one of these anonymous little lanes leading down from

Reet Street to the Embankment. It's no use telling you

where it is: very few people who have set out in a deter-

mined effort to get there have ever actually arrived. For

the first dozen visits a guide is essential: after that you'll

probably be all right if you close your eyes and rely on

instinct. Also—to be perfectly frank—we don't want any

more customers, at least on our night. The place is already

uncomfortably crowded. All that I'll say about its loca-

tion is that it shakes occasionally with the vibration of

newspaper presses, and that if you crane out of the win-

dow of the gent's room you can just see the Thames.

From the outside, is looks like any other pub—as in-

deed it is for five days of the week. The pubhc and saloon

bars are on the ground floor: there are the usual vistas of

brown oak panelling and frosted glass, the bottles behind

the bar, the handles of the beer engines . . . nothing out

of the ordinary at all. Indeed, the only concession to the

twentieth century is the juke box in the pubUc bar. It was

installed during the war in a laughable attempt to make

G.I.'s feel at home, and one of the first things we did was

to make sure there was no danger of its ever working

again.

At this point I had better explain who "we" are. That

is not as easy as I thought it was going to be when I

started, for a complete catalogue of the "White Hart's"

clients would probably be impossible and would certainly

be excruciatingly tedious. So all I'll say at this point is

that "we" fall into three main classes. First there are the

journalists, writers and editors. The journalists, of course,

gravitated here from Fleet Street. Those who couldn't

make the grade fled elsewhere: the tougher ones remained.

As for the writers, most of them heard about us from

other writers, came here f©r copy, and got trapped.



Where there are writers, of course, there are sooner or
later editors. If Drew, our landlord, got a percentage on
the literary business done in his bar, he'd be a rich man.
(We suspect he is a rich man, anyway.) One of our wits
once remarked that it was a common sight to see half a
dozen indignant authors arguing with a hard-faced editor
in one comer of the "White Hart", while in another, half
a dozen indignant editors argued with a hard-faced author.

So much for the literary side: you will have, I'd better
warn you, ample opportunities for close-ups later. Now
let us glance briefly at the scientists. How did they get in
here?

Well, Birkbeck College is only across the road, and
King's is just a few hundred yards along the Strand. That's
doubtless part of the explanation, and again personal rec-
ommendation had a lot to do with it. Also, many of our
scientists are writers, and not a few of our writers are
scientists. Confusing, but we like it that way.
The third portion of our little microcosm consists of

what may be loosely termed "interested laymen". They
were attracted to the "White Hart" by the general brou-
haha, and enjoyed the conversation and company so much
that they now come along regularly every Wednesday
which is the day when we all get together. Sometimes
they can't stand the pace and fall by the wayside, but
there's always a fresh supply.

With such potent ingredients, it is hardly surprising that
Wednesday at the "White Hart" is seldom dull. Not only
have some remarkable stories been told there, but remark-
able thmgs have happened there. For example, there was
the time when Professor

, passing through on his
way to Harwell, left behind a brief-case containing well,
we'd better not go into that, even though we did so at the
time. And most interesting it was, too. . . . Any Russian
agents will find me in the comer under the dartboard. I
come high, but easy terms can be arranged.
Now that I've finally thought of the idea, it seems

astonishing to me that none of my colleagues has ever
got round to writing up these stories. Is it a question of
being so close to the wood that they can't see the trees?
Or is it lack of incentive? No, the last explanation can
hardly hold: several of them are quite as hard up as I am.
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and have complained with equal bitterness about Drew's

"NO CREDIT" rule. My only fear, as I type these words

on my old Remington Noiseless, is that John Christopher

or George Whitley or John Beynon are already hard at

work using up the best material. Such as, for instance, the

story of the Fenton Silencer, . . .

I don't know when it began: one Wednesday is much
like another and it's hard to tag dates on to them. Be-

sides, people may spend a couple of months lost in the

"White Hart" crowd before you first notice their exist-

ence. That had probably happened to Harry Purvis, be-

cause when I first came aware of him he already knew
the names of most of the people in our crowd. Which is

more than I do these days, now that I come to think of it.

But though I don't know when, I know exactly how it

all started. Bert Huggins was the catalyst, or, to be more
accurate, his voice was. Bert's voice would catalyse any-

thing. When he indulges in a confidential whisper, it

sounds hke a sergeant major drilhng an entire regiment.

And when he lets himself go, conversation languishes else-

where while we all wait for those cute little bones in the

inner ear to resume their accustomed places.

He had just lost his temper with John Christopher (we
all do this at some time or other) and the resulting deto-

nation had disturbed the chess game in progress at the

back of the saloon bar. As usual, the two players were
surrounded by backseat drivers, and we all looked up with

a start as Bert's blast whammed overhead. When the

echoes died away, someone said: "I wish there was a way
of shutting him up."

It was then that Harry Purvis repUed: "There is, you
know."

Not recognising the voice, I looked round. I saw a
small, neady-dressed man in the late thirties. He was
smoking one of those carved German pipes that always
makes me think of cuckoo clocks and the Black Forest.

That was the only unconventional thing about him: other-

wise he might have been a minor Treasury ofl&cial all

dressed up to go to a meeting of the Public Accounts
Committee.

"I beg your pardon?" I said.

He took no notice, but made some delicate adjust-

ments to his pipe. It was then that I noticed that it wasn't.



as I'd thought at first glance, an elaborate piece of wood
carving. It was something much more sophisticated—

a

contraption of metal and plastic like a small chemical

engineering plant. There were even a couple of minute

valves. My God, it was a chemical engineering plant. . . .

I don't goggle any more easily than the next man, but I

made no attempt to hide my curiosity. He gave me a su-

perior smile.

"AU for the cause of science. It's an idea of the Bio-

physics Lab. They want to find out exactly what there is

in tobacco smoke—hence these filters. You know the old

argument

—

does smoking cause cancer of the tongue, and

if so, how? The trouble is that it takes an awful lot of

—

er—distillate to identify some of the obscurer bye-prod-

ucts. So we have to do a lot of smoking."

"Doesn't it spoil the pleasure to have all this plumbing

in the way?"
"I don't know. You see, I'm just a volunteer. I don't

smoke."

"Oh," I said. For the moment, that seemed the only

reply. Then I remembered how the conversation had

started.

"You were saying," I continued with some feeling, for

there was still a slight tintinus in my left ear, "that there

was some way of shutting up Bert. We'd all like to hear

it—if that isn't mixing metaphors somewhat."

"I was thinking," he replied, after a couple of experi-

mental sucks and blows, "of the ill-fated Fenton Silen-

cer. A sad story—yet, I feel, one with an interesting les-

son for us all. And one day—who knows?—someone may
perfect it and earn the blessings of the world."

Suck, bubble, bubble, plop. . . .

"WeU, let's hear the story. When did it happen?"
He sighed.

"I'm almost sorry I mentioned it. Still, since you insist

—and, of course, on the understanding that it doesn't go

beyond these walls."

"Er—of course."

"Well, Rupert Fenton was one of our lab assistants. A
very bright youngster, with a good mechanical back-

ground, but, naturally, not very well up in theory. He was

always making gadgets in his spare time. Usually the idea

was good, but as he was shaky on fundamentals the things
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hardly ever worked. That didn't seem to discourage him:

I think he fancied himself as a latter-day Edison, and
imagined he could make his fortune from the radio tubes

and other oddments lying around the lab. As his tinkering

didn't interfere with his work, no-one objected: indeed,

the physics demonstrators did their best to encourage him,

because, after all, there is something refreshing about any

form of enthusiasm. But no-one expected he'd ever get

very far, because I don't suppose he could even integrate

e to the X."

"Is such ignorance possible?" gasped someone.

"Maybe I exaggerate. Let's say ;c e to the x. Anyway,
all his knowledge was entirely practical—rule of thumb,

you know. Give him a wiring diagram, however compli-

cated, and he could make the apparatus for you. But un-

less it was something really simple, like a television set, he

wouldn't understand how it worked. The trouble was, he

didn't realise his limitations. And that, as you'll see, was
most unfortunate.

"I think he must have got the idea whUe watching the

Honours Physics students doing some experiments in

acoustics. I take it, of course, that you all understand the

phenomenon of interference?"

"Naturally," I replied.

"Hey!" said one of the chess-players, who had given up
trying to concentrate on the game (probably because he

was losing.) "/ don't."

Purvis looked at him as though seeing something that

had no right to be around in a world that had invented

penicillin.

"In that case," he said coldly, "I suppose I had better

do some explaining." He waved aside our indignant pro-

tests. "No, I insist. It's precisely those who don't under-
stand these things who need to be told about them. If

someone had only explained the theory to poor Fenton
while there was still time. . .

."

He looked down at the now thoroughly abashed chess-

player.

"I do not know," he began, "if you have ever con-
sidered the nature of sound. Suffice to say that it consists

of a series of waves moving through the air. Not, how-
ever, waves like those on the surface of the sea—oh dear



no! Those waves are up and down movements. Sound

waves consist of alternate compressions and rarefactions."

"Rare-what?"

"Rarefactions."

"Don't you mean 'rarefications'?"

"I do not. I doubt if such a word exists, and if it does,

it shouldn't," retorted Purvis, with the aplomb of Sir Alan

Herbert dropping a particularly revolting neologism into

his killing-bottle. "Where was I? Explaining sound, of

course. When we make any sort of noise, from the faintest

whisper to that concussion that went past just now, a

series of pressure changes moves through the air. Have you

ever watched shunting engines at work on a siding? You
see a perfect example of the same kind of thing. There's a

long line of goods-wagons, all coupled together. One end

gets a bang, the first two trucks move together—and then

you can see the compression wave moving right along the

line. Behind it the reverse thing happens—the rarefaction

—I repeat, rarefaction—as the trucks separate again.

"Things are simple enough when there is only one
source of sound—only one set of waves. But suppose you
have two wave-patterns, moving in the same direction?

That's when interference arises, and there are lots of

pretty experiments in elementary physics to demonstrate

it. All we need worry about here is the fact—which I

think you will all agree is perfectly obvious—that if one
could get two sets of waves exactly out of step, the total

result would be precisely zero. The compression pulse of

one sound wave would be on top of the rarefaction of

another—net result—no change and hence no sound. To
go back to my analogy of the line of wagons, it's as if

you gave the last truck a jerk and a push simultaneously.

Nothing at aU would happen.

"Doubtless some of you will already see what I am
driving at, and will appreciate the basic principle of the

Fenton Silencer. Young Fenton, I imagine, argued in this

manner. 'This world of ours,' he said to himself, 'is too

full of noise. There would be a fortune for anyone who
could invent a really perfect silencer. Now, what would

that imply . . .
?'

"It didn't take him long to work out the answer: I told

you he was a bright lad. There was really very Uttle in

his pilot model. It consisted of a microphone, a special

amplifier, and a pair of loudspeakers. Any sound that

happened to be about was picked up by the mike, amph-
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fied and inverted so that it was exactly out ot phase with

the original noise. Then it was pumped out of the speak-

ers, the original wave and the new one cancelled out, and

the net result was silence,

"Of course, there was rather more to it than that. There

had to be an arrangement to make sure that the canceHing

wave was just the right intensity—otherwise you might be

worse oS than when you started. But these are technical

details that I won't bore you with. As many of you will

recognise, it's a simple appUcation of negative feed-back."

"Just a moment!" interrupted Eric Maine. Eric, I

should mention, is an electronics expert and edits some
television paper or other. He's also written a radio play

about space-flight, but that's another story. "Just a mo-
ment! There's something wrong here. You couldn't get

sUence that way. It would be impossible to arrange the

phase . .
."

Purvis jammed the pipe back in his mouth. For a mo-
ment there was an ominous bubbling and I thought of the

first act of "Macbeth". Then he fixed Eric with a glare.

"Are you suggesting," he said frigidly, "that this story

is untrue?"

"Ah—well, I won't go as far as that, but . .
." Eric's

voice trailed away as if he had been silenced himself. He
pulled an old envelope out of his pocket, together with an
assortment of resistors and condensers that seemed to have

got entangled in his handkerchief, and began to do some
figuring. That was the last we heard from him for some
time.

"As I was saying," continued Purvis calmly, "that's the

way Fenton's Silencer worked. His first model wasn't very

powerful, and it couldn't deal with very high or very low
notes. The result was rather odd. When it was switched

on, and someone tried to talk, you'd hear the two ends of

the spectrum—a faint bat's squeak, and a kind of low
rumble. But he soon got over that by using a more Unear

circuit (dammit, I can't help using some technicalities!)

and in the later model he was able to produce complete

silence over quite a large area. Not merely an ordinary

room, but a full-sized hall. Yes. . . .

"Now Fenton was not one of these secretive inventors

who won't tell anyone what they are trying to do, in case

their ideas are stolen. He was all too willing to talk. He
discussed his ideas with the staff and with the students.



whenever he could get anyone to listen. It so happened

that one of the first people to whom he demonstrated his

improved Silencer was a young Arts student called—

I

think—Kendall, who was taking Physics as a subsidiary

subject. Kendall was much impressed by the Silencer, as

well he might be. But he was not thinking, as you may
have imagined, about its commercial possibilities, or the

boon it would bring to the outraged ears of suffering hu-

manity. Oh dear no! He had quite other ideas.

"Please permit me a sUght digression. At College we
have a flourishing Musical Society, which in recent years

has grown in numbers to such an extent that it can now
tackle the less monumental symphonies. In the year of

which I speak, it was embarking on a very ambitious en-

terprise. It was going to produce a new opera, a work by
a talented young composer whose name it would not be

fair to mention, since it is now well-known to you all. Let

us call him Edward England. I've forgotten the title of the

work, but it was one of these stark dramas of tragic love

which, for some reason I've never been able to under-

stand, are supposed to be less ridiculous with a musical

accompaniment than without. No doubt a good deal de-

pends on the music.

"I can still remember reading the synopsis while wait-

ing for the curtain to go up, and to this day have never

been able to decide whether the libretto was meant seri-

ously or not. Let's see—the period was the late Victorian

era, and the main characters were Sarah Stampe, the pas-

sionate postmistress, Walter Partridge, the saturnine game-
keeper, and the squire's son, whose name I forget. It's the

old story of the eternal triangle, compUcated by the vil-

lager's resentment of change—in this case, the new tele-

graph system, which the local crones predict will Do
Things to the cows' milk and cause trouble at lambing

time.

"Ignoring the frills, it's the usual drama of operatic

jealousy. The squire's son doesn't want to marry into the

Post OflBce, and the gamekeeper, maddened by his rejec-

tion, plots revenge. The tragedy rises to its dreadful cli-

max when poor Sarah, strangled with parcel tape, is found

hidden in a mail-bag in the Dead Letter Department. The
villagers hang Partridge from the nearest telegraph pole,

much to the annoyance of the linesmen. He was supposed

to sing an aria while he was being hung: that is one thing
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I regret missing. The squire's son takes to drink, or the

Colonies, or both: and that's that.

"I'm sure you're wondering where all this is leading:

please bear with me for a moment longer. The fact is that

while this synthetic jealousy was being rehearsed, the real

thing was going on back-stage. Fenton's friend Kendall

had been spurned by the young lady who was to play

Sarah Stampe. I don't think he was a particularly vindic-

tive person, but he saw an opportunity for a unique re-

venge. Let us be frank and admit that college life does

breed a certain irresponsibility—and in identical circum-

stances, how many of us would have rejected the same
chance?

"I see the dawning comprehension on your faces. But
we, the audience, had no suspicion when the o.'erture

started on that memorable day. It was a most distinguished

gathering: everyone was there, from the Chancellor down-

wards. Deans and professors were two a penny: I never

did discover how so many people had been bullied into

coming. Now that I come to think of it, I can't remember
what I was doing there myself.

"The overture died away amid cheers, and, I must ad-

mit, occasional cat-calls from the more boisterous mem-
bers of the audience. Perhaps I do them an injustice: they

may have been the more musical ones.

"Then the curtain went up. The scene was the village

square at Doddering Sloughleigh, circa 1860. Enter the

heroine, reading the postcards in the morning's mail. She
comes across a letter addressed to the young squire and
promptly bursts into song.

"Sarah's opening aria wasn't quite as bad as the over-

ture, but it was grim enough. Luckily, we were to hear

only the first few bars. . . .

"Precisely. We need not worry about such details as

how Kendall had talked the ingenuous Fenton into it

—

if, indeed, the inventor realised the use to which his device

was being applied. All I need say is that it was a most
convincing demonstration. There was a sudden, deaden-
ing blanket of silence, and Sarah Stampe just faded out

like a TV programme when the sound is turned off. Every-
one was frozen in their seats, while the singer's lips went
on moving silently. Then she too realised what had hap-
pened. Her mouth opened in what would have been a

piercing scream in any other circumstances, and she fled

into the wings amid a shower of postcards.



"Thereafter, the chaos was unbehevable. For a few min-

utes everyone must have thought they had lost the sense

of hearing, but soon they were able to tell from the be-

haviour of their companions that they were not alone in

their deprivation. Someone in the Physics Department

must have realised the truth fairly promptly, for soon

little shps of paper were circulating among the V.LP.'s in

the front row. The Vice-Chancellor was rash enough to

try and restore order by sign-language, waving frantically

to the audience from the stage. By this time I was too sick

with laughter to appreciate such fine details.

"There was nothing for it but to get out of the hall,

which we all did as quickly as we could. I think Kendall

had fled—he was so overcome by the effect of the gadget

that he didn't stop to switch it off. He was afraid of stay-

ing around in case he was caught and lynched. As for

Fenton—alas, we shall never know his side of the story.

We can only reconstruct the subsequent events from the

evidence that was left.

"As I picture it, he must have waited until the hall was
empty, and then crept in to disconnect his apparatus. We
heard the explosion all over the college."

"The explosion?" someone gasped.

"Of course. I shudder to think what a narrow escape

we all had. Another dozen decibels, a few more phons

—

and it might have happened while the theatre was still

packed. Regard it, if you Uke, as an example of the in-

scrutable workings of providence that only the inventor

was caught in the explosion. Perhaps it was as well: at

least he perished in the moment of achievement, and be-

fore the Dean could get at him."

"Stop moralising, man. What happened?"
"Well, I told you that Fenton was very weak on theory.

If he'd gone into the mathematics of the Silencer he'd

have found his mistake. The trouble is, you see, that one
can't destroy energy. Not even when you cancel out one
train of waves by another. All that happens then is that

the energy you've neutralized accumulates somewhere else.

It's rather like sweeping up all the dirt in a room—at the

cost of an unsightly pile under the carpet.

"When you look into the theory of the thing, you'll find

that Fenton's gadget wasn't a silencer so much as a col-

lector of sound. All the time it was switched on, it was
really absorbing sound energy. And at that concert, it was
certainly going flat out. You'll understand what I mean if
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Silence, Please

you've ever looked at one of Edward England's scores. On
top of that, of course, there was all the noise the audi-

ence was making—or I should say was trying to make

—

during the resultant panic. The total amount of energy

must have been terrific, and the poor Silencer had to keep

on sucking it up. Where did it go? Well, I don't know the

circuit details—probably into the condensers of the power
pack. By the tune Fenton started to tinker with it again,

it was like a loaded bomb. The sound of his approaching

footsteps was the last straw, and the overloaded apparatus

could stand no more. It blew up."

For a moment no-one said a word, perhaps as a token

of respect for the late Mr. Fenton. Then Eric Maine, who
for the last ten minutes had been muttering in the comer
over his calculations, pushed his way through the ring of

listeners. He held a sheet of paper thrust aggressively in

front of him.

"Hey!" he said. "I was right all the time. The thing

couldn't work. The phase and amplitude relations. . .
."

Purvis waved him away.

"That's just what I've explained," he said patiently.

"You should have been listening. Too bad that Fenton
found out the hard way."

He glanced at his watch. For some reason, he now
seemed in a hurry to leave.

"My goodness! Time's getting on. One of these days,

remind me to tell you about the extraordinary thing we
saw through the new proton microscope. That's an even
more remarkable story."

He was half way through the door before anyone else

could challenge him. Then George Whitley recovered his

breath.

"Look here," he said in a perplexed voice. "How is it

that we never heard about this business?"

Purvis paused on the threshold, his pipe now burbling

briskly as it got into its stride once more. He glanced back
over his shoulder.

"There was only one thing to do," he replied. "We
didn't want a scandal

—

de mortuis nil nisi bonum, you
know. Besides, in the circumstances, don't you think it

was highly appropriate to—ah

—

hush the whole business

up? And a very good night to you all."



The invention of the steam engine was a major factor

In the early stages of the Industrial Revolution.

The Steam Engine Comes of Age

R. J. Forbes and E. J. Dijksterhuis

A chapter from their book A History of Science and Technology, 1963.

The steam engine, coke, iron, and steel are the four principal

factors contributing to the acceleration of technology called the

Industrial Revolution, which some claim to have begun about

1750 but which did not really gain momentum until about 1830.

It started in Great Britain but the movement gradually spread to

the Continent and to North America during the nineteenth

century.

SCIENCE INSPIRES THE ENGINEER

During the Age of Projects the engineer had little help from the

scientists, who were building the mathematical-mechanical

picture of the Newtonian world and discussing the laws of nature.

However, during the eighteenth century, the Age of Reason,

when the principles of this new science had been formulated, the

scientists turned to the study of problems of detail many of which

were of direct help to the engineer. The latter was perhaps less

interested in the new ideals of 'progress' and 'citizenship of the

world' than in the new theory of heat, in applied mechanics and
the strength of materials, or in new mathematical tools for their

calculations. The older universities like Oxford and Cambridge
contributed little to this collaboration. The pace was set by the

younger ones such as the universities of Edinburgh and Glasgow,

which produced such men as Hume, Roebuck, Kerr, and Black,

who stimulated the new technology. The Royal Society, and also

new centres like the Lunar Society and the Manchester Philo-

sophical Society and the many similar societies on the Continent,

contributed much to this new technology by studying and dis-

cussing the latest scientific theories and the arts. Here noblemen,

bankers, and merchants met to hear the scientist, the inventor,

and the engineer and to help to realize many of the projects

which the latter put forward. They devoted much money to

scientific investigations, to demonstrations and stimulated in-

ventions by offering prizes for practical solutions of burning

problems. They had the capital to promote the 'progress' which

made Dr Johnson cry out: 'This age is running mad after innova-

tion. All business of the world is to be done in a new way, men
are to be hanged in a new way; Tyburn itself is not safe from the

fury of innovation!' New institutions such as the Conservatoire

des Arts et Metiers and the Royal Institution of Great Britain
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were founded to spread the new science and technology by

lectures and demonstrations and the number of laymen attending

these lectures was overwhelming.

ENGINEERS AND SKILLED LABOUR

The new professional engineers which the ficole des Fonts et

Chaussees began to turn out were the descendants of the sappers

and military engineers. However, the new technology also needed

other types of engineers for which new schools such as the ficole

Polytechnique and the ficole des Mines were founded. In Great

Britain the State was less concerned with the education of the

new master craftsmen. They were trained in practice: such

famous workshops as that of Boulton and Watt in Soho, Birm-

ingham, or those of Dobson and Barlow, Asa Lees, and Richard

Roberts. Their success depended not only on good instruction

but also on appropriate instruments and skilled labour.

The scientists of the eighteenth century had turned out many
new instruments which were of great value to the engineer. They

were no longer made individually by the research scientist, but

by professional instrument makers in Cassel, Nuremberg, or

London, and such university towns as Leiden, Paris, and Edin-

burgh. Their instruments became more efficient and precise as

better materials became available such as good glass for lenses

and more accurate methods for working metals.

Skilled labour was more difficult to create. The older genera-

tion of Boulton and Watt had to work with craftsmen such as

smiths and carpenters, they had to re-educate them and create

a new type of craftsmen, 'skilled labour'. The design of early

machinery often reveals that it was built by the older type of

craftsmen that belonged to the last days of the guild system. The
new industrialists tried out several systems of apprenticeship

in their machine shops during the eighteenth century until they

finally solved this educational problem during the next century

and created schools and courses for workmen for the new indus-

tries, qualified to design and to make well-specified engines and

machine parts.

A factor that contributed greatly to this development was the

rise of the science of applied mechanics and the methods of

testing materials. The theories and laws which such men as

Palladio, Derand, Hooke, Bernoulli, Euler, Coulomb, and
Perronet formulated may have been imperfect but they showed

13



the way to estimate the strength of materials so important in

the construction of machinery, 's Gravesande and Van Muss-

chenbroek were the first to design and demonstrate various

machines for measuring tensile, breaking, and bending strengths

of various materials early in the eighteenth century. Such instru-

ments were gradually improved by Gauthey, Rondelet, and

others. The elastic behaviou'" of beams, the strength of arches,

and many other problems depended on such tests. Some scien-

tists developed tests for certain types of materials, for instance

for timber (Buffon), stone (Gauthey), or metals (Reaumur).

Such knowledge was of prime importance to the development

of the steam engine and other machinery which came from the

machine shops.

MACHINE SHOPS

The engineers who led this Industrial Revolution had to create

both the tools and the new workmen. Watt, himself a trained

instrument maker, had to invent several new tools and machines

and to train his workmen in foundries and machine shops. Hence

his notebooks are full of new ideas and machines. He invented

the copying press. His ingenious contemporaries Maudsley and

Bramah were equally productive. Joseph Bramah was respon-

sible for our modern water closet (1778) and the first successful

patent lock (1784) which no one succeeded in opening with a

skeleton key before Hobbs (1851), who spent fifty-one hours of

labour on it.

The difficulty in finding suitable labour arose from the fact that

the new machines were no longer single pieces created by one

smith, but that series of such machines were built from standard

parts which demanded much greater precision in manufacturing

such parts. The steam engine parts had to be finished accurately

to prevent the steam escaping between metal surfaces which slid

over each other, especially as steam pressures were gradually

increased to make these machines more efficient. Hence the

importance of the new tools and finishing processes, such as the

lathe and drilling, cutting and finishing machinery.

In 1797 Henry Maudsley invented the screw-cutting lathe.

Lathes originally belonged to the carpenter's shop. Even before

the eighteenth century they had been used to turn soft metals

such as tin and lead. These lathes were now moved by means
of treadles instead of a bow, though Leonardo da Vinci had
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already designed lathes with interchangeable sets of gear wheels

to regulate the speed of the lathe. Maudsley applied similar ideas

and introduced the slide rest. Brunei, Roberts, Fox, Witworth,

and others perfected the modem lathe, which permitted moving

the object horizontally and vertically, adjustment by screws, and

automatic switching off when the operation was completed. The
older machine lathes were first moved by hand, then by a steam

engine, and finally by electric motors. Now the mass production

of screws, bolts, nuts, and other standard parts became possible

and machines were no longer separate pieces of work. They were

assembled from mass-produced parts.

The tools of the machine shop were greatly improved during

the nineteenth century, pulleys, axles, and handles being per-

fected. The new turret or capstan lathe had a round or hexagonal

block rotating about its axis and holding in a hole in each side

the cutting or planing tool needed. These tools could then at will

be brought into contact with the metal to be finished, thus per-

forming the work of six separate lathes in a much shorter time.

The turret block was made to turn automatically (1857) and
finally Hartness invented the flat turret lathe, replacing the block

by a horizontal face plate which gave the lathe greater flexi-

bility and allowed work at higher speeds. Such lathes ranged

from the small types used by the watchmaker to those for pro-

cessing large guns. This development was completed by the

introduction of high-speed tool steels by Taylor and White about

the beginning of our century, making the machine lathe a uni-

versal tool for the mass production of machine parts.

FACTORIES AND INDUSTRIAL REVOLUTION

This brought about a great change in the manufacturing process

itself. No longer were most commodities now made in the private

shops of craftsmen, but in larger workshops in which a water

wheel or a steam engine moved an axle from which smaller

machinery derived its power by means of gear wheels or belts,

each machine only partly processing the metal or material. Hence

the manufacturing process was split up into a series of opera-

tions, each of which was performed by a special piece of machin-

ery instead of being worked by hand by one craftsman who
mastered all the operations.

The modem factory arose only slowly. Even in 1 800 the word

'factory' still denoted a shop, a warehouse, or a depot; the

eighteenth century always spoke of 'mills' in many of which
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the prime mover still was a horse mill or tread mill. The textile

factory law of 1844 was the first to speak of 'factories'.

It is obvious that the new factories demanded a large outlay

of capital. The incessant local wars had impoverished central

Europe and Italy and industry did not flourish there, so many
German inventors left their country to seek their fortune in

western Europe. State control of the 'manufactures' in France

had not been a success. The French government had not created

a new class of skilled labour along with the new engineers, and

Napoleon's 'self-supporting French industry' was doomed to

be a failure when overseas trade was re-established after his fall.

Neither the Low Countries nor Scandinavia had the necessary

capital and raw materials needed for the Industrial Revolution.

Only in eighteenth-century England did such a fortunate com-

bination of factors exist, a flourishing overseas trade, a well-

developed banking system, raw materials in the form of coal and

iron ores, free trade and an industry-minded middle class willing

to undertake the risks of introducing new machinery and recruit-

ing the new skilled labour from the ranks of the farmers and

immigrants from Ireland and Scotland.

Hence we find the first signs of the Industrial Revolution in

Great Britain rather than in France, which, however, soon fol-

lowed suit. Competition from Germany did not start until the

middle of the nineteenth century, and from the United States

not until the beginning of our century.

THE BEAM ENGINES

The prime mover of this new industry was the steam engine. The

primitive machine that pumped water was transformed into a

prime mover by the eff"orts of Newcomen and Watt. Thomas
Newcomen (1663-1729) and John Calley built a machine in

which steam of 100" C moved a piston in its cylinder by con-

densation (1 705). This piston was connected with the end ofa beam,

the other end of which was attached to the rod of the pump or

any other machine. Most of these engines were used to drain

mines. John Smeaton (1724-92) studied the Newcomen engine

and perfected it by measurement and calculation, changing its

boiler and valves and turning it into the most popular steam

engine up to 1800.

James Watt (1736-1819), trained as an instrument maker,

heard the lectures of John Robison and Joseph Black at Edin-

burgh, where the new theory of heat was expounded and methods
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were discussed to measure the degree and the amount of heat, as

well as the phenomena of evaporation and condensation. He
perceived that a large amount of heat was wasted in the cylinder

of the Newcomen engine, heating it by injection of steam and

cooling it by injecting cold water to condense the steam. Hence

he designed an engine in which the condensatsion took place in a

separate condenser, which was connected with the cylinder by

opening a valve at the correct moment, when the steam had

forced the piston up (1763).

Watt tried to have his engine built at John Roebuck's Carron

Iron Works in Scotland but did not find the skilled workmen
there to make the parts. So he moved southwards and started

work at the works of Matthew Boulton, who built Roebuck's

share in Watt's patents (1774). At the nearby Bradley foundry of

John Wilkinson, cylinders could be bored accurately and thus

Watt produced his first large-scale engine in 1781. The power

output of the Watt engine proved to be four times that of a

Newcomen engine. It was soon used extensively to pump water

in brine works, breweries, and distilleries. Boulton and Murdock
helped to advertise and apply Watt's engines.

THE DOUBLE-ACTING ROTATIVE ENGINE

However, Watt was not yet satisfied with these results. His

Patent of 1781 turned the steam engine into a universally

efficient prime mover. The rod on the other arm of the beam
was made to turn the up-and-down movement of the beam into a

rotative one, by means of the 'sun and planet movement' of a

set of gear wheels connecting the rod attached to the end of the

beam with the axle on which the driving wheels and belts were

fixedwhich moved themachines deriving theirenergy from this axle.

A further patent of 1782 made his earlier engine into a double-

acting one, that is a steam engine in which steam was admitted

alternately on each side of the piston. This succeeded only when
Boulton and Watt had mastered the difficult task of casting and

finishing larger and more accurate cylinders. Watt also had to

improve the connexion of the beam and the piston rod by means

of his extended three-bar system (1784) which he called the ' paral-

lel movement'. He was also able to introduce a regulator which

cut off the steam supply to the cylinder at the right moment and

leaving the rest of the stroke to the expansion of the steam made
better use of its energy.
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In 1788 he designed his centrifugal governor which regulated

the steam supply according to the load keeping constant the

number of strokes of the piston per minute. Six years later he

added the steam gauge or indicator to his engine, a miniature

cylinder and piston, connected with the main cylinder. The small

piston of this indicator was attached to a pen which could be

made to indicate on a piece of paper the movements of the Uttle

piston and thus provide a control on the movements of the steam

engine proper. William Murdock (1754-1839), by inventing the

sliding valves and the means of preparing a paste to seal off the

seams between the cast iron surface of the machine parts, con-

tributed much to the success of these engines as proper packing

was not yet available.

By 1 800 some 500 Boulton and Watt engines were in operation,

160 of which pumped water back on to water wheels moving

machinery. The others were mostly rotative engines moving

other machinery and twenty-four produced blast air for iron

furnaces, their average strength being 15-16 h.p.

THE MODERN HIGH-PRESSURE STEAM ENGINE

The period 1800-50 saw the evolution of the steam engine to

the front rank of prime movers. This was achieved by building

steam engines which could be moved by high-pressure steam of

high temperature containing much more energy per pound than

the steam of 100° C which moved the earlier Watt engines. This

was only possible by perfecting the manufacture of the parts of

the steam engine, by better designing, and by the more accurate

finishing and fit of such parts.

Jabez Carter Hornblower built the first 'compound

engine', in which the steam released from the first cylinder was

left to expand further in a second one. These compound engines

did away with the Watt condenser, but could not yet compete

seriously until high pressure steam was applied. Richard Tre-

vithick and Oliver Evans were the pioneers of the high-pressure

engine, which meant more horse power per unit of weight of the

steam engine. This again meant lighter engines and the possi-

bility of using them for road and water traffic.

Nor were properly designed steam engines possible until the

theory of heat had been further elaborated and the science of

thermodynamics formulated, the theory of gases studied, and

more evidence produced for the strength of metals and materials

at high temperatures. Another important problem was the con-
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struction of boilers to produce the high-prc^surc steam. The

ancient beehive-shaped boilers of Watt's generation could not

withstand such pressures. Trevithick created the Cornish boiler

(1812), a horizontal cylinder heated by an inner tube carrying the

combustion gases through the boiler into the flue and adding to

the fuel efficiency of the boilers. The Lancashire boiler, designed

by William Fairbairn (1844), had two tubes and became a serious

competitor of the Cornish boiler. Better grates for burning the

coal fuel were designed such as the 'travelling grate stoker' of

John Bodmer (1841), and more fuel was economized by heating

the cold feed water of the boiler with flue gases in Green's

economizer (1845). Then multitubular boilers were built in the

course of the nineteenth century, most of which were vertical

boilers, the best known of which was the Babcock and Wilcox

tubular boiler (1876).

Further factors helping to improve the design of high-pressure

steam engines were the invention of the direct-action steam pump
by Henry Worthington (1841), the steam hoist (1830), and James

Nasmyth's steam hammer (1839). In the meantime Cartwright

(1797) and Barton (1797) had f>erfected metallic packing which

ensure tight joints and prevented serious leakage.

Thus steam pressures rose from 3-5 atm in 1810 to about

5 or 6 atm in 1830, but these early high-pressure engines were

still of the beam type. Then came the much more efficient

rotation engines in which the piston rod was connected with the

driving wheel by means of a crank. Though even the early

American Corliss engine (1849) still clung to the beam design,

John M'Naught (1845) and E. Cowper (1857) introduced modern
rotative forms, which came to stay. Three-cylinder engines of this

type were introduced by Brotherhood (1871) and Kirk (1874)

and became very popular prime movers for steamships (1881).

Not until 1850 was the average output of the steam engines

some 40 h.p., that is significantly more than the 15 h.p. windmill

or water-wheel of the period. Again the steam engine was not

bound to sites where water or wind were constantly available,

it was a mobile prime mover which could be installed where

needed, for instance in iron works situated near coal fields and

iron ores. In 1700 Great Britain consumed some 3,000,000 tons

of coal, mostly to heat its inhabitants. This amount had doubled

by 1800 because of the introduction of the steam engine, and

by 1850 it has risen to 60,0(X),000 tons owing to the steam engine

and the use of coke in metallurgy. .

.
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A survey of the most fundamental principles that underlie all

of physics—and what they have in common.

3 The Great Conservation Principles

Richard Feynman

An excerpt from his book The Character of Physical Law, 1965.

When learning about the laws of physics you find that there

are a large number of comphcated and detailed laws, laws

of gravitation, of electricity and magnetism, nuclear inter-

actions, and so on, but across the variety of these detailed

laws there sweep great general principles which all the laws

seem to follow. Examples of these are the principles of con-

servation, certain quaUties of symmetry, the general form

of quantum mechanical principles, and unhappily, or

happily, as we considered last time, the fact that all the laws

are mathematical. In this lecture I want to talk about the

conservation principles.

The physicist uses ordinary words in a peculiar manner.

To him a conservation law means that there is a number
which you can calculate at one moment, then as nature

undergoes its multitude of changes, if you calculate this

quantity again at a later time it will be the same as it was
before, the number does not change. An example is the

conservation of energy. There is a quantity that you can

calculate according to a certain rule, and it comes out the

same answer always, no matter what happens.

Now you can see that such a thing is possibly useful.

Suppose that physics, or rather nature, is considered analo-

gous to a great chess game with miUions of pieces in it,

and we are trying to discover the laws by which the pieces

move. The great gods who play this chess play it very

rapidly, and it is hard to watch and difficult to see. However,

we are catching on to some of the rules, and there are some
rules which we can work out which do not require that we
watch every move. For instance, suppose there is one

bishop only, a red bishop, on the board, then since the

20



The Great Conservation Principles

bishop moves diagonally and therefore never changes the

colour of its square, if we look away for a moment while

the gods play and then look back again, we can expect that

there will be still a red bishop on the board, maybe in a

different place, but on the same colour square. This is in

the nature of a conservation law. We do not need to watch
the insides to know at least something about the game.

It is true that in chess this particular law is not necessarily

perfectly vahd. If we looked away long enough it could

happen that the bishop was captured, a pawn went down to

queen, and the god decided that it was better to hold a

bishop instead of a queen in the place of that pawn, which

happened to be on a black square. Unfortunately it may
well turn out that some of the laws which we see today may
not be exactly perfect, but I will tell you about them as we
see them at present.

I have said that we use ordinary words in a technical

fashion, and another word in the title of this lecture is

'great', The Great Conservation Principles'. This is not a

technical word : it was merely put in to make the title sound
more dramatic, and I could just as well have called it 'The

Conservation Laws'. There are a few conservation laws that

do not work; they are only approximately right, but are

sometimes useful, and we might call those the 'little' con-

servation laws. I will mention later one or two of those that

do not work, but the principal ones that I am going to

discuss are, as far as we can tell today, absolutely accurate.

I will start with the easiest one to understand, and that

is the conservation of electric charge. There is a number, the

total electric charge in the world, which, no matter what
happens, does not change. If you lose it in one place you
wiU find it in another. The conservation is of the total of all

electric charge. This was discovered experimentally by
Faraday.* The experiment consisted of getting inside a

great globe of metal, on the outside of which was a very

deUcate galvanometer, to look for the charge on the globe,

Michael Faraday, 1791-1867, English physicist.
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because a small amount of charge would make a big effect.

Inside the globe Faraday built all kinds of weird electrical

equipment. He made charges by rubbing glass rods with

cat's fur, and he made big electrostatic machines so that the

inside of this globe looked like those horror movie labora-

tories. But during all these experiments no charge developed

on the surface ; there was no net charge made. Although the

glass rod may have been positive after it was charged up by
rubbing on the cat's fur, then the fur would be the same
amount negative, and the total charge was always nothing,

because if there were any charge developed on the inside

of the globe it would have appeared as an effect in the gal-

vanometer on the outside. So the total charge is conserved.

This is easy to understand, because a very simple model,

which is not mathematical at all, will explain it. Suppose the

world is made of only two kinds of particles, electrons and
protons - there was a time when it looked as if it was going

to be as easy as that - and suppose that the electrons carry

a negative charge and the protons a positive charge, so that

we can separate them. We can take a piece of matter and
put on more electrons, or take some off; but supposing that

electrons are permanent and never disintegrate or dis-

appear - that is a simple proposition, not even mathe-

matical - then the total number of protons, less the total

number of electrons, will not change. In fact in this particu-

lar model the total number of protons will not change, nor

the number of electrons. But we are concentrating now on
the charge. The contribution of the protons is positive and
that of the electrons negative, and if these objects are never

created or destroyed alone then the total charge will be

conserved. I want to list as I go on the number of properties

that conserve quantities, and I will start with charge

(fig. 14). Against the question whether charge is conserved

I write 'yes'.

This theoretical interpretation is very simple, but it was
later discovered that electrons and protons are not perma-

nent; for example, a particle called the neutron can disinte-

grate into a proton and an electron - plus something else
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(locally)

Yes Y«

N£a«'ly

^ayrcL it a.

fiel2 Yei 7 • /ei

NB This is the completed table which Professor Feynman
added to throughout his lecture.

Figure 14

which we will come to. But the neutron, it turns out, is

electrically neutral. So although protons are not perma-

nent, nor are electrons permanent, in the sense that they can

be created from a neutron, the charge still checks out; start-

ing before, we had zero charge, and afterwards we had plus

one and minus one which when added together become

zero charge.

An example of a similar fact is that there exists another

particle, besides the proton, which is positively charged. It

is called a positron, which is a kind of image of an electron.

It is just hke the electron in most respects, except that it has

the opposite sign of charge, and, more important, it is

called an anti-particle because when it meets with an elec-

tron the two of them can annihilate each other and

disintegrate, and nothing but hght comes out. So electrons

are not permanent even by themselves. An electron plus a

positron will just make light. Actually the 'hght' is invisible

to the eye; it is gamma rays; but this is the same thing for

a physicist, only the wavelength is different. So a particle

and its anti-particle can annihilate. The light has no electric
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charge, but we remove one positive and one negative charge,

so we have not changed the total charge. The theory of

conservation of charge is therefore shghtly more comphca-

ted but still very unmathematical. You simply add together

the number of positrons you have and the number of

protons, take away the number of electrons - there are

additional particles you have to check, for example anti-

protons which contribute negatively, pi-plus mesons which

are positive, in fact each fundamental particle in nature has

a charge (possibly zero). All we have to do is add up the

total number, and whatever happens in any reaction the

total amount of charge on one side has to balance with

the amount on the other side.

That is one aspect of the conservation of charge. Now
comes an interesting question. Is it sufficient to say only

that charge is conserved, or do we have to say more? If

charge were conserved because it was a real particle which

moved around it would have a very special property. The total

amount of charge in a box might stay the same in two ways.

It may be that the charge moves from one place to another

within the box. But another possibility is that the charge in

one place disappears, and simultaneously charge arises in

another place, instantaneously related, and in such a

manner that the total charge is never changing. This second

possibility for the conservation is of a different kind from

the first, in which if a charge disappears in one place and
turns up in another something has to travel through the

space in between. The second form of charge conservation

is called local charge conservation, and is far more detailed

than the simple remark that the total charge does not

change. So you see we are improving our law, if it is true

that charge is locally conserved. In fact it is true. I have

tried to show you from time to time some of the possibiUties

of reasoning, of interconnecting one idea with another, and

I would now like to describe to you an argument, funda-

mentally due to Einstein, which indicates that if anything

is conserved - and in this case I apply it to charge - it must
be conserved locally. This argument relies on one thing,
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that if two fellows are passing each other in space ships,

the question of which guy is doing the moving and whicli

one standing still cannot be resolved by any experiment.

That is called the principle of relativity, that uniform motion

in a straight hne is relative, and that we can look at any

phenomenon from either point of view and cannot say

which one is standing still and which one is moving.

Suppose I have two space ships, A and B (fig. 15). I am

PosifcioM?. at time
of ei/£vtts

js/'*^

>

^ /IN,
r X

r^/^--^
Positions at t\ft\t

When 6>sees eoents.

Figure 15

going to take the point of view that A is the one that is

moving past B. Remember that is just an opinion, you can

also look it at the other way and you will get the same

phenomena of nature. Now suppose that the man who is

standing still wants to argue whether or not he has seen a

charge at one end of his ship disappear and a charge at the

other end appear at the same time. In order to make sure it

is the same time he cannot sit in the front of the ship, be-

cause he will see one before he sees the other because of the

travel time of light; so let us suppose that he is very careful

and sits dead centre in the middle of the ship. We have

another man doing the same kind of observation in the

other ship. Now a lightning bolt strikes, and charge is

created at point x, and at the same instant at point y at the
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other end of the ship the charge is annihilated, it disappears.

At the same instant, note, and perfectly consistent with our

idea that charge is conserved. If we lose one electron in one

place we get another elsewhere, but nothing passes in

between. Let us suppose that when the charge disappears

there is a flash, and when it is created there is a flash, so

that we can see what happens. B says they both happen at

the same time, since he knows he is in the middle of the

ship and the light from the bolt which creates x reaches him
at the same time as the light from the flash of disappearance

at y. Then B will say, 'Yes, when one disappeared the other

was created'. But what happens to our friend in the other

ship? He says, 'No, you are wrong my friend. I saw x

created before y'. This is because he is moving towards x,

so the light from x will have a shorter distance to travel

than the hght from y, since he is moving away from y. He
could say, 'No, x was created first and then y disappeared,

so for a short time after x was created and before y dis-

appeared I got some charge. That is not the conservation

of charge. It is against the law'. But the first fellow says,

'Yes, but you are moving'. Then he says, 'How do you know ?

I think you arc moving', and so on. If we are unable, by

any experiment, to see a diflerence in the physical lav/s

whether we are moving or not, then if the conservation of

charge were not local only a certain kind of man would see

it work right, namely the guy who is standing still, in an

absolute sense. But such a thing is impossible according to

Einstein's relativity principle, and therefore it is impossible

to have non-local conservation of charge. The locality of the

conservation of charge is consonant with the theory of

relativity, and it turns out that this is true of all the conser-

vation laws. You can appreciate that if anything is conserved

the same principle applies.

There is another interesting thing about charge, a very

strange thing for which we have no real explanation today.

It has nothing to do with the conservation law and is inde-

pendent of it. Charge always comes in units. When we have

a charged particle it has one charge or two charges, or minus
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one or minus two. Returning to our table, although this has

nothing to do with the consen'ation of charge, I must write

down that the thing that is conserved comes in units. It is

very nice that it comes in units, because that makes the

theory of conservation of charge very easy to understand.

It is just a thing we can count, which goes from place to

place. Finally it turns out technically that the total charge

of a thing is easy to determine electrically because the charge

has a ver>' important characteristic; it is the source of the

electric and magnetic field. Charge is a measure of the inter-

action of an object with electricity, with an electric field. So

another item which we should add to the hst is that charge

is the source of a field; in other words, electricit}' is related

to charge. Thus the particular quantity which is conserved

here has two other aspects which are not connected with

the conservation directly, but aie interesting anyway. One
is that it comes in units, and the other that it is the source

of a field.

There are many conservation laws, and I will give some
more examples of laws of the same type as the conseivation

of charge, in the sense that it is merely a matter of counting.

There is a conser\'ation law called the conservation of

bar>ons. A neutron can go into a proton. If we count each

of these as one unit, or bar\'on, then we do not lose the

number of bar)'ons. The neutron carries one bar>'onic

charge unit, or repiesents one bar>on, a proton represents

one bar>'on - all we are doing is counting and making big

words! - so if the reaction I am speaking of occurs, in

which a neutron decays into a proton, an electron and an

anti-neutrino, the total number of barvons does not change.

However there are other reactions in nature. A pr6ton plus

a proton can produce a great variet}' of strange objects, for

example a lambda, a proton and a K plus. Lambda and K
plus are names for pecuhar particles.
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In this reaction we know we put two baryons in, but we see

only one come out, so possibly either lambda or K"*" has a

baryon. If we study the lambda later we discover that very

slowly it disintegrates into a proton and a pi, and ultimately

the pi disintegrates into electrons and what-not.

(iltiyi) ^-> PH-TT

What we have here is the baryon coming out again in the

proton, so we think the lambda has a baryon number of 1

,

but the K+ does not, the K+ has zero.

On our chart of conservation laws (fig. 14), then, we have

charge and now we have a similar situation with baryons,

with a special rule that the baryon number is the number of

protons, plus the number of neutrons, plus the number of

lambdas, minus the number of anti-protons, minus the

number of anti-neutrons, and so on; it is just a counting

proposition. It is conserved, it comes in units, and nobody
knows but everybody wants to think, by analogy, that it is

the source of a field. The reason we make these tables is that

we are trying to guess at the laws of nuclear interaction, and
this is one of the quick ways of guessing at nature. If charge

is the source of a field, and baryon does the same things in

other respects it ought to be the source of a field too. Too
bad that so far it does not seem to be, it is possible, but we
do not know enough to be sure.

There are one or two more of these counting propositions,

for example Lepton numbers, and so on, but the idea is the

same as with baryons. There is one, however, which is

slightly different. There are in nature among these strange

particles characteristic rates of reaction, some of which are

very fast and easy, and others which are very slow and hard.

I do not mean easy and hard in a technical sense, in actually

doing the experiment. It concerns the rates at which the

reactions occur when the particles are present. There is a

clear distinction between the two kinds of reaction which I

have mentioned above, the decay of a pair of protons, and
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the much slower decay of the lambda. It turns out that if

you take only the fast and easy reactions there is one more
counting law, in which the lambda gets a minus 1, and the

K plus gets a plus 1, and the proton gets zero. This is called

the strangeness number, or hyperon charge, and it appears

that the rule that it is conserved is right for every easy re-

action, but wrong for the slow reactions. On our chart (fig.

14) we must therefore add the conservation law called the

conservation of strangeness, or the conservation of hyperon

number, which is nearly right. This is very pecuhar; we
see why this quantity has been called strangeness. It is

nearly true that it is conserved, and true that it comes

in units. In trying to understand the strong interactions

which are involved in nuclear forces, the fact that in strong

interactions the thing is conserved has made people propose

that for strong interactions it is also the source of a field, but

again we do not know. I bring these matters up to show you

how conservation laws can be used to guess new laws.

There are other conservation laws that have been pro-

posed from time to time, of the same nature as counting.

For example, chemists once thought that no matter what

happened the number of sodium atoms stayed the same. But

sodium atoms are not permanent. It is possible to transmute

atoms from one element to another so that the original

element has completely disappeared. Another law which was

for a while believed to be true was that the total mass of an

object stays the same. This depends on how you define mass,

and whether you get mixed up with energy. The mass con-

servation law is contained in the next one which I am going

to discuss, the law of conservation of energy. Of all the

conservation laws, that dealing with energy is the most

difficult and abstract, and yet the most useful. It is more
difiicult to understand than those I have described so far,

because in the case of charge, and the others, the mechanism

is clear, it is more or less the conservation of objects. This

is not absolutely the case, because of the problem that we
get new things from old things, but it is really a matter of

simply counting.
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The conservation of energy is a little more difficult, be-

cause this time we have a number which is not changed in

time, but this number does not represent any particular

thing. I would like to make a kind of silly analogy to ex-

plain a little about it.

I want you to imagine that a mother has a child whom she

leaves alone in a room with 28 absolutely indestructible

blocks. The child plays with the blocks all day, and when
the mother comes back she discovers that there are indeed

28 blocks; she checks all the time the conservation of blocks!

This goes on for a few days, and then one day when she

comes in there are only 27 blocks. However, she finds one

block lying outside the window, the child had thrown it

out. The first thing you must appreciate about conservation

laws is that you must watch that the stuff you are trying to

check does not go out through the wall. The same thing

could happen the other way, if a boy came in to play with

the child, bringing some blocks with him. Obviously these

are matters you have to consider when you talk about con-

servation laws. Suppose one day when the mother comes to

count the blocks she finds that there are only 25 blocks, but

suspects that the child has hidden the other three blocks in

a little toy box. So she says, T am going to open the box'.

'No,' he says, 'you cannot open the box.' Being a very

clever mother she would say, 'I know that when the box is

empty it weighs 16 ounces, and each block weighs 3

ounces, so what I am going to do is to weigh the box'. So,

totalling up the number of blocks, she would get -

N«.0( W«W fc«„ + W«liiKt<»t,t:^-l6...

and that adds up to 28. This works all right for a while, and
then one day the sum does not check up properly. However,
she notices that the dirty water in the sink is changing its

level. She knows that the water is 6 inches deep when there

is no block in it, and that it would rise i inch if a block was
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in the water, so she adds another term, and now she has -

No. (i We<k5 seen + —5— + 1—

_

^ 3«*. -fclM.

and once again it adds up to 28. As the boy becomes more

ingenious, and the mother continues to be equally ingenious,

more and more terms must be added, all of which represent

blocks, but from the mathematical standpoint are abstract

calculations, because the blocks are not seen.

Now I would hke to draw my analogy, and tell you what

is common between this and the conservation of energy, and

what is different. First suppose that in all of the situations

you never saw any blocks. The term 'No. of blocks seen' is

never included. Then the mother would always be calculating

a whole lot of terms Hke 'blocks in the box', 'blocks in the

water', and so on. With energy there is this difference, that

there are no blocks, so far as we can tell. Also, unlike the

case of the blocks, for energy the numbers that come out

are not integers. I suppose it might happen to the poor

mother that when she calculates one term it comes out

6 ^ blocks, and when she calculates another it comes out

i^ of a block, and the others give 21, which still totals 28.

That is how it looks with energy.

What we have discovered about energy is that we have a

scheme with a sequence of rules. From each different set

of rules we can calculate a number for each different kind of

energy. When we add all the numbers together, from all the

different forms of energy, it always gives the same total.

But as far as we know there are no real units, no little ball-

bearings. It is abstract, purely mathematical, that there is

a number such that whenever you calculate it it does not

change. I cannot interpret it any better than that.

This energy has all kinds of forms, analogous to the

blocks in the box, blocks in the water, and so on. There is

energy due to motion called kinetic energy, energy due to

gravitational interaction (gravitational potential energy, it
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is called), thermal energy, electrical energy, light energy,

elastic energy in springs and so on, chemical energy, nuclear

energy - and there is also an energy that a particle has from
its mere existence, an energy that depends directly on its

mass. The last is the contribution of Einstein, as you un-

doubtedly know. E = mc'^ is the famous equation of the

law I am talking about.

Although I have mentioned a large number of energies,

I would hke to explain that we are not completely ignorant

about this, and we do understand the relationship of some of

them to others. For instance, what we call thermal energy is

to a large extent merely the kinetic energy of the motion of

the particles inside an object. Elastic energy and chemical

energy both have the same origin, namely the forces be-

tween the atoms. When the atoms rearrange themselves in

a new pattern some energy is changed, and if that quantity

changes it means that some other quantity also has to

change. For example, if you are burning something the

chemical energy changes, and you find heat where you did

not have heat before, because it all has to add up right.

Elastic energy and chemical energy are both interactions of

atoms, and we now understand these interactions to be a

combination of two things, one electrical energy and the

other kinetic energy again, only this time the formula for it

is quantum mechanical. Light energy is nothing but elec-

trical energy, because light has now been interpreted as an

electric and magnetic wave. Nuclear energy is not represen-

ted in terms of the others ; at the moment I cannot say more
than that it is the result of nuclear forces. I am not just

talking here about the energy released. In the uranium
nucleus there is a certain amount of energy, and when the

thing disintegrates the amount of energy remaining in the

nucleus changes, but the total amount of energy in the world

does not change, so a lot of heat and stuff is generated in

the process, in order to balance up.

This conservation law is very useful in many technical

ways. I will give you some very simple examples to show
how, knowing the law of conservation of energy and the
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formulae for calculating energy, we can understand other

laws. In other words many other laws are not independent,

but are simply secret ways of talking about the conservation

of energy. The simplest is the law of the lever (fig. 16).

o ^--' 3
Figure 16

We have a lever on a pivot. The length of one arm is 1 foot

and the other 4 feet. First I must give the law for gravity

energy, which is that if you have a number of weights, you

take the weight of each and multiply it by its height above

the ground, add this together for all the weights, and that

gives the total of gravity energy. Suppose I have a 2 lb

weight on the long arm, and an unknown mystic weight on

the other side - X is always the unknown, so let us call it

W to make it seem that we have advanced above the usual

!

Now the question is, how much must W be so that it just

balances and swings quietly back and forth without any

trouble ? If it swings quietly back and forth, that means that

the energy is the same whether the balance is parallel to

the ground or tilted so that the 2 lb weight is, say, 1 inch

above the ground. If the energy is the same then it does not

care much which way, and it does not fall over. If the 2 lb

weight goes up 1 inch how far down does W go? From the

diagram you can see (fig. 3) that if AO is 1 foot and OB
is 4 feet, then when BB' is 1 inch AA' will be \ inch. Now
apply the law for gravity energy. Before anything happened

all the heights were zero, so the total energy was zero. After

the move has happened to get the gravity energy we multi-

ply the weight 2 lb by the height 1 inch and add it to the
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unknown weight W times the height - i inch. The sum of

this must give the same energy as before - zero. So -

2.-^»0. ^ yjmsi be 8

This is one way we can understand the easy law, which you
already knew of course, the law of the lever. But it is interest-

ing that not only this but hundreds of other physical laws

can be closely related to various forms of energy. I showed
you this example only to illustrate how useful it is.

The only trouble is, of course, that in practice it does not

really work because of friction in the fulcrum. If I have

something moving, for example a ball rolling along at a

constant height, then it will stop on account of friction.

What happened to the kinetic energy of the ball ? The answer

is that the energy of the motion of the ball has gone into the

energy of the jigghng of the atoms in the floor and in the

ball. The world that we see on a large scale looks like a nice

round ball when we polish it, but it is really quite complica-

ted when looked at on a little scale; bilUons of tiny atoms,

with all kinds of irregular shapes. It is like a very rough

boulder when looked at finely enough, because it is made
out of these httle balls. The floor is the same, a bumpy busi-

ness made out of balls. When you roll this monster boulder

over the magnified floor you can see that the little atoms are

going to go snap-jiggle, snap-jiggle. After the thing has

rolled across, the ones that are left behind are still shaking

a httle from the pushing and snapping that they went

through; so there is left in the floor a jigghng motion, or

thermal energy. At first it appears as if the law of conser-

vation is false, but energy has the tendency to hide from

us and we need thermometers and other instruments to

make sure that it is still there. We find that energy is con-

served no matter how complex the process, even when we
do not know the detailed laws.

The first demonstration of the law of conservation of
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energy was not by a physicist but by a medical man. He
demonstrated with rats. If you burn food you can find out

how much heat is generated. If you then feed the same
amount of food to rats it is converted, with oxygen, into

carbon dioxide, in the same way as in burning. When you
measure the energy in each case you find out that hving

creatures do exactly the same as non-Hving creatures. The
law for conservation of energy is as true for fife as for

other phenomena. Incidentally, it is interesting that every

law or principle that we know for 'dead' things, and that we
can test on the great phenomenon of life, works just as well

there. There is no evidence yet that what goes on in hving

creatures is necessarily different, so far as the physical

laws are concerned, from what goes on in non-hving things,

although the living things may be much more complicated.

The amount of energy in food, which will tell you how
much heat, mechanical work, etc., it can generate, is

measured in calories. When you hear of calories you are not

eating something called calories, that is simply the measure

of the amount of heat energy that is in the food. Physicists

sometimes feel so superior and smart that other people

would hke to catch them out once on something. I will

give you something to get them on. They should be utterly

ashamed of the way they take energy and measure it in a

host of difi"erent ways, with different names. It is absurd that

energy can be measured in calories, in ergs, in electron volts,

in foot pounds, in B.T.U.s, in horsepower hours, in kilowatt

hours - all measuring exactly the same thing. It is hke having

money in dollars, pounds, and so on; but unHke the econo-

mic situation where the ratio can change, these dopey things

are in absolutely guaranteed proportion. If anything is

analogous, it is hke shillings and pounds - there are always

20 shilUngs to a pound. But one comphcation that the

physicist allows is that instead of having a number hke 20

he has irrational ratios like 1-6183178 shillings to a pound.

You would think that at least the more modern high-class

theoretical physicists would use a common unit, but you
find papers with degrees Kelvin for measuring energy, mega-
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cycles, and now inverse Fermis, the latest invention. For
those who want some proof that physicists are human, the

proof is in the idiocy of all the different units which they

use for measuring energy.

There are a number of interesting phenomena in nature

which present us with curious problems concerning energy.

There has been a recent discovery of things called quasars,

which are enormously far away, and they radiate so much
energy in the form of Hght and radio waves that the question

is where does it come from ? If the conservation of energy

is right, the condition of the quasar after it has radiated this

enormous amount of energy must be different from its

condition before. The question is, is it coming from gravi-

tation energy - is the thing collapsed gravitationally, in a

different condition gravitationally? Or is this big emission

coming from nuclear energy? Nobody knows. You might

propose that perhaps the law of conservation of energy is

not right. Well, when a thing is investigated as incompletely

as the quasar - quasars are so distant that the astronomers

cannot see them too easily - then if such a thing seems to

conflict with the fundamental laws, it very rarely is that

the fundamental laws are wrong, it usually is just that the

details are unknown.
Another interesting example of the use of the law of

conservation of energy is in the reaction when a neutron

disintegrates into a proton, an electron, and an anti-neutrino.

It was first thought that a neutron turned into a proton plus

an electron. But the energy of all the particles could be

measured, and a proton and an electron together did not

add up to a neutron. Two possibilities existed. It might

have been that the law of energy conservation was not

right; in fact it was proposed by Bohr* for a while that per-

haps the conservation law worked only statistically, on the

average. But it turns out now that the other possibility is

the correct one, that the fact that the energy does not check

out is because there is something else coming out, something

•Niels Bohr, Danish physicist.
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which we now call an anti-neutrino. The anti-neutrino which

comes out takes up the energy. You might say that the only

reason for the anti-neutrino is to make the conservation of

energy right. But it makes a lot of other things right, Uke

the conservation ofmomentum and other conservation laws,

and very recently it has been directly demonstrated that

such neutrinos do indeed exist.

This example illustrates a point. How is it possible that

we can extend our laws into regions we are not sure about?

Why are we so confident that, because we have checked the

energy conservation here, when we get a new phenomenon
we can say it has to satisfy the law of conservation of energy ?

Every once in a while you read in the papei that physicists

have discovered that one of their favourite laws is wrong.

Is it then a mistake to say that a law is true in a region where

you have not yet looked? If you will never say that a law is

true in a region where you have not already looked you do
not know anything. If the only laws that you find are those

which you have just finished observing then you can never

make any predictions. Yet the only utility of science is to

go on and to try to make guesses. So what we always do is

to stick our necks out, and in the case of energy the most
likely thing is that it is conserved in other places.

Of course this means that science is uncertain; the mo-
ment that you make a proposition about a region of ex-

perience that you have not directly seen then you must be

uncertain. But we always must make statements about the

regions that we have not seen, or Lhe whole business is no

use. For instance, the mass of an object changes when it

moves, because of the conservation of energy. Because of

the relation of mass and energy the energy associated with

the motion appears as an extra mass, so things get heavier

when they move. Newton beheved that this was not the

case, and that the masses stayed constant. When it was dis-

covered that the Newtonian idea was false everyone kept

saying what a terrible thing it was that physicists had found

out that they were wrong. Why did they think they were

right? The effect is very small, and only shows when you get
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near the speed of light. If you spin a top it weighs the same
as if you do not spin it, to within a very very fine fraction.

Should they then have said, 'If you do not move any faster

than so-and-so, then the mass does not change'? That

would then be certain. No, because if the experiment

happened to have been done only with tops of wood,

copper and steel, they would have had to say 'Tops made
out of copper, wood and steel, when not moving any faster

than so and so . .
.'. You see, we do not know all the con-

ditions that we need for an experiment. It is not known
whether a radioactive top would have a mass that is con-

served. So we have to make guesses in order to give any

utihty at all to science. In order to avoid simply describing

experiments that have been done, we have to propose laws

beyond their observed range. There is nothing wrong with

that, despite the fact that it makes science uncertain. If you
thought before that science was certain - well, that is just

an error on your part.

To return then, to our hst of conservation laws (fig. 14),

we can add energy. It is conserved perfectly, as far as we
know. It does not come in units. Now the question is, is

it the source of a field? The answer is yes. Einstein under-

stood gravitation as being generated by energy. Energy and
mass are equivalent, and so Newton's interpretation that

the mass is what produces gravity has been modified to the

statement that the energy produces the gravity.

There are other laws similar to the conservation of energy,

in the sense that they are numbers. One of them is momen-
tum. If you take all the masses of an object, multiply them
by the velocities, and add them all together, the sum is the

momentum of the particles; and the total amount of mo-
mentum is conserved. Energy and momentum are now
understood to be very closely related, so I have put them in

the same column of our table.

Another example of a conserved quantity is angular

momentum, an item which we discussed before. The angular

momentum is the area generated per second by objects

moving about. For example, if we have a moving object.
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and we take any centre whatsoever, then the speed at which

the area (fig. 17) swept out by a line from centre to object,

Figure 17

increases, multiphed by the mass of the object, and added

together for all the objects, is called the angular momentum.
And that quantity does not change. So we have conservation

of angular momentum. Incidentally, at first sight, if you

know too much physics, you might think that the angular

momentum is not conserved. Like the energy it appears in

different forms. Although most people think it only appears

in motion it does appear in other forms, as I will illustrate.

If you have a wire, and move a magnet up into it, increasing

the magnetic field through the flux through the wire, there

will be an electric current - that is how electric generators

work. Imagine that instead of a wire I have a disc, on which

there are electric charges analogous to the electrons in the

wire (fig. 18). Now I bring a magnet dead centre along the

Figure 18
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axis from far away, very rapidly up to the disc, so that now
there is a flux change. Then, just as in the wire, the charges

will start to go around, and if the disc were on a wheel it

would be spinning by the time I had brought the magnet
up. That does not look like conservation of angular momen-
tum, because when the magnet is away from the disc nothing

is turning, and when they are close together it is spinning.

We have got turning for nothing, and that is against the

rules. 'Oh yes,' you say, 'I know, there must be some other

kind of interaction that makes the magnet spin the opposite

way.' That is not the case. There is no electrical force on the

magnet tending to twist it the opposite way. The explana-

tion is that angular momentum appears in two forms: one

of them is angular momentum of motion, and the other is

angular momentum in electric and magnetic fields. There is

angular momentum in the field around the magnet, although

it does not appear as motion, and this has the opposite sign

to the spin. If we take the opposite case it is even clearer

(fig. 19).

-^

>eof&

Figure 19

If we have just the particles, and the magnet, close together,

and everything is standing still, I say there is angular momen-
tum in the field, a hidden form of angular momentum which

does not appear as actual rotation. When you pull the mag-
net down and take the instrument apart, then all the fields

separate and the angular momentum now has to appear and
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The Great Conservation Principles

the disc will start to spin. The law that makes it spin is the

law of induction of electricity.

Whether angular momentum comes in units is very diffi-

cult for me to answer. At first sight it appears that it is

absolutely impossible that angular momentum comes in

units, because angular momentum depends upon the direc-

tion at which you project the picture. You are looking at an

area change, and obviously this will be different depending

on whether it is looked at from an angle, or straight on. If

angular momentum came in units, and say you looked at

something and it showed 8 units, then if you looked at it

from a very slightly different angle, the number of units

would be very slightly different, perhaps a tiny bit less than

8. But 7 is not a httle bit less than 8; it is a definite amount
less than eight. So it cannot possibly come in units. However
this proof is evaded by the subtleties and peculiarities of

quantum mechanics, and if we measure the angular momen-
tum about any axis, amazingly enough it is always a

number of units. It is not the kind of unit, like an electric

charge, that you can count. The angular momentum does

come in units in the mathematical sense that the number we
get in any measurement is a definite integer times a unit. But

we cannot interpret this in the same way as with units of

electric charge, imaginable units that we can count - one,

then another, then another. In the case of angular momen-
tum we cannot imagine them as separate units, but it comes

out always as an integer . . . which is very peculiar.

There are other conservation laws. They are not as

interesting as those I have described, and do not deal exactly

Figure 20
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with the conservation of numbers. Suppose we had some
kind of device with particles moving with a certain definite

symmetry, and suppose their movements were bilaterally

symmetrical (fig. 20). Then, following the laws of physics,

with all the movements and collisions, you could expect, and
rightly, that if you look at the same picture later on it will

still be bilaterally symmetrical. So there is a kind of con-

servation, the conservation of the symmetry character. This

should be in the table, but it is not like a number that you
measure, and we will discuss it in much more detail in the

next lecture. The reason this is not very interesting in classi-

cal physics is because the times when there are such nicely

symmetrical initial conditions are very rare, and it is there-

fore a not very important or practical conservation law. But

in quantum mechanics, when we deal with very simple

systems like atoms, their internal constitution often has a

kind of symmetry, like bilateral symmetry, and then the

symmetry character is maintained. This is therefore an

important law for understanding quantum phenomena.

One interesting question is whether there is a deeper

basis for these conservation laws, or whether we have to take

them as they are. I will discuss that question in the next

lecture, but there is one point I should Uke to make now. In

discussing these ideas on a popular level, there seem to be

a lot of unrelated concepts; but with a more profound

understanding of the various principles there appear deep

interconnections between the concepts, each one implying

others in some way. One example is the relation between

relativity and the necessity for local conservation. If I had

stated this without a demonstration, it might appear to be

some kind of miracle that if you cannot tell how fast you
are moving this implies that if something is conserved it

must be done not by jumping from one place to another.

At this point I would like to indicate how the conserva-

tion of angular momentum, the conservation of momentum,
and a few other things aie to some extent related. The con-

servation of angular momentum has to do with the area

swept by particles moving. If you have a lot of particles
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The Great Conservation Principles

(fig. 21), and take your centre (x) very far away, then the

distances are almost the same for every object. In this case

the only thing that counts in the area sweeping, or in the

conservation of angular momentum, is the component of
motion, which in figure 21 is vertical. What we discover then

Figure 21

is that the total of the masses, each multiplied by its velocity

vertically, must be a constant, because the angular momen-
tum is a constant about any point, and if the chosen point

is far enough away only the masses and velocities are rele-

vant. In this way the conservation of angular momentum
implies the conservation of momentum. This in turn implies

something else, the conservation of another item which is

so closely connected that I did not bother to put it in the

table. This is a principle about the centre of gravity (fig. 22).

Figure 22

A mass, in a box, cannot just disappear from one position

and move over to another position all by itself. That is

nothing to do with conservation of the mass
;
you still have

the mass, just moved from one place to another. Charge
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could do this, but not a mass. Let me explain why. The laws

of physics are not affected by motion, so we can suppose

that this box is drifting slowly upwards. Now we take the

angular momentum from a point not far away, x. As the

box is drifting upwards, if the mass is lying quiet in the box,

at position 1, it will be producing an area at a given rate.

After the mass has moved over to position 2, the area will

be increasing at a greater rate, because although the altitude

will be the same because the box is still drifting upwards,

the distance from x to the mass has increased. By the con-

servation of angular momentum you cannot change the

rate at which the area is changing, and therefore you simply

cannot move one mass from one place to another unless

you push on something else to balance up the angular mo-
mentum. That is the reason why rockets in empty space

cannot go . , , but they do go. If you figure it out with a lot

of masses, then if you move one forward you must move
others back, so that the total motion back and forward of all

the masses is nothing. This is how a rocket works. At first

it is standing still, say, in empty space, and then it shoots

some gas out of the back, and the rocket goes forward. The
point is that of all the stuff in the world, the centre of mass,

the average of all the mass, is still right where it was before.

The interesting part has moved on, and an uninteresting

part that we do not care about has moved back. There is

no theorem that says that the interesting things in the

world are conserved - only the total of everything.

Discovering the laws of physics is like trying to put to-

gether the pieces of a jigsaw puzzle. We have all these dif-

ferent pieces, and today they are proliferating rapidly. Many
of them are lying about and cannot be fitted with the other

ones. How do we know that they belong together? How do
we know that they are really all part of one as yet incom-

plete picture? We are not sure, and it worries us to some
extent, but we get encouragement from the common charac-

teristics of several pieces. They all show blue sky, or they

are all made out of the same kind of wood. All the various

physical laws obey the same conservation principles.
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A physicist and educator here tells a parable to illus-

trate the inadequacies he sees in the present system of

teaching.

4 The Barometer Story

Alexander Calandra

An article from Current Science, Teacher's Edition, 1964.

SOME time ago, I received a call

from a colleague who asked if I

would be the referee on the grading

of an examination question. It seemed

that he was about to give a student

a zero for his answer to a physics ques-

tion, while the student claimed he

should receive a perfect score and

would do so if the system were not set

up against the student. The instructor

and the student agreed to submit this

to an impartial arbiter, and I was

selected.

The Barometer Problem

I went to my colleague's office and

read the examination question, which

was, "Show how it is possible to deter-

mine the height of a tall building with

the aid of a barometer."

The student's answer was, "Take the

barometer to the top of the building,

attach a long rope to it, lower the ba-

rometer to the street, and then bring

it up, measuring the length of the rope.

The length of the rope is the height of

the building."

Now, this is a very interesting an-

swer, but should the student get credit

for it? I pointed out that the student

really had a strong case for full credit,

since he had answered the question

completely and correctly. On the other

hand, if full credit were given, it could

well contribute to a high grade for the

student in his physics course. A high

grade is supposed to certify that the

student knows some physics, but the

answer to the question did not con-

firm this. With this in mind, I suggested

that the student have another try at

answering the question. I was not sur-

prised that my colleague agreed to

this, but I was surprised that the stu-

dent did.

Acting in terms of the agreement, I

gave the student six minutes to an-

swer the question, with the warning

that the answer should show some
knowledge of physics. At the end of

five minutes, he had not written any-

thing. I asked if he wished to give up,

since I had another class to take care

of, but he said no, he was not giving

up. He had many answers to this prob-

lem; he was just thinking of the best

one. I excused myself for interrupting

him, and asked him to please go on.

In the next minute, he dashed oflF his

answer, which was:

"Take the barometer to the top of

the building and lean over the edge of

the roof. Drop the barometer, timing

its fall with a stopwatch. Then, using

the formula S = /s at-', calculate the

height of the building."

At this point, I asked my colleague

if he would give up. He conceded and

I gave the student almost full credit. In

leaving my colleague's office, I recalled

that the student had said he had other

answ'ers to the problem, so I asked

him what they were. "Oh, yes," said

the student. "There are many ways of

getting the height of a tall building

with the aid of a barometer. For ex-

ample, you could take the barometer

out on a sunny day and measure the

height of the barometer, the length of

its shadow, and the length of the shad-

ow of the building, and by the use

of simple proportion, determine the

height of the building."

"Fine," I said. "And the others?"

"Yes, " said the student. "There is a

very basic measurement method that

you will like. In this method, you take

the barometer and begin to walk up

the stairs. As you climb the stairs, you

mark oflF the length of the barometer

along the wall. You then count the

number of marks, and this will give

you the height of the building in ba-

rometer units. A very direct method.

"Of course, if you want a more

sophisticated method, you can tie the

barometer to the end of a string, swing

it as a pendulum, and determine the

value of g' at the street level and at

the top of the building. From the dif-

ference between the two values of 'g,'

the height of the building can, in prin-

ciple, be calculated."

Finally he concluded, "If you don't

limit me to physics solutions to this

problem, there are many other an-

swers, such as taking the barometer to

the basement and knocking on the

superintendent's door. When the

superintendent answers, you speak to

him as follows: 'Dear Mr. Superin-

tendent, here I have a very fine ba-

rometer. If you will tell me the height

of this building, I will give you this

barometer.'

"

At this point, I asked the student if

he really didn't know the answer to

the problem. He admitted that he did,

but that he was so fed up with college

instructors trying to teach him how
to think and to use critical thinking,

instead of showing him the structure

of the subject matter, that he decided

to take off on what he regarded mostly

as a sham.
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The kinetic theory of gases Is a marvelous structure of

Interconnecting assumption, prediction, and experiment.

This chapter supplements and reinforces the discussion

of kinetic theory In the text of Unit 3.

The Great Molecular Theory of Gases

Eric M. Rogers

An excerpt from his book Physics for the Inquiring Mind: The Methods,

Nature, and Philosophy of Physical Science, 1960.

Newton's theory of universal gravitation was a

world-wide success. His book, the Principia, ran

into three editions in his lifetime and popular studies

of it were the fashion in the courts of Europe.

Voltaire wrote an exposition of the Principia for

the general reader; books were even published on

"Newton's Theory expounded to Ladies." Newton's

theory impressed educated people not only as a

brilliant ordering of celestial Nature but as a model

for other grand explanations yet to come. We con-

sider Newton's theory a good one because it is

simple and productive and links together many
diflFerent phenomena, giving a general feeling of

understanding. The theory is simple because its

basic assumptions are a few clear statements. This

simplicity is not spoiled by the fact that some of

the deductions need difficult mathematics. The suc-

cess of Newton's planetary theory led to attempts

at more theories similarly based on the laws of

motion. For example, gases seem simple in behavior.

Could not some theory of gases be constructed, to

account for Boyle's Law by "predicting" it, and to

make other predictions and increase our general

understanding?

Such attempts led to a great molecular theory of

gases. As in most great inventions the essential dis-

covery is a single idea which seems simple enough
once it is thought of: the idea that gas pressure is

due to bombardment by tiny moving particles, the

"molecules" of gas. Gases have simple common
properties. They always fill their container and

exert a uniform pressure all over its top, bottom, and

sides, unlike solids and liquids. At constant tempera-

ture, PRESstmE • VOLUME remains constant, however

the gas is compressed or expanded. Heating a gas

increases its pressure or volume or both—and the

rate of increase with temperature is the same for all

gases ("Charles' Law"). Gases move easily, diffuse

among each other and seep through porous walls.

Could these properties be "explained" in terms of

some mechanical pictvire? Newton's contemporaries

revived the Greek philosophers' idea of matter being

made of "fiery atoms" in constant motion. Now, with

a good system of mechanics they could treat such a

picture realistically and ask what "atoms" would do.

The most striking general property that a theory

should explain was Boyle's Law.

Boyle's Law

In 1661 Boyle announced his discovery, "not

without deUght and satisfaction" that the pressures

and volumes of air are "in reciprocal proportions."

That was his way of saying: pressure ex 1/volume

or PRESSURE • VOLUME remains constant, when air is

compressed. It was well known that air expands

when heated, so the restriction "at constant tempera-

ture" was obviously necessary for this simple law.

This was Boyle's discovery of the "spring of the

air"—a spring of variable strength compared with

sohd Hooke's Law springs.

In laboratory you should try a "Boyle's-Law

experiment" with a sample of dry air, not to "dis-

cover" a law that you already know, but as a prob-

lem in precision, "your skill against nature." You

Fic. 25-1. Boyle's Law
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The Great Molecular Theory of Gases

will be limited to a small range of pressures (say

% atmosphere to 2 atm. ) and your accuracy may

be sabotaged by the room temperature changing

or by a slight taper in the glass tube that contains

the sample.^ If you plot your measurements on a

graph showing pressube vs. volume you will find

they mark a hyperbola—but that is too difficult a

curve to recognize for sure and claim as verification

of Boyle's Law.^ Then plot pressure vs. 1/volume

and look for a straight line through the origin.

Boyle's measurements were fairly rough and ex-

tended only from a fraction of an atmosphere to

about 4 atm. If you make precise measurements

with air you will find that pV changes by only a few

tenths of 1% at most, over that range. Your graph of

p vs. 1/V will show your experimental points very

close to a straight line through the origin. Since

mass/volume is density and mass is constant, values

of 1/V represent density, and Boyle's Law says

Fig. 25-2. Boyle's Law Isothermals

pressure a density. This makes sense on many a

simple theory of gas molecules: "put twice as many

molecules in a box and you will double the pressure."

All the measurements on a Boyle's-Law graph

line are made at the same temperature: it is an

isothermal line. Of course we can draw several iso-

thermals on one diagram, as in Fig. 25-2.

If the range of pressure is increased, larger devia-

tions appear—Boyle's simple law is only an approxi-

mate account of real gas behavior. It fits well at low

pressures but not at high pressures when the sample

is crowded to high density. Fig. 25-3 shows the

1 Even modern glass tubing is slightly tapered, unless made

uniform by an expensive process; so when experiments "to

verify Boyle's Law" show deviations from pV = constant they

are usually exhibiting tube-taper rather than misbehavior of

air. If the air sample is replaced by certain other gases such

as COc, or by some organic vapor, real deviations from

Boyle's Law become obvious and interesting. See Ch. 30.

2 The only safe shapes of graphs for testing a law, or find-

ing one, are straight lines and circles.

experimental facts for larger pressures, up to 3000

atmospheres. (For graphs of COj's behavior, in-

cluding Hquefaction, see Ch. 30.)

Theory

Boyle tried to guess at a mechanism underlying

his experimental law. As a good chemist, he pic-

tured tiny atomic particles as the responsible agents.

He suggested that gas particles might be springy,

like little balls of curly wool piled together, resisting

compression. Newton placed gas particles farther

apart, and calculated a law of repulsion-force to

account for Boyle's Law. D. Bernoulli published a

bombardment theory, without special force-laws,

that predicted Boyle's Law. He pointed out that

moving particles would produce pressure by bom-

barding the container; and he suggested that heating

air must make its particles move faster. This was the

real beginning of our present theory. He made a

brave attempt, but his account was incomplete.

A centiu-y later, in the 1840's, Joule and others set

forth a successful 'Tcinetic theory of gases," on this

simple basic view:

A gas consists of small elastic particles in

rapid motion: and the pressure on the walls

is simply the effect of bombardment.

Joule showed that this would "explain" Boyle's Law,

and that it would yield important information about

the gas particles themselves. This was soon polished

by mathematicians and physicists into a large,

powerful theory, capable of enriching our under-

standing.

In modern theories, we call the moving particles

molecules, a name borrowed from chemistry, where

it means the smallest particle of a substance that

exists freely. Split a molecule and you have separate

atoms, which may have quite difiFerent properties

from the original substance. A molecule of water,

H,0, split into atoms yields two hydrogen atoms

and one oxygen atom, quite difiFerent from the par-

ticles or molecules of water. Left alone, these sepa-

rated atoms gang up in pairs, Hj, O2—molecules of

hydrogen and oxygen gas. In kinetic theory, we deal

with the complete molecules, and assume they are

not broken up by collisions. And we assume the

molecules exert no forces on each other except

during collisions; and then, when they are very

close, they exert strong repulsive forces for a very

short time: in fact that is all a collision is.

You yourself have the necessary tools for con-

structing a molecular theory of gases. Try it. Assume
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"BOYLE'S law" for AIR
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Fig. 25-3. Deviations from Boyle's Law for Air at Room Temperature
The curve shows the pressure: volume relationship for an ideal gas obeying Boyle's Law.
The points show the behavior of air, indistinguishable from the curve at low pressures.

that gas pressure is due to molecules bouncing

elastically on the containing walls. Carry out the

first stages by working through Problems 1 and 2.

They start with a bouncing ball and graduate to

many bouncing molecules, to emerge with a pre-

diction of the behavior of gases. After you have

tried the problems, return to the discussion of de-

tails.
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The Great Molecular Theory of Gases

Difficulties of the Simple Theory

The relation you worked out in Problem 2 seems to

predict a steady pressure and Boyle's-Law behavior,

from molecular chaos. How can a rain of molecules

hitting a wall make a steady pressure? Only if the col-

lisions come in such rapid succession that their bumps
seem to smooth out into a constant force. For that the

FORCE

ON END
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InciividuoC impacts

j of moQcuks
AnasfuuUdis

i- totdcf F-At •

\
TIME

SMEARED our

TO AVERAGE FORCE
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Fig. 25-6. Smoothing Out Impacts

molecules of a gas must be exceedingly numerous, and
ver>' small. If they are small any solid pressure-gauge

or container wall will be enormously massive compared
with a single gas molecule, so that, as impacts bring it

momentum, it will smooth them out to the steady pres-

sure we observe. (What would you expect if the con-

tainer wall were as hght as a few molecules?)

The problem pretended that molecules travel

straight from end to end and never collide with each

other en route. They certainly do collide—though we
cannot say how often without further information. How
will that affect the prediction?

* PROBLEM 3. COLLISIONS IN SIMPLE THEORY

(a) Show that It does not matter, in the simple derivation

of Problems 1 and 2, whether molecules collide or not.

(Consider two molecules moving to and fro from end to end,

just missing each other as they cross. Then suppose they

collide head-on and rebound. Why will their contribution to

the pressure be unchanged? Explain with a diagram.)

(b) What special assumption about molecules is required

for (a)?

(c) Suppose the molecules swelled up and became very

bulky (but kept the some speed, mass, etc.), would the effect

of mutual collisions be an increase of pressure (for the same
volume etc.) or a decrease or whot? (Note: "bulky" means
large in size, not necessarily large in mass.)

(d) Give a clear reason for your answer to (c).

Molecular Chaos

Molecules hitting each other, and the walls, at ran-

dom—some head on, some obliquelv, some glancing

—

cannot all keep the some speed t" . One will gain in a

collision, and another lose, so that the gas is a chaos of

molecules with random motions whose speeds (chang-

ing at every collision) cover a wide range. Yet they

must preserve some constancy, because a gas exerts a

steady pressure.

In the prediction p'V= (%)[Nmt3*], we do not

have all N moleciiles moving with the same speed, each

contributing m v'^ inside the brackets. Instead we have

molecule #1 with its speed t»j, molecule #2 with t;^, . . .

,

molecule N with speed o^- Then

p . V = (%) [m «,« -I- m t;j« -I- . . . -I- mtj^']

= (%) [m(t;,^-1-t;,='-h...-hV)]

= (%) ["» (N • AVERAGES*) ] See note 3.

The c* in oiu- prediction must therefore be an average

o*, so that we write a bar over it to show it is an average

value. Our theoretical prediction now runs:

PRESStIRE • VOLVTME = % N • m • U*.

We know that if we keep a gas in a closed bottle its

pressiure does not jump up and down as time goes on;

its pressiire and volume stay constant. Therefore in

spite of all the changes in coUisions, the molecular v"^

stays constant. Already our theory helps us to picture

some order—constant v^—among molecular chaos.

A More Elegant Derivation

To most scientists the regimentation that leads to the

factor Vi is too artificial a trick. Here is a more elegant

method that treats the molecules' random velocities

honestly with simple statistics. Suppose molecule #1 is

moving in a slanting direction in the box, with velocity

Oj. (See Fig. 25-7.) Resolve this vector v^ into three

Fig. 25-7. Alternative Treatment of
Gas Molecule Motion

(More professional, less artificial.)

In this we keep the random velocities, avoiding

regimentation, but split each velocity v into three

components, ,t>, ,v, .u, parallel to the sides of the box.

Then we deal with xt;' in calculating the pressure and
arrive at the same result. Sketches show three molecules

with velocities split into components.

components along directions x, y, z, parallel to the edges

of the box. Then Uj is the resultant of ^v^ along x and
yUj along y and ^Uj along z; and since these are mutually

perpendicular, we have, by the three-dimensional form

3 Because average u' = ( sum of all the o* values ) / ( num-

ber of t;' values) = (th' -f o,' + . . . -f t>s*)/(N)

. . ( Ih' 4- tij' -f . . . -f On' ) = N • ( AVERAGE u' ) Or N • «*

This V2 is called the "mean square velocity." To obtain it, take

the speed of each molecule, at an instant, square it, add all

the squares, and divide by the number of molecules. Or,

choose one molecule and average its v^ over a long time

—

say a billion collisions.

49



Fig. 25-8. Velocity Components
Pythagoras : t>i' — xfi* + ,t>i' + xVi"

of Pythagoras' theorem: v^^ = ^v^' + jV^^ + ,v^^

And for molecule #2 v^^ = ^v^^ + yO^* + ^v^^

And for molecule #3 v^'^ = „v^^-+ jV^^ + ^v^^

and so on

And for molecule #N u^^ = i^n^ + yfn^ + z%^

Add all these equations:

= (x«i' + .^^ + xt^a' + • + x«n')

+ (y"i' + yV + y«3' + • • • + yUj,^)

+ (,V + ,V+zV + --- + zV)
Divide by the number of molecules, N, to get average

values: — — — —
^

t;-' = ^v^ 4- yU- + jj-

Appealing to symmetry, and ignoring the small bias

given by gravity, we claim that the three averages on
the right are equal—the random motions of a statisti-

cally large number of molecules should have the same
distribution of velocities in any direction.

To predict the pressure on the end of the box we pro-

ceed as in Problem 2, but we use v^ for a molecule's

velocity along the length of the box. (That is the velocity

we need, because ^v and ^u do not help the motion
from end to end and are not involved in the change of

momentum at each end.) Then the contribution of

molecule #1 to pressube • volume is m • ^v^^ and the
contribution of all N molecules is

m (^t;,2 + ^t;,2 -|- . . . + ^u^.^) or m • N • ^^;

and by the argument above this is m • N • (^/3)

.". PRESSURE • volume =(%) N • m • t;^

(If you adopt this derivation, you should carry through
the algebra of number of hits in t sees, etc., as in

Problem 2.

)

Molecular Theory's Predictions

Thinking about molecular collisions and using

Newton's Laws gave the (%) N • m • u- prediction:

PRESSURE • VOLUME = ( V6 ) N • m ' t;^

This looks like a prediction of Boyle's Law. The
fraction {\^) is a constant number; N, the number of

molecules, is constant, unless they leak out or split

up; m, the mass of a molecule, is constant. Then if

the average speed remains unchanged, {Vs) N ' rri' v^

remains constant and therefore p • V should remain

constant, as Boyle found it does. But does the speed

of molecules remain fixed? At this stage, you have

no guarantee. For the moment, anticipate later dis-

cussion and assume that molecular motion is con-

nected with the heat-content of a gas, and that at

constant temperature gas molecules keep a constant

average speed, the same speed however much the

gas is compressed or rarefied.* Later you will receive

clear reasons for believing this. If you accept it now,

you have predicted that:

The product p-V is constant for a gas at

constant temperature.

You can see the prediction in simplest form by

considering changes of densfty instead of volume:

just put twice as many molecules in the same box,

and the pressure will be doubled.

A marvelous prediction of Boyle's Law? Hardly

marvelous: we had to pour in many assumptions

—

wdth a careful eye on the desired result, we could

scarcely help choosing wisely. A theory that gathers

assumptions and predicts only one already-known

law—and that under a further assumption regard-

ing temperature—would not be worth keeping. But

our new theory is just beginning: it is also helpful

in "explaining" evaporation, diffusion, gas friction;

it predicts effects of sudden compression; it makes
vacuum-pumps easier to design and understand.

And it leads to measurements that give validity to

its owTi assumptions. Before discussing the develop-

ment, we ask a basic question, "Are there really any

such things as molecules?"

Are there really molecules?

"That's the worst of circumstantial evidence.

The prosecuting attorney has at his command
all the facilities of organized investigation. He
uncovers facts. He selects only those which, in

his opinion, are significant. Once he's come to

the conclusion the defendant is guilty, the only

facts he considers significant are those which

point to the guilt of the defendant. That's why
circumstantial evidence is such a liar. Facts

themselves are meaningless. It's onlv the inter-

pretation we give those facts which counts."

"Perry Mason"—Erie Stanley Gardner"

* Actually, compressing a gas warms it, but we believe that

when it cools back to its original temperature its molecules,

though still crowded close, return to the same average speed

as before compression.

• The Case of the Perjured Parrot, Copyright 1039, by
Erie Stanley Gardner.
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A century ago, molecules seemed useful: a help-

ful concept that made the regularities of chemical

combinations easy to understand and provided a

good start for a simple theory of gases. But did they

really exist? There was only circumstantial evidence

tliat made the idea plausible. Many scientists were

skeptical, and at least one great chemist maintained

his riglit to disbelieve in molecules and atoms even

until the beginning of this century. Yet one piece of

experimental evidence appeared quite early, about

1827; the Brownian motion.

The Brownian Motion

The Scottish botanist Robert Brown (1773-1858)

made an amazing discovery: he practically saw

molecular motion. Looking tlrrough his microscope

at small specks of soUd suspended in water, he saw

them dancing with an incessant jigging motion. The

microscopic dance made the specks look aUve, but

it never stopped day after day. Heating made the

dance more furious, but on cooling it returned to its

original scale. We now know that any solid specks

in any fluid will show such a dance, the smaller the

speck the faster the dance, a random motion with

no rhyme or reason. Brown was in fact watching

the effects of water molecules jostling the solid

specks. The specks were being pushed around like

an elephant in the midst of a football game.

Watch this "Brownian motion" for yourself. Look

at small specks of soot in water ("India ink") with

a high-magnification microscope. More easily, look

at smoke in air with a low-power microscope. Fill

a small black box with smoke from a cigarette or a

dying match, and illuminate it with strong white

light from the side. The smoke scatters bluish-white

light in all directions, some of it upward into the

microscope. The microscope shows the smoke as a

crowd of tiny specks of white ash which dance

about with an entirely irregular motion.^ (See Fig.

30-3 for an example)

Watching the ash specks, you can see why Brown

at first thought he saw Uving things moving, but you

can well imagine the motion to be due to chance

bombardment by air molecules. Novi'adays we not

only think it may be that; we are sure it is, because

we can calculate the effects of such bombardment

and check them with observation. If air molecules

were infinitely small and infinitely numerous, they

s There may also be general drifting motions—convection

currents—but these are easily distingiiished. An ash speck

in focus shows as a small sharp wisp of white, often oblong;

but when it drifts or dances away out of focus the micro-

scope shows it as a fuzzy round blob, just as camera pictures

show distant street lights out of focus.

would bombard a big speck symmetrically from all

sides and there would be no Brownian motion to

see. At the other extreme, if there were only a few

very big molecules of surrounding air, the ash

speck would make great violent jumps when it did

get hit. From what we see, we infer something be-

tween these extremes; there must be many mole-

cules in the box, hitting the ash speck from all sides,

many times a second. In a short time, many hun-

dreds of molecules hit the ash speck from every

direction; and occasionally a few hundreds more

hit one side of it than the other and drive it noticea-

bly in one direction. A big jump is rare, but several

tiny random motions in the same general direction

may pile up into a visible shift.* Detailed watching

and calculation from later knowledge tell us that

what we see under the microscope are those gross

resultant shifts; but, though the individual move-

ments are too small to see, we can still estimate their

speed by cataloguing the gross staggers and ana-

lysing them statistically.

You can see for yourself that smaller specks dance

faster. Now carry out an imaginary extrapolation to

smaller and smaller specks. Then what motion

would you expect to see with specks as small as

molecules if you could see them? But can we see

molecules?

Seeing molecules?

Could we actually see a molecule? That would indeed

be convincing—we feel sure that what we see is real,

despite many an optical illusion. All through the last

century's questioning of molecules, scientists agreed

that seeing one is hopeless—not just unlikely but im-

possible, for a sound physical reason. Seeing uses light,

which consists of waves of very short wavelength, only

a few thousand Angstrom Units^ from crest to crest. We
see by using these waves to form an image:

with the naked eye we can see the shape of a pin's

head, a millimeter across, or 10,000,000 AU

with a magnifying glass we examine a fine hair,

1,000,000 AU thick

with a low-power microscope we see a speck of smoke

ash, 100,000 AU
with a high-power microscope, we see bacteria, from

10,000 down to 1000 AU

but there the sequence stops. It must stop because the

wavelength of visible light sets a limit there. Waves

can make clear patterns of obstacles that are larger

8 Imagine an observer with poor sight tracing the motion

of an active guest at a crowded party. He might fail to see

the guest's detailed motion of small steps here and there,

and yet after a while he would notice that the guest had

wandered a considerable distance.

T I Angstrom Unit, 1 AU, is 10"" meter.
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than their wavelength, or even about their wavelength
in size. For example, ocean waves sweeping past an
island show a clear "shadow" of calm beyond. But waves
treat smaller obstacles quite differently. Ocean waves
meeting a small wooden post show no calm behind.
They just lollop around the post and join up beyond it

as if there were no post there. A blind man paddling
along a stormy seashore could infer the presence of an
island nearby, but would never know about a small post
just offshore from him.* Light waves range in wave-
length from 7000 AU for red to 4000 for violet. An
excursion into the short-wave ultraviolet, with photo-
graphic film instead of an eye, is brought to a stop by
absorption before wavelength 1000 AU: lenses, speci-

men, even the air itself, are "black" for extreme ultra-

violet light. X-rays, with shorter wavelength still, can
pass through matter and show grey shadows, but they
practically cannot be focused by lenses. So, although
X-rays have the much shorter wavelength that could
pry into much finer structures, they give us only un-
magnified shadow pictures. Therefore the limit imposed
by light's wavelength seemed impassable. Bacteria down
to 1000 AU could be seen, but virus particles, ten times
smaller, must remain invisible. And molecules, ten times
smaller still, must be far beyond hope. Yet viruses, re-

sponsible for many diseases, are of intense medical
interest—we now think they may mark the borderhne
between living organisms and plain chemical molecules.

And many basic questions of chemistry might be an-
swered by seeing molecules.

The invisibility of molecules was unwelcome, but
seemed inescapable. Then, early in this century, X-rays
offered indirect information. The well-ordered atoms
and molecules of crystals can scatter X-rays into regular

patterns, just as woven cloth can "diffract" light into

regular patterns—look at a distant lamp at night
through a fine handkerchief or an umbrella. X-ray pat-

terns revealed both the arrangement of atoms in crystals

and the spacing of their layers. Such measurements
confirmed the oil-film estimates of molecular size. More
recently, these X-ray diffraction-splash pictures have
sketched the general shape of some big molecules

—

really only details of crystal structure, but still a good
hint of molecular shape. Then when physicists still

cried "no hope" the electron microscope was invented.
Streams of electrons, instead of light-waves, pass through
the tiny object under examination, and are focused by
electric or magnetic fields to form a greatly magnified
image on a photographic film. Electrons are incom-
parably smaller agents than light-waves,» so small that

* Tiny obstacles do produce a small scattered ripple, but
this tells nothing about their shape. Bluish light scattered
by very fine smoke simply indicates there are very tiny
specks there, but does not say whether they are round or
sharp-pointed or oblong. The still more bluish light of the
sky is sunlight scattered by air molecules.

* Electrons speeding through the electron microscope be-
have as if they too have a wavelength, but far shorter than
the wavelength of light. So they offer new possibilities of
"vision," whether you regard them as minute bullets smaller
than atoms, or as ultra-short wave patterns. A technology of
"electron optics" has developed, with "lenses" for electron
microscopes and for television tubes (which are electron
projection-lanterns )

.

even "molecules" can be dehneated. Then we can "see"
virus particles and even big molecules in what seem to
be reliable photographs with huge magnifications. These
new glimpses of molecular structure agree well with
the speculative pictures drawn by chemists arguing
very cleverly from chemical behavior.

Recendy, still sharper methods have been developed.
At the end of this book you will see a picture of the
individual atoms of metal in a needle point. Whv not
show that now? Because, like so much in atomic physics,
the method needs a sophisticated knowledge of assump-
tions as well as techniques before you can decide in

what sense the photograph tells the truth. Going still

deeper, very-high-energy electrons are now being used
to probe the structure of atomic nuclei, yielding indirect

shadow pictures of them.

In the last 100 years, molecules have graduated from
being tiny uncounted agents in a speculative theory to

being so real that we e\ en expect to "see" their shape.
Most of the things we know about them—speed, num-
ber, mass, size—were obtained a century ago with the
help of kinetic theory. The theory promoted the meas-
urements, then the measurements gave validity to the
theory. We shall now leave dreams of seeing molecules,
and study what we can measure by simple experiments.

Measuring the Speed of Molecules

Returning to our prediction that:

PRESSURE • VOLUME = {\i) N TTl 'V^

We can use this if we trust it, to estimate the actual

speed of the molecules. N is the number of molecules
and m is the mass of one molecule so Nm is the total

mass M of all the molecules in the box of gas. Then
we can rewrite our prediction:

PRESSURE • VOLUME = ( W )
• M 'X?

where M is the total mass of gas. We can weigh a

big sample of gas with measured volume at known
pressure and substitute our measurements in the

relation above to find the value of v^ and thus the

value of the average speed.

Fig. 25-9 shows the necessary measurements.
Using the ordinary air of the room, we measure its

pressure by a mercury barometer. (Barometer
height and the measured density of mercury and
the measured value of the Earth's gravitational field

strength, 9.8 newtons per kilogram, will give the

pressure in absolute units, newtons per square

meter. )^° We weigh the air which fills a flask. For
this, we weigh the flask first full of air at atmospheric

pressure and second after a vacuum pump has taken

out nearly all the air. Then we open the flask under
water and let water enter to replace the air pumped

1" Since we made our kinetic theory prediction with the

help of Newton's Law II, the predicted force must be in

absolute units, newtons; and the predicted pressure must be
in newtons per square meter.
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Fig. 25-9.

Measuring Molecule Velocities indikectly,

BUT SIMPLY, ASSUMING KlNETIC ThEORY.

out. Measuring the volume of water that enters the

flask tells us the volume of air which has a known
mass. Inserting these measurements in the predicted

relation we calculate o^ and thence its square root

V(f^) which we may call the "average speed," x>

(or more strictly the "root mean square," or R.M.S.

speed). You should see these measurements made
and calculate the velocity, as in the following

problem.

* PROBLEM 4. SPEED OF OXYGEN MOLECULES

Experiment shows that 32 kg of oxygen occupy 24 cubic

meters at atmospheric pressure, at room temperature.

(a) Calculate the density, MASS/VOLfME, of oxygen.

(b) Using the relation given by kinetic theory, calculate the

mean square velocity, v^, of the molecules.

(c) Take the square root and find an "average" velocity, in

meters/sec.

(d) Also express this very roughly in miles/hour.

(Take 1 kilometer to be 5/8 mile)

Air molecules moving V* mile a second! Here is

theory being fruitful and validating its own assump-

tion, as theory should. We assumed that gases con-

sist of molecules that are moving, probably moving

fast; and our theory now tells us how fast, with

the help of simple gross measurements. Yet theory

cannot prove its own prediction is true—the result

can only be true to the assumptions that went in.

So we need experimental tests. If the theory passes

one or two tests, we may trust its further predictions.

Speed of Molecules: experimental evidence

We have rough hints from the speed of sound and

from the Brownian motion.

PROBLEM 5. SPEED OF SOUND

We believe that sound is carried by waves of compression

and rarefaction, with the changes of crowding and motion

handed on from molecule to molecule at collisions. If air does

consist of moving molecules far apart, what can you say

about molecular speed, given that the measured speed of

sound in air is 340 meters/sec («= 1 1 00 ft/sec)?

PROBLEM 6. BROWNIAN MOTION

Looking at smoke under a microscope you will see large

specks of ash jigging quite fast; small specks jig faster still.

(a) There may be specks too small to see. What motion

would you expect them to hove?

(b) Regarding o single air molecule as an even smaller "ash

speck," what can you state about its motion?

The two problems above merely suggest general

guesses. Here is a demonstration that shows that

gas molecules move very fast. Liquid bromine is

released at the bottom of a tall glass tube.* The

(a) Brvrrum diB^surxa incur, (f) Brvnune nUasciiik vacuum'.

To vacuwn
jmnw

^

~Au-
-\/aauun

lenntuion to enaSk

capsuCe's Cong, tfun,

neck to Se Sroken,

\

(c) sketch of capiuie,

aSouc ha^ (eft-size

Fig. 25-10. Motion of Bromine Molecules:
Demonstration of Molecular Speed.

" The bromine is inserted as liquid bromine in a small glass

capsule with a long nose that can be broken easily.
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liquid evaporates immediately to a brown vapor

or "gas," which slowly spreads throughout the tube.

The experiment is repeated in a tube from which

all air has been pumped out. Now the brown gas

moves very fast when released. ( In air, its molecules

still move fast, but their net progress is slow be-

cause of many collisions with air molecules.)

Direct Measurement

The real test must be a direct measurement.

Molecular speeds have been measured by several

experimenters. Here is a typical experiment, done
by Zartman. He let a stream of molecules shoot

through a slit in the side of a cylindrical drum that

could be spun rapidly. The molecules were of bis-

muth metal, boiled off molten liquid in a tiny oven

in a vacuum. A series of barriers with slits selected

a narrow stream to hit the drum. Then each time

the slit in the drum came around, it admitted a small

flock of moving molecules. With the drum at rest,

the molecules travelled across to the opposite wall

inside the drum and made a mark on a receiving

film opposite the slit. With the drum spinning, the

film was carried around an appreciable distance

while the molecules were travelling across to it, and
the mark on it was shifted to a new position. The
molecules' velocity could be calculated from the

shift of the mark and the drum's diameter and spin-

speed. When the recording film was taken out of

the drum it showed a sharp central mark of de-

posited metal but the mark made while it spun was
smeared out into a blur showing that the molecular

velocities had not all been the same but were spread

over a considerable range. Gas molecules have ran-

dom motion with frequent collisions and we must
expect to find a great variety of velocities at any
instant. It is the average velocity, or rather the root-

mean-square average, y/{v^), that is involved in

kinetic theory prediction. The probable distribution

of velocities, clustering round that average, can be
predicted by extending simple kinetic theory with

the help of the mathematical statistics of chance. In

Zartman's experiment, we e-xpect the beam of hot

vapor molecules to have the same chance distribu-

tion of velocities with its peak at an average value

characteristic of the temperature. Measurements of

the actual darkening of the recording film showed

just such a distribution and gave an average that

zartman's experiment

Rotaiinj drum -^l^i^h^JmsiJhvf

ih) Varwus Stupes of tdc rotacun of tfu drum

(c) SPECIMEN FILM (u#iroi&(i')

^»\arks mack Cy moHcuCes cj vonWs speeds

-zero mark." made fu moUadcs wkm drum

is not syuuww

Fic. 25-11. Measuring Molecule Velocities Directly

(a) Sketch of Zartman's experiment.

(b) These sketclies show various stages

of the rotation of the drum.

(c) Specimen film (unrolled).

agreed well with the value predicted by simple

theory (see sketch of graph in Fig. 25-12)."

Molecular Speeds in Other Gases. Diffusion

Weighing a bottle of hydrogen or helium at at-

mospheric pressure and room temperature shows

these gases are much less dense than air; and car-

bon dioxide is much more dense. Then our predic-

11 Zartman's method is not limited to this measurement.
One method of separating uranium 235 used spinning slits,

though the uranium atoms were electrically charged and
were given high speeds by electric fields. And mechanical
"chopper" systems are used to sort out moving neutrons.

Such choppers operate like traffic lights set for some constant

speed. The simplest prototype of Zartman's experiment is the

scheme shown in Fig. 8-8 for measuring the speed of a rifle

bullet.
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5

Distanci aCorw rturrdjrmn zero mark

Fic. 25-12. Results of Zartman's Experiment
The curve, drawn by a grayncss-measuring-machine, shows

the experimental results. The crosses show values

predicted by kinetic theory with simple statistics.

tion pV = {}'i) M v^ tells us that hydrogen and

helium molecules move faster than air molecules

(at the same temperature), and carbon dioxide

molecules slower. Here are actual values:

Gas

Measurements at Room
Temperature and

Atmospheric Pressure

Volume Mass

hydrogen

helium

carbon dioxide

oxygen

nitrogen

air ( % oxygen

% nitrogen

)

24 cu. meters

24
"

24
"

24
"

24
"

24
"

2.0 kilograms

4.0 kg

44.0 kg

32.0 kg

28.0 kg

28.8 kg

* PROBLEM 7. SPEEDS

(i) If oxygen molecules move about i mile/sec at room
temperature, how fast do hydrogen molecules move?

(fi) How does the average speed of helium molecules com-
pare with that of hydrogen molecules at the same tem-

perature? (Give the ratio of "average" speeds.)

(iii) How does the speed of carbon dioxide molecules com-
pare with that of air molecules at the same tempera-

ture? (Give the ratio of "average" speeds.)

PROBLEM 8

Making a risky guess,* say whether you would expect the

speed of sound in helium to be the some as in air, or bigger

or smaller. Test your guess by blowing an organ pipe first

with air, then with helium (or with carbon dioxide). Or
breathe in helium and then talk, using your mouth and nose

cavities as miniature echoing organ pipes. A change in the

speed of sound changes the time taken by sound waves to

* It is obviously risky, since we ore not considering the mechonism
of sound transmission in detail. In foct there is an unexpected
factor, which is different for helium: the eose with which the gas
heats up as sound-compressions pass through. This momentary rise

of temperoture makes sound compressions travel faster. The effect
is more pronounced in helium than in air, making the speed of
sound 8% bigger thon simple comparison with air suggests.
Kinetic theory con predict this effect of specific heat, telling us
that helium must have o smaller heat capacity, for a good otomic-
molecular reason.

bounce up and down the pipe, and thus changes the fre-

quency at which sound pulses emerge from the mouth. And
that changes the musical note of the vowel sounds, which
rises to higher pitch at higher frequency.

PROBLEM 9

How would you expect the speed of sound in air to change
when the pressure is changed without any change of tem-
perature? (Try this question with the following data, for air

at room temperature: 28.8 kg of air occupy 24 cubic meters
at 1 atmosphere pressure; at 2 atmospheres they occupy
1 2 cubic meters.)

Diffusion

If molecules of different gases have such different

speeds, one gas should outstrip another when they

diffuse through long narrow pipes. The pipes must
be very long and very narrow so that gas seeps

through by the wandering of individual molecules

and not in a wholesale rush. The pores of unglazed

pottery make suitable "pipes" for this. See Fig. 25-

13a, b. The white jar
J
has fine pores that run right

through its walls. If it is filled with compressed gas

and closed with a stopper S, the gas will slowly leak

out through the pores into the atmosphere, as you
would expect. But if the pressure is the same (at-

mospheric) inside and out you would not expect

any leakage even if there are different gases inside

and outside. Yet there are changes, showing the

effects of different molecular speeds. The demon-
strations sketched start with air inside the jar and

another gas, also at atmospheric pressure, outside.

You see the effects of hydrogen molecules whizzing

into the jar faster than air can move out; or of air

moving out faster than COj molecules crawl in.

These are just qualitative demonstrations of "diffu-

sion," but they suggest a process for separating

mixed gases. Put a mixture of hydrogen and COj
inside the jar; then, whether there is air or vacuum

outside, the hydrogen will diffuse out faster than the

COj, and by repeating the process in several stages

Fig. 25-13a. Diffusion of Gases
Hydrogen diffuses in through the porous wall J faster

than air diffuses out.
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Fic. 25-13b. Diffusion of Gases
Carbon dioxide diffuses in through the porous wall,

J, slower than air diffuses out.

you could obtain almost pure hydrogen. This is a

physical method of separation depending on a

difference of molecular speeds that goes with a

difference of molecular masses (see Fig. 25-14). It

does not require a difference of chemical properties;

so it can be used to separate "isotopes," those twin-

brothers that are chemically identical but differ

slightly in atomic masses. When isotopes were first

discovered, one neon gas 10% denser than the other,

some atoms of lead heavier than the rest, they were
interesting curiosities, worth trying to separate just

to show. Diffusion of the natural neon mixture from

the atmosphere proved the possibility. But now with

two uranium isotopes hopelessly mixed as they

come from the mines, one easily fissionable, the

other not, the separation of the rare fissionable kind

is a matter of prime importance. Gas diffusion is

now used for this on an enormous scale. See Prob-

lem 11, and Figs. 25-15, 16 and 17. Also see Chs. 30

and 43.

START
I atm.f I atm^

1 i

Temperature

Heating a gas increases p or V or both. With a

rise of temperature there is always an increase of

pV, and therefore of (%) N m v^. Therefore making

a gas hotter increases v^, makes its molecules move
faster. This suggests some effects of temperature.

* PROBLEM 10

(a) Would you expect the speed of sound to be greater, less,

or the same in air at higher temperature? Explain.

(b) Would you expect diffusion of gases to proceed faster,

slower, or at the some rate, at higher temperature? Ex-

plain.

Kinetic Theory To Be Continued

We cannot give more precise answers to such

questions until we know more about heat and tem-

perature and energy. Then we can extract more
predictions concerning gas friction, heat conduc-

tion, specific heats; and we shall find a way of

LATER.

0.^ atm, 1.1 (Utn,

AIR . 1% ' COi •

) o » 1 ^ _ • •A
^/r. v^.

y

««**^f

AIR CO,

^POROUS '//

/^, BARRIER/^

Fic. 25-14. Unequal Diffusion of Gases

AIK ^ CO^ CO^ ^- AIR

Air and carbon dioxide, each originally at atmospheric pressure, are separated by a porous barrier.

luai 1
At the start, with equal volumes at the same pressure, the two populations have equal numbers of molecules.

On the average, air molecules stagger through the pores faster than CO. molecules.
Then the populations are no longer equal so the pressures are unequal.
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Fig. 25-15. Sepahation of Uranium Isotopes by Diffusion of UFe Thhough a Porous Barrier
Gas molecules hit the barrier, and the walls of its pores, many times—net result: a few get through.

Soikto

from.

List itjje

Fig. 25-16a. Separation of Uranium Isotopes by
Diffusion of UFs Through a Porous Barrier.

measuring the mass of a single molecule, so that

we can count the myriad molecules in a sample of

gas. We shall return to kinetic theory after a study

of energy. Meanwhile, it is kinetic theory that leads

us towards energy by asking a question:

What is mv^?

The expression (% ) N m t;'' is very important in

the study of all gases. Apart from the fraction (%)
it is

THE NUMBER OF MOLECULES • (mv' for one moleculc)

What is mt;* for a moving molecule? It is just the

mass multiplied by the square of the speed; but

what kind of thing does it measure? What are its

properties? Is it an important member of the series:

m mv mv^ ? We know m, mass, and treat

< ' f n V

/

//

\

-r^

^ ^%
^^<^

J

J

Fig. 25-16b. Multi-Stage Diffusion Separation
Mixture diffusing through in one stage is pumped to the

input of the next stage. Unused mixture from one stage is

recycled, pumped back to the input of the preceding stage.

Fig. 25-17. Separating Uranium Isotopes by Diffusion
To effect a fairly complete separation of

U*" F., thousands of stages are needed.
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it as a constant thing whose total is universally con-

served. We know mv, momentum, and trust it as a

vector that is universally conserved. Is mv^ equally

useful? Its structure is mv • v or Ft • v or

FORCE • TIME * DISTANCe/tIME.

Then mv^ is of the form force • distance. Is

that product useful? To push with a force along

some distance needs an engine that uses fuel.

Fuel . . . money . . . energy. We shall find that

mv^ which appears in our theory of gases needs only

a constant factor (%) to make it an expression of

"energy."

PROBLEMS FOR CHAPTER 25

if 1. DERIVING MOLECULAR PRESSURE

Work through the question sheets of Problem 1 shown

earlier in this chapter. These lead up to the use of Newton's

mechanics in a molecular picture of gases.

if 2. KINETIC THEORY WITH ALGEBRA

Work through the question sheets of Problem 2.

Problems 3-10 are in the text of this chapter.

:*: 11. URANIUM SEPARATION (For more professional

version, see Problem 3 in Ch. 30)

Chemical experiments and arguments show that oxygen
molecules contain two atoms so we write them Os; hydrogen
molecules have two atoms, written Hj; and the dense vapor
of uranium flouride has structure UFg.

Chemical experiments tell us that the relative masses of

single atoms of O, H, F, and U are 16, 1, 19, 238. Chemical
evidence and a brilliant guess (Avogadro's) led to the belief

that standard volume of any gas at one atmosphere and
room temperature contains the same number of molecules
whatever the gas (the same for Oi, Hj, or UFe). Kinetic

theory endorses this guess strongly (see Ch. 30).

(a) Looking back to your calculations in Problem 7 you will

see that changing from O2 to H2 changes the mass of a
molecule in the proportion 32 to 2. For the some tem-

perature what change would you expect in the v" and
therefore what change in the overage velocity? (That is,

how fast are hydrogen molecules moving at room tem-

perature compared with oxygen ones? Give a ratio show-
ing the proportion of the new speed to the old. Note you
do not hove to repeat oil the arithmetic, just consider the

one factor that changes.)

(b) Repeat (a) for the change from oxygen to uranium
fluoride vapor. Do rough Arithmetic to find approximate
numerical value.

(c) Actually there ore several kinds of uranium otom. The

common one has moss 238 (relative to oxygen 16) but

a rare one (0.7% of the mixture got from rocks) which is

in fact the one that undergoes fission, has moss 235.

One of the (very slow) ways of separating this valuable

rare uranium from the common one is by converting the

mixture to fluoride and letting the fluoride vapor diffuse

through a porous wall. Because the fluoride of U-^^ has

a different molecular speed the mixture emerging after

diffusing through has different proportions,

(i) Does it become richer or poorer in U-^^?

(ii) Give reasons for your answer to (i).

(iii) Estimate the percentage difference between average

speeds of [U^a-Fg] and [U^-^sFg"! molecules.

(Note: As discussed in Ch. 1 1 , a change of x % in some
measured quantity Q makes a change of about

i x % in VQ )

12. Figs. 25-1 3a and 25-1 3b show two diffusion demon-

strations. Describe what happens and interpret the experi-

ments.

* 13. MOLECULAR VIEW OF COMPRESSING GAS

(a) When on elastic boll hits a massive wall head-on it

rebounds with much the same speed as its original speed.

The some happens when a boll hits a massive bat which

is held firmly. However, if the bat is moving towards the

ball, the ball rebounds with a different speed. Does it

move faster or slower?

(b) (Optional, hard: requires careful thought.) When the bat

is moving towards the boll is the time of the elastic

impact longer, shorter, or the some as when the bat is

stationary? (Hint: If elastic .... S.H.M. . . .)

(c) When a gas in a cylinder is suddenly compressed by the

pushing in of a piston, its temperature rises. Guess at an

explanation of this in terms of the kinetic theory of

gases, with the help of (o) above.

(d) Suppose a compressed gas, as in (c), is allowed to push

a piston out, and expand. What would you expect to

observe?

* 14. MOLECULAR SIZE AND TRAVEL

A closed box contains a large number of gas molecules

at fixed temperature. Suppose the molecules magically be-

came more bulky by swelling up to greater volume, without

any increase in number or speed, without any change of

mass, and without any change in the volume of the box.

(a) How would this affect the overoge distance apart of the

molecules, center to center (great increase, decrease, or

little change)?

(b) Give a reason for your onswer to (a).

(c) How would this affect the average distance travelled by

a molecule between one collision and the next (the

"mean free path")?

(d) Give a reason for your answer to (c).
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Changes in the visible world are often the result of the rule of

probability at work in the submicroscopic world. A survey of

principles of probability, reasons why there are no perpet-

ual-motion machines, entropy and time's arrow—and much

else.

6 Entropy and the Second Law of Thermodynamics

Kenneth W. Ford

An excerpt from his book Basic Physics, 1968.

As profound as any principle in physics is the second law of thermodynamics.

Based on uncertainty and probability in the submicroscopic world, it accounts

for definite rules of change in the macroscopic world. We shall approach this law,

and a new concept, entropy, that goes with it, by considering some aspects of

probability. Through the idea of probability comes the deepest understanding of

spontaneous change in nature.

14.1 Probability in nature

When a spelunker starts down an unexplored cavern, he does not know how far

he will get or what he will find. When a gambler throws a pair of dice, he does

not know what number will turn up. When a prospector holds his Geiger counter

over a vein of uranium ore, he does not know how many radioactive particles

he will count in a minute, even if he counted exactly the number in a preceding

minute. These are three quite different kinds of uncertainty, and all of them

are familiar to the scientist.

The spelunker cannot predict because of total ignorance of what lies ahead.

He is in a situation that, so far as he knows, has never occurred before. He is

like a scientist exploring an entirely new avenue of research. He can make

educated guesses about what might happen, but he can neither say what will

happen, nor even assess the probability of any particular outcome of the

exploration. His is a situation of uncertain knowledge and uncertain probability.

The gambler is in a better position. He has uncertain knowledge but certain

probability. He knows all the possible outcomes of his throw and knows exactly

the chance that any particular outcome will actually occur. His ignorance of any

single result is tempered by a definite knowledge of average results.

The probability of atomic multitudes, which is the same as the probability

of the gambler, is at the heart of this chapter. It forms the basis for the explana-

tion of some of the most important aspects of the behavior of matter in bulk.

This kind of probability we can call a probability of ignorance—not the nearly
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Figure 14.1 A tray of coins, a system governed by laws of probability.

total ignorance of the spelunker in a new cave or the researcher on a new frontier,

but the ignorance of certain details called initial conditions. If the gambler

knew with enough precision every mechanical detail of the throw of the dice

and the frictional properties of the surface onto which they are thrown (the

initial conditions) he could (in principle) calculate exactly the outcome of the

throw. Similarly, the physicist with enough precise information about the where-

abouts and velocities of a collection of atoms at one time could (with an even

bigger "in principle"*) calculate their exact arrangement at a later time.

Because these details are lacking, probability necessarily enters the picture.

The prospector's uncertainty is of still a different kind. He is coming up against

what is, so far as we now know, a fundamental probability of nature, a

probability not connected with ignorance of specific details, but rather connected

with the operation of the laws of nature at the most elementary level. In atomic

and nuclear events, such as radioactivity, probability plays a role, even when
every possible initial condition is known. This fundamental probability in

nature, an essential part of the theory of quantum mechanics, is pursued in

Chapter Twenty-Three. In thermodynamics—the study of the average behavior

of large numbers of molecules and of the links between the submicroscopic and

macroscopic worlds—the fundamental probability in nature is of only secondary

importance. It influences the details of individual atomic and molecular collisions,

but these details are unknown in any case. Of primary importance is the

probability of ignorance stemming from our necessarily scant knowledge of pre-

cise details of molecular motion.

The triumphs of thermodynamics are its definite laws of behavior for systems

about which we have incomplete knowledge. However, it should be no surprise

that laws of probability applied to large enough numbers can become laws of near

certainty. The owners of casinos in Nevada are consistent winners.

14.2 Probability in random events

We turn our attention now to a system that at first sight has little to do with

molecules, temperature, or heat. It is a tray of coins (Figure 14.1). For the

purposes of some specific calculations, let us suppose that the tray contains just

five coins. For this system we wish to conduct a hypothetical experiment and

* Because classical mechanics does not suffice to calculate exactly the outcome of an atomic
collision, this hypothetical forecast of future atomic positions and velocities could be extended
but a moment forward in time.
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Entropy and the Second Law of Thermodynamics

make some theoretical predictions. The experiment consists of giving the tray

a sharp up-and-down motion so that all the coins flip into the air and land again

in the tray, then counting the number of heads and tails displayed, and repeating

this procedure many times. The theoretical problem is to predict how often a

particular arrangement of heads and tails will appear.

Table 14.1 Possible Arrangements of Five Coins

Coin 1 Coin 2 Coin 3 Coin 4 Coin 5

H H H H H 1 way to get 5 heads

H H H H T
H
H
H

H
H
T

H
T
H

T
H
H

H
H
H

5 ways to get 4 heads

and 1 tail

T H H H H
H H H T T
H H T H T
H T H H T
T H H H T
H H T T H 10 ways to get 3 heads

H T H T H and 2 tails

T H H T H
H T T H H
T H T H H
T T H H H
H H T T T
H T H T T
H T T H T
H T T T H
T H H T T 10 ways to get 2 heads

T H T H T and 3 tails

T H T T H
T T H H T
T T H T H
T T T H H
H T T T T
T
T
T

H
T
T

T
H
T

T
T
H

T
T
T

5 ways to get 1 head

and 4 tails

T T T T H
T T T T T 1 way to get 5 tails

The experiment you can easily carry out yourself. Be sure that the tray is

shaken vigorously enough each time so that at least some of the coins flip over.

Here let us be concerned with the theory. To begin, we enumerate all possible

ways in which the coins can land. This is done pictorially in Table 14.1. There

are 32 possible results of a tray shaking.* If all we do is count heads and tails

without identifying the coins, the number of possible results is 6 instead of 32

(Table 14.1). Ten of the ways the coins can land yield three heads and two tails.

* Since each coin can land in two ways, the total number of ways in which five coins ran h\xu\

is2x2x2x2x2 = 25 = 32. Three coins could land in 8 different ways (2^), four coins

in 16 ways (2*), and so on. In how many ways could 10 coins land?
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There are also ten different ways to get three tails and two heads. Both four

heads and one tail and four tails and one head can be achieved in five ways.

Only one arrangement of coins yields five heads, and only one yields five tails.

These numbers do not yet constitute a prediction of the results of the experiment.

We need a postulate about the actual physical process, and a reasonable one

is a postulate of randomness: that every coin is equally likely to land heads up

or tails up and that every possible arrangement of the five coins is equally Jikely.

This means that after very many trials, every entry in Table 14.1 should have

resulted about -^ of the time. Note, however, that equal probability for each

arrangement of coins is not the same as equal probability for each possible

number of heads or tails. After 3,200 trials, for example, we would expect to have

seen five heads about 100 times, but three heads and two tails should have showed

up ten times more frequently, about 1,000 times. The exact number of ap-

pearances of five heads or of three heads and two tails or of any other combina-

tion cannot be predicted with certainty. What can be stated precisely (provided

the postulate of randomness is correct) are probabilities of each such combination.

Table 14.2 Probabilities for Different Numbers of Heads and Tails

When Five Coins Are Flipped

Probabilify

1/32 = 0.031

5/32 = 0.156

10/32 = 0.313

10/32 = 0.313

5/32 = 0.156

1/32 = 0.031

No. Heads No . Tails

5

4 1

3 2
2 3
1 4

5

Total probability = 1.000

Shown in Table 14.2 are the basic probabilities for all the possible numbers of

heads and tails that can appear in a single trial. It is interesting to present these

numbers graphically also, as is done in Figure 14.2. The probability of a certain

0.3 -

„ 0.2 h

S3

2
^ 0.1 h ./

/
/

I

> ^,

Nunil)er of heads 12 3 4 5

Number of tailfl 5 4 3 2 10
Figure 14.2 Probabilities for various results of tray-shaking experiment with

five coins.
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p

Number of heads

Figure 14.3 Probabilities for various results of tray-shaking experiment with

ten coins.

number of heads plotted vs. the numbers of heads gives a bell-shaped curve, high

in the middle, low in the wings.

Table 14.3 Probabilities for Different Numbers of Heads and Tails

When Ten Coins Are Flipped

No. Heads No. Tails Probability

10 1/1024 = 0.0010

9 1 10/1024 = 0.0098

8 2 45/1024 = 0.0439

7 3 120/1024 = 0.1172

6 4 210/1024 = 0.2051

5 5 252/1024 = 0.2460

4 6 210/1024 = 0.2051

3 7 120/1024 = 0.1172

2 8 45/1024 = 0.0439

1 9 10/1024 = 0.0098

10 1/1024 = 0.0010

Total probability = 1.0000

The same kind of calculation, based on the postulate of randomness can be

carried out for any number of coins. For ten coins, the basic probabilities are

given in Table 14.3 and in Figure 14.3.* Two changes are evident. First, the

probability of all heads or all tails is greatly reduced. Second, the bell-shaped

' The reader familiar with binomial coeflScients may be interested to know that the number of

arrangements of n coins to yield m heads is the binomial coefficient

/n\ ^ n!

\m/ ml(Ti — m)\

Thus the probabilities in Table 14.3 are proportional to

Co")' CO' a)'
and so on.
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probability curve has become relatively narrower. The greater the number of

coins, the less likely is it that the result of a single trial will be very different

from an equal number of heads and tails. To make this point clear, the probability

curve for a tray of 1,000 coins is shown in Figure 14.4. The chance of shaking

all heads with this many coins would be entirely negligible even after a lifetime

of trying. As Figure 14.4 shows, there is not even much chance of getting a

distribution as unequal as 450 heads and 550 tails.

The tendency of the probabilities to cluster near the midpoint of the graph,

where the number of heads and the number of tails are nearly equal, can be

characterized by a "width" of the curve. The width of the curve is defined to

be the distance between a pair of points (see Figures 14.3 and 14.4) outside

of which the probabilities are relatively small and inside of which the probabilities

are relatively large. Exactly where these points are chosen is arbitrary. One con-

venient choice is the pair of points where the probability has fallen to about one

third of its central value—more exactly to 1/e = 1/2.72 of its central value.

The reason for defining a width is this: It spans a region of highly probable results.

After the tray is shaken, the number of heads and the number of tails are most

likely to correspond to a point on the central part of the curve within its width.

The distribution of heads and tails is unlikely to be so unequal as to correspond

to a point on the curve outside of this central region. When the number of coins

is reasonably large (more than 100), there is a particularly simple formula for

the width of the probability curve. If C is the number of heads (or tails) at tht

center of the curve, the width W of the curve is given by

W = 2\/C. (14.1)

The half-width, that is, the distance from the midpoint to the 1/e point of the

curve, is equal to VC. This simple square root law is the reason for the particular

factor 1/e used to define the width. With this choice the probability for the result

of a tray-shaking to lie within the width of the curve is 84%.
In Figure 14.4 the value of C, the midpoint number of heads, is 500. The square

root of C is roughly 22. Thus the width of the curve is about 44, extending from

500

C

Number of heads

1.000

Figure 14.4 Probabilities for various results of tray-shaking experiment with

1,000 coins.
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500 — 22 = 478 to 500 + 22 = 522. The total chance for a result to lie within

this span is 84%; to lie outside it, 16%.

An important consequence of the square-root law is to sharpen the probability

curve as the number of coins increases. The ratio of the width to the total number

of coins N {N = 2C) is

W ^ Wc ^ J_
N 2C y/c'

(14.2)

This ratio decreases as C (or N) increases. For 100 coins, the width-to-number

ratio is about 1/10. For 1,000 coins, it is about 1/32. For 1,000,000 coins, it is

1/1,000. If the number of coins could be increased to be equal to the number of

molecules in a drop of water, about 10^2, the width-to-number ratio of the

probability curve would be 1/10^
i. Then the result of vigorous shaking of the

coins would produce a number of heads and a number of tails unlikely to differ

from equality by more than one part in one hundred billion. The probability curve

would have collapsed to a narrow spike (Figure 14.5).

Two more points of interest about these head-and-tail probabilities will bring

us closer to the connection between trays of coins and collections of molecules.

First is the relation between probability and disorder. Ten coins arranged as all

heads can be considered as perfectly orderly, as can an array of all tails. Five

heads and five tails, on the other hand, arranged for example as HHTHTTTHTH
or as TTHTHTHHHT, form a disorderly array. Evidently a high state of

order is associated with low probability, a state of disorder is associated with

high probability. This might be called the housewife's rule: Order is improbable,

disorder is probable. The reason this is so is exactly the same for the household

as for the tray of coins. There are many more different ways to achieve disorder

than to achieve order.

The second point of special interest concerns the way probabilities change in

time. If a tray of 1,000 coins is carefully arranged to show all heads, and is

then shaken repeatedly, its arrangement will almost certainly shift in the direction

of nearly equal numbers of heads and tails. The direction of spontaneous change

will be from an arrangement of low probability to an arrangement of high

0.5X10"

Number of heads

10^

Figure 14.5 For 10^2 coins, the probability curve is a spike much riarrower even

than the line on this graph.
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probability, from order to disorder. The same will be true whenever the initial

arrangement is an improbable one, for instance 700 tails and 300 heads. If

instead we start with 498 heads and 502 tails, no amount of shaking will tend

to move the distribution to a highly uneven arrangement. This can be considered

an equilibrium situation. Repeated trials will then produce results not very

different from the starting point. Clearly there is a general rule here—a rule of

probability, to be sure, not an absolute rule: Under the action of random

influences, a system tends to change from less probable arrangements to more

probable arrangements, from order to disorder. The generalization of this rule

from trays of coins to collections of molecules, and indeed to complex systems of

any kind, is the second law of thermodynamics—a law, as we shall see, with

remarkably broad and important consequences.

14.3 Probability of position

Most of the large-scale properties of substances are, when examined closely

enough, probabilistic in nature. Heat and temperature are purely macroscopic

concepts that lose their meaning when applied to individual atoms and molecules,

for any particular molecule might have more or less energy than the average,

or might contribute more or less than the average to a process of energy exchange.

Temperature is proportional to an average kinetic energy ; heat is equal to a total

energy transferred by molecular colhsion. Because of our incomplete knowledge

about the behavior of any single molecule, and the consequent necessity of

describing molecular motion in probabilistic terms, neither of these thermal

concepts is useful except when applied to numbers so large that the laws of

probability become laws of near certainty. The same can be said of other con-

cepts such as pressure and internal energy.

A single molecule is characterized by position, velocity, momentum, and energy.

Of these, position is the simplest concept and therefore the one for which it is

easiest to describe the role of probability. Consider, for instance, an enclosure

—

perhaps the room you are in—divided by a screen into two equal parts. What
is the relative number of molecules of air on the two sides of the screen? Not a

hard question, you will say. It is obvious that the two halves should contain equal,

or very nearly equal, numbers of molecules. But here is a harder question. Why
do the molecules divide equally? Why do they not congregate, at least some of

the time, in one corner of the room? The answer to this question is exactly the

same as the answer to the question : Why does a tray of coins after being shaken

display approximately equal numbers of heads and tails? The equal distribution

is simply the most probable distribution. Any very unequal distribution is very

improbable.

The mathematics of molecules on two sides of a room proves to be identical to

the mathematics of coins on a tray. By the assumption of randomness, every
single molecule has an equal chance to be on either side of the room, just as every

coin has an equal chance to land as heads or as tails. There are many different

ways to distribute the molecules in equal numbers on the two sides, but only one
way to concentrate them all on one side. If a room contained only five molecules,

it would not be surprising to find them sometimes all on a single side. The
probability that they be all on the left is 1/32 (see Table 14.1), and there is
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an equal probability that they be all on the right. The chance of a 3-2 distribu-

tion is 20/32, or nearly two thirds. Even for so small a number as five, a nearly

equal division is much more likely than a very uneven division. For lO^s

molecules, the number in a large room, the distribution is unlikely to deviate

from equality by more than one part in 10^*. The probability for all of the 10^8

molecules to congregate spontaneously in one half of the room is less than

This number is too small even to think about. Suddenly finding ourselves gasping

for breath in one part of a room while someone in another part of the room is

oversupplied with oxygen is a problem we need not be worried about.

The second law of thermodynamics is primarily a law of change. It states that

the direction of spontaneous change within an isolated system is from an arrange-

ment of lower probability to an arrangement of higher probability. Only if the

arrangement is already one of maximal probability will no spontaneous change

occur. Air molecules distributed uniformly in a room are (with respect to their

position) in such a state of maximal probability. This is an equilibrium situation,

one that has no tendency for spontaneous change. Nevertheless it is quite easy

through external actions to depart from this equilibrium to a less probable

arrangement. Air can be pumped from one side of the room to the other. In a

hypothetical vacuum-tight room with an impenetrable barrier dividing it in half,

almost all of the air can be pumped into one half. When the barrier is punctured,

the air rushes to equalize its distribution in space. This behavior can be described

as the result of higher pressure pushing air into a region of lower pressure. But

it can equally well be described as a simple consequence of the second law of

thermodynamics. Once the barrier is punctured or removed, the air is free to

change to an arrangement of higher probability, and it does so promptly.

It is worth noting that frequent molecular colhsions play the same role for

the air as tray-shaking plays for the coins. A stationary tray displaying all heads

would stay that way, even though the arrangement is improbable. If molecules

were quiescent, they would remain on one side of a room once placed there.

Only because of continual molecular agitation do the spontaneous changes pre-

dicted by the second law of thermodynamics actually occur.

14.4 Entropy and the second law of thermodynamics

There are a variety of ways in which the second law of thermodynamics can be

stated, and we have encountered two of them so far: (1) For an isolated system,

the direction of spontaneous change is from an arrangement of lesser probability

to an arrangement of greater probability; and (2) for an isolated system, the

direction of spontaneous change is from order to disorder. Like the conservation

laws, the second law of thermodynamics applies only to a system free of external

influences. For a system that is not isolated, there is no principle restricting its

direction of spontaneous change.

A third statement of the second law of thermodynamics makes use of a new

concept called entropy. Entropy is a measure of the extent of disorder in a system

or of the probability of the arrangement of the parts of a system. For greater

probability, which means greater disorder, the entropy is higher. An arrangement
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of less probability (greater order) has less entropy. This means that the second

law can be stated: (3) The entropy of an isolated system increases or remains

the same.

Specifically, entropy, for which the usual symbol is S, is defined as Boltzmann's

constant multiplied by the logarithm of the probability of any particular state of

the system:

S = k\og P. (14.3)

The appearance of Boltzmann's constant fc as a constant of proportionality is a

convenience in the mathematical theory of thermodynamics, but is, from a funda-

mental point of view, entirely arbitrary. The important aspect of the definition

is the proportionality of the entropy to the logarithm of the probability P. Note

that since the logarithm of a number increases when the number increases, greater

probability means greater entropy, as stated in the preceding paragraph.

Exactly how to calculate a probability for the state of a system (a procedure

that depends on the energies as well as the positions of its molecules) is a

complicated matter that need not concern us here. Even without this knowledge,

we can approach an understanding of the reason for the definition expressed by

Equation 14.3. At first, entropy might seem to be a superfluous and useless

concept, since it provides the same information about a system as is provided

by the probability P, and S grows or shrinks as P grows or shrinks. Technically

these two concepts are redundant, so that either one of them might be considered

superfluous. Nevertheless both are very useful. (For comparison, consider the

radius and the volume of a sphere; both are useful concepts despite the fact that

they provide redundant information about the sphere.) The valuable aspect of

the entropy concept is that it is additive. For two or more systems brought

together to form a single system, the entropy of the total is equal to the sum
of the entropies of the parts. Probabilities, by contrast, are multiplicative. If

the probability for one molecule to be in the left half of a container is ^, the

probability for two to be there is I, and the probability for three to congregate

on one side is |. If two containers, each containing three molecules, are en-

compassed in a single system, the probability that the first three molecules are

all on the left side of the first container and that the second three are also on

the left side of the second container is ^ X ^ = ^. On the other hand, the entropy

of the combination is the sum of the entropies of the two parts. These properties

of addition and multiplication are reflected in the definition expressed by Equation

14.3. The logarithm of a product is the sum of the logarithm of the factors

:

5totai = k log P1P2 = A; log Pi -f fc log P2 = ,Si -f- ^2. (14.4)

The additive property of entropy is more than a mathematical convenience.

It means that the statement of the second law can be generalized to include a

composite system. To restate it: (3) The total entropy of a set of interconnected

systems increases or stays the same. If the entropy of one system decreases,

the entropy of systems connected to it must increase by at least a compensating

amount, so that the sum of the individual entropies does not decrease.

Even though the second law of thermodynamics may be re-expressed in terms

of entropy or of order and disorder, probability remains the key underlying idea.

The exact nature of this probability must be understood if the second law is to be
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understood. Implicit in our discussion up to this point but still requiring emphasis

is the a priori nature of the probability that governs physical change. The state-

ment that physical systems change from less probable to more probable arrange-

ments might seem anything but profound if the probability is regarded as an

after-the-fact probability. If we decided that a uniform distribution of molecules

in a box must be more probable than a nonuniform distribution because gas

in a box is always observed to spread itself out evenly, the second law would be

mere tautology, saying that systems tend to do what they are observed to do.

In fact, the probability of the second law of thermodynamics is not based on

experience or experiment. It is a before-the-fact (a priori) probability, based on

coimting the number of different ways in which a particular arrangement could be

achieved. To every conceivable arrangement of a system can be assigned an

a priori probability, whether or not the system or that arrangement of it has ever

been observed. In practice there is no reason why the state of a system with the

highest a priori probability need be the most frequently observed. Consider

the case of the dedicated housewife. Almost every time an observant friend comes

to call, he finds her house to be in perfect condition, nothing out of place, no dust

in sight. He must conclude that for this house at least, the most probable state

is very orderly state, since that is what he most often observes. This is an after-

the-fact probability. As the housewife and the student of physics know, the orderly

state has a low a priori probability. Left to itself, the house will tend toward a

disorderly state of higher a priori probability. A state of particularly high a priori

probability for a house is one not often observed, a pile of rubble. Thus an ar-

rangement of high probability (from here on we shall omit the modifier, a priori)

need be neither frequently observed nor quickly achieved, but it is, according

to the second law of thermodynamics, the inevitable destination of an isolated

system.

In comparison with other fundamental laws of nature, the second law of thermo-

dynamics has two special features. First, it is not given expression by any

mathematical equation. It specifies a direction of change, but not a magnitude

of change. The nearest we can come to an equation is the mathematical statement,

S ^ 0. (14.5)

In words: The change of entropy (for an isolated system or collection of sys-

tems) is either positive or zero. Or, more simply, entropy does not spontaneously

decrease.

Every fundamental law of nature is characterized by remarkable generality,

yet the second law of thermodynamics is unique among them (its second special

feature) in that it finds direct application in a rich variety of settings, physical,

biological, and human. In mentioning trays of coins, molecules of gas, and disorder

in the house, we have touched only three of a myriad of applications. Entropy

and the second law have contributed to discussion of the behavior of organisms,

the flow of events in societies and economies, communication and information,

and the history of the universe. In much of the physics and chemistry of macro-

scopic systems, the second law has found a use. Only at the submicroscopic level

of single particles and single events is it of little importance. It is a startling and

beautiful thought that an idea as simple as the natural trend from order to disorder

should have such breadth of impact and power of application.
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In most of the remainder of this chapter we shall be concerned with the appli-

cation of the second law of thermodynamics to relatively simple physical situations.

In Section 14.9 we return to some of its more general implications.

14.5 Probability of velocity: heat flow and equipartition

Since the velocities as well as the positions of individual molecules are generally

imknown, velocity too is subject to considerations of probability. This kind of

probability, like the probability of position, follows the rule of spontaneous change

from lower to higher probability. It should not be surprising to learn that for

a collection of identical molecules the most probable arrangement is one with equal

molecular speeds (and randomly oriented velocities). This means that available

energy tends to distribute itself uniformly over a set of identical molecules,

just as available space tends to be occupied uniformly by the same molecules.

In fact, the equipartition theorem and the zeroth law of thermodynamics can both

be regarded as consequences of the second law of thermodynamics. Energy divides

itself equally among the available degrees of freedom, and temperatures tend

toward equality, because the resulting homogenized state of the molecules is the

state of maximum disorder and maximum probability. The concentration of all

of the energy in a system on a few molecules is a highly ordered and improbable

situation analogous to the concentration of all of the molecules in a small portion

of the available space.

The normal course of heat flow can also be understood in terms of the second

law. Heat flow from a hotter to a cooler body is a process of energy transfer

tending to equalize temperature and thereby to increase entropy. The proof that

equipartition is the most probable distribution of energy is complicated and

beyond the scope of this book. Here we seek only to make it plausible through

analogy with the probability of spatial distributions.

Heat flow is so central to most applications of thermodynamics that the second

law is sometimes stated in this restricted form: (4) Heat never flows spontaneously

from a cooler to a hotter body. Notice that this is a statement about macroscopic

behavior, whereas the more general and fundamental statements of the second

law, which make use of the ideas of probability and order and disorder, refer

to the submicroscopic structure of matter. Historically, the first version of the

second law, advanced by Sadi Carnot in 1824, came before the submicroscopic

basis of heat and temperature was established, in fact before the first law of

thermodynamics was formulated. Despite a wrong view of heat and an incomplete

view of energy, Carnot was able to advance the important principle that no heat

engine (such as a steam engine) could operate with perfect efficiency. In modem
terminology, Carnot's version of the second law is this: (5) In a closed system,

heat flow out of one part of the system cannot be transformed wholly into mechan-
ical energy (work), but must be accompanied by heat flow into a cooler part

of the system. In brief, heat cannot be transformed completely to work.

The consistency of Carnot's form of the second law with the general principle

of entropy increase can best be appreciated by thinking in terms of order and
disorder. The complete conversion of heat to work would represent a transfor-

mation of disordered energy, a replacement of random molecular motion by orderly

bulk motion. This violates the second law of thermodynamics. As indicated
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Figure 14.6 Schematic diagram of partial conversion of disordered heat energy

to ordered mechanical energy. Heat flow out of a hot region decreases the entropy

there. A compensating increase of entropy in a cold region requires less heat.

Therefore, some heat can be transformed to work without violating the second

law of thermodynamics. Any device that achieves this aim is called a heat engine.

schematically in Figure 14.6, a partial conversion of heat to work is possible

because a small heat flow into a cool region may increase the entropy there by

more than the decrease of entropy produced by a larger heat flow out of a hot

region. At absolute zero, the hypothetically motionless molecules have maximum
order. Greater temperature produces greater disorder. Therefore heat flow into

a region increases its entropy, heat flow out of region decreases its entropy.

Fortunately for the feasibility of heat engines, it takes less heat at low tempera-

ture than at high temperature to produce a given entropy change. To make an

analogy, a pebble is enough to bring disorder to the smooth surface of a calm lake.

To produce an equivalent increase in the disorder of an already rough sea

requires a boulder. In Section 14.7, the quantitative link between heat flow and

entropy is discussed.

The reverse transformation, of total conversion of work to heat, is not only

possible but is commonplace. Every time a moving object is brought to rest

by friction, all of its ordered energy of bulk motion is converted to disordered

energy of molecular motion. This is an entropy-increasing process allowed by

the second law of thermodynamics. In general, the second law favors energy

dissipation, the transformation of energy from available to unavailable form.

Whenever we make a gain against the second law by increasing the order or

the available energy in one part of a total system, we can be sure we have lost

even more in another part of the system. Thanks to the constant input of energy

from the sun, the earth remains a lively place and we have nothing to fear

from the homogenizing effect of the second law.

14.6 Perpetual motion

We have given so far five different versions of the second law, and will add only

one more. Of those given, the first three, expressed in terms of probability, of
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order-disorder, and of entropy, are the most fundamental. Worth noting in several

of the formulations is the recurring emphasis on the negative. Entropy does not

decrease. Heat does not flow spontaneously from a cooler to a hotter region.

Heat can not be wholly transformed to work. Our sixth version is also expressed

in the negative. (6) Perpetual-motion machines cannot be constructed. This

statement may sound more like a staff memorandum in the Patent Office than

a fundamental law of nature. It may be both. In any event, it is certainly the

latter, for from it can be derived the spontaneous increase of probability, of dis-

order, or of entropy. It is specialized only in that it assumes some friction,

however small, to be present to provide some energy dissipation. If we overlook

the nearly frictionless motion of the planets in the solar system and the frictionless

motion of single molecules in a gas, everything in between is encompassed.

A perpetual-motion machine can be defined as a closed system in which bulk

motion persists indefinitely, or as a continuously operating device whose output

work provides its own input energy. Some proposed perpetual-motion machines

violate the law of energy conservation (the first law of thermodynamics). These

are called perpetual-motion machines of the first kind. Although they can be

elaborate and subtle, they are less interesting than perpetual-motion machines of

the second kind, hypothetical devices that conserve energy but violate the prin-

ciple of entropy increase (the second law of thermodynamics)

.

As operating devices, perpetual-motion machines are the province of crackpot

science and science fiction. As inoperable devices they have been of some signif-

CofTee container,

insulated on

top and sides.

Figure 14.7 A perpetual-motion machine of the second kind. The device labeled
MARK II receives heat energy from the coffee and converts this to mechanical
energy which turns a paddle wheel, agitating the coffee, returning to the coffee

the energy it lost by heat flow. It is not patentable.
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icance in the development of science. Carnot was probably led to the second law

of thermodynamics by his conviction that perpetual motion should be impossible.

Arguments based on the impossibility of perpetual motion can be used to support

Newton's third law of mechanics and Lenz's law of electromagnetic reaction,

which will be discussed in Chapter Sixteen. Any contemporary scientist with

a speculative idea can subject it to at least one quick test: Is it consistent with

the impossibility of perpetual motion?

Suppose that an inventor has just invented a handy portable coffee warmer
(Figure 14.7). It takes the heat which flows from the coffee container and, by
a method known only to him, converts this heat to work expended in stirring

the coffee. If the energy going back into the coffee is equal to that which leaks off

as heat, the original temperature of the coffee will be maintained. Is it patentable?

No, for it is a perpetual-motion machine of the second kind. Although it conserves

energy, it performs the impossible task of maintaining a constant entropy

in the face of dissipative forces that tend to increase entropy. Specifically it

violates Carnot's version of the second law (No. 5, page 441), for in one part

of its cycle it converts heat wholly to work. Of course it also violates directly

our sixth version of the second law.

One of the chief strengths of the second law is its power to constrain the behavior

of complex systems without reference to any details. Like a corporate director,

the second law rules the overall behavior of systems or interlocked sets of system

in terms of their total input and output and general function. Given a proposed

scheme for the operation of the automatic coffee warmer, it might be quite

a complicated matter to explain in terms of its detailed design why it cannot work.

Yet the second law reveals at once that no amount of ingenuity can make it

work.

14.7 Entropy on two levels

The mathematical roots of thermodynamics go back to the work of Pierre Laplace

and other French scientists concerned with the caloric theory of heat in the years

aroimd 1800, and even further to the brilliant but forgotten invention of the

kinetic theory of gases by Daniel Bernoulli in 1738. Not until after 1850 did these

and other strands come together to create the theory of thermodynamics in some-

thing like its modem form. No other great theory of physics has traveled such

a rocky road to success over so many decades of discovery, argumentation, buried

insights, false turns, and rediscovery, its paths diverging and finally rejoining

in the grand synthesis of statistical mechanics which welded together the macro-

scopic and submicroscopic domains in the latter part of the nineteenth century.

In the long and complex history of thermodynamics, the generalization of the

principle of energy conservation to include heat stands as probably the most

significant single landmark. Joule's careful experiments on the mechanical equiv-

alent of heat in the 1840's not only established the first law of thermodynamics,

but cleared the way for a full understanding of the second law, provided a basis

for an absolute temperature scale, and laid the groundwork for the submicro-

scopic mechanics of the kinetic theory. Progress in the half century before Joule's

work had been impeded by a pair of closely related difficulties: an incorrect view

of the nature of heat, and an incomplete understanding of the way in which
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heat engines provide work. To be sure, there had been important insights in

this period, such as Carnot's statement of the second law of thermodynamics in

1824. But such progress as there was did not fit together into a single structure,

nor did it provide a base on which to build. Not until 1850, when the great sig-

nificance of the general principle of energy conservation was appreciated by

at least a few scientists, was Carnot's work incorporated into a developing

theoretical structure. The way was cleared for a decade of rapid progress. In the

1850's, the first and second laws of thermodynamics were first stated as general

unifying principles, the kinetic theory was rediscovered and refined, the concepts

of heat and temperature were given submicroscopic as well as macroscopic

definitions, and the full significance of the ideal-gas law was understood. The

great names of the period were James Joule, William Thomson (Lord Kelvin),

and James Clerk Maxwell in England, Rudolph Clausius and August Kronig

in Germany.

One way to give structure to the historical development of a major theory

is to follow the evolution of its key concepts. This is particularly instructive

for the study of thermodynamics, because its basic concepts—heat, temperature,

and entropy—exist on two levels, the macroscopic and the submicroscopic.

The refinement of these concepts led both to a theoretical structure for under-

standing a great part of nature and to a bridge between two worlds, the large and

the small. Of special interest here is the entropy concept.

Like heat and temperature, entropy was given first a macroscopic definition,

later a molecular definition. Being a much subtler concept than either heat or

temperature (in that it does not directly impinge on our senses), entropy was

defined only after its need in the developing theory of thermodynamics became

obvious. Heat and temperature were familiar ideas refined and revised for the

needs of quantitative understanding. Entropy was a wholly new idea, formally

introduced and arbitrarily named when it proved to be useful in expressing

the second law of thermodynamics in quantitative form. As a useful but unnamed
quantity, entropy entered the writings of both Kelvin and Clausius in the early

1850's. Finally in 1865, it was formally recognized and christened "entropy"

by Clausius, after a Greek word for transformation. Entropy, as he saw it,

measured the potentiality of a system for transformation.

The proportionality of entropy to the logarithm of an intrinsic probability

for the arrangement of a system, as expressed by Equation 14.3, was stated first

by Ludwig Boltzmann in 1877. This pinnacle of achievement in what had come
to be called statistical mechanics fashioned the last great thermodynamics link

between the large-scale and small-scale worlds. Although we now regard Boltz-

mann's definition based on the molecular viewpoint as the more fundamental,

we must not overlook the earlier macroscopic definition of entropy given by
Clausius (which in most applications is easier to use). Interestingly, Clausius

expressed entropy simply and directly in terms of the two already familiar basic

concepts, heat and temperature. He stated that a change of entropy of any part

of a system is equal to the increment of heat added to that part of the system

divided by its temperature at the moment the heat is added, provided the change

is from one equilibrium state to another:

A5 = ^ . (14.6)
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Here S denotes entropy, H denotes heat, and T denotes the absolute temperature.

For heat gain, A^ is positive and entropy increases. For heat loss, Ai/ is negative

and entropy decreases. How much entropy change is produced by adding or sub-

tracting heat depends on the temperature. Since the temperature T appears in

the denominator in Equation 14.6, a lower temperature enables a given increment

of heat to produce a greater entropy change.

There are several reasons why Clausius defined not the entropy itself, but the

change of entropy. For one reason, the absolute value of entropy is irrelevant,

much as the absolute value of potential energy is irrelevant. Only the change

of either of these quantities from one state to another matters. Another more

important reason is that there is no such thing as "total heat." Since heat is

energy transfer (by molecular collisions), it is a dynamic quantity measured

only in processes of change. An increment of heat AH can be gained or lost

by part of a system, but it is meaningless to refer to the total heat H stored

in that part. (This was the great insight about heat afforded by the discovery of

the general principle of energy conservation in the 1840's). What is stored

is internal energy, a quantity that can be increased by mechanical work as well as

by heat flow. Finally, it should be remarked that Clausius' definition refers not

merely to change, but to small change. When an otherwise inactive system gains

heat, its temperature rises. Since the symbol T in Equation 14.6 refers to the

temperature at which heat is added, the equation applies strictly only to incre-

ments so small that the temperature does not change appreciably as the heat

is added. If a large amount of heat is added, Equation 14.6 must be applied over

and over to the successive small increments, each at slightly higher temperature.

To explain how the macroscopic definition of entropy given by Clausius

(Equation 14.6) and the submicroscopic definition of entropy given by Boltzmann

(Equation 14.3) fit together is a task beyond the scope of this book. Nevertheless

we can, through an idealized example, make it reasonable that these two defi-

nitions, so different in appearance, are closely related. To give the Clausius

definition a probability interpretation we need to discuss two facts: (1) Addition

of heat to a system increases its disorder and therefore its entropy; (2) The dis-

ordering influence of heat is greater at low temperature than at high temperature.

The first of these facts is related to the apparance of the factor AH on the right

of Equation 14.6; the second is related to the inverse proportionality of entropy

change to temperature.

Not to prove these facts but to make them seem reasonable, we shall consider

an idealized simple system consisting of just three identical molecules, each one

capable of existing in any one of a number of equally spaced energy states.

The overall state of this system can be represented by the triple-ladder diagram

of Figure 14.8, in which each rung corresponds to a molecular energy state.

Dots on the three lowest rungs would indicate that the system possesses no internal

energy. The pictured dots on the second, third, and bottom rungs indicate that

the system has a total of five units of internal energy, two units possessed by

the first molecule, three by the second, and none by the third. The intrinsic

probability associated with any given total energy is proportional to the number

of different ways in which that energy can be divided. This is now a probability

of energy distribution, not a probability of spatial distribution. However, the

reasoning is much the same as in Section 14.3. There the intrinsic (a priori)
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Figure 14.8 Idealized energy diagram for a system of three molecules, each with
equally spaced energy states. Each ladder depicts the possible energies of a par-
ticular molecule, and the heavy dot specifies the actual energy of that molecule.

probability for a distribution of molecules in space was taken to be proportional
to the number of different ways in which that distribution could be obtained.
Or, to give another example, the probability of throwing 7 with a pair of dice
is greater than the probability of throwing 2, because there are more different
ways to get a total of 7 than to get a total of 2.

Table 14.4 enumerates all the ways in which up to five units of energy can
be divided among our three idealized molecules. The triplets of numbers in the
second column indicate the occupied rungs of the three energy ladders. It is an
interesting and instructive problem to deduce a formula for the numbers in the

Table 14.4 Internal Energy Distribution for Idealized System of Three Molecules

Total Number of Ways to
Energy Distribution of Energy Distribute Energy

000 1

1 100 010 001 3

2 200 020 002
110 101 Oil 6

3 300 030 003
210 201 012
120 102 021
111 10

4 400 040 004
310 301 031
130 103 013
220 202 022
211 121 112 15

5 500 050 005
410 401 041
140 104 014
320 302 032
230 203 023
311 131 113
122 212 221 21
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last column, (hint: The number of ways to distribute 6 units of energy is 28.)

However, since this is a highly idealized picture of very few molecules, precise

numerical details are less important than are the qualitative features of the

overall pattern. The first evident feature is that the greater the energy, the more

different ways there are to divide the energy. Thus a higher probability is asso-

ciated with greater internal energy. This does not mean that the system, if isolated

and left alone, will spontaneously tend toward a higher probability state, for that

would violate the law of energy conservation. Nevertheless, we associate with

the higher energy state a greater probability and a greater disorder. When energy

is added from outside via heat flow, the entropy increase is made possible. This

makes reasonable the appearance of the heat increment factor, A//, in Equation

14.6.

Looking further at Table 14.4, we ask whether the addition of heat produces a

greater disordering effect at low temperature than at high temperature. For

simplicity we can assume that temperature is proportional to total internal

energy, as it is for a simple gas, so that the question can be rephrased: Does

adding a unit of heat at low energy increase the entropy of the system more

than adding the same unit of heat at higher energy? Answering this question

requires a little care, because of the logarithm that connects probability to en-

tropy. The relative probability accelerates upward in Table 14.4. In going from

1 to 2 units of energy, the number of ways to distribute the energy increases by

three, from 2 to 3 units it increases by four, from 3 to 4 units it increases by five,

and so on. However, the entropy, proportional to the logarithm of the probability,

increases more slowly at higher energy. The relevant measure for the increase

of a logarithm is the factor of growth.* From to 1 unit of energy, the probabil-

ity trebles, from 1 to 2 units it doubles, from 2 to 3 units it grows by 67%,
and so on, by ever decreasing factors of increase. Therefore the entropy

grows most rapidly at low internal energy (low temperature). This makes

reasonable the appearance of the temperature factor "downstairs" on the right

of Equation 14.6.

This example focuses attention on a question that may have occurred to you

already. Why is it that energy addition by heat flow increases entropy, but energy

addition by work does not? The definition. Equation 14.6, makes reference to

only one kind of energy, heat energy. The difference lies basically in the

recoverability of the energy. When work is done on a system without any

accompanying heat flow, as when gas is compressed in a cylinder (Figure 14.9),

the energy can be fully recovered, with the system and its surroundings returning

precisely to the state they were in before the work was done. No entropy change

is involved. On the other hand, when energy in the form of heat flows from a

hotter to a cooler place, there is no mechanism that can cause the heat to flow

spontaneously back from the cooler to the hotter place. It is not recoverable.

Entropy has increased. In a realistic as opposed to an ideal cycle of compression

and expansion, there will in fact be some entropy increase because there will

be some flow of heat from the compressed gas to the walls of the container.

Logarithms are defined in such a way that the logarithms of 10, 100, 1,000, and 10,000 or of

5, 10, 20, 40, and 80 differ by equal steps. It is this feature which makes the multiphcation of a

pair of numbers equivalent to the addition of their logarithms.
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Figure 14,9 Idealized cycle of compression and expansion of gas, accompanied
by no change of entropy. If any heat flow occurs in the cycle, entropy does
increase.

Another useful way to look at the difference between heat and work is in
molecular terms, merging the ideas of position probability and velocity or energy
probability. If a confined gas [Figure 14.9(b)] is allowed to expand until its

volume doubles [Figure 14.9(c)] what we learned about position probability
tells us that, so far as its spatial arrangement is concerned, it has experienced
an entropy increase, having spread out into an intrinsically more probable
arrangement. In doing so, however, it has done work on its surroundings and
has lost internal energy. This means that, with respect to its velocity and energy,
it has approached a state of greater order and lesser entropy. Its increase of
spatial disorder has in fact been precisely canceled by its decrease of energy
disorder, and it experiences no net change of entropy. Had we instead wanted
to keep its temperature constant during the expansion, it would have been neces-
sary to add heat (equal in magnitude to the work done). Then after the ex-
pansion, the unchanged internal energy would provide no contribution to entropy
change, so that a net entropy increase would be associated with the expansion-
arising from the probability of position. This would match exactly the entropy
increase bM/T predicted by the Clausius formula, for this change required a
positive addition of heat.

Although the macroscopic entropy definition of Clausius and the submicroscopic
entropy definition of Boltzmann are, in many physical situations, equivalent,
Boltzmann's definition remains the more profound and the more general. It
makes possible a single grand principle, the spontaneous trend of systems from
arrangements of lower to higher probability, that describes not only gases and
solids and chemical reactions and heat engines, but also dust and disarray, erosion
and decay, the deterioration of fact in the spread of rumor, the fate of mis-
managed corporations, and perhaps the fate of the universe.
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14.8 Application of the second law

That heat flows spontaneously only from a warmer to a cooler place is a fact

which can itself be regarded as a special form of the second law of thermo-

dynamics. Alternatively the direction of heat flow can be related to the general

principle of entropy increase with the help of the macroscopic definition of

entropy. If body 1 at temperature Ti loses an increment of heat AH, its entropy

change—a decrease—is

A5i = -^ • (14.7)

If this heat is wholly transferred to body 2 at temperature T2, its entropy gain is

A-S2 =^ • (14.8)

The total entropy change of the system (bodies 1 and 2) is the sum,

AS = ASi+ AS2 =Ah[^^-yJ- (14.9)

This entropy change must, according to the second law, be positive if the heat

transfer occurs spontaneously. It is obvious algebraically from Equation 14.9

that this requirement implies that the temperature Tj is greater than the tem-

perature T2. In short, heat flows from the warmer to the cooler body. In the

process, the cooler body gains energy equal to that lost by the warmer body but

gains entropy greater than that lost by the warmer body. When equality of

temperature is reached, heat flow in either direction would decrease the total

entropy. Therefore it does not occur.

A heat engine is, in simplest terms, a device that transforms heat to mechanical

work. Such a transformation is, by itself, impossible. It is an entropy-decreasing

process that violates the second law of thermodynamics. We need hardly conclude

that heat engines are impossible, for we see them all around us. Gasoline engines,

diesel engines, steam engines, jet engines, and rocket engines are all devices that

transform heat to work. They do so by incorporating in the same system a

mechanism of entropy increase that more than offsets the entropy decrease

associated with the production of work. The simple example of heat flow with

which this section began shows that one part of a system can easily lose entropy

if another part gains more. In almost all transformations of any complexity, and

in particular in those manipulated by man for some practical purpose, entropy

gain and entropy loss occur side by side, with the total gain inevitably exceeding

the total loss.

The normal mechanism of entropy gain in a heat engine is heat flow. Carnot's

great insight that provided the earliest version of the second law was the

realization that a heat engine must be transferring heat from a hotter to a cooler

place at the same time that it is transforming heat to work. How this is ac-

complished varies from one heat engine to another, and the process can be quite

complicated and indirect. Nevertheless, without reference to details, it is possible

to discover in a very simple way what fraction of the total energy supplied by

fuel can be transformed into usable work. This fraction is called the efficiency
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of the engine. Refer to Figure 14.6, which shows schematically a process of partial
transformation of heat to work. From the hotter region, at temperature Tj, flows
an increment of heat H^. Into the cooler region, at temperature T2, flows heat //g.
The output work is W. The first and second laws of thermodynamics applied
to this idealized heat engine can be given simple mathematical expression.

1. Energy conservation : Hi = H2 -\- W. (14.10)

2. Entropy increase: S = ~ -^^ > Q- (14.11)

If this heat engine were "perfect"—free of friction and other dissipative effects—
the entropy would remain constant instead of increasing. Then the right side of
Equation 14.11 could be set equal to zero, and the ratio of output to input heat
would be

H2 T2

H[ =
Vi- (14.12)

From Equation 14.10 follows another equation containing the ratio H2/H1,

W , H2

Substitution of Equation 14.12 into Equation 14.13 gives for the ratio of output
work to initial heat supply,

'' max , J- 2

-^^ = 1 - ^ •

(14.14)

Here we have written W^^^ instead of W, since this equation gives the maximum
possible efficiency of the idealized heat engine. If the temperatures T^i and T2 are
nearly the same, the efficiency is very low. If T2 is near absolute zero, the
theoretical efficiency can be close to 1—that is, almost perfect.
The modern marvels of technology that populate our present world—auto-

mobiles, television, airplanes, radar, pocket radios—all rest ultimately on basic
prmciples of physics. Nevertheless they are usually not instructive as illustrations
of fundamental laws, for the chain of connection from their practical function to
the underlying principles is complex and sophisticated. The refrigerator is such
a device. Despite its complexity of detail, however, it is worth considering in
general terms. Because it transfers heat from a cooler to a warmer place, the
refrigerator appears at first to violate the second law of thermodynamics. 'The
fact that it must not do so allows us to draw an important conclusion about
the minimum expenditure of energy required to run it. The analysis is quite
similar to that for a heat engine. Suppose that the mechanism of the refrigerator
is required to transfer an amount of heat H^ out of the refrigerator each second.
If the interior of the refrigerator is at temperature Tj, this heat loss contributes
an entropy decrease equal to -Hi/T^. This heat is transferred to the surrounding
room at temperature T2 (higher than Tj), where it contributes an entropy in-
crease equal to H^/T2. The sum of these two entropy changes is negative. Some
other contribution to entropy change must be occurring in order that the total
change may be positive, in consonance with the second law. This extra contribu-
tion comes from the degradation of the input energy that powers the refrigerator.
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The energy supplied by electricity or by the combustion of gas eventually reaches

the surrounding room as heat. If the external energy (usually electrical) supplied

in one second is called W, and the total heat added to the room in the same

time is called H2, energy conservation requires that H2 be the sum of H^ and W:

H2 = Hi + W. (14.15)

The energy flow is shown schematically in Figure 14.10. At the same time the

total entropy change is given by

T2 Ti
(14.16)

Since A<S must be zero or greater, the ratio H2/H1 [= (heat added to room) /(heat

extracted from refrigerator)] must be at least equal to T2/T1. If the energy

conservation equation is written in the form

we can conclude that

Tr^i/:[^-l]. (14.17)

The right side of this inequality gives the minimum amount of external energy

input required in order to transfer an amount of heat H^ "uphill" from tempera-

ture Ti to temperature T2. As might be expected, the input energy requirement

increases as the temperature difference increases. If the temperature Tj is near

absolute zero, as it is in a helium liquefier, the external energy expended is much
greater than the heat transferred.

The real beauty of the result expressed by Equation 14.17 is its generality for

all refrigerators regardless of their construction and mode of operation. The input

energy W could be supplied by an electric motor, a gas flame, or a hand crank.

It is characteristic of the second law of thermodynamics, just as it is characteristic

of the fundamental conservation laws, that it has something important to say

about the overall behavior of a system without reference to details, perhaps

External

source 1 21 Energy W
of power

H

Temperature Ti.

Heat Hi removed

\
Mechanism of

refrigerator

Room temperature T2.

Heat H2 added

X

Figure 14.10 Energy and heat flow in the operation of a refrigerator.
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without knowledge of details. In the small-scale world, our inability to observe

precise features of individual events is one reason for the special importance of

conservation laws. In the large-scale world, the elaborate complexity of many
systems is one reason for the special importance of the second law of thermo-

dynamics. Like the conservation laws, it provides an overall constraint on the

system as a whole.

In many applications of the second law, the concept of available energy is the

easiest key to understanding. In general, the trend of nature toward greater dis-

order is a trend toward less available energy. A jet plane before takeoff has a

certain store of available energy in its fuel. While it is accelerating down the

runway, a part of the energy expended is going into bulk kinetic energy (ordered

energy), a part is going into heat that is eventually dissipated into unavailable

energy. At constant cruising speed, all of the energy of the burning fuel goes to

heat the air. Thermodynamically speaking, the net result of a flight is the total

loss of the available energy originally present in the fuel. A rocket in free space

operates with greater efficiency. Being free of air friction, it continues to accelerate

as long as the fuel is burning. When its engine stops, a certain fraction (normally

a small fraction) of the original available energy in the fuel remains available

in the kinetic energy of the vehicle. This energy may be "stored" indefinitely in

the orbital motion of the space vehicle. If it re-enters the atmosphere, however,

this energy too is transformed into the disordered and unavailable form of internal

energy of the air. To get ready for the next launching, more rocket fuel must

be manufactured. The energy expended in the chemical factory that does this job

is inevitably more than the energy stored in the fuel that is produced.

In general the effect of civilization is to encourage the action of the second law

of thermodynamics. Technology greatly accelerates the rate of increase of entropy

in man's immediate environment. Fortunately the available energy arriving each

day from the sun exceeds by a very large factor the energy degraded by man's

activity in a day. Fortunately too, nature, with no help from man, stores in

usable form some of the sun's energy—for periods of months or years in the

cycle of evaporation, precipitation, and drainage; for decades or centuries in

lumber; for millennia in coal and oil. In time, as we deplete the long-term

stored supply of available energy, we shall have to rely more heavily on the

short-term stores and probably also devise new storage methods to supplement

those of nature.

14.9 The arrow of time

Familiarity breeds acceptance. So natural and normal seem the usual events of

our everyday life that it is difficult to step apart and look at them with a scientific

eye.

Men with the skill and courage to do so led the scientific revolution of the

seventeenth century. Since then, the frontiers of physics have moved far from

the world of direct sense perception, and even the study of our immediate en-

vironment more often than not makes use of sophisticated tools and controlled

experiment. Nevertheless, the ability to take a fresh look at the familiar and to

contrast it with what would be the familiar in a different universe with different

laws of nature remains a skill worth cultivating. For the student, and often for
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the scientist as well, useful insights come from looking at the familiar as if it

were unfamiliar.

Consider the second law of thermodynamics. We need not go to the laboratory

or to a machine or even to the kitchen to witness its impact on events. It is

unlikely that you get through any five minutes of your waking life without

seeing the second law at work. The way to appreciate this fact is by thinking

backward. Imagine a motion picture of any scene of ordinary life run backward.

You might watch a student untyping a paper, each keystroke erasing another

letter as the keys become cleaner and the ribbon fresher. Or bits of hair clippings

on a barber-shop floor rising to join the hair on a customer's head as the barber

unclips. Or a pair of mangled automobiles undergoing instantaneous repair as

they back apart. Or a dead rabbit rising to scamper backward into the woods as a

crushed bullet reforms and flies backward into a rifle while some gunpowder is

miraculously manufactured out of hot gas. Or something as simple as a cup of

coffee on a table gradually becoming warmer as it draws heat from its cooler

surroundings. All of these backward-in-time views and a myriad more that you

can quickly think of are ludicrous and impossible for one reason only—they

violate the second law of thermodynamics. In the actual sequence of events,

entropy is increasing. In the time reversed view, entropy is decreasing. We recog-

nize at once the obvious impossibility of the process in which entropy decreases,

even though we may never have thought about entropy increase in the everyday

world. In a certain sense everyone "knows" the second law of thermodynamics.

It distinguishes the possible from the impossible in ordinary affairs.

In some of the examples cited above, the action of the second law is obvious,

as in the increasing disorder produced by an automobile colUsion, or the increas-

ing entropy associated with heat flow from a cup of coffee. In others, it is less

obvious. But whether we can clearly identify the increasing entropy or not,

we can be very confident that whenever a sequence of events occurs in our world

in one order and not in the other, it is because entropy increase is associated

with the possible order, entropy decrease with the impossible order. The reason

for this confidence is quite simple. We know of no law other than the second

law of thermodynamics that assigns to processes of change in the large-scale world

a preferred direction in time. In the submicroscopic world too, time-reversal

invariance is a principle governing all or nearly all fundamental processes.* Here

we have an apparent paradox. In order to understand the paradox and its resolu-

tion, we must first understand exactly what is meant by time-reversal invariance.

The principle of time-reversal invariance can be simply stated in terms of

hypothetical moving pictures. If the filmed version of any physical process, or

sequence of events, is shown backward, the viewer sees a picture of something that

could have happened. In slightly more technical language, any sequence of

events, if executed in the opposite order, is a physically possible sequence of

events. This leads to the rather startling conclusion that it is, in fact, impossible

* For the first time in 1964, some doubt was cast on the universal validity of time-reversal in-

variance, which had previously been supposed to be an absolute law of nature. In 1968 the

doubt remains unresolved. Even if found to be imperfect, the principle will remain valid to

a high degree of approximation, since it has already been tested in many situations. In par-

ticular, since all interactions that have any effect on the large-scale world do obey the

principle of time-reversal invariance, the discussion in this section will be unaffected.
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to tell by watching a moving picture of events in nature whether the film is

running backward or forward. How can this principle be reconciled with the

gross violations of common sense contained in the backward view of a barber

cutting hair, a hunter firing a gun, a child breaking a plate, or the President

signing his name? Does it mean that time-reversal invariance is not a valid law

in the macroscopic world? No. As far as we know, time-reversal invariance

governs every interaction that underlies processes of change in the large-scale

world. The key to resolving the paradox is to recognize that possibility does not

mean probability. Although the spontaneous reassembly of the fragments of an

exploded bomb into a whole, unexploded bomb is wildly, ridiculously improbable,

it is not, from the most fundamental point of view, impossible.

At every important point where the macroscopic and submicroscopic descrip-

tions of matter touch, the concept of probability is crucial. The second law of

thermodynamics is basically a probabilistic law whose approach to absolute

validity increases as the complexity of the system it describes increases. For a

system of half a dozen molecules, entropy decrease is not only possible, it is

quite likely, at least some of the time. All six molecules might cluster in one

comer of their container, or the three less energetic molecules might lose energy

via collisions to the three more energetic molecules ("uphill" heat flow). For a

system of lO^o molecules, on the other hand, entropy decrease becomes so im-

probable that it deserves to be called impossible. We could wait a billion times

the known lifetime of the universe and still never expect to see the time-reversal

view of something as simple as a piece of paper being torn in half. Nevertheless,

it is important to realize that the time-reversed process is possible in principle.

Even in the world of particles, a sequence of events may occur with much
higher probability in one direction than in the opposite direction. In the world

of human experience, the imbalance of probabilities is so enormous that it no

longer makes sense to speak of the more probable direction and the less

probable direction. Instead we speak of the possible and the impossible. The
action of molecular probabilities gives to the flow of events in the large-scale

world a unique direction. The (almost complete) violation of time-reversal in-

variance by the second law of thermodynamics attaches an arrow to time, a

one-way sign for the unfolding of events. Through this idea, thermodynamics

impinges on philosophy.

In the latter part of the nineteenth century, long before time-reversal in-

variance was appreciated as a fundamental law of submicroscopic nature,

physicists realized that the second law had something quite general to say about

our passage through time. There are two aspects of the idea of the arrow of

time: first, that the universe, like a wound-up clock, is running down, its supply

of available energy ever dwindling; second, that the spontaneous tendency of

nature toward greater entropy is what gives man a conception of the unique

one-way direction of time.

The second law of thermodynamics had not long been formulated in a general

way before men reflected on its implications for the universe at large. In 1865,

Clausius wrote, without fanfare, as grand a pair of statements about the world

as any produced by science: "We can express the fundamental laws of the uni-

verse which correspond to the two fundamental laws of the mechanical theory

of heat in the following simple form.
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"1. The energy of the universe is constant.

"2, The entropy of the universe tends toward a maximum."

These are the first and second laws of thermodynamics extended to encompass all

of nature. Are the extensions justifiable? If so, what are their implications? We
know in fact no more than Clausius about the constancy of energy and the

steady increase of entropy in the universe at large. We do know that energy

conservation has withstood every test since he wrote, and that entropy increase

is founded on the very solid principle of change from arrangements of lesser to

those of greater probability. Nevertheless, all that we have learned of nature in

the century since Clausius leaped boldly to the edge of existence should make us

cautious about so great a step. In 1865, the single theory of Newtonian mechanics

seemed to be valid in every extremity of nature, from the molecular to the

planetary. A century later we know instead that it fails in every extremity—in the

domain of small sizes, where quantum mechanics rules; in the domain of high

speed, where special relativity changes the rules; and in the domain of the very

large, where general relativity warps space and time.

The logical terminus of the imiverse, assuming it to be a system obeying the

same laws as the macroscopic systems accessible to experiment, is known as

the "heat death," a universal soup of uniform density and uniform temperature,

devoid of available energy, incapable of further change, a perfect and featureless

final disorder. If this is where the universe is headed, we have had no hints of

it as yet. Over a time span of ten billion years or more, the imiverse has been

a vigorously active place, with new stars still being born as old ones are dying.

It is quite possible that the long-range fate of the universe will be settled within

science and need not remain forever a topic of pure speculation. At present,

however, we have no evidence at all to confirm or contradict the applicability of

thermodynamics to the universe as a whole. Even if we choose to postulate its

applicability, we need not be led inevitably to the idea of the ultimate heat death.

The existence of a law of time-reversal invariance in the world of the small and

the essential probabilistic nature of the second law leave open the possibility that

one grand improbable reversal of probability could occur in which disorder is

restored to order. Finally, we can link this line of thought to the second aspect

of the arrow of time, the uniqueness of the direction of man's course through time,

with this challenging thought. If it is the second law that gives to man his sense

of time's direction, the very construction of the human machine forces us to see

the universe running down. In a world that we might look in upon from the

outside to see building order out of disorder, the less probable from the more

probable, we would see creatures who remembered their future and not their

past. For them the trend of events would seem to be toward disorder and greater

probability and it is we who would seem to be turned around.

In the three centuries since Newton, time has evolved from the obvious to the

mysterious. In the Principia, Newton wrote, "Absolute, true, and mathematical

time, of itself, and from its own nature flows equably without regard to anything

external, and by another name is called duration." This view of time as something

flowing constantly and inexorably forward, carrying man with it, persisted largely

intact imtil the revolution of relativity at the beginning of this century. The

nineteenth century brought only hints of a deeper insight, when it was appreciated
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that the second law of thermodynamics differentiated between forward and back-

ward in time, as the laws of mechanics had failed to do. If time were run backward,

the reversed planetary orbits would be reasonable and possible, obeying the

same laws as the actual forward-in-time orbits. But the reversal of any entropy-

changing transformation would be neither reasonable nor possible. The second law

of thermodynamics points the way for Newton's equable flow.

Relativity had the most profound effect on our conception of time. The merger

of space and time made unreasonable a temporal arrow when there was no spatial

arrow. More recently, time-reversal invariance has confirmed the equal status

of both directions in time. Relativity also brought time to a stop. It is more

consistent with the viewpoint of modern physics to think of man and matter

moving through time (as they move through space) than to think of time itself

as flowing.

All of the new insights about time make clear that we must think about it in

very human terms—its definition, its measurement, its apparently unique direc-

tion stem not from "absolute, true and mathematical time" but from psychological

time. These insights also reinforce the idea that the second law of thermodynamics

must ultimately account for our sense of time.

It is a stimulating idea that the only reason man is aware of the past and

not the future is that he is a complicated and highly organized structure.

Unfortunately, simpler creatures are no better off. They equalize future and past

by remembering neither. An electron, being precisely identical with every other

electron, is totally unmarked by its past or by its future. Man is intelligent

enough to be scarred by his past. But the same complexity that gives him a

memory at all is what keeps his future a mystery.

EXERCISES

14.1. Section 14.1 describes three kinds of uncertainty, associated respectively with a

spelunker, a gambler, and a uranium prospector. Which of these kinds of uncertainty

characterizes each of the following situations? (1) A pion of known energy enters a bubble

chamber. The number of bubbles formed along its first centimeter of track is measured.

The number of bubbles along its second centimeter of track can then be predicted approxi-

mately, but not exactly. (2) Another pion is created in the chamber. How long it will live

before decaying is uncertain. (3) Still another pion, of energy higher than any previously

studied, strikes a nucleus. The result of the collision is uncertain. Which, if any, of these

examples of uncertainty is governed by thermodynamic probability (the probability of

atomic multitudes)?

14.2. Suppose that a small cylinder (see figure) could be so nearly perfectly evacuated

that only 100 molecules remained within it. (1) Using Figures 14.3 and 14.4 and Equation

14.1 as guides, sketch a curve of relative probability for

any number of these molecules to be found in region A, A B
which is half of the container. (2) If you placed a bet at rS. /"^ TN
even money that a measurement would reveal exactly \2 Li 1/
50 molecules in region A, would this be, from your point

of view, a good bet or a poor bet? (3) If you bet, also at even money, that a series of

measurements would show less than 60 molecules in region A more often than not, would
you be making a good bet or a poor bet?
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Completely random motion, such as the thermal motion

of molecules, might seem to be out of the realm of law-

fulness. But on the contrary. Just because the motion

is completely disorderly, it is subject to statistical laws.

The Law of Disorder

George Gamow

A chapter from his book One, Two, Three . . . Infinity, 1947.

IF YOU pour a glass of water and look at it, you will see a clear

uniform fluid with no trace of any internal structure or motion

in it whatsoever
(
provided, of course, you do not shake the glass )

.

We know, however, that the uniformity of water is only apparent

and that if the water is magnified a few million times, there will

be revealed a strongly expressed granular structure formed by a

large number of separate molecules closely packed together.

Under the same magnification it is also apparent that the water

is far from still, and that its molecules are in a state of violent

agitation moving around and pushing one another as though they

were people in a highly excited crowd. This irregular motion of

water molecules, or the molecules of any other material substance,

is known as heat (or thermal) motion, for the simple reason that

it is responsible for the phenomenon of heat. For, although

molecular motion as well as molecules themselves are not directly

discernible to the human eye, it is molecular motion that produces

a certain irritation in the nervous fibers of the human organism

and produces the sensation that we call heat. For those organisms

that are much smaller than human beings, such as, for example,

small bacteria suspended in a water drop, the effect of thermal

motion is much more pronounced, and these poor creatures are

incessandy kicked, pushed, and tossed around by the restless

molecules that attack them from all sides and give them no rest

(Figure 77). This amusing phenomenon, known as Brownian

motion, named after the English botanist Robert Brown, who first

noticed it more than a century ago in a study of tiny plant spores,

is of quite general nature and can be observed in the study of any

kind of sufficiently small particles suspended in any kind of

liquid, or of microscopic particles of smoke and dust floating

in the air.
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If we heat the Hquid the wild dance of tiny particles suspended

in it becomes more violent; with cooling the intensity of the

motion noticeably subsides. This leaves no doubt that we are

actually watching here the effect of the hidden thermal motion

of matter, and that what we usually call temperature is nothing

else but a measurement of the degree of molecular agitation. By
studying the dependence of Brownian motion on temperature,

it was found that at the temperature of -273° C or -459° F,

Figure 77

Six consecutive positions of a bacterium which is being tossed around by
molecular impacts (physically correct; bacteriologically not quite so).

thermal agitation of matter completely ceases, and all its mole-

cules come to rest. This apparently is the lowest temperatiure

and it has received the name of absolute zero. It would be an

absurdity to speak about still lower temperatures since apparently

there is no motion slower than absolute rest!

Near the absolute zero temperature the molecules of any sub-

stance have so little energy that the cohesive forces acting upon
them cement them together into one solid block, and all they
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can do is only quiver slightly in their frozen state. When the

temperature rises the quivering becomes more and more intense,

and at a certain stage our molecules obtain some freedom of

motion and are able to slide by one another. The rigidity of the

frozen substance disappears, and it becomes a fluid. The tem-

perature at which the melting process takes place depends on the

strength of the cohesive forces acting upon the molecules. In

some materials such as hydrogen, or a mixture of nitrogen and
oxygen which form atmospheric air, the cohesion of molecules

is very weak, and the thermal agitation breaks up the frozen

state at comparatively low temperatures. Thus hydrogen exists in

the frozen state only at temperatures below 14° abs (i.e,, below
— 259° C), whereas soHd oxygen and nitrogen melt at 55° abs

and 64° abs, respectively (i.e. -218° C and -209° C). In other

substances the cohesion between molecules is stronger and they

remain soHd up to higher temperatures: thus pure alcohol re-

mains frozen up to —130° C, whereas frozen water (ice) melts

only at 0° C. Other substances remain solid up to much higher

temperatures; a piece of lead vdll melt only at +327° C, iron at

+ 1535° C, and the rare metal known as osmium remains sohd up
to the temperature of -1-2700° C. Although in the sohd state of

matter the molecules are strongly bound to their places, it does

not mean at all that they are not affected by thermal agitation.

Indeed, according to the fundamental law of heat motion, the

amount of energy in every molecule is the same for all sub-

stances, solid, hquid, or gaseous at a given temperature, and the

difference lies only in the fact that whereas in some cases this

energy suflBces to tear off the molecules from their fixed positions

and let them travel around, in other cases they can only quiver

on the same spot as angry dogs restricted by short chains.

This thermal quivering or vibration of molecules forming a

solid body can be easily observed in the X-ray photographs de-

scribed in the previous chapter. We have seen indeed that, since

taking a picture of molecules in a crystal lattice requires a con-

siderable time, it is essential that they should not move away

from their fixed positions during the exposure. But a constant

quivering around the fixed position is not conducive to good

photography, and results in a somewhat blurred picture. This
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eflFect is shown in the molecular photograph which is repro-

duced in Plate I. To obtain sharper pictures one must cool the

crystals as much as possible. This is sometimes accomplished by
dipping them in liquid air. If, on the other hand, one warms up
the crystal to be photographed, the picture becomes more and
more blurred, and, at the melting point the pattern completely

vanishes, owing to the fact that the molecules leave their places

and begin to move in an irregular way through the melted

substance.

After solid material melts, the molecules still remain together,

since the thermal agitation, though strong enough to dislocate

them from the fixed position in the crystalline lattice, is not yet

suflBcient to take them completely apart. At still higher tem-

peratures, however, the cohesive forces are not able to hold the

molecules together any more and they fly apart in all directions

unless prevented from doing so by the surrounding walls. When
this happens, of course, the result is matter in a gaseous state.

As in the melting of a solid, the evaporation of liquids takes place

at different temperatures for different materials, and the sub-

stances with a weaker internal cohesion will turn into vapor at

lower temperatures than those in which cohesive forces are

stronger. In this case the process also depends rather essentially

on the pressure under which the liquid is kept, since the outside

pressure evidently helps the cohesive forces to keep the molecules

together. Thus, as everybody knows, water in a tightly closed

kettle boils at a lower temperature than will water in an open one.

On the other hand, on the top of high mountains, where atmos-

pheric pressure is considerably less, water will boil well below

100° C. It may be mentioned here that by measuring the tem-

perature at which water will boil, one can calculate atmospheric

pressure and consequently the distance above sea level of a given

location.

But do not follow the example of Mark Twain who, according

to his story, once decided to put an aneroid barometer into a

boihng kettle of pea soup. This will not give you any idea of the

elevation, and the copper oxide will make the soup taste bad.

The higher the melting point of a substance, the higher is its

boiling point. Thus liquid hydrogen boils at —253° C, liquid
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oxygen and nitrogen at —183° C and —196° C, alcohol at

+78° C, lead at +1620° C, iron at +3000° C and osmium only

above +5300° C.^

The breaking up of the beautiful crystalline structure of solid

bodies forces the molecules first to crawl around one another

like a pack of worms, and then to fly apart as though they were a

flock of frightened birds. But this latter phenomenon still does

not represent the limit of the destructive power of increasing

thermal motion. If the temperature rises still farther the very

existence of the molecules is threatened, since the ever increasing

violence of intermolecular collisions is capable of breaking them

up into separate atoms. This thermal dissociation, as it is called,

depends on tlie relative strength of the molecules subjected to it.

The molecules of some organic substances will break up into

separate atoms or atomic groups at temperatures as low as a few

hundred degrees. Other more sturdily built molecules, such as

those of water, will require a temperature of over a thousand

degrees to be destroyed. But when the temperature rises to

several thousand degrees no molecules will be left and the matter

will be a gaseous mixture of pure chemical elements.

This is the situation on the surface of our sun where the tem-

perature ranges up to 6000° C. On the other hand, in the com-
paratively cooler atmospheres of the red stars,^ some of the mole-

cules are still present, a fact that has been demonstrated by the

methods of spectral analysis.

The violence of thermal collisions at high temperatures not

only breaks up the molecules into their constituent atoms, but

also damages the atoms themselves by chipping off their outer

electrons. This thermal ionization becomes more and more pro-

nounced when the temperature rises into tens and hundreds of

thousands of degrees, and reaches completion at a few million

degrees above zero. At these tremendously hot temperatures,

which are high above everything that we can produce in our

laboratories but which are common in the interiors of stars and
in particular inside our sun, the atoms as such cease to exist.

All electronic shells are completely stripped off, and the matter

^ All values given for atmospheric pressure.
2 See Chapter XI.
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(Covrtesy of Dr. M. L. Huggins. Eastman Kodak Laboratory.)

PLATE I

Photograph of Hexamethylbenzene molecule magnified 175,000,000

times.
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becomes a mixture of bare nuclei and free electrons rushing

wildly through space and colliding with one another with tre-

mendous force. However, in spite of the complete wreckage of

atomic bodies, the matter still retains its fundamental chemical
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The destructive eflFect of temperature.

characteristics, inasmuch as atomic nuclei remain intact. If the

temperature drops, the nuclei will recapture their electrons and

the integrity of atoms will be reestablished.

In order to attain complete thermal dissociation of matter, that

is to break up the nuclei themselves into the separate nucleons

(protons and neutrons) the temperature must go up to at least

several billion degrees. Even inside tlie hottest stars we do not
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find such high temperatures, though it seems very likely that tem-

peratures of that magnitude did exist several bilhon years ago

when our universe was still young. We shall return to this exciting

question in the last chapter of this book.

Thus we see that the e£Fect of thermal agitation is to destroy

step by step the elaborate architecture of matter based on the law

of quantum, and to turn this magnificent building into a mess of

widely moving particles rushing around and colhding with one

another without any apparent law or regularity.

2. HOW CAN ONE DESCRIBE DISORDERLY MOTION?

It would be, however, a grave mistake to think that because of

the irregularity of thermal motion it must remain outside the

scope of any possible physical description. Indeed the fact itself

that thermal motion is completely irregular makes it subject to a

new kind of law, the Law of Disorder better known as the Law oj

Statistical Behavior. In order to understand the above statement

let us turn our attention to the famous problem of a "Drunkard's

Walk." Suppose we watch a drunkard who has been leaning

against a lamp post in the middle of a large paved city square

(nobody knows how or when he got there) and then has sud-

denly decided to go nowhere in particular. Thus off he goes,

making a few steps in one direction, then some more steps in an-

other, and so on and so on, changing his course every few steps

in an entirely unpredictable way (Figure 80). How far will be

our drunkard from the lamp post after he has executed, say, a

hundred phases of his irregular zigzag journey? One would at

first think that, because of the unpredictabiHty of each turn, there

is no way of answering this question. If, however, we consider

the problem a little more attentively we will find that, although

we really cannot tell where the drunkard will be at the end of his

walk, we can answer the question about his most probable dis-

tance from the lamp post after a given large number of turns. In

order to approach this problem in a vigorous mathematical way

let us draw on the pavement two co-ordinate axes with the origin

in the lamp post; the X-axis coming toward us and the Y-axis to

the right. Let R be the distance of the drunkard from the lamp
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post after the total of N zigzags ( 14 in Figure 80 ) . If now Xu and

Yn are the projections of the N'^ leg of the track on the corre-

sponding axis, the Pythagorean theorem gives us apparently:

R2= (Xi+Xa+Xs- • • +X^)2+ (Y1+Y2+Y3+ • • •Y,,)2

where X's and Y's are positive or negative depending on whether

our drunkard was moving to or from the post in this particular

Figure 80

Drunkard's walk.

phase of his walk. Notice that since his motion is completely dis-

orderly, there will be about as many positive values of X's and

Y's as there are negative. In calculating the value of the square

of the terms in parentheses according to the elementary rules of

algebra, we have to multiply each term in the bracket by itself

and by each of all other terms.
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Thus:

(Xi+X2+X3+---Xj,)2
= (X1+X2+X3+ • • -Xn) {X1+X2+X3+ • • •X.v)

=Xi2+XiX2+XiX3+ • • •X22+X1X2+ • • -X^^

This long sum will contain the square of all X's (Xi^, X2^ • • • X^f^),

and the so-called "mixed products" like XiX2, X2X3, etc.

So far it is simple arithmetic, but now comes the statistical point

based on the disorderhness of the drunkard's walk. Since he was
moving entirely at random and would just as likely make a step

toward the post as away from it, the values of X's have a fifty-fifty

chance of being either positive or negative. Consequently in

looking through the "mixed products" you are likely to find always

the pairs that have the same numerical value but opposite signs

thus canceling each other, and the larger the total number of

turns, the more likely it is that such a compensation takes place.

What will be left are only the squares of X's, since the square is

always positive. Thus the whole thing can be written as

X12+X22+ --'X^^ =N X^ where X is the average length of the

projection of a zigzag Hnk on the X-axis.

In the same way we find that the second bracket containing

Ts can be reduced to: NY^, Y being the average projection of the

link on the Y-axis. It must be again repeated here that what

we have just done is not stricdy an algebraic operation, but is

based on the statistical argument concerning the mutual cancel-

lation of "mixed products" because of the random nature of the

pass. For the most probable distance of our drunkard from the

lamp post we get now simply:

il2 =N (X2+Y2)

or

R =^'^/X^+W
But the average projections of the link on both axes is simply

a 45° projection, so that y/X^+W right is ( again because of the

Pythagorean theorem ) simply equal to the average length of the

hnk. Denoting it by 1 we get:

R= l'y/N

In plain words our result means: the most probable distance of
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OUT drunkard from the lamp post after a certain large number of

irregular turns is equal to the average length of each straight

track that he walks, times the square root of their number.

Thus if our drunkard goes one yard each time before he turns

(at an unpredictable angle!), he will most probably be only ten

yards from the lamp post after walking a grand total of a hundred

yards. If he had not turned, but had gone straight, he would be a

hundred yards away—which shows that it is definitely advan-

tageous to be sober when taking a walk.

' / /

Figure 81

Statistical distribution of six walking drunkards around the lamp post.

The statistical nature of the above example is revealed by the

fact that we refer here only to the most probable distance and not

to the exact distance in each individual case. In the case of an

individual drunkard it may happen, though this is not very prob-

able, that he does not make any turns at all and thus goes far

away from the lamp post along the straight hne. It may also

happen, that he turns each time by, say, 180 degrees thus re-

turning to the lamp post after every second turn. But if a large

number of drunkards all start from the same lamp post walking

in diflFerent zigzag paths and not interfering with one another
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The Law of Disorder

you will find after a suflSciently long time that they are spread

over a certain area around the lamp post in such a way that their

average distance from the post may be calculated by the above
rule. An example of such spreading due to irregular motion is

given in Figure 81, where we consider six walking drunkards.

It goes without saying that the larger the number of drunkards,

and the larger the number of turns they make in their disorderly

walk, the more accurate is the rule.

Now substitute for the drunkards some microscopic bodies such

as plant spores or bacteria suspended in liquid, and you will have

exactly the picture that the botanist Brown saw in his microscope.

True the spores and bacteria are not drunk, but, as we have said

above, they are being incessantly kicked in all possible directions

by the surrounding molecules involved in thermal motion, and

are therefore forced to follow exactly the same irregular zigzag

trajectories as a person who has completely lost his sense of

direction under the influence of alcohol.

If you look through a microscope at the Brownian motion of a

large number of small particles suspended in a drop of water,

you will concentrate your attention on a certain group of them
that are at the moment concentrated in a given small region ( near

the 'lamp post"). You will notice that in the course of time they

become gradually dispersed all over the field of vision, and that

their average distance from the origin increases in proportion

to the square root of the time interval as required by the mathe-

matical law by which we calculated the distance of the drunkard's

walk.

The same law of motion pertains, of course, to each separate

molecule in our drop of water; but you cannot see separate mole-

cules, and even if you could, you wouldn't be able to distinguish

between them. To make such motion visible one must use two

different kinds of molecules distinguishable for example by their

different colors. Thus we can fiU one half of a chemical test tube

with a water solution of potassium permanganate, which will give

to the water a beautiful purple tint. If we now pour on the top

of it some clear fresh water, being careful not to mix up the two

layers, we shall notice that the color gradually penetrates the

clear water. If you wait suflBciently long you will find that all the
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water from the bottom to the surface becomes uniformly colored.

This phenomenon, familiar to everybody, is known as diffusion

and is due to the irregular thermal motion of the molecules of dye

among the water molecules. We must imagine each molecule of

potassium permanganate as a little drunkard who is driven to

and fro by the incessant impacts received from other molecules.

Since in water the molecules are packed rather tightly (in con-

trast to the arrangement of those in a gas ) the average free path

of each molecule between two successive collisions is very short,

being only about one hundred millionths of an inch. Since on

the other hand the molecules at room temperature move with the

speed of about one tenth of a mile per second, it takes only one

million-millionth part of a second for a molecule to go from

one collision to another. Thus in the course of a single second

\
7

Figure 82

each dye molecule will be engaged in about a million million

consecutive collisions and will change its direction of motion as

many times. The average distance covered during the first second

will be one hundred millionth of an inch ( the length of free path

)

times the square root of a million millions. This gives the average

difiFusion speed of only one hundredth of an inch per second; a

rather slow progress considering that if it were not deflected by
collisions, the same molecule would be a tenth of a mile away!

If you wait 100 sec, the molecule will have struggled through

10 times (V 100 = 10) as great distance, and in 10,000 sec, that

is, in about 3 hr, the diffusion will have carried the coloring

100 times farther (V 10000 = 100), that is, about 1 in. away. Yes,
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The Law of Disorder

diffusion is a rather slow process; when you put a lump of sugar

into your cup of tea you had better stir it rather than wait until

the sugar molecules have been spread throughout by their own
motion.

Just to give another example of the process of diffusion, which
is one of the most important processes in molecular physics, let

us consider the way in which heat is propagated through an iron

poker, one end of which you put into the fireplace. From your
own experience you know that it takes quite a long time until

the other end of the poker becomes uncomfortably hot, but you
probably do not know that the heat is carried along the metal

stick by the process of diffusion of electrons. Yes, an ordinary

iron poker is actually stuffed with electrons, and so is any metallic

object. The difference between a metal, and other materials, as

for example glass, is that the atoms of the former lose some of

their outer electrons, which roam all through the metalHc lattice,

being involved in irregular thermal motion, in very much the

same way as the particles of ordinary gas.

The surface forces on the outer boundaries of a piece of metal

prevent these electrons from getting out,^ but in their motion

inside the material they are almost perfectly free. If an electric

force is applied to a metal wire, the free unattached electrons

will rush headlong in the direction of the force producing the

phenomenon of electric current. The nonmetals on the other hand
are usually good insulators because all their electrons are bound
to be atoms and thus cannot move freely.

When one end of a metal bar is placed in the fire, the thermal

motion of free electrons in this part of the metal is considerably

increased, and the fast-moving electrons begin to diffuse into the

other regions carrying with them the extra energy of heat. The
process is quite similar to the diffusion of dye molecules through

water, except that instead of having two different kinds of par-

ticles (water molecules and dye molecules) we have here the

diffusion of hot electron gas into the region occupied hy cold

electron gas. The drunkard's walk law appHes here, however, just

^ When we bring a metal wire to a high temperature, the thermal motion

of electrons in its inside becomes more violent and some of them come out

through the svirface. This is the phenomenon used in electron tubes and
familiar to all radio amateurs.
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as well and the distances through which the heat propagates

along a metal bar increase as the square roots of corresponding

times.

As our last example of diffusion we shall take an entirely dif-

ferent case of cosmic importance. As we shall learn in the fol-

lowing chapters the energy of our sun is produced deep in its

interior by the alchemic transformation of chemical elements.

This energy is liberated in the form of intensive radiation, and

the "particles of light," or the hght quanta begin their long jour-

ney through the body of the sun towards its surface. Since light

moves at a speed of 300,000 km per second, and the radius of

the sun is only 700,000 km it would take a light quantum only

slightly over two seconds to come out provided it moved without

any deviations from a straight line. However, this is far from being

the case; on their way out the hght quanta undergo innumerable

colhsions with the atoms and electrons in the material of the sun.

The free pass of a light quantum in solar matter is about a centi-

meter (much longer than a free pass of a molecule!) and since

the radius of the sun is 70,000,000,000 cm, our light quantum must

make (7' 10^°)^ or 5-10^^ drunkard's steps to reach the surface.

Since each step requires — or 3-10"^ sec, the entire time of

travel is 3 • 10-^ X 5 • lO^i = 1.5 • lO^^ sec or about 200,000 yr! Here

again we see how slow the process of diffusion is. It takes light

2000 centuries to travel from the center of the sun to its surface,

whereas after coming into empty intraplanetary space and

traveling along a straight line it covers the entire distance from

the sun to the earth in only eight minutes!

3. COUNTING PROBABILITIES

This case of diffusion represents only one simple example of

the application of the statistical law of probability to the problem

of molecular motion. Before we go farther with that discussion,

and make the attempt to understand the all-important Law of

Entropy, which rules the thermal behavior of every material

body, be it a tiny droplet of some liquid or the giant universe of

stars, we have first to learn more about the ways in which the
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probability of different simple or complicated events can be cal-

culated.

By far the simplest problem of probability calculus arises when
you toss a coin. Everybody knows that in this case (wdthout

cheating) there are equal chances to get heads or tails. One
usually says that there is a fifty-fifty chance for heads or tails,

but it is more customary in mathematics to say that the chances

are half and half. If you add the chances of getting heads and
getting tails you get ^+ 1 = 1. Unity in the theory of probabiUty

means a certainty; you are in fact quite certain that in tossing a

Figure 83

Four possible combinations in tossing two coins.

coin you get either heads or tails, unless it rolls under the sofa and

vanishes tracelessly.

Suppose now you drop the coin twice in succession or, what is

the same, you drop 2 coins simultaneously. It is easy to see that

you have here 4 different possibilities shown in Figure 83.

In the first case you get heads twice, in the last case tails

twice, whereas the two intermediate cases lead to the same

result since it does not matter to you in which order ( or in which

coin) heads or tails appear. Thus you say that the chances of

getting heads twice are 1 out of 4 or :^ the chances of getting

tails twice are also ^, whereas the chances of heads once and tails

once are 2 out of 4 or ^. Here again i + i+ i = 1 meaning that you
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h t h t h t h t

I II II III II III III IV

are certain to get one of the 3 possible'combinations. Let us see

now what happens if we toss the coin 3 times. There are altogether

8 possibilities summarized in the following table:

First tossing

Second

Third

If you inspect this table you find that there is 1 chance out of 8

of getting heads three times, and the same of getting tails three

times. The remaining possibilities are equally divided between

heads twice and tails once, or heads once and tails twice, with

the probabihty three eighths for each event.

Our table of different possibilities is growing rather rapidly,

but let us take one more step by tossing 4 times. Now we have

the following 16 possibiUties:

First tossing h h h h h h h h t t t t t t t t

Second h h h h t t t t h h h h t t t t

Third h h t t h h t t h h t t h h t t

Fourth h t h t h t h t h t h t h t h t

I II II III II mill IV II iiiiiiiviiiiviv V

Here we have ^^ for the probability of heads four times, and

exactly the same for tails four times. The mixed cases of heads

three times and tails once or tails three times and heads once

have the probabilities of fie ^^ i each, whereas the chances of

heads and tails the same number of times are %6 or f.

If you try to continue in a similar way for larger numbers of

tosses the table becomes so long that you will soon run out of

paper; thus for example for ten tosses you have 1024 different

possibilities (i.e., 2x2x2x2x2x2x2x2x2x2). But it is not

at all necessary to construct such long tables since the simple

laws of probability can be observed in those simple examples that

we already have cited and then used directly in more compli-

cated cases.

First of all you see that the probability of getting heads twice

is equal to the product of the probabilities of getting it separately

in the first and in the second tossing; in fact i = i X |. Similarly
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the probability of getting heads three or four times in succession

is the product of probabihties of getting it separately in each

tossing (i =ixix|; ^^ =^X^X^Xi). Thus if somebody asks

you what the chances are of getting heads each time in ten toss-

ings you can easily give the answer by multiplying ^ by ^ ten

times. The result will be .00098, indicating that the chances are

very low indeed: about one chance out of a thousand! Here we
have the rule of "multiphcation of probabilities," which states

that if you want several different things, you may determine the

mathematical probability of getting them by multiplying the

mathematical probabilities of getting the several individual ones.

If there are many things you want, and each of them is not par-

ticularly probable, the chances that you get them all are dis-

couragingly low!

There is also another rule, that of the "addition of probabilities,"

which states that if you want only one of several things (no matter

which one), the mathematical probability of getting it is the sum

of mathematical probabilities of getting individual items on your

list.

This can be easily illustrated in the example of getting an equal

division between heads and tails in tossing a coin twice. What
you actually want here is either "heads once, tails twice" or "tails

twice, heads once." The probabihty of each of the above com-

binations is ^, and the probability of getting either one of them

is I plus ^ or 4. Thus: If you want "that, and that, and that . .
."

you multiply the individual mathematical probabihties of dif-

ferent items. If, however, you want "that, or that, or that" you

add the probabilities.

In the first case your chances of getting ever)ihing you ask for

will decrease as the number of desired items increases. In the

second case, when you want only one out of several items your

chances of being satisfied increase as the Hst of items from which

to choose becomes longer.

The experiments with tossing coins furnish a fine example of

what is meant by saying that the laws of probabihty become

more exact when you deal with a large number of trials. This is

illustrated in Figure 84, which represents the probabihties of

getting a different relative number of heads and tails for two.
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three, four, ten, and a hundred tossings. You see that with the

increasing number of tossings the probabihty curve becomes

sharper and sharper and the maximum at fifty-fifty ratio of heads

and tails becomes more and more pronounced.

Thus whereas for 2 or 3, or even 4 tosses, the chances to have

heads each time or tails each time are still quite appreciable, in

10 tosses even 90 per cent of heads or tails is very improbable.

0.75^ -.

0.5^0^

0.2$-

Figure 84

Relative number of tails and heads.

For a still larger number of tosses, say 100 or 1000, the probability

curve becomes as sharp as a needle, and the chances of getting

even a small deviation from fifty-fifty distribution becomes prac-

tically nil.

Let us now use the simple rules of probability calculus that we
have just learned in order to judge the relative probabihties of

various combinations of five playing cards which one encounters

in the well-known game of poker.
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In case you do not know, each player in this game is dealt

5 cards and the one who gets the highest combination takes the

bank. We shall omit here the additional complications arising

from the possibility of exchanging some of your cards with the

hope of getting better ones, and the psychological strategy of

bluffing your opponents into submission by making them believe

that you have much better cards than you actually have. Although

this bluffing actually is the heart of the game, and once led the

famous Danish physicist Niels Bohr to propose an entirely new
type of game in which no cards are used, and the players simply

bluff one another by talking about the imaginary combinations

they have, it lies entirely outside the domain of probabihty

calculus, being a purely psychological matter.

FiGUBE 85

A flush (of spades).

In order to get some exercise in probability calculus, let us

calculate the probabilities of some of the combinations in the

game of poker. One of these combinations is called a "flush" and

represents 5 cards all of the same suit (Figure 85).

If you want to get a flush it is immaterial what the first card

you get is, and one has only to calculate the chances that the

other four will be of the same suit. There are altogether 52 cards

in the pack, 13 cards of each suit,* so that after you get your first

card, there remain in the pack 12 cards of the same suit. Thus

the chances that your second card will be of the proper suit are

12/51. Similarly the chances that the third, fourth, and fifth cards

* We omit here the complications arising from the presence of the "joker,"

an extra card which can be substituted for any other card according to the

desire of the player.
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will be of the same suit are given by the fractions: 11/50, 10/49

and 9/48. Since you want all 5 cards to be of the same suit you

have to apply the rule of probability-multiplications. Doing this

you find that the probability of getting a flush is:

12 11 10 9 13068— X— X— X— = or about 1 in 500.
51 50 49 48 5997600

But please do not think that in 500 hands you are sure to get a

flush. You may get none, or you may get two. This is only prob-

ability calculus, and it may happen that you will be dealt many
more than 500 hands without getting the desired combination, or

on the contrary that you may be dealt a flush the very first time

you have the cards in your hands. All that the theory of prob-

FlGURE 86

Full house.

ability can tell you is that you will probably be dealt 1 flush in 500

hands. You may also learn, by following the same methods of

calculation, that in playing 30,000,000 games you will probably

get 5 aces ( including the joker ) about ten times.

Another combination in poker, which is even rarer and there-

fore more valuable, is the so-called "full hand," more popularly

called "full house." A full house consists of a "pair" and "three of

a kind" ( that is, 2 cards of the same value in 2 suits, and 3 cards

of the same value in 3 suits—as, for example, the 2 fives and

3 queens shown in Figure 86).

If you want to get a full house, it is immaterial which 2 cards

you get first, but when you get them you must have 2 of the re-

maining 3 cards match one of them, and the other match the
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other one. Since there are 6 cards that will match the ones you
have (if you have a queen and a five, there are 3 other queens

and 3 other fives ) the chances that the third card is a right one

are 6 out of 50 or 6/50. The chances that the fourth card will be
the right one are 5/49 since there are now only 5 right cards out

of 49 cards left, and the chance that the fifth card will be right

is 4/48. Thus the total probability of a full house is:

6 5 4 120— X— X— =-

50 49 48 117600

or about one half of the probabilit\' of the flush.

In a similar way one can calculate the probabilities of other

combinations as, for example, a "straight" (a sequence of cards),

and also take into account the changes in probabiht\' introduced

by the presence of the joker and the possibility of exchanging

the originally dealt cards.

By such calculations one finds that the sequence of seniority

used in poker does really correspond to the order of mathematical

probabilities. It is not known by the author whether such an

arrangement was proposed by some mathematician of the old

times, or was established purely empirically by miUions of

players risking their money in fashionable gambling salons and

little dark haunts all over the world. If the latter was the case,

we must admit that we have here a pretty good statistical study

of the relative probabilities of complicated events!

Another interesting example of probability calculation, an ex-

ample that leads to a quite unexpected answer, is the problem of

"Coinciding Birthdays." Try to remember whether you have ever

been invited to two different birthday parties on the same day.

You will probably say that the chances of such double invitations

are very small since you have only about 24 friends who are

likely to invite you, and there are 365 days in the year on which

their birthdays may faU. Thus, v^ith so many possible dates to

choose from, there must be very htde chance that any 2 of your

24 friends will have to cut their birthday cakes on the same day.

However, unbehevable as it may sound, your judgment here is

quite wrong. The truth is that there is a rather high probabihty

tiiat in a company of 24 people there are a pair, or even several

pairs, with coinciding birthdays. As a matter of fact, there are

more chances that there is such a coincidence than that there is not.
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You can verify that fact by making a birthday list including

about 24 persons, or more simply, by comparing the birth dates

of 24 persons whose names appear consecutively on any pages of

some such reference book as "Who's Who in America," opened

at random. Or the probabilities can be ascertained by using the

simple rules of probability calculus with which we have become
acquainted in the problems of coin tossing and poker.

Suppose we try first to calculate the chances that in a company
of twenty-four persons everyone has a diflFerent birth date. Let

us ask the first person in the group what is his birth date; of

course this can be any of the 365 days of the year. Now, what is

the chance that the birth date of the second person we approach

is different from that of the first? Since this (second) person

could have been born on any day of the year, there is one chance

out of 365 that his birth date coincides with that of the first one,

and 364 chances out of 365 (i.e., the probability of 364/365) that

it does not. Similarly, the probability that the third person has a

birth date different from that of either the first or second is

363/365, since two days of the year have been excluded. The
probabilities that the next persons we ask have different birth

dates from the ones we have approached before are then: 362/365,

361/365, 360/365 and so on up to the last person for whom the

, , ,. (365-23) 342
probability is -^^- or—

.

Since we are trying to learn what the probability is that one of

these coincidences of birth dates exists, we have to multiply all

the above fractions, thus obtaining for the probability of all the

persons having different birth dates the value:

364 363 362 342

365^365^365^ "'365

One can arrive at the product in a few minutes by using cer-

tain methods of higher mathematics, but if you don't know them

you can do it the hard way by direct multiplication,'^ which

would not take so very much time. The result is 0.46, indicating

that the probability that there will be no coinciding birthdays

is slightly less than one half. In other words there are only 46

chances in 100 that no two of your two dozen friends will have

* Use a logarithmic table or slide rule if you can!
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birthdays on the same day, and 54 chances in 100 that two or

more will. Thus if you have 25 or more friends, and have never

been invited to two birthday parties on the same date you may
conclude with a high degree of probability that either most of

your friends do not organize their birthday parties, or that they

do not invite you to them!

The problem of coincident birthdays represents a very fine

example of how a common-sense judgment concerning the

probabilities of complex events can be entirely wrong. The
author has put this question to a great many people, including

many prominent scientists, and in all cases except one^ was
oflFered bets ranging from 2 to 1 to 15 to 1 that no such co-

incidence will occur. If he had accepted all these bets he would
be a rich man by now!

It cannot be repeated too often that if we calculate the

probabilities of diflFerent events according to the given rules and

pick out the most probable of them, we are not at all sure that

this is exactly what is going to happen. Unless the number of

tests we are making runs into thousands, millions or still better

into billions, the predicted results are only "likely" and not at all

"certain." This slackening of the laws of probability when dealing

with a comparatively small number of tests limits, for example,

the usefulness of statistical analysis for deciphering various codes

and cryptograms which are limited only to comparatively short

notes. Let us examine, for example, the famous case described

by Edgar Allan Poe in his well-known story "The Gold Bug."

He tells us about a certain Mr. Legrand who, strolling along a

deserted beach in South Carolina, picked up a piece of parchment

half buried in the wet sand. When subjected to the warmth of

the fire burning gaily in Mr. Legrand's beach hut, the parchment

revealed some mysterious signs written in ink which was invisible

when cold, but which turned red and was quite legible when
heated. There was a picture of a skull, suggesting that the docu-

ment was written by a pirate, the head of a goat, proving beyond

any doubt that the pirate was none other than the famous Captain

Kidd, and several lines of typographical signs apparently indi-

cating the whereabouts of a hidden treasure (see Figure 87).

We take it on the authority of Edgar Allan Poe that the pirates

of the seventeenth century were acquainted with such typo-

® This exception was, of course, a Hungarian mathematician ( see the

beginning of the first chapter of this book).
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graphical signs as semicolons and quotation marks, and such

others as: |, +, and j[.

Being in need of money, Mr. Legrand used all his mental

powers in an attempt to decipher the mysterious cryptogram and

53 ::t30S))t*;i/8«4>;);W4*.^^|4o)^85. ,4 ^. .^

^} ',%:S%htSt8S)H)ifS^^SStBB0b*8l (i^)9i

}

Figure 87

Captain Kidd's Message.

finally did so on the basis of the relative frequency of occurrence

of different letters in the English language. His method was based

on the fact that if you count the number of different letters of

any English text, whether in a Shakespearian sonnet or an Edgar

Wallace mystery story, you will find that the letter "e" occurs

by far most frequentiy. After "e" the succession of most

frequent letters is as follows:

a, o, f, d, hy n, r, 5, t, u, y, c, /, g, I, m, w, h, k, p, q, x, z

By counting the different symbols appearing in Captain Kidd's

cryptogram, Mr. Legrand found that the symbol that occurred

most frequentiy in the message was the figure 8. "Aha," he said,

"that means that 8 most probably stands for the letter e."

Well, he was right in this case, but of course it was only very

probable and not at all certain. In fact if the secret message had

been "You will find a lot of gold and coins in an iron box in woods
two thousand yards south from an old hut on Bird Island's north

tip" it would not have contained a single "e"! But the laws of

chance were favorable to Mr. Legrand, and his guess was really

correct.

Having met with success in the first step, Mr. Legrand became
overconfident and proceeded in the same way by picking up the
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letters in the order of the probability ot their occurrence. In the

following table we give the symbols appearing in Captain Kidd's

message in the order of their relative frequency of use:

Of the character 8 there are 33 p <' - '^ r'

; 26 a^ t

4 19 A hi

t 16 lHj \ yf^o
( 16 dA/J ^r

* 13 hK\ /Ct^
5 12 n e^\^ a

6 11 ^7 V*
f 8 s / ^d
1 8 t^

6 "i^

g 5 A
2 5 - \
i 4 \
3 4 f /' ^>irb^ VS
? 3 1 ^u

f 2 m
1 w
1 b

The first column on the right contains the letters of the alpha-

bet arranged in the order of their relative frequency in the

Enghsh language. Therefore it was logical to assume that the

signs hsted in the broad column to the left stood for the letters

listed opposite them in the first narrow column to the right. But

using this arrangement we find that the beginning of Captain

Kidd's message reads: ngiisgunddrhaoecr . . .

No sense at all!

What happened? Was the old pirate so tricky as to use special

words that do not contain letters that follow the same rules of

frequency as those in the words normally used in the English

language? Not at all; it is simply that the text of the message is
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not long enough for good statistical sampling and the most prob-

able distribution of letters does not occur. Had Captain Kidd

hidden his treasure in such an elaborate way that the instructions

for its recovery occupied a couple of pages, or, still better an

entire volume, Mr. Legrand would have had a much better

chance to solve the riddle by applying the rules of frequency.

If you drop a coin 100 times you may be pretty sure that it will

fall with the head up about 50 times, but in only 4 drops you

may have heads three times and tails once or vice versa. To make
a rule of it, the larger the number of trials, the more accurately

the laws of probability operate.

Since the simple method of statistical analysis failed because

of an insufficient number of letters in the cryptogram, Mr. Le-

grand had to use an analysis based on the detailed structure of

different words in the English language. First of all he strength-

ened his hypothesis that the most frequent sign 8 stood for e by

noticing that the combination 88 occurred very often (5 times)

in this comparatively short message, for, as everyone knows, the

letter e is very often doubled in English words (as in: meet, fleet,

speed, seen, been, agree, etc. ) . Furthermore if 8 really stood for e

one would expect it to occur very often as a part of the word

"the." Inspecting the text of the cryptogram we find that the

combination ;48 occurs seven times in a few short lines. But if this

is true, we must conclude that ; stands for t and 4 for h.

We refer the reader to the original Poe story for the details

concerning the further steps in the deciphering of Captain Kidd's

message, the complete text of which was finally found to be:

**A good glass in the bishop's hostel in the devil's seat. Forty-one

degrees and thirteen minutes northeast by north. Main branch

seventh limb east side. Shoot from the left eye of the death's

head. A bee-line from the tree through the shot fifty feet out."

The correct meaning of the different characters as finaUy de-

ciphered by Mr. Legrand is shown in the second column of the

table on page 217, and you see that they do not correspond exactly

to the distribution that might reasonably be expected on the

basis of the laws of probability. It is, of course, because the text

is too short and therefore does not furnish an ample opportunity

for the laws of probability to operate. But even in this small

"statistical sample" we can notice the tendency for the letters

to arrange themselves in the order required by the theory of

probability, a tendency that would become almost an unbreak-

114



The Law of Disorder

Figure 88

able rule if the number ot letters in the message were much
larger.

There seems to be only one example (excepting the fact that

insurance companies do not break up) in which the predictions

of the theory of probability have actually been checked by a

very large number of trials. This is a famous problem of the

American flag and a box of kitchen matches.

To tackle this particular problem of probabihty you wdll need
an American flag, that is, the part of it consisting of red and
white stripes; if no flag is available just take a large piece of

paper and draw on it a number of parallel and equidistant lines.

Then you need a box of matches—any kind of matches, provided

they are shorter than the wddth of the stripes. Next you will need

a Greek pi, which is not something to eat, but just a letter of the

Greek alphabet equivalent to our "p." It looks like this: ir. In

addition to being a letter of the Greek alphabet, it is used to

signify the ratio of the circumference of a circle to its diameter.

You may know that numerically it equals 3.1415926535 . . .

(many more digits are known, but we shall not need them all.)

Now spread the flag on a table, toss a match in the air and

watch it fall on the flag (Figure 88). It may fall in such a way
that it all remains vsdthin one stripe, or it may fall across the

boundary between two stripes. What are the chances that one or

another will take place?

Following our procedure in ascertaining other probabilities.
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we must first count the number of cases that correspond to one

or another possibility.

But how can you count all the possibihties when it is clear

that a match can fall on a flag in an infinite number of different

ways?

Let us examine the question a Httle more closely. The position

of the fallen match in respect to the stripe on which it falls

can be characterized by the distance of the middle of the match

Ark,

Figure 89
2

from the nearest boundary line, and by the angle that the match
forms with the direction of the stripes in Figure 89. We give

three typical examples of fallen matches, assuming, for the sake

of simplicity, that the length of the match equals the width of

the stripe, each being, say, two inches. If the center of the match
is rather close to the boundary line, and the angle is rather large

(as in case a) the match will intersect the line. If, on the con-

trary, the angle is small (as in case b) or the distance is large

(as in case c) the match will remain within the boundaries of

one stripe. More exactly we may say that the match will intersect

the hne if the projection of the half-of-the-match on the vertical

direction is larger than the half width of the stripe (as in case a),

and that no intersection will take place if the opposite is true
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(as in case b). The above statement is represented graphically

on the diagram in the lower part of the picture. We plot on the

horizontal axis ( abscissa ) the angle of the fallen match as given

by the length of the corresponding arc of radius 1. On the vertical

axis (ordinate) we plot the length of the projection of the half-

match length on the vertical direction; in trigonometry this length

is known as the sinus corresponding to the given arc. It is clear

that the sinus is zero when the arc is zero since in that case the

match occupies a horizontal position. When the arc is ^ tt, which

corresponds to a straight angle,'' the sinus is equal to unity,

since the match occupies a vertical position and thus coincides

with its projection. For intermediate values of the arc the sinus

is given by the familiar mathematical wavy curve known as

sinusoid. (In Figure 89 we have only one quarter of a complete

wave in the interval between and ir/2.

)

Having constructed this diagram we can use it with con-

venience for estimating the chances that the fallen match will or

will not cross the hne. In fact, as we have seen above ( look again

at the three examples in the upper part of Figure 89 ) the match
will cross the boundary line of a stripe if ^e distance of the

center of the match from the boundary hne is less than the cor-

responding projection, that is, less than the sinus of the arc.

That means that in plotting that distance and that arc in our

diagram we get a point below the sinus line. On the contrary

the match that falls entirely within the boundaries of a stripe

will give a point above the sinus line.

Thus, according to our rules for calculating probabihties, the

chances of intersection will stand in the same ratio to the

chances of nonintersection as the area below the curve does to

the area above it; or the probabilities of the two events may be

calculated by dividing the two areas by the entire area of the

rectangle. It can be proved mathematically {cf. Chapter II) that

the area of the sinusoid presented in our diagram equals exactly

TT W
1. Since the total area of the rectangle is z-Xl=- we find the

probabihty that the match will fall across the boundary (for

' The circiimference of a circle with the radius 1 is ir times its diameter

or 2 IT. Thus the length of one quadrant of a circle is 2 ir/4 or ir/2.
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The interesting fact that -n- pops up here where it might be

least expected was first observed by the eighteenth century

scientist Count BuflFon, and so the match-and-stripes problem now

bears his name.

An actual experiment was carried out by a diligent Italian

mathematician, Lazzerini, who made 3408 match tosses and ob-

served that 2169 of them intersected the boundary line. The

exact record of this experiment, checked with the Buffon formula,

substitutes for tt a value of —-—-— or 3.1415929, differing from
2169

^

the exact mathematical value only in the seventh decimal placel

This represents, of course, a most amusing proof of the validity

of the probability laws, but not more amusing than the deter-

mination of a number "2" by tossing a coin several thousand

times and dividing the total number of tosses by the number

of times heads come up. Sure enough you get in this case:

2.000000 . . . with just as small an error as in Lazzerini's deter-

mination of TT.

4. THE "MYSTERIOUS" ENTROPY

From the above examples of probability calculus, all of them
pertaining to ordinary Hfe, we have learned that predictions of

that sort, being often disappointing when small numbers are in-

volved, become better and better when we go to reaUy large

numbers. This makes these laws particularly applicable to the

description of the almost innumerable quantities of atoms or

molecules that form even the smallest piece of matter we can

conveniently handle. Thus, whereas the statistical law of Drunk-

ard's Walk can give us only approximate results when applied

to a half-dozen drunkards who make perhaps two dozen turns

each, its appHcation to billions of dye molecules undergoing

billions of collisions every second leads to the most rigorous

physical law of diffusion. We can also say that the dye that was
originally dissolved in only one half of the water in the test tube

tends through the process of diffusion to spread uniformly

through the entire hquid, because, such uniform distribution is

more probable than the original one.
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For exactly the same reason the room in which you sit reading

this book is filled uniformly by air from wall to wall and from

floor to ceihng, and it never even occurs to you that the air in the

room can unexpectedly collect itself in a far corner, leaving you to

suflFocate in your chair. However, this horrifying event is not at

all physically impossible, but only highly improbable.

To clarify the situation, let us consider a room divided into

two equal halves by an imaginary vertical plane, and ask our-

selves about the most probable distribution of air molecules be-

tween the two parts. The problem is of course identical with the

coin-tossing problem discussed in the previous chapter. If we
pick up one single molecule it has equal chances of being in the

right or in the left half of the room, in exactly the same way as

the tossed coin can fall on the table with heads or tails up.

The second, the third, and all the other molecules also have

equal chances of being in the right or in the left part of the room

regardless of where the others are.^ Thus the problem of dis-

tributing molecules between the two halves of the room is

equivalent to the problem of heads-and-tails distribution in a

large number of tosses, and as you have seen from Figure 84,

the fifty-fifty distribution is in this case by far the most probable

one. We also see from that figure that with the increasing number

of tosses (the number of air molecules in our case) the prob-

ability at 50 per cent becomes greater and greater, turning prac-

tically into a certainty when this number becomes very large.

Since in the average-size room there are about KF"^ molecules,*

tiie probability that all of them collect simultaneously in, let us

say, the right part of the room is:

i.e., 1 out of 10.3^<>^

On the other hand, since the molecules of air moving at

the speed of about 0.5 km per second require only 0.01 sec

to move from one end of the room to the other, their dis-

tribution in the room v^dll be reshuffled 100 times each second.

Consequently the waiting time for the right combination is

* In fact, owing to large distances between separate molecules of the gas,

the space is not at all crowded and the presence of a large number of

molecules in a given volume does not at ail prevent the entrance of new
molecules.

^ A room 10 ft by 15 ft, with a 9 ft ceiling has a voltime of 1350 cu ft, or

S-IO' cu cm, thus containing 5-10' g of air. Since the average mass of air

molecules is 3- 1-66x10-**= 5x10"* g, the total number of molecules is

5- 10V5- 10-^=10*". (^ means: approximately equal to.)
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20299.999.999.909.999.999.999.999.998 gg^j ^g COmparcd with Only 1(F' SCC

representing the total age of the universel Thus you may go on

quietly reading your book without being afraid of being suf-

focated by chance.

To take another example, let us consider a glass of water

standing on the table. We know that the molecules of water,

being involved in the irregular thermal motion, are moving at

high speed in all possible directions, being, however, prevented

from flying apart by the cohesive forces between them.

Since the direction of motion of each separate molecule is

governed entirely by the law of chance, we may consider the

possibihty that at a certain moment the velocities of one half

of the molecules, namely those in the upper part of the glass,

will all be directed upward, whereas the other half, in the lower

part of the glass, will move downwards.^* In such a case, the co-

hesive forces acting along the horizontal plane dividing two
groups of molecules will not be able to oppose their "unified

desire for parting," and we shall observe the unusual physical

phenomenon of half the water from the glass being spontaneously

shot up with the speed of a bullet toward the ceiling!

Another possibility is that the total energy of thermal motion

of water molecules will be concentrated by chance in those

located in the upper part of the glass, in which case the water

near the bottom suddenly freezes, whereas its upper layers begin

to boil violently. Why have you never seen such things happen?

Not because they are absolutely impossible, but only because

they are extremely improbable. In fact, if you try to calculate

the probability that molecular velocities, originally distributed

at random in all directions, will by pure chance assume the dis-

tribution described above, you arrive at a figure that is just about

as small as the probability that the molecules of air will collect

in one comer. In a similar way, the chance that, because of

mutual collisions, some of the molecules will lose most of their

kinetic energy, while the other part gets a considerable excess

of it, is also negligibly small. Here again the distribution of

velocities that corresponds to the usually observed case is the

one that possesses the largest probabihty.

If now we start with a case that does not correspond to the

^''We must consider this half-and-half distribution, since the possibility

that aU molecules move in the same direction is ruled out by the mechanical

law of the conservation of momentum.
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most probable arrangement of molecular positions or velocities,

by letting out some gas in one comer of the room, or by pouring

some hot water on top of the cold, a sequence of physical

changes will take place that will bring our system from this less

probable to a most probable state. The gas will diffuse through

the room until it fills it up uniformly, and the heat from the top

of the glass will flow toward the bottom until all the water as-

sumes an equal temperature. Thus we may say that all physical

processes depending on the irregular motion of molecules go in

the direction of increasing probability, and the state of equilib-

rium, when nothing more happens, corresponds to the maximum
of probability. Since, as we have seen from the example of the

air in the room, the probabilities of various molecular distribu-

tions are often expressed by inconveniently small numbers (as

jO-3 1028
fQj. ^g gij. collecting in one half of the room), it is cus-

tomary to refer to their logarithms instead. This quantity is known
by the name of entropy, and plays a prominent role in all ques-

tions connected with the irregular thermal motion of matter. The
foregoing statement concerning the probability changes in

physical processes can be now rewritten in the form: Any spon-

taneous changes in a physical system occur in the direction of

increasing entropy, and the firud state of equilibrium corresponds

to the maximum possible value of the entropy.

This is the famous Law of Entropy, also known as the Second

Law of Thermodynamics ( the First Law being the Law of Con-

servation of Energy), and as you see there is nothing in it to

frighten you.

The Law of Entropy can also be called the Law of Increasing

Disorder since, as we have seen in all the examples given above,

the entropy reaches its maximum when the position and velocities

of molecules are distributed completely at random so that any

attempt to introduce some order in their motion would lead to

the decrease of the entropy. Still another, more practical, formula-

tion of the Law of Entropy can be obtained by reference to the

problem of turning the heat into mechanical motion. Remember-

ing that the heat is actually the disorderly mechanical motion of

molecules, it is easy to understand that the complete transforma-

tion of the heat content of a given material body into mechanical

energy of large-scale motion is equivalent to the task of forcing

all molecules of that body to move in the same direction. How-

ever, in the example of the glass of water that might spon-
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taneously shoot one half of its contents toward the ceiling, we
have seen that such a phenomenon is sufficiently improbable to

be considered as being practically impossible. Thus, although the

energy of mechanical motion can go completely over into heat

{for example, through friction), the heat energy can never go
completely into mechanical motion. This rules out the possibility

of the so-called "perpetual motion motor of the second kind,"^^

which would extract the heat from the material bodies at normal

temperature, thus cooling them down and utilizing for doing

mechanical work the energy so obtained. For example, it is im-

possible to build a steamship in the boiler of which steam is

generated not by burning coal but by extracting the heat from the

ocean water, which is first pumped into the engine room, and

then thrown back overboard in the form of ice cubes after the

heat is extracted from it.

But how then do the ordinary steam-engines turn the heat

into motion without violating the Law of Entropy? The trick is

made possible by the fact that in the steam engine only a part of

the heat liberated by burning fuel is actually turned into energy,

another larger part being thrown out into the air in the form of

exhaust steam, or absorbed by the specially arranged steam

coolers. In this case we have two opposite changes of entropy

in our system: (1) the increase of entropy corresponding to the

transformation of a part of the heat into mechanical energy of

the pistons, and (2) the decrease of entropy resulting from the

flow of another part of the heat from the hot-water boilers into

the coolers. The Law of Entropy requires only that the total

amount of entropy of the system increase, and this can be easily

arranged by making the second factor larger than the first. The
situation can probably be understood somewhat better by con-

sidering an example of a 5 lb weight placed on a shelf 6 ft

above tiie floor. According to the Law of Conservation of Energy,

it is quite impossible that this weight will spontaneously and

without any external help rise toward the ceiling. On the other

hand it is possible to drop one part of this weight to the floor

and use the energy thus released to raise another part upward.

In a similar way we can decrease the entropy in one part of

our system if there is a compensating increase of entropy in its

other part. In other words considering a disorderly motion of

*^ Called so in contrast to the "perpetual motion motor of the first kind"

which violates the law of conservation of energy working without any energy

supply.
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molecules we can bring some order in one region, if we do not

mind the fact that this will make the motion in other parts stiU

more disorderly. And in many practical cases, as in all kinds of

heat engines, we do not mind it.

5. STATISTICAL FLUCTUATION

The discussion of the previous section must have made it clear

to you that the Law of Entropy and all its consequences is based
entirely on the fact that in large-scale physics we are always

dealing with an immensely large number of separate molecules,

so that any prediction based on probability considerations be-

comes almost an absolute certainty. However, this kind of predic-

tion becomes considerably less certain when we consider very

small amounts of matter.

Thus, for example, if instead of considering the air filling a

large room, as in the previous example, we take a much smaller

volume of gas, say a cube measuring one hundredth of a

micron^^ each way, the situation wiU look entirely different. In

fact, since the volume of our cube is 10'^^ cu cm it will contain
10-18-10-3

only ^g 30 molecules, and the chance that all of them

will collect in one half of the original volume is (^)^®=10-^^.

On the other hand, because of the much smaller size of the

cube, the molecules wHl be reshuffled at the rate of 5 • 10^ times

per second (velocity of 0.5 km per second and the distance of

only 10"^ cm ) so that about once every second we shall find that

one half of the cube is empty. It goes without saying that the

cases when only a certain fraction of molecules become con-

centrated at one end of our small cube occur considerably more

often. Thus for example the distribution in which 20 molecules

are at one end and 10 molecules at the other (i.e only 10 extra

molecules collected at one end) v^dll occur with the frequency

of ( i ) 10 X 5 • 10^0 = 10-3 X 5 X 1010 = 5 X 10^ that is, 50,000,000 times

per second.

Thus, on a small scale, the distribution of molecules in the air is

far from being uniform. If we could use sufficient magnification,

we should notice the small concentration of molecules being

instantaneously formed at various points of the gas, only to be

dissolved again, and be replaced by other similar concentrations

"One micron, usually denoted by Greek letter Mu (m), is 0.0001 cm.

123



appearing at other points. This effect is known as fluctuation of

density and plays an important role in many physical phenomena.
Thus, for example, when the rays of the sun pass through the

atmosphere these inhomogeneities cause the scattering of blue

rays of the spectrum, giving to the sky its familiar color and mak-
ing the sun look redder than it actually is. This effect of redden-

ing is especially pronounced during the sunset, when the sun

rays must pass through the thicker layer of air. Were these fluctua-

tions of density not present the sky would always look completely

black and the stars could be seen during the day.

Similar, though less pronounced, fluctuations of density and
pressure also take place in ordinary liquids, and another way
of describing the cause of Brownian motion is by saying that

the tiny particles suspended in the water are pushed to and fro

because of rapidly varying changes of pressure acting on their

opposite sides. When the liquid is heated until it is close to its

boiling point, the fluctuations of density become more pro-

nounced and cause a slight opalescence.

We can ask ourselves now whether the Law of Entropy applies

to such small objects as those to which the statistical fluctuations

become of primary importance. Certainly a bacterium, which

through all its life is tossed around by molecular impacts, will

sneer at the statement that heat cannot go over into mechanical

motion! But it would be more correct to say in this case that the

Law of Entropy loses its sense, rather than to say that it is

violated. In fact all that this law says is that molecular motion

cannot be transformed completely into the motion of large

objects containing immense numbers of separate molecules. For

a bacterium, which is not much larger than the molecules them-

selves, the difference between the thermal and mechanical motion

has practically disappeared, and it would consider the molecular

collisions tossing it around in the same way as we would consider

the kicks we get from our fellow citizens in an excited crowd.

If we were bacteria, we should be able to build a perpetual

motion motor of the second kind by simply tying ourselves to a

flying wheel, but then we should not have the brains to use it

to our advantage. Thus there is actually no reason for being

sorry that we are not bacteria!
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The "law of averages" applies to all randomly moving

objects whether in kinetic theory or in city traffic.

This story from The New Yorker magazine raises in

fictional form the question of the meaning of a statisti'

cal law.

8 The Law

Robert M. Coates

An article from The New Yorker Magazine, 1947.

THE first intimation that things

were getting out of hand came
one early-fall evening in the late

nineteen-forties. What happened, sim-

ply, was that between seven and nine

o'clock on that evening the Triborough
Bridge had the heaviest concentration

of outbound traffic in its entire histor\

.

This was odd, for it was a weekday
evening (to be precise, a Wednesday),
and though the weather was agreeably

mild and clear, with a moon that was
close enough to being full to lure a cer-

tain number of motorists out of the

city, these facts alone were not enough
to explain the phenomenon. No other

bridge or main highway was affected,

and though the two preceding nights

had been equally balmy and moonlit, on

both of these the bridge traffic had run

close to normal.

The bridge personnel, at any rate,

was caught entirely unprepared. A main
artery of traffic, like the Triborough,

operates under fairly predictable condi-

tions. Motor travel, like most other

large-scale human activities, obeys the

Law of Averages—that great, ancient

rule that states that the actions of people

in the mass will alwa)s follow consistent

patterns—and on the basis of past ex-

perience it had alwa)s been possible to

foretell, almost to the last digit, the

number of cars that would cross the

bridge at any given hour of the day or

night. In this case, though, all rules

were broken.

The hours from seven till nenriy mid-
night are normally quiet ones on the

bridge. But on that night it was as if

all the motorists in the city, or at any
rate a staggering proportion of them,

-had conspired together to upset tradi-

tion. Beginning almost exacti)' at seven

o'clock, cars poured onto the bridge in

such numbers and with such rapidity

that the staff at tiie toll booths was over-

whelmed almost from the start. It was

soon apparent that this was no momen-
tary congestion, and as it became more
and more obvious that the traffic jam

promised to be one of truly monumental
proportions, added details of police were

rushed to the scene to help handle it.

Cars streamed in from all direc-

tions—from the Bronx approach and

the Manhattan one, from 125th Street

and the East River Drive. (At the peak

of the crush, about eight-fifteen, ob-

servers on the bridge reported that the

drive was a solid line of car headlights

as far south as the bend at Eighty-ninth

Street, while the congestion crosstown

in Manhattan disrupted traffic as far

west as Amsterdam .Avenue.) And per-

haps the most confusing thing about

the whole manifestation was that there

seemed to be no reason for it.

Now and then, as the harried toll-

booth attendants made change for the

seemingly endless stream of cars, they

would question the occupants, and it

soon became clear that the very partici-

pants in the monstrous tieup were as

ignorant of its cause as anyone else

was. A report made by Sergeant .Alfonse

O'Toole, who commanded the detail in

charge of the Bronx approach, is typical.

"I kept askin' them," he said, " 'Is there

night football somewhere that we don't

know about.' Is it the races )'ou're goin'

tor' But the funny thing was half the

time they'd be askin' fnf. '\Vhat's the

crowd for, Mac? ' they would say. And

I'd just look at them. There was one

guy I mind, in a Ford convertible with

a girl in the seat beside him, and when
he asked me, I said to him, 'Hell, you're

in the crowd, ain't you?' I said. 'What
brings you here? ' And the dummy just

looked at me. 'Me?' he says. 'I just

come out for a drive in the moonlight.

But if I'd known there'd be a crowd like

this . .
.' he says. And then he asks me,

'Is there any place I can turn around

and get out of this?' " As the Herald
Tribune summed things up in its story

next morning, it "just looked as if every-

body in Manhattan who owned a

motorcar had decided to drive out on

Long Island that evening."

THE incident was unusual enough

to make all the front pages next

morning, and because of this, many sim-

ilar events, which might otherwise have

gone unnoticed, received attention. The
proprietor of the .Aramis Theatre, on

Eighth .Avenue, reported that on sev-

eral nights in the recent past his audi-

torium had been practically empty,

while on others it had been jammed to

suffocation. Lunchroom owners noted

that increasingly their patrons were de-

veloping a habit of making rims on spe-

cific items; one day it would be the roast

shoulder of veal with pan gravy that

was ordered almost exclusively, while

the next everyone would be taking the

Vienna loaf, and the roast veal went
begging. A man who ran a small no-

tions store in Bayside revealed that over

a period of four days two hundred and
scvent)-four successive customers had
entered his shop and asked for a spool

of pink thread.

Reprinted by permission.

Copyright @ 1 947 The New Yorker Magazine, Inc.
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The Law

These were news items that would

ordinarily have gone into the papers as

fillers or in the sections reserved for

oddities. Now, however, they seemed

to have a more serious significance. It

was apparent at last that something de-

cidedly strange was happening to peo-

ple's habits, and it was as unsettling

as those occasional moments on excur-

sion boats when the passengers are

moved, all at once, to rush to one side

or the other of the vessel. It was
not till one day in December when,

almost incredibly, the Twentieth Cen-

tury Limited left New York for Chi-

cago with just three passengers aboard

that business leaders discovered how
disastrous the new trend could be, too.

Until then, the New York Central,

for instance, could operate confidently

on the assumption that although there

might be several thousand men in New
York who had business relations in

Chicago, on any single day no more

—

and no less—than some hundreds of

them would have occasion to go there.

The play producer could be sure that his

patronage would sort itself out and

that roughly as many persons would

want to see the performance on Thurs-*

day as there had been on Tuesday or

Wednesday. Now they couldn't be sure

of anything. The Law of Averages had

gone by the board, and if the effect on

business promised to be catastrophic, it

was also singularly unnerving for the

general customer.

The lady starting downtown for a

day of shopping, for example, could

never be sure whether she would find

Macy's department store a seething

mob of other shoppers or a wilderness

of empty, echoing aisles and unoccupied

salesgirls. And the uncertainty pro-

duced a strange sort of jitteriness in the

individual when faced with any impulse

to action. "Shall we do it or shan't

wer" people kept asking themselves,

knowing that if they did do it, it might

turn out that thousands of other indi-

viduals had decided similar!)'; knowing,

too, that if they didn't, they might miss

the one glorious chance of all chances

to have Jones Beach, say, practically to

themselves. Business languished, and a

sort of desperate uncertainty rode ev-

eryone.

AT this juncture, it was inevitable

-^ ^ that Congress should be called on
for action. In fact. Congress called on

itself, and it must be said that it rose

nobly to the occasion. A committee
was appointed, drawn from both Houses

and headed by Senator J. Wing Sloop-

er (R.), of Indiana, and though after

considerable investigation the commit-

tee was forced reluctantly to conclude

that there was no evidence of Com-
munist instigation, the unconscious sub-

versiveness of the people's present con-

duct was obvious at a glance. The
problem was what to do about it. You
can't indict a whole nation, particu-

larly on such vague grounds as these

were. But, as Senator Slooper bold-

ly pointed out, "You can control it,"

and in the end a system of reeduca-

tion and reform was decided upon, de-

signed to lead people back to—again

we quote Senator Slooper
—

"the basic

regularities, the homely averageness of

the American way of life."

In the course of the committee's in-

vestigations, it had been discovered, to

everyone's dismay, that the Law of

Averages had never been incorporated

into the body of federal jurisprudence,

and though the upholders of States'

Rights rebelled violently, the oversight

was at once corrected, both by Consti-

tutional amendment and by a law—the

Hills-Slooper Act—implementing it.

According to the Act, people were re-

quired to be average, and, as the simplest

way of assuring it, they were divided

alphabetically and their permissible

activities catalogued accordingly. Thus,
by the plan, a person whose name began

with "G," "N," or "U," for example,

could attend the theatre only on Tues-

days, and he could go to baseball games
only on Thursdays, whereas his visits

tq, a haberdashery were confined to the

hours between ten o'clock and noon on

Mondays.

The law, of course, had its disadvan-

tages. It had a crippling effect on thea-

tre parties, among other social functions,

and the cost of enforcing it was un-

believably heavy. In the end, too, so

many amendments had to be added to

it—such as the one permitting gentle-

men to take their fiancees (if accredit-

ed) along with them to various events

and functions no matter what letter the

said fiancees' names began with—that

the courts were frequently at a loss to

interpret it when confronted with vio-

lations.

In its way, though, the law did serve

its purpose, for it did induce—rather

mechanically, it is true, but still ade-

quately—a return to that average ex-

istence that Senator Slooper desired. All,

indeed, would have been well if a year

or so later disquieting reports had not

begun to seep in from the backwoods.

It seemed that there, in what had hith-

erto been considered to be marginal

areas, a strange wave of prosperity was

making itself felt. Tennessee moun-
taineers were buying Packard converti-

bles, and Sears, Roebuck reported that

in the Ozarks their sales of luxury items

had gone up nine hundred per cent. In

the scrub sections of Vermont, men who
formerly had barely been able to scratch

a living from their rock-strewn acres

were now sending their daughters to

Europe and ordering expensive cigars

from New York. It appeared that the

Law of Diminishing Returns was going

haywire, too. —Robert M. Coates
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How can a viewer distinguish whether a film is being

run forward or backward? The direction of increasing

disorder helps to fix the direction of the arrow of time.

9 The Arrow of Time

Jacob Bronowski

A chapter from his book Insight, 1964.

This chapter and those that follow deal with time.

In particular, this chapter looks at the direction of

time. Why does time go one way only? Why cannot

we turn time backwards? Why are we not able to

travel in time, back and forth?

The idea of time travel has fascinated men. Even

folklore contains legends about travel in time. And
science fiction, from The Time Machine onwards, has

been pre-occupied with this theme. Plainly, men feel

themselves to be imprisoned in the single direction

of time. They would like to move about in time as

freely as they can move in space.

And time is in some way like space. Like space,

time is not a thing but is a relation between things.

The essence of space is that it describes an order

among things—higher or lower, in front or behind,

to left or to right. The essence of time also is that it

describes an order—earlier or later. Yet we cannot

move things in time as we can in space. Time must

therefore describe some fundamental process in

nature which we do not control.

It is not easy to discuss time without bringing in

some way of measuring it—a clock of one sort or

another. Yet if all the clocks in the world stopped,

and if we all lost all inner sense of time, we could

still tell earlier from later. The essential nature of

time does not depend on clocks. That is the point of

this chapter, and we will begin by illustrating it

from very simple and common experiences.

The three pairs of pictures point the way. They

help to show what it is that enables us to tell earlier

from later without a clock. In each pair, the pictures

are arranged at random, and not necessarily in the

sequence of time. Yet in all except the first pair, it

is easy to arrange the pictures; the sequence in time

is obvious. Only the first pair does not betray its time

sequence. What is the difference between the first

pair of pictures and the other two pairs?

We get a clue to the difference when we study the

arrangement of the things in each picture. In the first

pair, we cannot really distinguish one arrangement

from another; they are equally tidy and orderly. The

two pictures of the first pair show a shot at billiards.

The billiard balls are as well arranged after the shot

as before; there is no obvious difference between

the arrangements.

The situation is different in the other two pairs.

A broken egg is an entirely different arrangement
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from a whole egg. A snooker pyramid is quite

different from a jumble of balls.

And not only are the arrangements here different.

Once they are different, it is quite clear which

arrangement comes before the other. Whole eggs

come before broken ones. The snooker pyramid

comes before the spread of the balls.

In each case, the earlier arrangement is more
ordered than the later. Time produces disorder; that

is the lesson of these pictures. And it is also the

lesson of this chapter. The arrow of time is loss

of order.

In a game of snooker, we know quite well that the

highly ordered arrangement of the balls at the be-

ginning of the game comes before the disordered

arrangement at the end of the first shot. Indeed, the

first shot is called 'breaking the pyramid'; and
breaking is a destructive action— it destroys order.

It is just not conceivable that fifteen balls would
gather themselves up into a pyramid, however skilful

the player. The universe does not suddenly creaie

order out of disorder.

These pictures show the same thing agam. When
a spot of powdered dye is put on the surface of

water, it spreads out and gradually dissolves. Dye
would never come out of solution and stream to-

gether by itself to gather in a spot on the surface.

Again time is breaking down order and making dis-

order. It disperses the dye randomly through the

water.

We know at once that the stones in the picture be-

low were shaped and erected a very long time ago.

Their rough, weathered surfaces bear the mark of

time, it is still possible to reconstruct the once orderly

arrangement of the stones of Stonehenge. But the

once orderly surface of each stone cannot be re-

covered. Atom by atom, the smooth surface has

been carried away, and is lost to chaos.

And here finally is the most interesting of all the

pictures in which time betrays itself. In these shots

from an old film the heroine has been tied to the

rails—a splendid tradition of silent films. A train is

approaching, but of course it stops just in time. The
role of the heroine would seem to call for strong

nerves as well as dramatic ability, if she has to trust

the engine driver to stop the locomotive exactly

where he is told. However, the last few yards of the

approach are in fact done bv a trick. The locomotive
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is started close to the heroine and is backed away;

and the film is then run backwards.

There is only one thing that gives this trick away.

When the film is run backwards, the smoke visibly

goes into the funnel instead of coming out of it. We
know that in reality, smoke behaves like the spread-

ing dye: it becomes more disorderly, the further it

gets from the funnel. So when we see disorder coming

before order, we realise that something is wrong.

Smoke does not of itself collect together and stream

down a funnel.

One thing remains to clear up in these examples.

We began with an example in which earlier and later

were equally well ordered. The example was a shot

at billiards. The planets in their orbits would be

another example, in which there would be nothing

to say which arrangement comes first.

Then does time stand still in billiards and planetary

motion? No, time is still doing its work of disorder.

We may not see the effects at once, but they are

there. For billiard balls and planets gradually lose

material from their surface, just like the stones of

Stonehenge. Time destroys their orderly shape too.

A billiard ball is not quite the same after a shot

as before it. A planet is not quite the same in each

successive orbit. And the changes are in the direction

of disorder. Atoms are lost from ordered structures

and return to chaos. The direction of time is from

order to disorder.

That is one reason why perpetual motion machines

are impossible. Time cannot be brought to a stand-

still. We cannot freeze the arrangement of the atoms,

even in a tiny corner of the universe. And that is what

we should have to do to make a perpetual motion

machine. The machine would have to remain the

same, atom for atom, for all time. Time would have

to stand still for it.

For example, take the first of these three machines

from a famous book of Perpetual Motion Machines.

It is meant to be kept going by balls in each sector,

which roll from the centre to the rim and back again

as the wheel turns. Of course it does not work. There

is friction in the bearing of the wheel, and more

friction between the balls and the tracks they run on.

Every movement rubs off a few atoms. The bearings

wear, the balls lose their smooth roundness. Time
does not stand still.

The second machine is more complicated and

sillier. It is designed to work like a waterwheel with

little balls instead of water. At the bottom the balls

roll out of their compartments down the chute, and

on to a moving belt which is to lift them to the top
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The Arrow of Time

again. That is how the machine is meant to keep

going. In fact, when we built it, it came to a stop

every few minutes.

The pendulum arrangement in the third picture also

comes from the book of Perpetual Motion Machines.

A bail runs backwards and forwards in the trough

on top to keep it going. There are also elastic strings

at each end for good measure. This machine at least

works for short bursts. But as a perpetual motion

machine, it has the same defects as the others.

Nothing can be done to get rid of friction; and

where there is friction, there must be wear.

This last point is usually put a little differently.

Every machine has friction. It has to be supplied

with energy to overcome the friction. And this

energy cannot be recovered. In fact, this energy is

lost in heat, and in wear—that is, in moving atoms

out of their order, and in losing them. That is an-

other way of putting the same reasoning, and shows

equally (in different language) why a perpetual

motion machine cannot work.

Before we put these fanciful monsters out of mind,

it is worth seeing how beautifully a fine machine can

be made. It cannot conquer the disorder of time, it

cannot get rid of friction, but it can keep them to a

minimum. So on page 132 are two splendid clocks

which make no pretence to do the impossible, yet

which go as far as it is possible to go by means of

exact and intelligent craftsmanship.

These clocks are not intended to be p>erpetual

motion machines. Each has an outside source of

energy to keep it going. In the clock at the top, it is

ordinary clockwork which tips the platform when-

ever the ball has completed a run. The clock below

is more tricky: it has no clockwork spring, and

instead is driven by temp>erature differences in the

air. But even if there was someone to wind one clock,

and suitable air conditions for the other, they could

not run for ever. They would wear out. That is, their

ordered structure would slowly become more dis-

ordered until they stopped. The clock with no spring

would run for several hundred years, but it could

not run for ever.

To summarise: the direction of time in the uni-

verse is marked by increasing disorder. Even without

clocks and without an inner sense of time, we could

tell later and earlier. Later" is characterised by the

greater disorder, by the growing randomness of the

universe.

We ought to be clear what these descriptive

phrases mean. Order is a very special arrangement;

and disorder means the loss of what makes it special.

When we say that the universe is becoming more

disordered, more random, we mean that the special

arrangements in this place or that are being evened

out. The peaks are made lower, the holes are filled
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in. The extremes disappear, and all parts sink more
and more towards a level average. Disorder
and randomness are not wild states; they are simply
states which have no special arrangement, and in

which everything is therefore near the average.

Even in disorder, of course, things move and
deviate round their average. But they deviate by
chance, and chance then takes them back to the

average. It is only in exceptional cases that a devia-

tion becomes fixed, and perpetuates itself. These
exceptions are fascinating and important, and we
now turn to them.

The movement towards randomness, we repeat, is

not uniform. It is statistical, a general trend. And
(as we saw in Chapter 8) the units that make up a

general trend do not all flow in the same direction.

Here and there, in the midst of the flow towards
an average of chaos, there are places where the flow
is reversed for a time. The most remarkable of these

reversals is life. Life as it were is running against
time. Life is the very opposite of randomness.
How this can come about can be shown by an

analogy. The flow of time is like an endless shuflling

of a pack of cards. A typical hand dealt after long

shuffling will be random—say four diamonds, a

couple of spades, four clubs, and three hearts. This
is the sort of hand a bridge player expects to pick up
several times in an evening. Yet every now and then
a bridge player picks up a freak hand. For example,
from time to time a player picks up all thirteen

spades. And this does not mean that the pack was
not properly shuflled. A hand of thirteen spades can
arise by chance, and does; the odds against it are
high, but they are not astronomic. Life started with
a chance accident of this kind. The odds against it

were high, but they were not astronomic.
The special thing about life is that it is self-

perpetuating. The freak hand, instead of disappear-
ing in the next shufile, reproduces itself. Once the
thirteen spades of life are dealt, they keep their
order, and they impose it on the pack from then on.
This is what distinguishes life from other freaks,
other deviations from the average.

There are other happenings in the universe that
run against the flow of time for a while. The forma-
tion of a star from the interstellar dust is such a
happening. When a star is formed, the dust that
forms it becomes less random; its order is increased,
not decreased. But stars do not reproduce themselves.
Once the star is formed, the accident is over. The
flow towards disorder starts again. The deviation
begins to ebb back towards the average.

Life IS a deviation of a special kind; it is a self-

reproducing accident. Once its highly ordered
arrangement occurs, once the thirteen spades happen
to be dealt in one hand, it repeats itself. The order
was reached by chance, but it then survives because
it is able to perpetuate itself, and to impose itself on
other matter.

It is rare to find in dead matter behaviour of this

kind which illustrates the way in which life imposes
its order. An analogy of a kind, however, is found
in the growth of crystals. When a supercooled solu-

tion is ready to form crystals, it needs something to

start it ofl". Now we introduce the outside accident,

the freak hand at bridge. That is, we introduce a tiny

crystal that we have made, and we drop it in. At
once the crystal starts to grow and to impose its

own shape round it.

In this analogy, the first crystal is a seed, like the

seed of life. Without it, the supercooled solution
would remain dead, unchanged for hours or even
days. And like the seed of life, the first crystal im-
poses its order all round it. It reproduces it.self many
times over.

Nearly five hundred years ago, Leonardo da Vinci
described time as the destroyer of all things. So we
have seen it in this chapter. It is the nature of time
to destroy things, to turn order into disorder. This
indeed gives time its single direction its arrow.

But the arrow of time is only statistical. The
general trend is towards an average chaos; yet there
are deviations which move in the opposite direction.

Life is the most important deviation of this kind. It

is able to reproduce itself, and so to perpetuate the
order whieh began by accident. Life runs against the
disorder of time.
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The biography of this great Scottish physicist, renowned

both for kinetic theory and for his mathematical formu-

lation of the laws of electricity and magnetism, is pre-

sented in two parts. The second half of this selection is

in Reader 4.

10 James Clerk Maxwell

James R. Newman

An article from the Scientific American, 1955.

JAMES CLERK MAXWELL was the greatest theo-

_ retical physicist of the nineteenth century. His

discoveries opened a new epoch of science, and much of what

distinguishes our world from his is due to his work. Because

his ideas found perfect expression in mathematical symbol-

ism, and also because his most spectacular triumph— the

prophecy of the existence of electromagnetic waves— was

the fruit of theoretical rather than experimental researches, he

is often cited as the supreme example of a scientist who builds

his systems entirely with pencil and paper. This notion is

false. He was not, it is true, primarily an experimentalist. He

had not the magical touch of Faraday, of whom Helmholtz

once observed after a visit to his laboratory that "a few wires

and some old bits of wood and iron seem to serve him for the

greatest discoveries." Nonetheless he combined a profound
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physical intuition with a formidable mathematical capacity to

produce results "partaking of both natures." On the one hand,
Maxwell never lost sight of the phenomena to be explained,
nor permitted himself, as he said, to be drawn aside from the
subject in pursuit of "analytical subtleties"; on the other hand,
the use of mathematical methods conferred freedom on his in-

quiries and enabled him to gain physical insights without com-
mitting himself to a physical theory. This blending of the
concrete and the abstract was the characteristic of almost all

his researches.

Maxwell was born at Edinburgh on November 13, 1831,
the same year Faraday announced his famous discovery of
electromagnetic induction. He was descended of the Clerks of
Penicuick in Midlothian, an old Scots family distinguished no
less for their individuality, "verging on eccentricity," than
for their talents. His forbears included eminent lawyers,
judges, politicians, mining speculators, merchants, poets, mu-
sicians, and also the author (John Clerk) of a thick book on
naval tactics, whose naval experience appears to have been
confined entirely to sailing mimic men of war on the fishponds
at Penicuick. The name Maxwell was assumed by James's
father, John Clerk, on inheriting the small estate of Middlebie
from his grandfather Sir George Clerk Maxwell.

At Glenlair, a two-day carriage ride from Edinburgh and
"very much in the wilds," in a house built by his father shortly
after he married. Maxwell passed his infancy and early boy-
hood. It was a happy time. He was an only son (a sister, bom
earlier, died in infancy) in a close-knit, comfortably-off fam-
ily. John Clerk Maxwell had been called to the Scottish bar
but took little interest in the grubby pursuits of an advocate.
Instead the laird managed his small estates, took part in county
affairs and gave loving attention to the education of his son.
He was a warm and rather simple man with a nice sense of
humor and a penchant for doing things with what he called
"judiciosity"; his main characteristic, according to Maxwell's
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James Clerk Maxutell.

(The Bettmann Archive)
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biographer Lewis Campbell,* was a "persistent practical in-

terest in all useful purposes." Maxwell's mother, Frances Cay,

who came of a well-known Northumbrian family, is described

as having a "sanguine, active temperament."

Jamesie, as he was called, was a nearsighted, lively, affec-

tionate little boy, as persistently inquisitive as his father and

as fascinated by mechanical contrivances. To discover of any-

thing "how it doos" was his constant aim. "What's the go of

that?" he would ask, and if the answer did not satisfy him he

would add, "But what's the particular go of that?" His first

creation was a set of figures for a "wheel of life," a scientific

toy that produced the illusion of continuous movement; he

was fond of making things with his hands, and in later life

knew how to design models embodying the most complex mo-

tions and other physical processes.

When Maxwell was nine, his mother died of cancer, the

same disease that was to kill him forty years later. Her death

drew father and son even more closely together, and many in-

timate glimpses of Maxwell in his younger years emerge from

the candid and affectionate letters he wrote to his father from

the time he entered school until he graduated from Cambridge.

Maxwell was admitted to Edinburgh Academy as a day

student when he was ten years old. His early school experi-

ences were painful. The master, a dryish Scotsman whose

reputation derived from a book titled Account of the Irregular

Greek Verbs and from the fact that he was a good disciplin-

arian, expected his students to be orderly, well-grounded in

the usual subjects and unoriginal. Maxwell was deficient in

all these departments. He created something of a sensation

because of his clothes, which had been designed by his strong-

* The standard biography (London, 1882) is by Lewis Campbell and William

Garnett. Campbell wrote the first part, which portrays Maxwell's life; Garnett

the second part, dealing with Maxwell's contributions to science. A shorter

biography, especially valuable for the scientific exposition, is by the mathema-
tician R. T. Glazebrook {James Clerk Maxwell and Modern ['hysics. London,
1901). In this essay, material in quotation marks, otherwise unattributed, is

from Campbell and Garnett.

136



James Clerk Maxwell

^^ sisinisiintnGiKSrafHiianinifafafgpK ^

(^^yVedx Sir.

giye ^Lscinnf sstht IjJl sajs mKs Amexir^Yi.

dJi cixesb rn v4icli. lie -tfild ws how ^hese

Illuminated letter was written by Maxwell to his father in 1843, when the

younger Maxwell was II. The letter refers to a lecture by the American

frontier artist, George Catlin. (Scientific American)
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minded father and included such items as "hygienic" square-

toed shoes and a lace-frilled tunic. The boys nicknamed him

"Dafty" and mussed him up, but he was a stubborn child and

in time won the respect of his classmates even if he continued

to puzzle them. There was a gradual awakening of mathe-

matical interests. He wrote his father that he had made a

"tetra hedron, a dodeca hedron, and two more hedrons that I

don't know the wright names for," that he enjoyed playing

with the "boies," that he attended a performance of some

"Virginian minstrels," that he was composing Latin verse and

making a list of the Kings of Israel and Judah. Also, he sent

him the riddle of the simpleton who "wishing to swim was

nearly drowned. As soon as he got out he swore that he would

never touch water till he had learned to swim." In his four-

teenth year he won the Academy's mathematical medal and

wrote a paper on a mechanical method, using pins and thread,

of constructing perfect oval curves. Another prodigious little

boy, Rene Descartes, had anticipated Maxwell in this field, but

Maxwell's contributions were completely independent and

original. It was a wonderful day for father and son when they

heard "Jas's" paper on ovals read before the Royal Society of

Edinburgh by Professor James Forbes: "Met," Mr. Maxwell

wrote of the event in his diary, "with very great attention and

approbation generally."

After six years at the Academy, Maxwell entered the Uni-

versity of Edinburgh. He was sixteen, a restless, enigmatic,

brilliantly talented adolescent who wrote not very good but

strangely prophetic verse about the destiny of matter and

energy

:

When earth and sun are frozen clods.

When all its energy degraded

Matter to aether shall have faded

His friend and biographer Campl)ell records that James was

completely neat in his person "though with a rooted oi)jection

to the vanities of starch and gloves," and that he had a "pious
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horror of destroying anything— even a scrap of writing pa-

per." He had a quaint humor, read voraciously and passed

much time in mathematical speculations and in chemical, mag-

netic and optical experiments. "When at table he often seemed

abstracted from what was going on, being absorbed in observ-

ing the effects of refracted light in the finger glasses, or in try-

ing some experiment with his eyes— seeing around a corner,

making invisible stereoscopes, and the like. Miss Cay [his aunt]

used to call his attention by crying, 'Jamesie, you're in a

prop!' [an abbreviation for mathematical proposition]." He
was by now a regular visitor at the meetings of the Edinburgh

Royal Society, and two of his papers, on "Rolling Curves"

and on the "Equilibrium of Elastic Solids," were published

in the Transactions. The papers were read before the Society

by others "for it was not thought proper for a boy in a round

jacket to mount the rostrum there." During vacations at Glen-

lair he was tremendously active and enjoyed reporting his

multifarious doings in long letters to friends. A typical com-

munication, when Maxwell was seventeen, tells Campbell of

building an "electro-magnetic machine," taking off an hour to

read Poisson's papers on electricity and magnetism ("as I am
pleased with him today" ) , swimming and engaging in "aquatic

experiments," making a centrifugal pump, reading Herodotus,

designing regular geometric figures, working on an electric

telegraph, recording thermometer and barometer readings,

embedding a beetle in wax to see if it was a good conductor of

electricity ("not at all cruel, because I slew him in boiling

water in which he never kicked"), taking the dogs out, picking

fruit, doing "violent exercise" and solving props. Many of his

letters exhibit his metaphysical leanings, especially an intense

interest in moral philosophy. This bent of his thought, while

showing no particular originality, reflects his social sympathy,

his Christian earnestness, the not uncommon nineteenth-century

mixture of rationalism and simple faith. It was a period when

men still shared the eighteenth-century belief that questions of

wisdom, happiness and virtue could be studied as one studies

optics and mechanics.
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In 1850 Maxwell quit the University of Edinburgh for

Cambridge. After a term at Peterhouse College he migrated

to Trinity where the opportunity seemed better of obtaining

ultimately a mathematical fellowship. In his second year he

became a private pupil of William Hopkins, considered the

ablest mathematics coach of his time. It was Hopkins's job to

prepare his pupils for the stiff competitive examinations, the

mathematical tripos, in which the attainment of high place

insured academic preferment. Hopkins was not easily im-

pressed; the brightest students begged to join his group, and

the famous physicists George Stokes and William Thomson
(later Lord Kelvin) had been among his pupils. But from the

beginning he recognized the talents of the black-haired young

Scotsman, describing him as "the most extraordinary man I

have ever met," and adding that "it appears impossible for

[him] to think incorrectly on physical subjects." Maxwell

worked hard as an undergraduate, attending the lectures of

Stokes and others and faithfully doing what he called "old

Hop's props." He joined fully in social and intellectual ac-

tivities and was made one of the Apostles, a club limited to

twelve members, which for many years included the outstand-

ing young men at Cambridge. A contemporary describes him

as "the most genial and amusing of companions, the pro-

pounder of many a strange theory, the composer of many a

poetic jeu d'esprit.''^ Not the least strange of his theories re-

lated to finding an effective economy of work and sleep. He
would sleep from 5 in the afternoon to 9:30, read very hard

from 10 to 2, exercise by running along the corridors and up

and down stairs from 2 to 2:30 a.m. and sleep again from

2:30 to 7. The occupants of the rooms along his track were

not pleased, but Maxwell persisted in his bizarre experiments.

Less disturbing were his investigations of the process i)y which

a cat lands always on her feet. He demonstrated that a cat

could right herself even when dropped upside down on a table

or bed from about two inches. A complete record of these valu-

able researches is unfortunately not available.

A severe illness, referred to as a "sort of brain fever,"
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seized Maxwell in the summer of 1853. For weeks he was

totally disabled and he felt effects of his illness long after-

ward. Despite the abundance of details about his life, it is hard

to get to the man underneath. From his letters one gleans evi-

dence of deep inner struggles and anxieties, and the attack of

"brain fever" was undoubtedly an emotional crisis; but its

causes remain obscure. All that is known is that his illness

strengthened Maxwell's religious conviction— a deep, ear-

nest piety, leaning to Scottish Calvinism yet never completely

identified with any particular system or sect. "I have no nose

for heresy," he used to say.

In January, 1854, with a rug wrapped round his feet and

legs (as his father had advised) to mitigate the perishing cold

in the Cambridge Senate House where the elders met and

examinations were given, he took the tripos. His head was

warm enough. He finished second wrangler, behind the noted

mathematician, Edward Routh. (In another competitive or-

deal, for the "Smith's Prize," where the subjects were more

advanced. Maxwell and Routh tied for first.)

After getting his degree. Maxwell stayed on for a while at

Trinity, taking private pupils, reading Berkeley's Theory of

Vision, which he greatly admired, and Mill's Logic, which he

admired less: ("I take him slowly ... I do not think him the

last of his kind"), and doing experiments on the effects pro-

duced by mixing colors. His apparatus consisted of a top,

which he had designed himself, and colored paper discs that

could be slipped one over the other and arranged round the

top's axis so that any given portion of each color could be

exposed. When the top was spun rapidly, the sectors of the

different colors became indistinguishable and the whole ap-

peared of one uniform tint. He was able to show that suitable

combinations of three primary colors— red, green and blue

— produced "to a very near degree of approximation" almost

every color of the spectrum. In each case the required combi-

nation could be quantitatively determined by measuring the

sizes of the exposed sectors of the primary-color discs. Thus,

for example, 66.6 parts of red and 33.4 parts of green gave

141



the same chromatic effect as 29.1 parts of yellow and 24.1

parts of blue. In general, color composition could be expressed

by an equation of the form

xX = aA + bB + cC

— shorthand for the statement that x parts of X can be matched

by a parts of A, b parts of B and c parts of C. This symbolism

worked out very prettily, for "if the sign of one of the quanti-

ties, a, 6, or c was negative, it simply meant that that color had

to be combined with X to match the other two."* The problem

of color perception drew Maxwell's attention on and off for

several years, and enlarged his scientific reputation. The work

was one phase of his passionate interest in optics, a subject to

which he made many contributions ranging from papers on

geometrical optics to the invention of an ophthalmoscope and

studies in the "Art of Squinting," Hermann von Helmholtz was

of course the great leader in the field of color sensation, but

Maxwell's work was independent and of high merit and in

1860 won him the Rumford Medal of the Royal Society.

These investigations, however, for all their importance,

cannot be counted the most significant activity of the two post-

graduate years at Trinity. For during this same period he was

reading with intense absorption Faraday's Experimental Re-

searches, and the effect of this great record on his mind is

scarcely to be overestimated. He had, as he wrote his father,

been "working away at Electricity again, and [I] have been

working my way into the views of heavy German writers. It

takes a long time to reduce to order all the notions one gets

from these men, but I hope to see my way through the subject,

and arrive at something intelligible in the way of a theory."

Faraday's wonderful mechanical analogies suited Maxwell

perfectly; they were what he needed to stimulate his own con-

jectures. Like Faraday, he thought more easily in images than

• Glazebrook, op. cit., pp. 101-102. See also Maxwell's paper. "Experiments on
Colour, as perceived by the Eye, with remarks on Colour-Blindness." Transac-

tions of the Royal Society of Edinburgh, vol. XXI, part II; collected in The
Scientific Papers of James Clerk Maxwell, edited by W. D. Niven, Cambridge,
1890.
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Color wheel is depicted in Max-
welFs essay "Experiments in

Colour, as perceived by the Eye,

with remarks on Colour-Blind-

ness." The wheel is shown at

the top. The apparatus for rotat-

ing it is at the bottom.

(Scientific American)

abstractions: the models came first, the mathematics later. A
Cambridge contemporary said that in their student days,

whenever the subject admitted of it, Maxwell "had recourse

to diagrams, though the rest [of the class] might solve the

question more easily by a train of analysis." It was his aim,

he wrote, to take Faraday's ideas and to show how "the con-

nexion of the very different orders of phenomena which he

had discovered may be clearly placed before the mathematical
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mind."* Before the year 1855 was out, Maxwell had pub-

lished his first major contribution to electrical science, the

beautiful paper "On Faraday's Lines of Force," to which I

shall return when considering his over-all achievements in the

field.

Trinity elected Maxwell to a fellowship in 1855, and he

began to lecture in hydrostatics and optics. But his father's

health, unsettled for some time, now deteriorated further, and

it was partly to avoid their being separated that he became a

candidate for the chair of natural philosophy at Marischal

College, Aberdeen. In 1856 his appointment was announced;

his father, however, had died a few days before, an irrepar-

able personal loss to Maxwell. They had been as close as

father and son could be. They confided in each other, under-

stood each other and were in certain admirable traits much
alike.

The four years at Aberdeen were years of preparation as

well as achievement. Management of his estate, the design of

a new "compendious" color machine, and the reading of

metaphysics drew on his time. The teaching load was rather

light, a circumstance not unduly distressing to Maxwell. He took

his duties seriously, prepared lectures and demonstration ex-

periments very carefully, but it cannot be said he was a great

teacher. At Cambridge, where he had picked students, his

lectures were well attended, but with classes that were, in his

own words, "not bright," he found it difficult to hit a suitable

pace. He was unable himself to heed the advice he once gave

a friend whose duty it was to preach to a country congregation:

* The following quotation from the preface to Maxwell's Treatise on Electricity

and Magnetism (Cambridge, 1873) gives Maxwell's views of Faraday in his own
words: "Before I began the study of electricity I resolved to read no mathe-

matics on the subject till I had first read through Faraday's Experimental Re-

searches in Electricity. I was aware that there was supposed to be a difference

between Faraday's way of conceiving phenomena and that of the mathematicians

so that neither he nor they were satisfied with each other's language. 1 had also

the conviction that this discrepancy did not arise from either party being wrong.

... As I proceeded with the study of Faraday. I perceived that his method of

conceiving the phenomena was also a mathematical one. though not exhibited

in the conventional form of mathematical symbols. I also found that these

methods were capable of being expressed in the ordinary mathematical forms,

and these compared with those of the professed mathematicians."
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"Why don't you give it to them thinner?"* Electrical studies

occupied him both during term and in vacation at Glenlair.

"I have proved," he wrote in a semijocular vein to his friend

C. J. Monro, "that if there be nine coefficients of magnetic

induction, perpetual motion will set in, and a small crystalline

sphere will inevitably destroy the universe by increasing all

velocities till the friction brings all nature into a state of

incandescence. . .
,"

Then suddenly the work on electricity was interrupted by a

task that engrossed him for almost two years. In competition

for the Adams prize of the University of Cambridge (named

in honor of the discoverer of Neptune), Maxwell prepared a

brilliant essay on the subject set by the electors: "The Struc-

ture of Saturn's Rings."

Beginning with Galileo, the leading astronomers had ob-

served and attempted to explain the nature of the several con-

centric dark and bright rings encircling the planet Saturn.

The great Huygens had studied the problem, as had the

Frenchman, Jean Dominique Cassini, Sir William Herschel

and his son John, Laplace, and the Harvard mathematician

and astronomer Benjamin Peirce. The main question at the

time Maxwell entered the competition concerned the stability

of the ring system: Were the rings solid? Were they fluid?

Did they consist of masses of matter "not mutually coherent"?

The problem was to demonstrate which type of structure ade-

quately explained the motion and permanence of the rings.

Maxwell's sixty-eight-page essay was a mixture of common
sense, subtle mathematical reasoning and profound insight

into the principles of mechanics.* There was no point, he said

at the outset, in imagining that the motion of the rings was the

result of forces unfamiliar to us. We must assume that gravi-

tation is the regulating principle and reason accordingly. The

hypothesis that the rings are solid and uniform he quickly

demonstrated to be untenable; indeed Laplace had already

* Occasionally he enjoyed mystifying his students, but at Aberdeen, where, he

wrote Campbell. "No jokes of any kind are understood," he did not permit him-

self such innocent enjoyments.

* A summary of the work was published in the Proceedings of the Royal Soci-

ety of Edinburgh, vol. IV; this summary and the essay "On the Stability of the

Motion of Saturn's Rings" appear in the Scientific Papers (op. cit.)

.
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shown that an arrangement oi this kind would be so precarious

that even a slight displacement of the center of the ring from

the center of the planet "would originate a motion which would

never be checked, and would inevitably precipitate the ring

upon the planet. . .
."

Suppose the rings were not uniform, but loaded or thick-

ened on the circumference— a hypothesis for which there ap-

peared to be observational evidence. A mechanically stable

system along these lines was theoretically possible; yet here

too, as Maxwell proved mathematically, the delicate adjust-

ment and distribution of mass required could not survive the

most minor perturbations. What of the fluid hypothesis? To be

sure, in this circumstance the rings would not collide with the

planet. On the other hand, by the principles of fluid motion it

can be proved that waves would be set up in the moving rings.

Using methods devised by the French mathematician Joseph

Fourier for studying heat conduction, by means of which

complex wave motions can be resolved into their simple har-

monic, sine-cosine elements. Maxwell succeeded in demon-

strating that the waves of one ring will force waves in another

and that, in due time, since the wave amplitudes will increase

indefinitely, the rings will break up into drops. Thus the con-

tinuous-fluid ring is no better a solution of the problem than the

solid one.

The third possibility remained, that the rings consist of

disconnected particles, either solid or liquid, but necessarily

independent. Drawing on the mathematical theory of rings.

Maxwell proved that such an arrangement is fairly stable and

its disintegration very slow; that the particles may be disposed

in a series of narrow rings or may move through each other

irregularly. He called this solution his "dusky ring, which is

something like the state of the air supposing the siege of

Sebastopol conducted from a forest of guns 100 miles one

way, and 30,000 miles from the other, and the shot never to

stop, but go spinning away around a circle, radius 170.000

miles. . .
."

Besides the mathematical demonstration. Maxwell devised

an elegantly ingenious model to exhibit the motions of the

satellites in a disturbed ring, "for the edification of sensible

146



James Clerk Maxwell

composed of particles. (Scientific Amencan)
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image-worshippers." His essay— which Sir George Airy, the

Astronomer Royal, described as one of the most remarkable

applications of mathematics he had ever seen — won the prize

and established him as a leader among mathematical physicists.

In 1859 Maxwell read before the British Association his

paper "Illustrations of the Dynamical Theory of Gases."*

This marked his entry into a branch of physics that he en-

riched almost as much as he did the science of electricity. Two
circumstances excited his interest in the kinetic theory of gases.

The first was the research on Saturn, when he encountered the

mathematical problem of handling the irregular motions of

the particles in the rings— irregular but resulting nonetheless

in apparent regularity and uniformity— a problem analo-

gous to that of the behavior of the particles of gas. The second

was the publication by the German physicist Rudolf Clausius

of two famous memoirs: on the heat produced by molecular

motion and on the average length of the path a gas molecule

travels before colliding with a neighbor.

Maxwell's predecessors in this field — Daniel Bernoulli,

James Joule, Clausius, among others— had been successful

in explaining many of the properties of gases, such as pres-

sure, temperature, and density, on the hypothesis that a gas is

composed of swiftly moving particles. However, in order to

simplify the mathematical analysis of the behavior of enor-

mous aggregates of particles, it was thought necessary to make

an altogether implausible auxiliary assumption, namely, that

all the particles of a gas moved at the same speed. The gifted

British physicist J. J. Waterson alone rejected this assumption,

in a manuscript communicated to the Royal Society in 1845:

he argued cogently that various collisions among the molecules

must produce different velocities and that the gas temperature

is proportional to the square of the velocities of all the mole-

cules. But his manuscript lay forgotten for half a century in

the archives of the Society.

Maxwell, without knowledge of Waterson's work, arrived at

the same conclusions. He realized that further progress in the

science of gases was not to be cheaply won. If the subject was

• Philosophical Magazine, January and July. 1860; also Maxwell's Scientific

Papers, op. cit.
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to be developed on "strict mechanical principles" — and for

him this rigorous procedure was essential — it was necessary,

he said, not only to concede what was in any case obvious, that

the particles as a result of collisions have different speeds, but

to incorporate this fact into the mathematical formulation of

the laws of motion of the particles.

Now, to describe how two spheres behave on colliding is

hard enough; Maxwell analyzed this event, but only as a prel-

ude to the examination of an enormously more complex phe-

nomenon— the behavior of an "indefinite number of small,

hard and perfectly elastic spheres acting on one another only

during impact."* The reason for this mathematical investiga-

tion was clear. For as he pointed out, if the properties of this

assemblage are found to correspond to those of molecular

assemblages of gases, "an important physical analogy will be

established, which may lead to more accurate knowledge of

the properties of matter."

The mathematical methods were to hand but had hitherto

not been applied to the problem. Since the many molecules

cannot be treated individually, Maxwell introduced the statis-

tical method for dealing with the assemblage. This marked a

great forward step in the study of gases. A fundamental Max-

wellian innovation was to regard the molecules as falling into

groups, each group moving within a certain range of velocity.

The groups lose members and gain them, but group population

is apt to remain pretty steady. Of course the groups differ in

size; the largest, as Maxwell concluded, possesses the most

probable velocity, the smaller groups the less probable. In

other words, the velocities of the molecules in a gas can be

conceived as distributed in a pattern— the famous bell-shaped

frequency curve discovered by Gauss, which applies to so

many phenomena from observational errors and distribution

of shots on a target to groupings of men based on height and

weight, and the longevity of electric light bulbs. Thus while

the velocity of an individual molecule might elude description,

the velocity of a crowd of molecules would not. Because this

' "Illustrations of the Dynamical Theory of Gases, op. cit.
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method afforded knowledge not only of the velocity of a body

of gas as a whole, but also of the groups of differing velocities

composing it. Maxwell was now able to derive a precise formula

for gas pressure. Curiously enough this expression did not

differ from that based on the assumption that the velocity of

all the molecules is the same, but at last the right conclusions

had been won by correct reasoning. Moreover the generality

and elegance of Maxwell's mathematical methods led to the

extension of their use into almost every branch of physics.

Maxwell went on, in this same paper, to consider another

factor that needed to be determined, namely, the average

number of collisions of each molecule per unit of time, and its

mean free path (i.e., how far it travels, on the average, be-

tween collisions) . These data were essential to accurate formu-

lations of the laws of gases. He reasoned that the most direct

method of computing the path depended upon the viscosity of

the gas. This is the internal friction that occurs when (in Max-

well's words) "different strata of gas slide upon one another

with different velocities and thus act upon one another with a

tangential force tending to prevent this sliding, and similar in

its results to the friction between two solid surfaces sliding

over each other in the same way." According to Maxwell's

hypothesis, the viscosity can be explained as a statistical con-

sequence of innumerable collisions between the molecules and

the resulting exchange of momentum. A very pretty illustra-

tion by the Scotch physicist Balfour Stewart helps to an under-

standing of what is involved. Imagine two trains running with

uniform speed in opposite directions on parallel tracks close

together. Suppose the passengers start to jump across from one

train to the other. Each passenger carries with him a momen-
tum opposite to that of the train onto which he jumps; the

result is that the velocity of both trains is slowed just as if

there were friction between them. A similar process, said

Maxwell, accounts for the apparent viscosity of gases.

Having explained this phenomenon, Maxwell was now able

to show its relationship to the mean free path of the molecules.

Imagine two layers of molecules sliding past each other. If a

molecule passing from one layer to the other travels only a
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short distance before colliding with another molecule, the two

particles do not exchange much momentum, because near the

boundary or interface the friction and difference of velocity

between the two layers is small. But if the molecule penetrates

deep into the other layer before a collision, the friction and

velocity differential will be greater; hence the exchange of

momentum between the colliding particles will be greater.

This amounts to saying that in any gas with high viscosity the

molecules must have a long mean free path.

Maxwell deduced further the paradoxical and fundamental

fact that the viscosity of gas is independent of its density. The

reason is that a particle entering a dense— i.e., highly crowded

— gas will not travel far before colliding with another par-

ticle; but penetration on the average will be deeper when the

gas entered is only thinly populated, because the chance of a

collision is smaller. On the other hand, there will be more

collisions in a dense than in a less dense gas. On balance, then,

the momentum conveyed across each unit area per second re-

mains the same regardless of density, and so the coefficient of

viscosity is not altered by varying the density.

These results, coupled with others arrived at in the same

paper, made it possible for Maxwell to picture a mechanical

model of phenomena and relationships hitherto imperfectly

understood. The various properties of a gas— diffusion, vis-

cosity, heat conduction— could now be explained in precise

quantitative terms. All are shown to be connected with the

motion of crowds of particles "carrying with them their mo-

menta and their energy," traveling certain distances, colliding,

changing their motion, resuming their travels, and so on. Alto-

gether it was a scientific achievement of the first rank. The

reasoning has since been criticized on the ground, for exam-

ple, that molecules do not possess the tiny-billiard-ball prop-

erties Maxwell ascribed to them; that they are neither hard,

nor perfectly elastic; that their interaction is not confined

to the actual moment of impact. Yet despite the inadequacies

of the model and the errors of reasoning, the results that, as

Sir James Jeans has said, "ought to have been hopelessly

wrong," turned out to be exactly right, and the formula tying
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the relationships together is in use to this day, known as Max-

well's law.*

This is perhaps a suitable place to add a few lines about

Maxwell's later work in the theory of gases. Clausius, Max
Planck tells us, was not profoundly impressed by the law of

distribution of velocities, but the German physicist Ludwig

Boltzmann at once recognized its significance. He set to work

refining and generalizing Maxwell's proof and succeeded,

among other results, in showing that "not only does the Max-

well distribution [of velocities] remain stationary, once it is

attained, but that it is the only possible equilibrium state, since

any system will eventually attain it, whatever its initial state."*

This final equilibrium state, as both men realized, is the ther-

modynamic condition of maximum entropy— the most dis-

ordered state, in which the least amount of energy is available

for useful work. But since this condition is in the long run also

the most probable, purely from the mathematical standpoint,

one of the great links had been forged in modern science be-

tween the statistical law of averages and the kinetic theory of

matter.

The concept of entropy led Maxwell to one of the celebrated

images of modern science, namely, that of the sorting demon.

Statistical laws, such as the kinetic theory of gases, are good

enough in their way, and, at any rate, are the best man can

arrive at, considering his limited powers of observations and

understanding. Increasing entropy, in other words, is the ex-

planation we are driven to— and indeed our fate in physical

reality — because we are not very bright. But a demon more

favorably endowed could sort out the slow- and fast-moving

particles of a gas, thereby changing disorder into order and

* "Maxwell, by a train of argument which seems to bear no relation at all to

molecules, or to the dynamics of their movements, or to logic, or even to ordi-

nary common sense, reached a formula which, according to all precedents and
all the rules of scientific philosophy ought to have been hopelessly wrong. In

actual fact it was subsequently shown to be exactly right. . .
." (James Jeans.

"Clerk Maxwell's Method," in James Clerk Maxwell, A Commemoration Vol-

ume, 1831-1931, New York, 1931.)

* Max Planck, "Maxwell's Influence on Theoretical Physics in Germany," in

James Jeans, ibid.
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converting unavailable into available energy. Maxwell imag-

ined one of these small, sharp fellows "in charge of a friction-

less, sliding door in a wall separating two compartments of a

vessel filled with gas. When a fast-moving molecule moves

from left to right the demon opens the door, when a slow mov-

ing molecule approaches, he (or she) closes the door. The
fast-moving molecules accumulate in the right-hand compart-

ment, and slow ones in the left. The gas in the first compart-

ment grows hot and that in the second cold." Thus the demon

would thwart the second law of thermodynamics. Living or-

ganisms, it has been suggested, achieve an analogous success;

as Erwin Schrodinger has phrased it, they suck negative en-

tropy from the environment in the food they eat and the air

they breathe.

Maxwell and Boltzmann, working independently and in a

friendly rivalry, at first made notable progress in explaining

the behavior of gases by statistical mechanics. After a time,

however, formidable difficulties arose, which neither investi-

gator was able to overcome. For example, they were unable to

write accurate theoretical formulas for the specific heats of

certain gases (the quantity of heat required to impart a unit

increase in temperature to a unit mass of the gas at constant

pressure and volume).* The existing mathematical techniques

* In order to resolve discrepancies between theory and experiment, as to the

viscosity of gases and its relationship to absolute temperature. Maxwell sug-

gested a new model of gas behavior, in which the molecules are no longer con-

sidered as elastic spheres of definite radius but as more or less undefined bodies

repelling one another inversely as the fifth power of the distance between the

centers of gravity. By this trick he hoped to explain observed properties of

gases and to bypass mathematical obstacles connected with computing the veloc-

ity of a gas not in a steady state. For, whereas in the case of hard elastic bodies

molecular collisions are a discontinuous process (each molecule retaining its

velocity until the moment of impact) and the computation of the distribution

of velocities is essential in solving ([uestions of viscosity, if the molecular inter-

action is by repulsive force, acting very weakly when the molecules are far away

from each other and strongly when they approach closely, each- collision may be

conceived as a rapid but continuous transition from the initial to the final veloc-

ity, and the computation both of relative velocities of the colliding molecules

and of the velocity distribution of the gas a-- a whole can be dispensed with. In

his famous memoir On the Dynamical Theory of Gases, which appeared in 1866,

Maxwell gave a beautiful mathematical account of the properties of such a sys-

tem. The memoir inspired Boltzmann to a Wagnerian rapture. He compared

Maxwell's theory to a musical drama: "At first are developed majestically the
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simply did not reach— and a profound transformation of

ideas had to take place before physics could rise to— a new

level of understanding. Quantum theory— the far-reaching

system of thought revolving about Planck's universal constant,

h— was needed to deal with the phenomena broached by

Maxwell and Boltzmann.* The behavior of microscopic par-

ticles eluded description by classical methods, classical con-

cepts of mass, energy and the like; a finer mesh of imagination

alone would serve in the small world of the atom. But neither

quantum theory, nor relativity, nor the other modes of thought

constituting the twentieth-century revolution in physics would

have been possible had it not been for the brilliant labors of

these natural philosophers in applying statistical methods to

the study of gases.

Variations of the Velocities, then from one side enter the Ecjuations of State,

from the other the Equations of Motion in a Central Field; ever hifiher swoops

the chaos of Formulae; suddenly are heard the four words: 'Put n = 5". The
evil spirit V (the relative velocity of two molecules) vanishes and the dominat-

ing figure in the bass is suddenly silent; that which had seemed insuperable

being overcome as if by a magic stroke . . . result after result is given by the

pliant formula till, as unexpected climax, comes the Heat E(iuilibriuni of a

heavy gas; the curtain then drops."

Unfortunately, however, the descent of the curtain did not, as Boltzmann had

supposed, mark a happy ending. For as James Jeans points out, "Maxwell's be-

lief that the viscosity of an actual gas varied directly as the absolute tem[)era-

ture proved to have been based on faulty arithmetic, and the conclusions he

drew from his belief were vitiated by faulty algebra." [Jeans, op. rit.'\ It was,

says Jeans, "a very human failing, which many of us will welccmie as a bond of

union between ourselves and a really great mathematician" — even though the

results were disastrous.

* Explanation of the discrepancies they found had to await the development of

quantum theory, which showed that the spin and vibration of molecules were

restricted to certain values.
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A fine example of the reach of a scientific field, from re-

search lab to industrial plant to concert hall.

11 Frontiers of Physics Today: Acoustics

Leo L.Beranek

An excerpt from his book Mr Tompkins in Paperback, 1965.

An intellectually vital and

stimulating field, acoustics is rich in

unsolved and intriguing research prob-

lems. Its areas of interest are per-

tinent to the activities of many tra-

ditional university departments:

mathematics, physics, electrical engi-

neering, mechanical engineering, land

and naval architecture, behavioral

sciences and even biology, medicine

and music.

On opening a recent issue of the

Journal of the Acoustical Society of

America, a leading Boston neurosur-

geon exclaimed: "It's like Alice's Won-
derland. You find a parade of papers

on echoencephalograms, diagnostic

uses of ultrasound in obstetrics and

gynecology, acoustical effects of vio-

lin varnish, ultrasonic cleavage of cy-

clchexanol, vibration analysis by holo-

graphic interferometry, detection of

ocean acoustic signals, sounds of mi-

grating gray whales and nesting ori-

ental hornets, and sound absorption

in concert halls. Certainly no other

discipline could possibly be more varie-

gated."

Acoustics assumed its modem aspect

as a result of at least seven factors.

They are:

• a research program begun in 1914

at the Bell Telephone Laboratories

(on the recording, transmission, and

reproduction of sound and on hearing)

that flourished because of the triode

vacuum tube^

• the development of quantum

mechanics and field theory, which un-

derlay Philip M. Morse's classic text

of 19362

• large government funding of re-

search and development during and

since World War II, resulting in many
valuable acoustics texts^"22 and,

since 1950, a five-fold increase in the

number of papers published annually

in the Journal of the Acoustical So-

ciety of America
• a growing public demand in the

last decade for quieter air and surface

transportation

• the tremendous growth of acous-

tics study in other countries^^

• the reconstruction of European

dwellings, concert halls and opera

houses destroyed during World War
II, and the postwar construction of

new music centers in the US, UK,
Israel and Japan^^^s

• development of the solid-state

digital computer.2*'

Instruction in acoustics has moved

steadily across departmental bound-

aries in the universities, beginning in

physics prior to the time of radio and

electronics and moving into electrical

engineering as the communication and

imderwater-acoustics fields developed.

Then, more recently, it has reached

into mechanical engineering and fluid

mechanics as the nonlinear aspects of

wave propagation and noise genera-

tion in gases, Kquids and solids have

become of prime interest. Also, be-

cause much of acoustics involves the

human being as a source, receiver and

processor of signals that impinge on

155



his ears and body, the subject has

attained vital importance to depart-

ments of psychology and physiology.

In spite of its variety and its im-

portance to other sciences, acoustics

remains a part of physics. It involves

all material media; it requires the

mathematics of theoretical physics;

and, as a tool, it plays a primary role

in solving the mysteries of the solid,

liquid and gaseous states of matter.

Frederick V. Hunt of Harvard sug-

gests that the field of acoustics might

be separated into the categories of

sources, receivers, paths, tools and

special topics. These are the catego-

ries I will use here. Scientists and en-

gineers are active in all these groups,

and each group promises exciting

frontiers for those entering the field.

SOURCES OF SOUND

The sources that we must consider in-

clude speech, music, signals, and a

variety of generators of noise.

Speech

One of the most challenging goals of
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speech research is speech synthesis by

rule ("talking computers"). At the

simplest level we could assemble all

the basic sounds (phonemes) of

speech by cutting them from a tape

CORNELL UNIVERSITY

ELECTRONIC MUSIC. Robert A.

Moog is here seen (left) at the keyboard

of one of his "synthesizers" that generate

and modify musical sounds. —FIG. 2

recording and calling them up for

reproduction, thus producing con-

nected speech according to a set of

instructions. But this procedure

works very poorly, because percep-

tually discrete phonemes, when com-

bined by a person talking to produce

syllables, have a modifying influence

on each other. Thus stringing to-

gether phonemes to produce good

speech would require a very large

inventory' of recorded units.

Workers at the Haskins Labora-

tories and at Bell Labs agree on these

fundamentals, but have taken some-

what different approaches. Bell Labs

uses the digital computer to assemble

natural utterances by appropriate

modification of pitch, stress and dura-

tion of words spoken in isolation.

One of the Bell Labs methods applies

the principles of predictive coding.

However, the basic problem remains:

How does one structure the com-

puter "brain" so that it will select,

modify and present a sequence of

sounds that can carry the desired

meaning in easily interpretable form?

The geographers of speech have

received new impetus with relatively

recent, easy access to large computer

power. A potent tool for this work

is the fast Fourier transform, which

allows spectral analyses of sounds

with high resolution in near- real time

(figure 1). Accompanying this proc-

ess are new methods for three-dimen-

sional display of speech spectra with

continuously adjustable resolution in

time and frequency. Thus deeper in-

sights into the structure of speech

signals and their spectra are slowly

becoming possible. The problem is to

select the meaningful parameters of

the primary information-bearing parts

of speech and to learn how they are

superimposed on, or modulate, the

secondary parameters that are associ-

ated with accent and individual style

and voice quality.

Music

Currently, the availability of rich

avant-garde sounds is stirring creative

activity in acoustics and music.

Solid-state devices are generally re-

sponsible for this incipient revolution,

partly because they permit complex

machines in small space (figure 2),

but also because of their lower price.

The initial period of bizarre, ex-

perimental, musical sounds is passing;

music critics speak more frequently of

beauty and intellectual challenge.

Soon a new version of musical form

and sound will evolve and, as de-

creasing costs widen the availability

of new instruments, recreational com-

posing may eventually occupy the

leisure time of many individuals.

Hopefully these new sounds and com-

positions will excite educated people

to an extent not observed since the

18th century.

The on-line computer will also play
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its part, permitting traditional com-

posers to perfect their compositions

with an entire orchestra at their finger-

tips.26

Composers in all eras have had some

specific hall-reverberation character-

istics in mind for each of their works.

Some modern composers now can see

the exciting possibility of the ex-

pansion of artificial reverberation to

permit reverberation times that change

for different parts of a composition,

and are different at low, medium and

high frequencies.

Perhaps the greatest progress will

be made by those trained from youth

in both the musical arts and physics,

so that the novel ideas of the two

disciplines can be combined to pro-

duce results inconceivable to the clas-

sical composer. Early stages of this

type of education are under way in

universities in the Boston, New York

and San Francisco areas.

Noise

Noise sources must be understood if

they are to be controlled, but the

sbjdy of them has often been ne-

glected in the past. Many challenges

appear in the understanding and con-

trol of high-level, nonlinear vibrations,

including nonlinear distortion, har-

monic and subharmonic generation,

radiation forces and acoustic wind.

Aerodynamic noise looms large on
the research frontier. For example,

the periodic aerodynamic loads asso-

ciated with noise from helicopter

blades are not well understood, par-

ticularly as the stall point of the

blades is approached. Multiple-rotor

helicopters, in which one set of blades

cuts through the vortices produced by
the other set, offer important possi-

bilities for theoretical investigation.

For example the helicopter rotor must

operate in unsteady air flow, but this

condition produces uneven loadings.

SSOCIATEO ARCHITECTS

CLOWES MEMORIAL HALL, Butler University, Indianapolis. The acoustics of this

hall (Johansen and Woollen, architects, and Bolt Beranek and Newman Inc, consul-

tants) are acknowledged to be among the best of contemporary halls. Research is

needed to explain why this hall is superior, to the ears of musicians and music critics, to

Philharmonic Hall in New York. The same general principles were used in the design
of the two halls, which opened at about the same time. —FIG. 3
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random stresses on the blades and
magnified vortex production. The
fuselage of the helicopter also affects

the noise produced.

Surprisingly, noise production by

jet-engine exhausts is not yet well

understood, although large sums of

money have been spent on "cut-and-

try" muffling.

Perhaps least understood of all

mechanical sources of noise is the im-

pact of one body on another. For
example even the sound of a hand-

clap has never been studied. The
noise of engine blocks and industrial

machinery is largely produced by im-

pacts. The production of noise by
hammers, punches, cutters, weaving

shuttles, typewriter keys and wheels

rolling on irregular surfaces is also

largely unexplored.

RECEIVERS OF SOUND

The most important receivers of sound

are people—those who use sound to

aid them, as in listening and com-

munication, and those who are

bothered by the annoying or harmful

aspects of noise. Much engineering

effort is constantly expended to better

the acoustic environment of people

at home and at work. In some areas

the basic understanding of noise prob-

lems is well developed, and engineer-

ing solutions are widely available. In

others, such understanding is only be-

ginning to emerge and engineering

solutions are still uncertain.

Variety and complexity

The intellectually interesting questions

related to human beings as receivers

of sound derive in large part from the

extraordinary variety in the physical

stimuli and the complexity of human
responses to them. The questions in-

clude: What are the few most im-

portant physical descriptions (dimen-

sions) that will capture the essence of

each complex psychophysical situa-

tion? How can the variety of stimuli

be catalogued in a manageable way
so that they can be related to the hu-
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man responses of interest?

Many of the sources of sound are

so complex (a symphony orchestra,

for example) that simplified methods
must be used to describe them and to

arrive at the responses of things or

people to them. The dangers in sim-

plified approaches, such as statistical

methods for handhng room or struc-

tural responses, are that one may
make wrong assumptions in arriving

at the physical stimulus-response de-

scription, and that the description may
not be related closely enough to the

psychophysical responses. The pro-

cess of threading one's way through

these dangers is a large part of being

on the research frontier. Good exam-

ples of the perils are found in archi-

tectural acoustics (figure 3).

Concert halls

In 1900, Wallace C. Sabine gave room
acoustics its classical equation. 2728

Sabine's statistically based equation

for predicting reverberation time (that

is, the time it takes for sound to decay

60 decibels) contains a single term di-

rectly proportional to the volume of a

room and inversely proportional to

the total absorbing power of the sur-

faces and contents. A controversy

exists today as to its relevance to

many types of enclosure. Research at

Bell Labs, aided by ray-tracing

studies on a digital computer,^'' shows

that the influence of room shape is of

major importance in determining

reverberation time, a fact not recog-

nized in the Sabine equation. A
two- or three-term equation appears

to be indicated, but until it is available

there are many subtleties that con-

front the engineer in the application

of published sound-absorption data

on acoustical materials and ob-

jects.23-30

Reverberation time is only one of

the factors contributing to acoustical

quality in concert halls. A hall with

cither a short or a long reverberation

time, may sound either dead or live.^"

Of greater importance, probably, is

the detailed "signature" of the hall
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reverljeration that is impressed on the

music during the first 200 milliseconds

after the direct sound from the or-

chestra is heard.
2'

It would be easy to simulate the

reverberation signature of a hall by

earphones or a loudspeaker, were it

not that spatial factors are of primaiy

importance to the listener's perception.

Reflections that come from overhead

surfaces are perceived differently

from those that come from surfaces in

front, and from surfaces to the right,

left and behind the listener. A new
approach suggests that with a num-

ber of loudspeakers, separated in space

about a listener and excited by signals

in precise relative phases, one can pro-

duce the direct analog of listening in

an auditorium.

Frequency is a further dimension.

To be optimum, both the 60-dB re-

verberation time and the 200-msec

signature of the hall should probably

be different at low, middle and high

frequencies.

There are many other subjective at-

tributes to musical-acoustical quality

besides liveness (reverberation time).

They include richness of bass, loud-

ness, clarity, brilliance, diffusion, or-

chestral balance, tonal blend, echo,

background noise, distortion and other

related binaural-spatial effects. ^s Com-
puter simulations may lead to the sep-

aration of a number of the variables in-

volved, but analog experiments con-

ducted in model and full-scale halls

will most likely also be necessary to im-

prove our understanding of the relative

importance of the many factors. These

studies would be very costly and

would need Federal support. The
prospect of greater certainty in de-

sign of concert halls makes this an ex-

citing frontier for research.

Psychoacoustics

Traditional advances in psycho-

acoustics have resulted from investiga-

tion of the basic aspects of hearing:

thresholds of audibility (both tempo-

rary and permanent), niasking loud-

ness, binaural localization, speech in-

telligibility, detectability of signals in

noise, and the like.*' Just as in the

case of structures, humans exhibit a

multiplicity of responses to different

noise situations. Those on the fore-

front of research are attempting to

find simplified statistical descriptions

of the various physical stimuli that

correlate well with several subjective

responses, such as annoyance.

As an example, a recent means for

rating the subjective nuisance value of

noises"^^ says that the nuisance value

is greater as the average level of the

noise is increased and is greater the

less steady it is. In other words, the

nuisance is related to the standard

deviation of the instantaneous levels

from the average; the background

noise, if appreciable, is part of the

average level. But there is no treat-

ment of the "meaning" in the noise

(the drip of a faucet would not be

rated high, although it might be very

annoying), or of special characteristics

—such as a shrill or warbling tone, or

a raucous character. Although this

formulation is probably an improve-

ment over previous attempts to relate

annoyance to the level of certain types

of noise, the whole subject of a per-

son's reaction to unwanted sounds is

still wide open for research.

Another forefront area of psycho-

acoustics is the response of the tactile

senses to physical stimuli, both when

the body is shaken without sound and

when the body and the hearing sense

are stimulated together. We know

that discomfort in transportation is a

function of both noise and body vibra-

tion. How the senses interact, and

whether or how they mask each other,

is not known. Neither do we under-

stand the mechanism by which the

hearing process takes place in humans

beyond the point where the mechanical

motions of the inner ear are trans-

lated into nerve impulses. We also

do not know whether extended ex-

posure to loud noise or to sonic booms

has detrimental physiological or psy-

chological effects, other than damage

to the middle ear. We have not ade-
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quately analyzed the nonlinear be-

havior of the ear and its effect on

enjoyment of music or understanding

of speech.

UNDERWATER AND AIRBORNE
PATHS

Several major problem areas exist in

underwater and airborne sound prop-

agation. One is prediction of acoustic

propagation between two points in the

ocean over distances up to several

hundred times the depth of the water.

Involved are many alternate paths of

propagation, spatial distributions of

pressure and temperature, spatial and

temporal fluctuation resulting from

waves, suspended particles, bubbles,

deep-water currents and so on. Math-

ematical phy.sics and the computer

have proven that strictly deterministic

thinking about sound propagation is

frequently fruitless. The need is to

characterize statistically the transmis-

sion between two points in both ampli-

tude and phase. The ultimate value of

this research is to distinguish informa-

tion-bearing signals from all other

sounds in which they are immersed. •''^

Similar needs exist in air. In short,

this area is an important element of the

acoustical frontier.

Structural paths

When sound or vibration excites a

structure, waves are propagated

throughout it and sound is radiated

to the surrounding medium. An
understanding of the physics of these

phenomena, adequate to quantitative

prediction of the efi^ect of changes in

the structural design on them, is re-

quired for many applications. The

response of buildings to sonic booms,

including the noise generated by ob-

jects in the building set in vibration by

the boom, is one example.^s Many

other examples arise in connection with

buildings and transportation vehicles,

including underground, ground, ma-

rine, air and space vehicles.

Structures and the noise and vibra-
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tion fields in them are generally com-

plex beyond description. Almost in-

variably, the vibrational properties of

an existing structure cannot be deter-

mined in a way consistent with setting

up the dynamical equations of motion

and arriving at solutions to them on a

computer. Furthermore, the real in-

terest is in predicting response for a

structure that has not been built.

Again the problem is, in principle,

deterministic (solvable on a computer)

but one does not ever know the para-

meters to use. Progress is now result-

ing from the invention of a new lan-

guage, a statistical mathematical ap-

proach, for describing what goes on.^'*

But the dangers, as in room acoustics,

are that the answer may be incomplete.

It is necessary to go back repeatedly to

the laboratory experiment and try to

improve the language, the vocabulary

of statistical assumptions, that is used

to describe the physical situation. The
added dimension of damping, non-

homogeneity of structures, and radia-

tion into media of widely different

properties (air and water) make this

field rich in research topics.-"-'^"'

ACOUSTIC TOOLS

Satisfaction of the needs of tool seek-

ers is a lush field for the acoustical

inventor. Here is where the acoustic

delay line is perfected for radar systems

and process-conbol computers; where

sound is used to help clean metals and

fabrics; where vibration is used to pro-

cess paints, candy, and soups; and

where ultrasonics is used to test mate-

rials nondestructively. Transducers of

all types, seismic, underwater, vibra-

tion, microphones, loudspeakers, and so

forth are constantly being improved.

The medical profession seeks help

from ultrasonics as a means of detect-

ing objects or growths imbedded in the

body, or as a means for producing

warming of body tissue. The whole

field of spectrographic analysis of body

sounds as an aid to medical diagnosis

is largely unexplored. Sp>ecial tools

such as sonic anemometers and sonic
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DEBYE-SEARS SCATTERING. A beam of light, passed through
a fluid at an angle to the direction of a sound wave, diminishes in

amplitude, and first-order diffracted waves appear. —FIG. 4
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BRILLOUIN SCATTERING by a sound wave wide compared
with the wavelength of the light, generates two new frequencies
—that of the light plus and minus the acoustic frequency.—FIG. 5

temperature- and velocity-sensing de-

vices, are just becoming available.

SPECIAL TOOLS

The Physical Review Letters attest to

a renaissance of acoustics in physics

during the past decade. High-fre-

quency sound waves are being used

in gases, liquids and solids as tools

for analyzing the molecular, defect,

domain-wall and other types of motions

in these media. High-frequency sound
waves interact in various media with

electric fields and light waves at

frequencies for which their wave-
lengths in the media become about
alike (typically lO^ to IO12 Hz).
From these basic investigations, prac-

tical devices are emerging for signal

processing, storage and amplification,

for testing, measurement, inspection,

medical diagnosis, surgery and ther-

apy, and for ultrasonic cleaning, weld-

ing, soldering and homogenizing.'''^

Plasma acoustics

Plasma acoustics is concerned witli the

dynamics of a weakly ionized gas.^

The electrons in the gas (with a tem-

perature of 10^ to 105 K, typically)

will draw energy from the electric field

that maintains the plasma. Because of

the lower temperature of the neutral

gas (500 K, typically), much of this

energy is transferred to the neutral-gas

particles through elastic collisions. If

this transfer is made to vary with time,

for example, by a varying external

electric field, a sound wave is gener-

ated in the neutral gas. Alternatively,

the electric field may be held constant

and the electron density varied by an
externally applied sound wave. When
the frequency and other parameters are

in proper relation, a coupling of the
electron cncrg\- to the acoustic wave
may create a p<)siti\e feedback that re-

sults ill sound amplification.

Current research involves exami-
nation of the acoustic instabilities that

result from tliis amplification and in

the determination of the conditions for
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spontaneous excitation of normal

modes of vibration, such as in a tube.

Because there is coupling between the

neutral gas and the electrons, the

sound-pressure field can be deter-

mined in terms of the electron-density

field. Thus an ordinary Langmuir

probe, arranged to measure fluctua-

tions in the electron density, can be

used as a microphone in the weakly

ionized gas. This technique has

proved useful in the determination of

the speed of sound and the tempera-

ture, of the neutral-gas component in a

plasma. It also appears to be a prom-

ising tool in the study of density

fluctuations in jet and supersonic wind-

tunnel flow.

In a fully ionized gas there exists a

type of sound wave, called "plasma

oscillation," in which there is charge

separation. The speed of propagation

of this ion-acoustic longitudinal wave
is determined by the inertia of the

ions and the "elasticity" of the elec-

tions. In the presence of a magnetic

field, the plasma becomes nonisotropic;

the wave motion then becomes consid-

erably more complicated, creating an

interesting area for research.

Optical acoustics

The density fluctuations caused by a

sound wave in a gas, liquid or solid,

produce corresponding fluctuations in

the index of refraction, and this leads

to scattering and refraction of light.

Conversely, under certain conditions,

sound can be generated by light.^

To illustrate Debye-Sears scattering

(figure 4), a beam of light is passed

through a fluid at an angle with re-

spect to the direction of travel of a

narrow-beam sound wave. The sound

wave acts somewhat like an optical

transmission grating, except for its fi-

nite width and time and motion depen-

dence. If the light penetrates at a

right angle to the direction of propaga-

tion of the sound wave, the incident

light beam diminishes in amplitude,

and first-order diffracted waves appear

at angles ±6, where sin 6 equals the
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ratio of the wavelength of the light to

that of the sound.

When the width of the sound wave
is very large compared to the wave-

length of light, the wavefronts of the

sound in the medium form a succes-

sion of infinite partially-reflecting

planes traveling at the speed of sound,

and the scattered light occurs in only

one direction. At very high fre-

quencies (109 to IQio Hz) the primary

scattered wave is backward, and the

effects of thermal motion of the

medium on scattering are easily ob-

served. Because thermal sound waves
travel in all directions and have a wide

frequency spectrum, frequency-shifted

light beams are scattered from them
at all angles. This phenomenon is

called "Brillouin scattering" (figure 5).

There are two Brillouin "lines" in the

scattered light, equal in frequency to

that of the light plus and minus the

acoustic frequency. These lines are

broadened by an amount of the order

of the inverse of the "lifetimes" of the

ordinary and transverse propagating

sound waves.

A very active area of research is the

determination of the acoustic disper-

sion relation for "hypersound" (fre-

quencies above 10" Hz) in fluids, with

lasers as the light sources and high-

resolution spectroscopic techniques

(for example heterodyne spectros-

copy) for the frequency analysis.

^

Other frontiers

Other areas of research are reported

in Physical Review Letters, as al-

ready mentioned, and in the Journal

of the Acoustical Society of America

and elsewhere.

One such frontier involves the col-

lective modes of vibration in liquid

helium. In particular, the sound at-

tenuation has been measured at tem-

peratures very close to absolute zero

with incredible accuracy, with and

without porous materials present in

the hquid.^^

An interesting geophysical problem

is the generation of seismic waves by

sonic booms''' from supersonic aircraft
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at high altitudes. When the seismic

waves travel at the same speed as the

phase velocity of the air wave, efficient

and effective coupling of energy from

the acoustic mode to the seismic mode
takes place. One application of this

coupling effect is as a tool to de-

termine surficial earth structure.

Holographic imaging has attracted

interest because it offers the possi-

bility, first, of three-dimensional image

presentation of objects in opaque

gases or liquids, and, second, of re-

cording and utilizing more of the in-

formation contained in coherent

sound-field configurations than do the

more conventional amplitude-detecting

systems. •^'^ Holographic imaging has

been done in an elementary way at

both sonic and ultrasonic frequencies

and in air and water. Figure 6 shows

an example.

Much recent research in physical

acoustics is concerned with ultrasonic

absoi-ption in solids, particularly crys-

tals, explained in terms of attenuation

by thermal photons. i** An intrinsic

mechanism for the attenuation of

ultrasonic sound in solids is the inter-

action of the mechanical (coherent)

sound wave with thermal (incoherent)

phonons, where thermal phonons are

described as the quantized thermal

vibrations of the atoms in the crystal

lattice of the solid. Because the rela-

tion between the applied force and the

atomic displacements is nonlinear, a

net "one-way" transfer of energy from

the ultrasonic wave to the thermal

phonons results. At very high fre-

quencies and low temperatures, such

interactions must be considered in

terms of discrete events, namely,

acoustic phonons interacting witli

thermal phonons. '^••'^ Also in this

field, light scattering has proven to be

a useful diagnostic tool in the study

of sound and crystal properties. '*°

Just as we may have interaction be-

tween sound waves and electrons in a

gaseous plasma, sound and electrons

may interact in certain semiconductors.

In a .semiconductor the tension and

compressions of the acoustic wave

create an electric field that moves

along with the traveling wave. If an

intense steady electric field is apphed

to the semiconductor, the free elec-

trons will try to go somewhat faster

than the sound wave, and the sound

wave will increase in amplitude, pro-

vided the thermal losses in the crystal

are not too great. This interaction re-

quires extremely pure crystalline mate-

rial.-"

Attempts are underway to make
ultiasonic delay lines adjustable, by
drawing upon the interaction between

acoustic waves and magnetic "spin

waves." Fermi-surface studies for

many metals can also be carried out by
measuring attenuation in the presence

of magnetic fields.

One application for surface (Ray-

leigh) waves on a crystalline solid is

in signal processing. Surface waves

are accessible along their entire wave-

length and are compatible with inte-

grated-circuit technology. Perhaps

such waves at GHz frequencies can

be used to build mixers, filters, cou-

plers, amplifiers, frequency shifters,

time compressors and expanders, and

memory elements. *-

In the study of high-frequency sur-

face waves, laser light again proves to

be a useful diagnostic tool. With it,

the thermally excited surface waves in

liquids have been studied by tech-

niques quite similar to the Brillouin

scattering from phonons.^'' One appli-

cation is determination of surface ten-

sion through observation of the mean
frequency and bandwidth of such

waves.

Many more examples of modem
physical acoustics could be cited, but

these examples should prove my open-

ing statement that acoustics is a vital,

growing field.

/ wish to thank Frederick V. Hunt, Man-
fred R. Schroeder, K. Uno Ingard, Preston

W. Smith, }r, Theodore }. Schultz and
Richard H. Lyon for their helpful com-
ments during the preparation of this

paper.
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ACOUSTICAL HOLOGRAPHY. Acoustical wavefronts reflected from irregular sur-

faces can be recorded and reconstructed with coherent laser light. An advantage over
conventional holography is that optically opaque gases and liquids can be penetrated.

The experiment shown is in progress at the McDonnell Douglas Corp. —FIG. 6
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The use of random elements is common today not only

in science, but also in music, art, and literature. One
influence was the success of kinetic theory in the

nineteenth century.

12 Randomness and The Twentieth Century

Alfred M. Bork

An article from The Antioch Review, 1967.

As I write this I have in front of me a book that may be un-

famihar to many. It is entitled One Million Random Digits with

1,000 Normal Deviates and was produced by the Rand Corporation

in 1955. As the title suggests, each page contains digits—numbers

from I to 9—arranged as nearly as possible in a completely random
fashion. An electronic roulette wheel generated the numbers in this

book, and afterwards the numbers were made even more random by

shuffling and other methods. There is a careful mathematical defini-

tion of randomness, and associated with it are many tests that one

can apply. These numbers were shuflfled until they satisfied the tests.

I want to use this book as a beginning theme for this paper. The
production of such a book is entirely of the twentieth century. It

could not have been produced in any other era. I do not mean to

stress that the mechanism for doing it was not available, although

that is also true. What is of more interest is that before the twentieth-

century no one would even have thought of the possibility of pro-

ducing a book like this; no one would have seen any use for it.

A rational nineteenth-century man would have thought it the height

of folly to produce a book containing only random numbers. Yet

such a book is important, even though it is not on any of the usual

lists of one hundred great books.
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That this book is strictly of the twentieth century is in itself of

importance. I claim that it indicates a cardinal feature of our cen-

tury: randomness, a feature permeating many different and appar-

ently unrelated aspects of our culture. I do not claim that randomness

is the only feature which characterizes and separates twentieth-

century thought from earlier thought, or even that it is dominant,

but I will argue, admittedly on a speculative basis, that it is an

important aspect of the twentieth century.

Before I leave the book referred to above, you may be curious

to know why a collection of random numbers is of any use. The
Rand Corporation, a government-financed organization, is not likely

to spend its money on pursuits having no possible application. The
principal use today of a table of random numbers is in a calcula-

tional method commonly used on large digital computers. Because

of its use of random numbers, it is called the Monte Carlo method,

and it was developed primarily by Fermi, von Neumann, and Ulam
at the end of the Second World War. The basic idea of the Monte

Carlo method is to replace an exact problem which cannot be solved

with a probabilistic one which can be approximated. Another area

where a table of random numbers is of importance is in designing

experiments, particularly those involving sampling. If one wants,

for example, to investigate certain properties of wheat grown in a

field, then one wants thoroughly random samplings of wheat; if all

the samples came from one corner of the field, the properties found

might be peculiar to that corner rather than to the whole field.

Random sampling is critical in a wide variety of situations.

Actually, few computer calculations today use a table of random

numbers; rather, a procedure suggested during the early days of

computer development by John von Neumann is usually followed.

Von Neumann's idea was to have the computer generate its own
random numbers. In a sense numbers generated in this way are not

"random," but they can be made to satisfy the same exacting tests

applied to the Rand Table; randomness is a matter of degree. It is

more generally convenient to let the computer produce random

numbers than to store in the computer memory a table such as the

Rand Table. Individual computer centers often have their own
methods for generating random numbers.

I shall not give any careful definition of randomness, but shall
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rely on intuitive ideas of the term. A formal careful definition would
be at odds with our purposes, since, as A. O. Lovejoy noted in The
Great Chain of Being, it is the vagueness of the terms which allows

them to have a life of their own in a number of different areas. The
careful reader will notice the shifting meanings of the word "ran-

dom," and of related words, in our material.

However, it may be useful to note some of the different ideas

connected with randomness. D. M. Mackay, for example, distin-

guishes between "(a) the notion of well-shuffledness or impartiality

of distribution; (b) the notion of irrelevance or absence of correla-

tion; (c) the notion of 7 don't care'-, and (d) the notion of chaos"^

Although this is not a complete, mutually exclusive classificadon

—

the editor of the volume in which it appears objects to it—the classi-

fication indicates the range of meaning that "random" has even

in well-structured areas like information theory.

Let us, then, review the evidence of randomness in several

areas of twentieth-century work, and then speculate on why this

concept has become so pervasive, as compared with the limited use

of randomness in the nineteenth century.

I begin with the evidence for randomness in twentieth-century

physics. There is no need to search far, for the concept helps to

separate our physics from the Newtonian physics of the last few

centuries. Several events early in this century made randomness

prominent in physics. The first was the explanadon of Brownian

motion. Brownian movement, the microscopically observed motion

of small suspended particles in a liquid, had been known since the

early iSoo's. A variety' of explanadons had been proposed, all un-

satisfactory. But Albert Einstein showed, in one of his three famous

papers of 1905, that Brownian motion could be understood in

terms of kinetic theory:

... it will be shown that according to the molecular-kinetic theory of

heat, bodies of microscopically visible size, suspended in a liquid, will

perform movements of such magnitude that they can be easily observed

^Donald M. Mackay, "Theoretical Models of Space Perception—Appendix,"

in "Aspects of the Theory of Artificial Intelligence," The Proceedings of the

First International Symposium of Biosimulation, edited by C. A. Muses

(Plenium Press, New York, 1962), p. 240.
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in a microscope on account of the molecular motions of heat. It is pos-

sible that the movements to be discussed here are identical with the

so-called "Brownian molecular motion." ... if the movement discussed

here can actually be observed . . . then classical thermodynamics can no

longer be looked on as applicable with precision to bodies even of di-

mensions distinguishable in a microscope. . . . On the other hand

[if] the prediction of this movement proves to be incorrect, weighty

argument would be provided against the molecular-kinetic theory

of heaL^

It is the randomness of the process, often described as a "random
walk," which is the characteristic feature of Brownian motion.

But an even more direct experimental situation focused atten-

tion on randomness. During the last years of the nineteenth century,

physicists suddenly found many new and strange "rays" or "radia-

tions," including those from radioactive substances. A series of ex-

perimental studies on alpha-rays from radioactive elements led

Rutherford to say in 1912 that "The agreement between theory and

experiment is excellent and indicates that the alpha particles are

emitted at random and the variations accord with the laws of

probability."^ These radiations were associated with the core of the

atom, the nucleus, so randomness was present in the heart of matter.

One of the two principal physical theories developed in the

past forty years is the theory of atomic structure, quantum mechan-

ics, developed during the period from 1926 to 1930. Wave mechanics,

the form of quantum mechanics suggested by the Austrian physicist

Erwin Schrodinger, predicted in its original form only the allowable

energy levels and hence the spectroscopic lines for an atom of some

particular element. Later, Max Born and Werner Heisenberg gave

quantum theory a more extensive interpretation, today called the

"Copenhagen Interpretation," which relinquishes the possibility of

predicting exactly the outcome of an individual measurement of an

atomic (or molecular) system. Instead, statistical predictions tell

what, on the average, will happen if the same measurement is per-

formed on a large number of identically prepared systems. Identical

^Albert Einstein, Investigations on the Theory of Broumian Movement, edited

by R. Fiirth, translated by A. A, Cowpcr (E. P. Dutton, New York).

^E. Rutherford, Radioactive Substances and their Radiations (Cambridge Uni-

versity Press, Cambridge. 1913), p. 191.
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measurements on identically prepared systems, in this view, do not
always give the same result. Statistical ideas had been used in the

nineteenth-century physics, but then it was always assumed that the

basic laws were completely deterministic. Statistical calculations

were made when one lacked complete information or because of

the complexity of the system involved. In the statistical interpre-

tation of quantum mechanics I have just described, however, ran-

domness is not accepted purely for calculational purposes. It is a

fundamental aspect of the basic physical laws themselves. Although
some physicists have resisted this randomness in atomic physics, it

is very commonly maintained. A famous principle in contemporary

quantum mechanics, the "uncertainty principle," is closely related

to this statistical view of the laws governing atomic systems.

These examples illustrate randomness in physics; now we pro-

ceed to other areas. Randomness in art is particularly easy to discuss

because it has been so consistently and tenaciously used. My first

example is from graphic design. For hundreds of years books and

other publications have been "justified" in the margins in order to

have flush right margins in addition to flush left margins. This is

done by hyphenation and by adding small spaces between letters

and words. But recently there is a tendency toward books that are

not "justified"; the right margins end just where they naturally

end, with no attempt to make them even. This is a conscious design

choice. Its effect in books with two columns of print is to randomize

partially the white space between columns of print, instead of

maintaining the usual constant width white strip.

In the fine arts, the random component of assemblages, such

as those of Jean Tinguely, often lies in the use of "junk" in their

composition. The automobile junkyard has proved to be a particu-

larly fruitful source of material, and there is something of a random

selection there. Random modes of organization, such as the scrap-

metal press, have also been used.

In art, as elsewhere, one can sometimes distinguish two kinds

of randomness, one involving the creative technique and another

exploiting the aesthetic effects of randomness. We see examples of

this second type, called "accident as a compositional principle" by

Rudolf Arnheim, in three woodcuts by Jean Arp, entitled "Placed

According to the Laws of Chance." We would perhaps not have
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understood the artist's intent if we did not have the titles. Arp,

Hke other contemporary artists, has returned repeatedly to the ex-

ploration of such random arrangements. As James Thrall Soby

says, "There can be no doubt that the occasional miracles of accident

have particular meaning for him. . . . One assumes that he considers

spontaneity a primary asset of art.'"*

An area which has been particularly responsive to the explora-

tion of randomness for aesthetic purposes is "op art." Again the titles

often identify this concept, as in "Random Field" by Wen-Yin Tsai.

Perhaps more common, however, is the former aspect, an

artistic technique by which the artist intentionally employs some

random element. The contemporary school of action painting is

an example. Jackson Pollock often would place his canvas on the

ground and walk above it allowing the paint to fall several feet

from his brush to the canvas. Soby describes it as follows: "Pol-

lock's detractors call his current painting the 'drip' or 'spatter'

school, and it is true that he often spreads large canvases on the floor

and at them flings or dribbles raw pigments of various colors."^ With

this method he did not have complete control of just where an

individual bit of paint fell—this depended in a complicated way on

the position of the brush, the velocity of the brush, and the con-

sistency of the paint. Thus this technique had explicit chance ele-

ments, and its results have been compared to Brownian motion.

Similarly, J. R, Rierce, in Symbols, Signals, and Noise, dis-

cussing random elements in art, gives some examples of computer-

generated art. He emphasizes the interplay of "both randomness

and order" in art, using the kaliedoscope as an example.

I will comment even more briefly on music. In Percy Granger's

"Random Round" each instrument has a given theme to play;

the entrances are in sequence, but each player decides for him-

self just when he will enter. Thus each performance is a unique

event, involving random choices. The most famous example of

random musical composition is the work of John Cage. One of

his best known works involves a group of radios on a stage, each

*Iames Thrall Soby, Arp (Museum of Modern Art, New York, 1958).

•''James Thrall Soby, "Jackson Pollock," in The New Art in America (Fred-

erick Praeger, Inc., Greenwich, Conn., 1957).
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with a person manipulating the controls. They work independently,

each altering things as he wishes, and the particular performance is

further heavily dependent on what programs happen to be playing

on the local radio stations at the time of the performance. There is

no question that Cage furnishes the most extreme example of ex-

ploitation of techniques with a chance component.

Most evidence for randomness in literature is not as clear as

in science, art, or music. The first example is clear, but perhaps

some will not want to call it literature at all. In 1965 two senior

students at Reed College saw some examples of computer-produced

poetry and decided that they could do as well. As their model was

symbolist poetry, they did not attempt rhyme or meter, although

their program might be extended to cover either or both. The com-

puter program is so organized that the resulting poem is based on

a series of random choices. First, the computer chooses randomly

a category—possibilities are such themes as "sea" or "rocks." The
program then selects (again using a built-in random number gen-

erator) a sentence structure from among twenty possibilities. The

sentence structure contains a series of parts of speech. The com-

puter randomly puts words into it, keeping within the previously

chosen vocabulary stored in the computer memory. Because of the

limited memory capacity of the small computer available, only

five words occur in a given thematic and grammatical category.

There are occasionally some interesting products.

Turning from a student effort to a recendy available commercial

product, consider the novel Composition I by Marc Saporta, which

comes in a box containing a large number of separate sheets. Each

page concludes with the end of a paragraph. The reader is told to

shuffle the pages before beginning to read. Almost no two readers

will see the pages in the same order, and the ordering is deter-

mined in a random process. For some readers the girl is seduced

before she is married, for other readers after she is married. A
similar process has been used by William Burroughs in The Naked

Lunch and elsewhere, except that in this case the shuffling is done

by the writer himself. Burroughs writes on many separate pieces

of paper and then orders them over and over in different ways

until he is satisfied with the arrangement. He has suggested that

his work can be read in other orders, and ends The Nal{ed Lunch

with iin "Atrophied Preface."
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p. Mayersburg* has pointed out elements of chance construction

in several other writers' work. He says of Michel Botor: ''Mobile is

constructed around coincidence: coincidence of names, places, signs,

and sounds. . . . Coincidence implies the destruction of traditional

chronology. It replaces a pattern of cause and effect with one of

chance and accident." He sees another chance aspect in these writers:

they recognize that they cannot completely control the mind of

the reader.

But can we find examples in the work of more important

writers? The evidence is less direct. While contemporary artists

have openly mentioned their use of randomness, contemporary

writers and critics, with a few exceptions, have seldom been willing

to admit publicly that randomness plays any role in their writings.

But I will argue that randomness is nevertheless often there, al-

though I am aware of the difl&culty of establishing it firmly.

The cubist poets, perhaps because of their associations with

artists, did experiment consciously with randomness. The story is

told of how ApoUinaire removed all the punctuation from the proofs

of Alcools because of typesetting errors, and he continued to use

random organization in his "conversation poems" and in other work.

The "opposite of narration" defines the very quality ApoUinaire finally

grasped in following cubism into the experimental work of Delaunay, the

quality he named simultanism. It represents an effort to retain a moment
of experience without sacrificing its logically unrelated variety. In poetry

it also means an effort to neutralize the passage of time involved in the act

of reading. The fragments of a poem are deliberately kept in a random

order to be reassembled in a single instant of consciousness.'

It can be argued that James Joyce used random elements in

Ulysses and Finnegans Wa/^e. Several minor stories at least indicate

that Joyce was not unfriendly toward the use of random input. For

example, when Joyce was dictating to Samuel Beckett, there was a

knock at the door. Joyce said, "Come in," and Beckett wrote down,

"Come in," thinking that it was part of the book. He inmiediatcly

'P. Mayersberg, "The Writer as Spaceman," The Listener, October 17, 1963,

p. 607.

'Roger Shattuck, The Banquet Years (Harcourt, Brace, and Co., New York),

p. 238.
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realized that Joyce had not intended to dictate it; but when he
started to erase it, Joyce insisted that it should stay. And it is

still there in Finnegans Wake, because of a chance occurrence. A
related comment is made by Budgin in James Joyce and the Maying
of Ulysses: ".

. . he was a great believer in his luck. What he needed
would come to him."

Proceeding from such stories to Joyce's books, I believe that

there are random elements in the vocabulary itself. It is well known
that much of the vocabulary of Finnegans Wake differs from the

vocabulary of other English-language books. Some of the words are

combinations of other better-known English words, and others are

traceable to exotic sources. I do not think that Joyce constructed

every new word carefully, but rather that he consciously explored

randomly or partially randomly formed words. There is some
slight tradition for this procedure in such works as "Jabberwocky."

Another aspect of Joyce's writing, shared with other works of

contemporary literature, also has some connection with our theme,

although this connection is not generally realized. I refer to the

"stream of consciousness" organization. The Victorian novel was

ordered in a linear time sequence; there were occasional flashbacks,

but mostly the ordering of events in the novel was chronological.

The stream of consciousness novel does not follow such an order,

but instead the events are ordered as they might be in the mind of

an individual. This psychological ordering has distinctly random

elements. Finnegans Wake has been interpreted as one night in the

mental life of an individual. I would not claim that our conscious

processes are completely random, but I think it is not impossible to

see some random elements in them

We mentioned that it has not been customary to admit that

randomness is a factor in contemporary literature. Much of the

critical literature concerning Joyce exempHfies this. But at least one

study sees Joyce as using random components: R. M. Adams' Surface

and Symbol—the Consistency of James Joyce's Ulysses.^ Adams

relates the story of the "come in" in Finnegans Wake, and he tells

of Joyce's requesting "any God dam drivel you may remember" of

*R. M. Adams, Surface and Symbol—The Consistency of James Joyce's Ulysses

(Oxford University Press, New York, 1952).
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his aunt. Adams points out that artists and musicians of the period

were also using chance components: "Bits of rope, match or news-

paper began to be attached to paintings, holes were cut in their

surfaces, toilet bowls and spark plugs appeared unadorned on ped-

estals as works of original sculpture. . .
." Adams calls Ulysses a

collage, and in his conclusion he cautions against trying to define

the symbolism of every tiny detail in Ulysses-. "The novel is, in part

at least, a gambler's act of throwing his whole personality—his

accidents, his skills, his weaknesses, his luck—against the world."

My final example of randomness is lighter. I am reliably in-

formed that several years ago a group of students at Harvard formed

a random number society for propagating interest in random num-

bers. Among other activities they chose each week a random

number of the week, and persuaded a local radio station to an-

nounce it!

Although the reader may not accept my thesis, I continue with

the assumption that our culture differs from the culture of the

previous few centuries partly because of an increased concern with

and conscious use of elements which are random in some sense of

the word. We have seen this use in seemingly unrelated areas, and

in ways previously very uncommon. Now we will enter on an even

more difficult problem: assuming that the twentieth century con-

sciously seeks out randomness, can we find any historical reasons

for its permeating different fields?

1 need hardly remind you of the difiiculty of this problem. The-

orizing in history has generally seemed unreasonable, except to the

theorist himself and to a small group of devoted followers. The

present problem is not general history but the even more difficult

area of intellectual history. Despite vigorous attempts to understand

cultural evolution, or particular aspects of it such as the development

of scientific knowledge, I believe it is fair to say that we know far

less than we would like to know about how ideas develop. It would,

therefore, be unreasonable for me to expect to give a rich theory of

how humans modify ideas. Instead I shall grope toward a small

piece of such a theory, basing my attempt on the evidence presented

on randomness as a twentieth-century theme.

The rough idea I shall bring to your attention might be crudely
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called the "splash in the puddle" theory. If a stone is dropped in a

pond, waves travel out from the disturbance in all directions; a

big splash may rock small boats a good bit away from the initial

point of impact. Without claiming that this "mechanism" is com-
plete, I shall argue that culural evolution bears some analogy to the

splash in the puddle. Even though the nineteenth century rejected

the theme of fundamental randomness, cultural events then created

new waves of interest in randomness, which eventually, through

the traveling of the wave, affected areas at a distance from the

source. Probably one source is not enough; often one needs rein-

forcement from several disturbances to create a revolution. And the

sources themselves must be powerful if the ejffects are to be felt

at great distances in the cultural plane.

I shall note two nineteenth-century events which were power-

ful sources, and so may have contributed to a new interest in

randomness. Both are from science, but this may reflect my own
specialization in history of science; I am likely to find examples

from the area I know best. My two examples are of unequal

weight. The minor one certainly affected profoundly the physicist's

attitude toward randomness, but how widespread its effect was is not

clear. The second example, however, was the major intellectual

event of the century.

The first example is the development of kinetic theory and

statistical thermodynamics in the last half of the century, involving

Rudolf Clausius, James Clerk Maxwell, Ludwig Boltzmann, Wil-

lard Gibbs, and others. Because physicists believed that Newtonian

mechanics was the fundamental theory, they thought that all other

theories should "reduce" to it, in the same sense that all terms could

be defined using only the terms of mechanics, and that the funda-

mental principles of other areas could be deduced logically from the

principles of mechanics. This attitude, applied to thermodynamics,

led to kinetic theory and statistical thermodynamics.

In kinetic theory a gas (a word which may originally have

meant "chaos"^) was viewed as a very large number of separate

particles, each obeying the Newtonian laws of motion, exerting

^Pointed out to me by Steven Brush. See J. R. Partington, "Joan Baptist von

Helmont," Annals of Science, I, 359-384 (^936)-
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forces on each other and on the walls of the container. To know
the positions and velocities of all the particles was impossible because

of the multitude of particles; ordinary quantities of gas contained

10"^*— one followed by twenty-four zeros—particles. This lack of

complete information made it necessary to use general properties

such as energy conservation in connection with probability con-

siderations. One could not predict where each particle would be,

but one could predict average behavior and relate this behavior to

observed thermodynamical quantities. Thus statistical thermody-

namics introduced statistical modes of thought to the physicist; but

the underlying laws were still considered to be deterministic.

A fundamental quantity in thermodynamics, entropy, was

found to have a simple statistical interpretation: it was the measure

of the degree of randomness in a collection of particles. Entropy

could be used as the basis of the most elegant formulation of the

second law of thermodynamics: in a closed system the entropy

always increases, or the degree of randomness tends to increase.

A special series of technical problems developed over the two

kinds of averaging used in statistical considerations: time-averaging,

inherently involved in all measurements; and averaging over many
different systems, the ensemble averaging of Gibbs used in the cal-

tulations. The "ergodic theorems" that were extensively developed

to show that these two averages were the same again forced careful

and repeated attention on probabilistic considerations.

My second example is the theory of evolution, almost universally

acknowledged as the major intellectual event of the last century.

Charles Darwin and Alfred Russell Wallace developed the theory

Independently, using clues from Malthus' essay on population. The
basic ideas are well known. Organisms vary, organisms having the

fittest variations survive, and these successful variations are passed

on to the progeny. The random element of evolution is in the "nu-

merous successive, slight favorable variations"; the offspring differ

slightly from the parents. Darwin, lacking an acceptable theory of

heredity, had little conception of how these variations come about;

he tended to believe, parallel to the developers of statistical thermo-

dynamics, that there were exact laws, but that they were unknown.

I have hitherto sometimes spoken as if the variations . . . had been due

to chance. This, of course, is a wholly incorrect expression, but it seems
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to acknowledge plainly our ignorance of the cause of each particular

variation. ^'^

But Others were particularly disturbed by the chance factors ap-

parently at work in variations. This was one of the factors that led

Samuel Butler from his initial praise to a later critical view of

Darwin. Sir John Herschel was very emphatic:

We can no more accept the principle of arbitrary and casual variation

and natural selection as a sufiBcicnt account, per se, of the past and present

organic world, than we can receive the Laputian method of composing

books ... as a sufficient one of Shakespeare and the Principia}^

When a usable theory of heredity was developed during the next

half century, randomness played a major role, both in the occur-

rence of mutations in genes and in the genetic inheritence of the

offspring. So, almost in spite of Darwin, chance became increasingly

important in evolutionary theory. "... The law that makes and loses

fortunes at Monte Carlo is the same as that of Evolution."*"

The theory of evolution roused almost every thinking man in

the late nineteenth century. Frederick Pollock, writing about the

important British mathematician William Kingdon Clifford, says:

For two or three years the knot of Cambridge friends of whom Clifford

was a leading spirit were carried away by a wave of Darwinian en-

thusiasm: we seemed to ride triumphant on an ocean of new life and

boundless possibilities. Natural selection was to be the master-key of the

universe; we expected it to solve all riddles and reconcile all contra-

dictions.^*

This is only one account outside biology, but it illustrates how evo-

lution affected even those not directly concerned with it as a scientific

theory. It does not seem unreasonable, then, that at the same time

evolution contributed to the new attitude toward randomness. I

'°C. Darwin, Origin of the Species (first edition), p. 114.

"Sir Herschel, Physical Geography of the Globe (Edinburgh, 1861), quoted

in John C. Green, The Death of Adam (New American Library, New York),

p. 296.

i^M. Hopkins, Chance and Error—The Theory of Evolution (Kegan Paul,

Trench, Truber & Co., London, 1923).

^*W. K. Clifford, Lectures and Essays (Macmillan, London, 1886), Intro-

duction.
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might also mention two other books that are particularly interesting

in showing the influence of evolution outside the sciences, offering

details we cannot reproduce here. One is Leo J. Henkin's Darwinism

in the English Novel i86o-igio; the other is Alvar EUegSrd's Dar-

win and the ^General Reader.

There were of course other things happening in the nineteenth

century, but these two developments were important and had far-

reaching implications outside of their immediate areas. Alfred

North Whitehead, in Science and the Modern Worlds claims that in

the nineteenth century "four great novel ideas were introduced into

theoretical science." Two of these ideas were energy, whose rise

in importance was related to thermodynamics, and evolution. It was

consistent with established tradition, however, to believe that the

use of chance in these areas was not essential. Other non-scientific

factors were also important; for example. Lord Kelvin's attitude

toward chance was colored by religious considerations. In S. P.

Thomson's hije we find a speech of his in the Times of 1903 arguing

that "There is nothing between absolute scientific belief in Creative

Power and the acceptance of the theory of a fortuitous concourse of

atoms."

According to our splash in the puddle theory, we should be able

to point out evidence that two nineteenth-century developments,

statistical mechanics and evolution, had very far-reaching effects in

areas quite different from their points of origin, effects reflecting

interest in randomness. This is a big task, but we will attempt to

give some minimal evidence by looking at the writings of two

important American intellectuals near the turn of the century, both

of whom were consciously influenced by statistical mechanics and

Darwinian evolution. The two are Henry Adams and Charles

Sanders Peirce.

We have Adams' account of his development in The Education

of Henry Adams. Even a casual glance shows how much of the

language of physics and biology occurs in the book, and how often

references are made to those areas. Chapter 15 is entitled "Dar-

winism," and early in the chapter he says:

The atomic theory; the correlation and conservation of energy; the

mechanical theory of the universe; the kinetic theory of gases; and

Darwin's law of natural selection were examples of what a young man
had to take on trust.
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Adams had to accept these because he was not in a position to argue

against them. Somewhat later in the book Adams comments, in his

usual third person:

He was led to think that the final synthesis of science and its ultimate

triumph was the kinetic theory of gases. ... so far as he understood it,

the theory asserted that any portion of space is occupied by molecules of

gas, flying in right lines at velocities varying up to a mile a second, and
colliding with each other at intervals varying up to seventeen million

seven hundred and fifty thousand times a second. To this analysis—if

one understood it right—all matter whatever was reducible and the only

difference of opinion in science regarded the doubt whether a still deeper

analysis would reduce the atom of gas to pure motion.

And a few pages later, commenting on Karl Pearson's "Grammar
of Science":

The kinetic theory of gases is an assertion of ultimate chaos. In plain,

chaos was the law of nature; order was the dream of man.

Later, "Chaos was a primary fact even in Paris," this in reference

to Henri Poincare's position that all knowledge involves conven-

tional elements.

Of all Henry Adams' writings, "A Letter to American Teachers

of History" is most consistently saturated with thermodynamical

ideas. This 1910 paper^* begins with thermodynamics. It first men-

tions the mechanical theory of the universe, and then says:

Toward the middle of the Nineteenth Century—that is, about 1850—

a

new school of physicists appeared in Europe . . . made famous by the

names of William Thomson, Lord Kelvin, in England, and of Clausius

and Helmhokz in Germany, who announced a second law of thermo-

dynamics.

He quotes the second law of thermodynamics in both the Thomson

and the Clausius forms. It is not always clear how seriously one is

to take this thermodynamical model of history.

About fifteen pages into "A Letter," Darwin is presented as

contradicting the thermodynamical ideas of Thomson. He sees Dar-

win's contribution not in the theory of natural selection, but in that

the evolutionary mediod shows how to bring "all vital processes

under the lav/ of development." It is this that is to furnish a lesson

to the study of history. This apparent conflict is one of the major

subjects of the early part of the "Letter."

"Henry Adams, The Degradation of the Democratic Dogma (Macmillan and

Co., New York, 1920), pp. 137-366.
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Thus, at the same moment, three contradictory ideas of energy were in

force, all equally useful to science:

1. The Law of Conservation

2. The Law of Dissipation

3. The Law of Evolution

The contrast Adams is making is between Darwin's ideas and Kel-

vin's ideas.

We find other similar references in Henry Adams, but this

should be enough to show his interest in Darwin and kinetic theory.

Other aspects of contemporary science also very much influenced

him; he often refers to the enormous change produced by the

discovery of new kinds of radiation at the turn of the century. He
seems to be a particularly rewarding individual to study for an

understanding of the intellectual currents at the beginning of the

century, as Harold G. Cassidy has pointed out:

Henry Adams was an epitome of the non-scientist faced with science

that he could not understand, and deeply disturbed by the technological

changes of the time. He was a man with leisure, with the wealth to

travel. With his enquiring mind he sensed, and with his eyes he saw

a great ferment at work in the World. He called it a force, and tried

to weigh it along with the other forces that moved mankind. The edu-

cation he had received left him inadequate from a technical point of

view to understand, much less cope with, these new forces. Yet his

insights were often remarkable ones, and instructive to us who look at

our own period from so close at hand.'*

As final evidence we consider the work of the seminal American

philosopher Charles Sanders Peircc. Peirce, although seldom hold-

ing an academic position, played an important role in American

philosophy, particularly in the development of pragmatism. He was

the leader of the informal "Metaphysical Club" in Cambridge dur-

ing the last decades of the century. The history and views of the

group, much influenced by evolutionary ideas, are discussed by

Philip Weiner in Evolution and the Founders of Pragmatism.

Peirce was familiar with the development of both statistical

thermodynamics and evolution, and both played an enormous role

in the development of his thought. Peirce was a scientist by occupa-

tion, so his active interest in science is not surprising. We find his

awareness of these theories (some of which he did not fully accept)

evidenced by many passages in his work, such as these comments in

"On the Fixation of Belief":

^"Harold G. Cassidy. "The Muse and the Axiom," American Scientist 51,

315 (1963).
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Mr. Darwin has purposed to apply the statistical method to biology. The
same thing has been done in a widely different branch of science, the

theory of gases. We are unable to say what the movements of any par-

ticular molecule of gas would be on a certain hypothesis concerning

the constitution of this class of bodies. Clausius and Maxwell were yet

able, eight years before the publication of Darwin's immortal work, by

the apphcation of the doctrine of probabilities, to predict that in the

long run such and such a proportion of the molecules would under

given circumstances, acquire such and such velocities; that there would

take place, every second, such and such a relative number of collisions,

etc., and from these propositions were able to deduce certain properties of

gases especially in regard to the heat relations. In like manner, Darwin,

while unable to say what the operation of variation and natural selection

in any individual case will be, demonstrates that, in the long run, they

will, or would, adopt animals to their circumstances.^^ [5-362]

A second example in which Peirce links the two theories is in

"Evolutionary Lore":

The Origin of the Species was published toward the end of the year

1859. The preceding years since 1846 had been one of the most pro-

ductive seasons—or if extended so as to cover the book we are con-

sidering, the most productive period in the history of science from its

beginnings until now. The idea that chance begets order, which is one

of the cornerstones of modern physics . . . was at that time put into its

clearest light. [6.297]

He goes on to mention Quetelet and Buckle, and then begins a

discussion of the kinetic theory:

Meanwhile, the statistical method had, under that very name, been applied

with brilliant success to molecular physics. ... In the very summer pre-

ceding Darwin's publication, Maxwell had read before the British Asso-

ciation the first and most important of his researches on the subject. The

consequence was that the idea that fortuitous events may result in physical

law and Lurther that this is the way in which these laws which appear

to conflict with the principle of conservation of energy are to be explained

had taken a strong hold upon the minds of all who are abreast of the

leaders of thought. [6.297]

Peirce is not reflecting the historical attitude of the physicists

who developed statistical thermodynamics but is reading his own
views back into this work.

**C. S. Peirce, Collected Papers ed. C. Hartshorn and P. Weiss (Harvard Uni-

versity Press, Cambridge, Mass.). References are to section numbers.
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So it is not surprising that chance plays a fundamental role in

Peirce's metaphysics. Peirce generalized these ideas into a general

philosophy of three categories, Firstness, Secondness, and Thirdness.

These three terms have various meanings in his work, but a fre-

quent meaning of Firstness is chance. He was one of the first to

emphasize that chance was not merely for mathematical conven-

ience but was fundamental to the universe. He used the word

"Tychism," from the Greek for "chance," the "doctrine that absolute

chance is a factor in the universe." [6.2000]

This view of the essential role of chance he opposed to the view

that universal necessity determined everything by fixed mechanical

laws, in which most philosophers of science in the late nineteenth

century still believed. In a long debate between Peirce and Carus

concerning this issue, Peirce says:

The first and most fundamental element that we have to assume is a

Freedom, or Chance, or Spontaneity, by virtue of which the general vague

nothing-in-particuiar-ness that preceded the chaos took on a thousand

definite qualities.

In "The Doctrine of Necessity" Peirce stages a small debate

between a believer in his position and a believer in necessity, to show

that the usual arguments for absolute law are weak. Everyday ex-

periences make the presence of chance in the universe almost

obvious:

The endless variety in the world has not been created by law. It is not

of the nature of uniformity to originate variation nor of law to beget

circumstance. When we gaze on the multifariousness of nature we arc

looking straight into the face of a living spontaneity. A day's ramble

in the country ought to bring this home to us. [6.553!

A man in China bought a cow and three days and five minutes

later a Greenlander sneezed. Is that abstract circumstance connected with

any regularity whatever? And are not such relations infinitely more fre-

quent than those which are regular? [5.342]

The necessity of initial conditions in solving the equations of

mechanics is another indication to Peirce of the essential part played

by chance. Modern scientists have also stressed the "randomness"

of initial conditions: E. P. Wigner writes, "There are . . . aspects of

the world concerning which we do not believe in the existence of any

accurate regularities. We call these initial conditions."

Peirce tells us we must remember that "Three elements are

active in the world: first, chance; second, law; and third, habit
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taking." [1409] He imagines what a completely chance world
would be like, and comments, "Certainly nothing could be imagined
more systematic." For Peirce the universe begins as a state of com-
plete randomness. The interesting problem is to account for the

regularity in the universe; law must evolve out of chaos. This evo-

lutionary process is far from complete even now, and presents a

continuing process still:

We are brought, then, to this: Conformity to law exists only within a

limited range of events and even there is not perfect, for an element of

pure spontaneity or lawless originality mingles, or at least must be sup-

posed to mingle, with law everywhere. [1.407]

Thus Peirce's scheme starts with chaos and out of this by habit order-

liness comes, but only as a partial state.

What is of interest to us is the fundamental role of chance or

randomness in Peirce's cosmology, and the connection of that role

with statistical mechanics and Darwinism, rather than the details of

his metaphysics.

The two examples of Henry Adams and C. S. Peirce do not

establish the splash in the puddle, but they do serve at least to indi-

cate the influence of the Darwinian and kinetic theory ideas, and

they show the rising importance of chance.

Although I have concentrated on the relatively increased atten-

tion focused upon randomness in the twentieth century as compared

with the nineteenth century, randomness attracted some interest

before our century. One can find many earlier examples of the order-

randomness dichotomy, and there have been periods when, even

before the nineteenth century, random concepts acquired some

status. One example containing elements of our present dichotomy

is the continuing battle between classicism and romanticism in the

arts and in literature. But the twentieth-century interest, as we have

indicated, is more intense and of different quality. The chance com-

ponent has never been totally absent; even the most careful artist

in the last century could not be precisely sure of the result of his

meticulously controlled brush stroke. The classical painter resisted

chance—the goal of his years of training was to gain ever greater

control over the brush. By contrast the contemporary painter often

welcomes this random element and may even increase it. It is this

contrast that I intend to stress. Although I point to this one element,

the reader should not falsely conclude that I am not aware of non-
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random elements. Even now randomness is seldom the sole faaor.

When Pollock painted, the random component was far from the

only element in his technique. He chose the colors, he chose his

hand motions, and he chose the place on the canvas where he wanted

to work. Further, he could, and often did, reject the total product

at any time and begin over. Except in the most extreme examples,

randomness is not used alone anywhere; it is almost always part of

a larger situation. This is J. R. Pierce's emphasis on order.

The persistence of chance elements in highly ordered societies

suggests a human need for these elements. Perhaps no society ever

described was more completely organized than Arthur C. Clarke's

fictional city of Diaspar, described in The City and the Stars. Diaspar,

with its past, and even to some extent its future, stored in the

memory banks of the central computer, has existed with its deter-

mined social structure for over a billion years. But the original

planners of the city realized that perfect order was too much for

man to bear:

"Stability, however, is not enough. It leads too easily to stagnation, and

thence to decadence. The designers of the city took elaborate steps to

avoid this, ... I, Khedron the Jester, am part of that plan. A very

small part, perhaps. I like to think otherwise, but I can never be sure. . . .

Let us say that I introduce calculated amounts of disorder into the city."*''

But our present situation confronts us with something more than a

simple dichotomy between order and disorder, as suggested in both

of the following passages, one from L. L. Whyte and one from

Erwin Schrodinger:

In his long pursuit of order in nature, the scientist has turned a corner.

He is now after order and disorder without prejudice, having discovered

that complexity usually involves both,*^

The judicious elimination of detail, which the statistical system has

taught us, has brought about a complete transformation of our knowledge

of the heavens. ... It is manifest on all sides that this statistical method

is a dominant feature of our epoch, an important instrument of pro-

gress in almost every sphere of public life.*®

'^A. C. Clarke, The City and the Stars (Harcourt, Brace and Co., New York,

1953). PP- 47-53-

**L. L. Whyte, "Atomism, Structure, and Form," in Structure in Art and in

Science, ed. G. Kepes (G. Braziller, New York, 1965) p. 20.

'"E. Schrodinger, Science and Human Temperament, trans. }. Murphy and

W. H. Johnston (W. W. Norton, Inc., New York), p. 128.

186



Randomness and The Twentieth Century

Although the use of random methods in physics and biology at

the end of the last century originally assumed that one was dealing

with areas that could not be treated exactly, but where exact laws

did exist, a subtle change of view has come about, so that now
random elements are seen as having a validity of their own. Both

Whytc and Schrodinger see the current situation as something more
than a choice between two possibilities. Whyte thinks both are

essential for something he calls "complexity." But I prefer Schro-

dinger's suggestion that the two are not necessarily opposed, and that

randomness can be a tool for increasing order. Perhaps we have a

situation resembling a Hegelian synthesis, combining two themes

which had been considered in direct opposition.

Finally I note an important twentieth century reaction to ran-

domness: Joy. The persistence of games of chance through the ages

shows that men have always derived some pleasure from random-

ness; they are important in Clarke's Diaspar, for example:

In a world of order and stability, which in its broad outlines had not

changed for a bilUon years, it was perhaps not surprising to find an

absorbing interest in games of chance. Humanity had always been fasci-

nated by the mystery of the falling dice, the turn of a card, the spin

of the pointer . . . however, the purely intellectual fascination of chance

remained to seduce the most sophisticated minds. Machines that behaved

in a purely random way—events whose outcome could never be predicted,

no matter how much information one had—from these philosopher and

gambler could derive equal enjoyment.

But the present joy exceeds even this. Contemporary man often

feels excitement in the presence of randomness, welcoming it in a

way that would have seemed very strange in the immediate past. In

some areas (literature, perhaps) this excitement still seems not quite

proper, so it is not expressed openly. But in other places randomness

is clearly acknowledged. We noted that the artist is particularly

willing to admit the use of randomness, so it is not surprising to

see an artist, Ben Shahn, admitting his pleasure: "I love chaos. It is

a mysterious, unknown road with unexpected turnings. It is the way

out. It is freedom, man's best hope."^'*

^''Quoted in Industrial Design 13, 16 (1966).
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A survey of the chief properties of wave motion, using simple

mathematics in clear, step-by-step development.

13 Waves

Richard Stevenson and R. B. Moore

From their book Theory of Physics, 1967.

As we all know, energy can be localized in space and time. But the

place where energy is localized may be different from the place where

its use is desired, and thus mechanisms of transport of energy are of

the greatest interest.

The transport of energy is achieved in only two ways. The first

involves the transport of matter; as matter is moved its kinetic energy

and internal energy move with it. The second method is more com-

plicated and more interesting; it involves a wave process. The wave

carries energy and momentum, but there is no net transfer of mass.

There are many different types of waves, but the general nature of

the events by which energy is carried by a wave is always the same.

A succession of oscillatory processes is always involved. The wave

is created by an oscillation in the emitting body; the motion of the

wave through space is by means of oscillations; and the wave is ab-

sorbed by an oscillatory process in the receiving body.

Most waves are complex. In this chapter we study the most simple

types of waves, those for which the amplitude varies sinusoidally.

17.1 PULSES

Suppose that you are holding the end of a relatively long rope

or coil spring and that the other end is fixed to the wall.* If you

raise your hand suddenly and bring it back to its original position,

you will create a pulse which moves down the rope and is reflected

back. The sequence of events is indicated in Figure 17.1.

Any individual point on the rope simply moves up and down
as the pulse passes by. It is obvious that the pulse moves with a

certain velocity, and we might imagine that there is a certain

energy and momentum associated with it, even though there is

no transfer of mass. Keep in mind the observation that the pulse

is inverted after reflection from the wall.

Consider now another experiment with two rop>es, one light

* It is best, of course, to hang the rope from the ceiling or lay it on a smooth table

so that the rope does not sag under the action of gravity. We will draw the diagrams
with the rope horizontal, as if there were no gravitational force.
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FIGURE 17.1 This sequence of photographs
shows a pulse traveling to the left on a long coil

spring. The pulse is reflected by the fixed end
of the spring and the reflected pulse is inverted.

(From Physical Science Study Committee:
Physics. Boston, D. C. Heath & Co., 1960. Copy-
right, Educational Services Inc.)
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and one heavy, attached to each other as in Figure 17.2. An in-

cident pulse is sent along the light rope, and when it arrives at the

junction or interface it is partially transmitted and partially re-
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li^t rope heavy rope

incident pulse

reflected pulse

<

transmitted pulse

FIGURE 17.2 An incident pulse is sent along the light rope toward the attached heavy
rope. The pulse is partially transmitted and partially reflected. The reflected pulse is in-

verted as in Figure 17.1.

fleeted. The transmitted pulse is upright, and the reflected pulse

is inverted.

We can vary the two-rope experiment by sending the incident

pulse along the heavy rope. Part is transmitted and part reflected,

but the reflected part is not inverted. This is different from the

case shown in Figure 17.3, and we conclude that the type of re-

flection depends on the nature of the interface at which reflection

occurs.

What happens when two pulses are sent along a rope and pass

over each other? If two equivalent pulses inverted with respect to

each other are sent from opp)osite ends of the rope, they will seem
to cancel each other when they meet, and at that instant the rop>e

appears to be at rest. A moment later the pulses have passed by

each other with no evident change in shape. Evidently one pulse

can move along the rope quite independently of another, and
when they meet the pulses are superimposed one on the other.

light rope heavy rope

incident pulse

transmitted pulse reflected pulse

FIGURE 1 7.3 T^^i'S is similar to Figure 17.2 but now the incident pulse is on the heavy rope.

Again the pulse is partially reflected and partially transmitted. However the reflected pulse

is not inverted. The nature of the reflected pulse will depend on the boundary which caused
the reflection.
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FIGURE 17.4 Superposition implies that waves or pulses pass
through one another with no interaction. The diagram shows a
rope carrying two pulses. In (a) the pulses approach each other.

In (b) they begin to cross, and the resultant rope shape is found
by the addition of pulse displacements at each point along the
rope. At the instant of time shown in (c) there will be no net dis-

placement of the rope; if the pulse shapes are the same and their

amplitudes are opposite there will be an instantaneous cancella-

tion. In (cO the pulses move along with no change in shape or

diminution of amplitude, just as if the other pulse had not existed.

17.2 RUNNING WAVES

Let us supply a succession of pulses to our long rope, as in

Figure 17.5. This is easily enough done by jerking the end of the

rof)e up and down at regular intervals. If the interval is long

enough we would have a succession of separate pulses traveling

along the rope. Eventually, of course, these pulses will be reflected

and will complicate the picture, but for the moment we can assume

that no reflection has occurred.

FIGURE 17.5 We can send a succession of pulses along a long rope by jerking one end
up and down.

Now suppose that we apply the pulses to the rope so that there

is no interval between pulses. The result is shown in Figure 17.6.

This is obviously a special case, and we give it a special name. We
say that a wave is moving along the rope, and it is clear that the

wave is composed of a specially applied sequence of pulses. Such

a wave is called a running or traveling wave.

FIGURE 17,6 Instead of sending isolated pulses along the rope as in Figure 17.5, we move
our hand up and down continuously. Now there is no interval of time between individual

pulses, and we say that the rope is carrying a wave. The wave velocity is identical to the

velocity of the individual pulses which make up the wave.

Problem 2
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A simple type of wave can be created by causing the end of

the rope to move up and down in simple harmonic motion. The
sequence of events by which the wave was established is shown in

Figure 17.7. The motion of the end of the rope causes the wave
pulse to move along the rope with velocity c. As the wave pulse

moves along, a point on the rope a distance / from the end of the

FIGURE 17.7 This sequence of drawings shows the means by which a wave is established
along a rope. The left hand end moves up and down in simple harmonic motion. This causes
the wave pulse to move along the rope with velocity c. The frequency of the wave will be
the same as the frequency of the event which started the wave.

rope will also start into simple harmonic motion, but it will start at

a time Ijc later than that of the end of the rope.

Consider Figure 17.8. Point A has just completed one cycle of

simple harmonic motion. It started at < = and finished at f = 7,

FIGURE 1 7.8 This shows the wave form for one complete cycle of simple harmonic motion
of the source. The wave moves in the x-direction, and individual points on the rope move
in the ±K-directions. The wavelength x is the distance the wave travels for one complete
cycle of the source. The wave amplitude is a.
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where T is the period. If the amplitude of motion is a, then the

displacement in the y direction of point A can be represented by

>^ = asin27r// (17-1)

where / is the frequency of the motion. Now as point A is just

finishing one cycle and starting another, point B is starting its

first cycle. If it is a distance \ away from A, it starts at time

ts = ^
c

Another point on the curve, such as X, had started at a time

c

With respect to point A , the motion of point X is delayed by a time

tx. We can see that the displacements of points B and X can be

represented by

yB = a sin 27r/( t 1

yx = a sin 27r/f t j

Let us return for a moment to Figure 17.8. The distance

AB = X, for one complete wave form, is called the wavelength. If

the wave has velocity c, the time required for the wave to travel

from A to B is k/c, and this will just equal the period of the simple

harmonic motion associated with the wave. That is,

C

However

/

Thus

kf=c (17-3)

This very important relationship between wavelength, frequency

and wave velocity holds for any type of wave.

We also have developed an equation which represents the

wave. For the wave moving in the positive x-direction, the displace-

ment of any point a distance x from the origin is given by ( 1 7-2).

y = a sin ^'-f)
We can simplify this by noting that

a) = 27r/
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and

Thus we have

// = ! and ^ = f^ T c k

y = a siTKoit 1

= a sin 27rf— —
-J

Example. Two sources separated by 10 m vibrate according

to the equations yi = 0.03 sin Trt and 3)2 = 0.01 sin nt. They send out

simple waves of velocity 1.5 m/sec. What is the equation of motion

of a particle 6 m from the first source and 4 m from the second?

1 2
• • •

-6 m »+«— 4 m—

H

We suppose that source 1 sends out waves in the +x-direction,

311 = fli sin 27rfAt ^

J

and that source 2 sends out waves in the —x-direction,

y2 — ch sin 27r/2( ^ + ~)

Then

Thus

fli = 0.03 m 02 = 0.01 m
Xi = 6 m X2 = —4 m
/i =/2 = V2 sec-^

c = 1.5 m/sec

3»i
= 0.03 sin7r(/-4)
= 0.03 sin TTt cos iir — cos nt sin 47r

= 0.03 sin TTt

3»2 = 0.01 sin7r(/-8/3)

= 0.01 (sin TTt cos 877/3 — cos irt sin 87r/3)

= 0.01 (sin TTf (-1/2) - cos nt V3/2)
= -0.005 sin TTt - 0.00866 cos nt

The resultant wave motion is

y = yi+ y2

= 0.03 sin nt - 0.005 sin nt - 0.00866 cos nt

= 0.025 sin nt - 0.00866 cos nt

We will write this in the form

> = /4 sin {nt + </>)

= A sin TTf cos
<f}
+ A cos tt^ sin

I
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Thus
A^ = 0.0252 + 0.008662

, . 0.00866
"^"^==-0:025-

- <^=19.1*'

A = 0.0264 m
= 0.346

17.3 STANDING WAVES

Suppose that we have a long rope with one wave train of
angular frequency o> traveling in the +x-direction and another of
the same frequency traveling in the —x-direction. Both wave trains

have the same amplitude, and we can write the general displace-

ments as

3>+ = a sinwU
j

)»- = a sin ft)( / + -

1

These two wave trains are superimposed, so the net displacement

is

y = )>+ + 31-

= a svnoiit 1 + a sin cdI < + -
j

To simplify this we use the trigonometric relations

sin {d + <^) = sin B cos <^ + cos 6 sin </>

sin {B — 4>) = sin B cos </>
— cos B sin <\>

(17-6)

Thus (17-6) is transformed to

y = (2a sin (nt) cos
(liX

(17-7)

FIGURE 17.9 This sequence shows pictures of standing waves at intervals of 1/4 T, where
7"= lit is the period. At f = 0, 1/2 T, T the displacement at all points is instantaneously zero.

At inter/als of X/2 along the wave there are points called nodes for which the displacement

is zero at all times.
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This is called a standing wave. The amplitude is 2a sin cot, which

varies with time and is zero at f = 0, f = V2 T, and so forth. The
displacement on the rope will be zero for distances x, where

--(2n-l)2

w = 0, ±1,±2, . ,

(17-8)

Since w = 27r/, from (17-7), these points of zero displacement or

nodes are located at

x=(2n-l)^f

= (2n-l)2|^f

= (2n-l)|

:i7-9)

The distance between two nodes will be, therefore, nX/2 where

n = 1, 2, 3, and so forth.

It is easy to see how standing waves can be created on a string

which is fixed at one or at both ends. One wave train is caused by

FIGURE 17.10 A string of length /, such as a violin string, is clamped at both ends. Both

ends must be nodes if a standing wave is to be set up on the string. The maximum wave-

length of the standing wave will be x = 2 /. The next possible standing wave will have a

wavelength x = /. Vibrations with wavelengths different from those of the standing waves

will die out quickly.

the agency which causes the vibration, and the other wave train

arises from a reflection at the fixed end. Consider a string fixed

at both ends. Both ends must be nodes, so that if the length of the

string is /, then by (17-9)

/ = nX
(17-10)
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The string can vibrate with wavelengths 2/, /, 2//3, and so forth.

Vibrations with other wavelengths can be set up of course, but

these die out very quickly. The string will resonate to the wave-

lengths given by (17-10).

It is very important that the distinction between a running

wave and a standing wave be kept in mind. The running wave is

illustrated in Figures 17.6 and 17.7. The wave disturbance moves

in one direction only and each particle through which the wave

passes suffers a sinusoidal variation of amplitude with time. The
standing wave, on the other hand, is a superposition of two run-

ning waves of the same frequency and amplitude, moving in

opposite directions. Certain points on the standing waves, the

nodes, have a constant zero amplitude even though the two run-

ning waves are continually passing through these points. Usually

a standing wave is made by the superposition of an incident wave

and the reflected wave trom some boundary.

Example. Standing waves are produced by the superposition

of two waves

^^i
= 15 sin (Sirt — 5x)

y2 = 15 sin {Snt + 5x)

Find the amplitude of motion at x = 21.

We use the relationships

sin (a ± )3) = sin a cos /3 ± cos a sin ^
sin (a + /3) 4- sin (a — ^) = 2 sin a cos /3

Thus

With

y = )'i + )'2 = 30 sin Snt cos 5x

X = 21, 5x = 105 radians

= 38.47r radians

Now cos 38.477 = cos 0.47r = cos 72° = 0.309.

Thus the amplitude at x = 21 is

30 cos 38.477 = 30X0.309
= 9.27

17.4 THE DOPPLER EFFECT

We wish now to study what happens when waves from a point

source S, which moves with velocity u, are detected by an observer

O who moves with velocity v.

Let the situation be as in Figure 17.1 1. The velocities u and v

are in the positive x-direction. The velocity of the waves emitted

by S is c, and we can imagine two points A and B fixed in space

197



)'

o
FIGURE 17.11 Waves are emitted by a point source S moving

g with velocity u, and detected by an observer O moving with

9 velocity i^. At f = 0, points A and 8 are equidistant from S. A
spherical wave emitted from S at f = will just reach A. and 8 at

time f = T.

equidistant from 5 at ^ = such that a wave emitted at f = will

just reach A and B at time t. Thus at < =

dist /iS = C7

dist 5S = CT
f=0

But by time t, 5 will have moved a distance wt, and then

t = 7
dist y45 = CT + WT

dist 55 = CT — MT

If the frequency of the source is /o, it will have emitted /o wave-

fronts between t = and t = t. Since the first wavefront reaches

A and B at t = t, then/o wavefronts are contained in the distances

AS and BS. Thus the apparent wavelength in front of the source is

_^ _ c — u

for /o

and the wavelength behind the source is

. , _ AS^ _ c + u

for /o

:i7-ii:

(17-12)

Now the observer O moves with velocity v, and the speed of

the waves relative to him is c + v. Since he is behind the source he

experiences waves of wavelength X' at an apparent frequency/

given by

/= c + V

k'

C + V

c -\- u

(17-13)

/o

The various expressions can easily be altered if the source is mov-

ing in a direction opposite to that of the detector.

Most of us will have noticed the Doppler effect in the change

in pitch of a horn or siren as it passes by. The Doppler effect is a

property of any wave motion, and is used, for example, by the

police in the radar sets that are employed to apprehend speeding

motorists.

Example. A proposed police radar is designed to work by the

Doppler effect using electromagnetic radiation of 30 cm wave-
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radar

length. The radar beam is reflected from a moving car; the motion

causes a change in frequency, which is compared with the original

frequency to compute the speed.

A car moves toward the radar at 65 mph (31 m/sec). The wave-

length of the beam emitted by the radar is

JO

On time t the source emits /o wavefronts, and these travel a dis-

tance CT — VT before reflection. Thus the wavelength of the re-

flected beam as seen by the car is

k' = CT — VT C — V

for /o

As seen by the stationary radar set this wave X' reflected by the

moving car has wavelength X" and frequency/".

^'-t'

-fo
c-2v

The fractional change in frequency is

^f^fo-r ^^ c-2v _2v_ 62

c 3 X 108

= 2.06 X 10-7
/o /o

The frequency of 30 cm radiation is

Thus the change in frequency would be

A/= 2.06 X 10-7 X 10*

= 206 cps

17.5 SOUND WAVES

Waves on a string are called transverse waves because the

motion of the individual particles is perpendicular or transverse

to the direction of motion of the wave. Another type of wave is

the longitudinal wave, where the motion of the particle is along

the same line as the direction of motion of the wave.

Sound is a longitudinal wave which involves very small changes

in density of the medium through which it is propagated. That is,
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a sound is a train of pressure variations in a substance. At any one

point there is an oscillatory variation in pressure or density.

In a solid the velocity of sound is given by

(17-14)C= A -T

where d is the density and E is Young's modulus (the ratio of stress

to strain in the elastic region).*

In a perfect gas the velocity of sound is given by

c=\M-
y Cvd

(17-15)

where again d = m/v is the density of the gas. Since pV = RT, we
can see from (17-15) that c « T^l^.

Very interesting effects occur with sound waves when the

source emitting the wave is moving faster than the velocity of

sound. For example, in Figure 17.12, consider a source moving

with speed v > c. It moves from ^4 to B in time At and from 5 to C
in an equal time A^ When the body is at C the wave emitted at B
has spread out as a sphere of radius cAt. Similarly the wave emitted

* See Section 27.5.

FIGURE 17.12 A point source moving with velocity

V emits spherical waves. The diagram shows wave

fronts emitted at intervals Af. The wave fronts are

enclosed within a cone of angle 2d, where sin =

civ. This cone is called the Mach cone. If the source

is emitting sound waves there will be a finite pres-

sure difference across the Mach cone, it is this

pressure difference that gives rise to the term

"shock wave."
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at A has spread out as a sphere of radius 2cAf. All the waves emitted

at previous times are enclosed within a cone, called the Mach cone,

of angle 20, where sin 6 = cjv. The wave along this cone is called

a shock wave because there is a finite difference of pressure across

the front. The ratio vie is called the Mach number, after the

scientist who first proposed its use. The cone of shock waves is

called the Mach cone.

Example. The index of refraction n of a substance is the ratio

of the velocity of light in a vacuum to the velocity of light in the

substance, n = cjv. If a high speed charged particle is sent with

velocity u through the substance, the ratio (the Mach number, as

it were) ulv can be greater than unity. Then any radiation emitted

by the particle is enclosed within a cone of angle 26 where

. . t; c
s\n6 = — =—

u nu

The velocity of the particle can be greater than the velocity of

light in the medium (but never greater than the velocity of light

in a vacuum).

The radiation emitted by the particle is known as Cherenkov

radiation. By measuring 6, this phenomena finds useful applica-

tion in the measurement of the velocities of charged particles.

17.6 ENERGY OF WAVES

Let us return to the wave moving along a string. The dis-

placement of point X at time t is

y = asmJt-fj (17-16)

The velocity v of this point is

v = ^^
= awcosco{t-fj (17-17)

Now we suppose that the mass of a small element of the string at

this point is m; thus, the kinetic energy is

T = V2 mv^

= V2 ma^cj^ cos^ col

The time average of the kinetic energy is

T=y4nuiW (17-19)

And finally we define an energy density as being the average

kinetic energy per unit mass.

kinetic energy density = V4 aW (17-20)
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Since the energy of the system is being transformed from kinetic

to potential and back again, and since Tmax = Vmax we can see that

potential energy density = V4 aW (17-21)

Thus

total energy density = V2 aW (17-22)

The energy density is proportional to the square of the amplitude

and the square of the frequency.

The same expression (17-22) holds for a sound wave. The
density d gives the mass per unit volume; thus, the total energy

per unit volume is

V2 rfaW (17-23)

We can now begin to perceive how energy is transported by

waves. By expending energy a source can cause a harmonic dis-

turbance in a medium. This disturbance is propagated through

the medium by the influence that an individual particle has on

other particles immediately adjacent to it. The motion of the par-

ticle means that it has a certain amount of energy, part kinetic and

part potential at any instant of time. At some point energy is re-

moved from the wave and presumably dissipated. And to sustain

the wave motion along the wave train, energy must be supplied by

the source.

17.7 DISPERSION OF WAVES

We have discussed only the simplest type of waves, sinusoidal

in form, and in the remainder of the book we will never have occa-

sion to talk about more complicated waves.

In a simple wave, at a point in space there is a simple harmonic

motion of mass or a sinusoidal variation of a field vector. This

local event may be parallel or perpendicular to the direction of the

wave, from which arises the terms "longitudinal" or "transverse"

waves. The wave has a frequency/and a wavelength X. The wave

velocity c is related to these by c =fK.
Strictly speaking, we should call this velocity the phase veloc-

ity, and give it another symbol V4,.

V4,=J\ (17-24)

This is because v^, gives the velocity at which an event of constant

phase is propagated along the wave. For later use we will define

another quantity, the wave vector modulus k.

'^
27rX

Thus

V4, = ^ (17-25)
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As might be expected, real waves are liable to be more com-

plicated than the simple waves, and we might suppose that the real

wave is a result of the superposition of many simple waves. If the

velocities of the simple waves vary with wavelength, what then is

the velocity of the resultant wave and how is it related to wave-

length?

For an example consider two simple waves of slightly different

wavelengths X and k' and velocities v and v' , but with the same

amplitude. For the resultant wave the displacement x at time t is

y = a sin {(ot — kx) + a sin {(o't — k'x) (17-26)

We can use the trigonometric identity

sm a + sm /3 = 2 sm—r-^ cos—r-^

Thus the displacement oi y becomes

,=2asi„[(^>-(*±^>]cos[(^>-(^>] ,17-27)

We will rewrite (17-27) as

y = 2a sin {(04,1 — A^) cos (cjgt — kgx) (17-28)

The individual waves correspond to the sine factor in (17-27) and

(17-28) and the phase velocity is

The cosine factor in (17-27) and (17-28) indicates that another

wave is present with velocity

_ if^a — fa>
—

fa>

"' 1 " (17-30)
_ Afa>

~ ^k

This is called the group velocity, using the terminology that the

real wave is made up of a group of individual waves.

We know that (o = v<i,k, thus

Afa) = (fa> 4- Aa>) — fa)

Therefore

Afa)

(17-31)

The significance of this is that the group velocity is the veloc-

ity at which energy flows, and it is normally the only velocity that
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can be observed for a wave train. Dispersion is said to occur when
the phase velocity varies with wavelength, that is when Af,<,/AA 7^ 0.

If there is no dispersion the phase velocity is identical to the group

velocity.

Example. An atom emits a photon of green light X = 5200 A
in T = 2 X 10~^° sec. Estimate the spread of wavelengths in the

photon.

We will consider the photon to be composed of a train of

waves. The length of the wave train is cr = 3 X 10* X 2 X 10-'° =
0.06 m.

To make the estimate we can suppose that the wave train is

made up of waves with slightly different frequencies and wave-

lengths,

y = a sin {oit — kx) + a sin {oi't — k'x)

= 2asinV2[(ft> + w')f- {k + k')x'] cos V2[(a) - a>')f - {k-k')x'\

The resultant wave has an overall frequency ¥2(0) — co') and an

overall wave vector Vzik — k'). Thus the length of the wave train

is approximated by

2/ =
1

277- y^ik-k')

Since k = x~r, k' = „ , • This length is given by

/ =
k-k'

We can write k' = k + AX, thus

1 =
ÂX

and we calculated / = 0.06 m. Therefore

., _ X' _ (0.52 X 10-«)'

^^ "
/

"
0.06

= 4.5 X 10-" m
= 4.5 X 10-2 A
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A similar estimate of AX can be made using the uncertainty prin-

ciple in the following way. We use A£A/ ~ h, and E = hf; thus

h^f^t ~ h

' A/

Now kf=c, therefore

(\ + AX)(/+A/) -kf=0

which gives, in absolute values,

AX^A^
^ f

Thus Af ~ -r- reduces to

AX = -TT- = —r-
fAt cAt

which is the same as the expression used in the previous calcula-

tion.

17.8 SPHERICAL WAVES

So far we have talked about only waves on a rope, and clearly

the rope was the medium which carried the wave. Many waves are

associated with a medium, but the existence of a medium is not

essential to the existence of a wave; all we need is something that

vibrates in simple harmonic motion.

Perhaps the most important types of waves are sound waves

and electromagnetic waves. A sound wave needs a medium to be

transmitted, and the vibration consists of small oscillations in the

density of the medium in the direction of propagation of the wave.

Thus a sound wave is classified as a longitudinal wave. On the

other hand, an electromagnetic wave needs no medium and con-

FIGURE 17.13 A point source S emits spherical waves. At time U the

wavefront is a sphere of radius W,; at time ft the wavefront is a sphere

of radius flj.
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sists of oscillation of electric and magnetic field vectors perpendicu-

lar to the direction of propagation. It is classified, therefore, as a

transverse wave.

For a rope the medium extends only along a rope; thus, the

wave can be propagated only in that direction. But a sound wave

or an electromagnetic wave can be propagated in all directions at

once. Consider, as in Figure 17.13, a small source S of wave motion.

The wave front travels out in every direction from S, and we can

consider it to be spherical since no direction of propagation is

preferred over another.

Suppose that the energy associated with the wavefront is E.

This energy is distributed over the spherical wavefront of radius

R. Thus the intensity* or energy density at a point is

' =4^ (17-32)

We can measure the intensity at two distances Ri and R2 from the

source. They will be

47rR\

E
h =

Thus

r D2
(17-33)h R]

h Rl

That is, the intensity of a spherical wave varies inversely as the

square of the distance from the wave source. This inverse square

law applies only to spherical waves, but can be used in an approxi-

mate way to estimate the variation in intensity of waves which are

only approximately spherical.

17.9 HUYGENS' PRINCIPLE

In the last few sections we have talked about wavefronts with-

out defining them carefully. A small source S of frequency /can
emit waves of wavelength X and velocity c. We can suppose that

the source sends out wavefronts at time intervals 1//, and that

these wavefronts are separated by a distance X.

If we know the position of a wavefront at time t, how do we
find its position at time t + Af? This problem is solved by Huygens'

principle, which states that every point on the wavefront at time t

can be considered to be the source of secondary spherical waves

* Keep in mind that the intensity of the wave is proportional to the square of the

amplitude; see Section 17.6.
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FIGURE 17.14 If we know the position of a wavefront at time t, we can find its position at
time f + Af by Huygens' principle. Each point on the original wavefront is thought to emit
a secondary spherical wavelet. In time Af the wavelet will have a radius cAf, where c is the
wave velocity. The wavefront at time t + Af will be the envelope of all the secondary wave-
lets.

which have the same velocity as the original wave. The wavefront

at time t + At is the envelope of these secondary waves.

This is a geometric principle, of course, and is best illustrated

by a diagram. In Figure 17.14, AB is a wavefront at time t. If the

wave velocity is c, then in time At a secondary wave will travel a

distance cAt. The envelope of the secondary waves is AB, which

is therefore the position of the wavefront at time t + A^
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Two masters of physics introduce the wave concept in

this section from c well-known popular book.

14 What is a Wave?

Albert Einstein and Leopold Infeld

An excerpt from their book The Evolution of Physics, 1961.

A bit of gossip starting in Washington reaches New
York very quickly, even though not a single individual

who takes part in spreading it travels between these

two cities. There are two quite different motions in-

volved, that of the rumor, Washington to New York,

and that of the persons who spread the rumor. The
wind, passing over a field of grain, sets up a wave

which spreads out across the whole field. Here again

we must distinguish between the motion of the wave

and the motion of the separate plants, which undergo

only small oscillations. We have all seen the waves that

spread in wider and wider circles when a stone is

thrown into a pool of water. The motion of the wave

is very different from that of the particles of water.

The particles merely go up and down. The observed

motion of the wave is that of a state of matter and not

of matter itself. A cork floating on the wave shows

this clearly, for it moves up and down in imitation of

the actual motion of the water, instead of being carried

along by the wave.

In order to understand better the mechanism of the

wave let us again consider an idealized experiment.

Suppose that a large space is filled quite uniformly with

water, or air, or some other "medium." Somewhere in

the center there is a sphere. At the beginning of the

experiment there is no motion at all. Suddenly the

sphere begins to "breathe" rhythmically, expanding

and contracting in volume, although retaining its spher-
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ical shape. What will happen in the medium? Let us

begin our examination at the moment the sphere begins

to expand. The particles of the medium in the immedi-

ate vicinity of the sphere are pushed out, so that the

density of a spherical shell of water, or air, as the case

may be, is increased above its normal value. Similarly,

when the sphere contracts, the density of that part of

the medium immediately surrounding it will be de-

creased. These changes of density are propagated*

throughout the entire medium. The particles constitut-

ing the medium perform only small vibrations, but the

whole motion is that of a progressive wave. The essen-

tially new thing here is that for the first time we con-

sider the motion of something which is not matter, but

energy propagated through matter.

Using the example of the pulsating sphere, we may
introduce two general physical concepts, important for

the characterization of waves. The first is the velocity

with which the wave spreads. This will depend on the

medium, being different for water and air, for exam-

ple. The second concept is that of ivave-length. In the

case of waves on a sea or river it is the distance from

the trough of one wave to that of the next, or from the

crest of one wave to that of the next. Thus sea waves

have greater wave-length than river waves. In the

case of our waves set up by a pulsating sphere the

wave-length is the distance, at some definite time, be-

tween two neighboring spherical shells showing max-

ima or minima of density. It is evident that this dis-

tance will not depend on the medium alone. The rate

of pulsation of the sphere will certainly have a great

effect, making the wave-length shorter if the pulsation

becomes more rapid, longer if the pulsation becomes

slower.

This concept of a wave proved very successful in

physics. It is definitely a mechanical concept. The phe-
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nomenon is reduced to the motion of particles which,

according to the kinetic theory, are constituents of

matter. Thus every theory which uses the concept of

wave can, in general, be regarded as a mechanical

theory. For example, the explanation of acoustical phe-

nomena is based essentially on this concept. Vibrating

bodies, such as vocal cords and violin strings, are

sources of sound waves which are propagated through

the air in the manner explained for the pulsating sphere.

It is thus possible to reduce all acoustical phenomena to

mechanics by means of the wave concept.

It has been emphasized that we must distinguish be-

tween the motion of the particles and that of the wave

itself, which is a state of the medium. The two are

very different but it is apparent that in our example of

the pulsating sphere both motions take place in the

same straight line. The particles of the medium oscillate

along short line segments, and the density increases

and decreases periodically in accordance with this mo-
tion. The direction in which the wave spreads and the

line on which the oscillations lie are the same. This

type of wave is called longitudinal. But is this the only

kind of wave? It is important for our further considera-
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What is a Wave?

tions to realize the possibility of a different kind of

wave, called transverse.

Let us change our previous example. We still have

the sphere, but it is immersed in a medium of a differ-

ent kind, a sort of jelly instead of air or water. Further-

more, the sphere no longer pulsates but rotates in one

direction through a small angle and then back again,

always in the same rhythmical way and about a definite

axis. The jelly adheres to the sphere and thus the ad-

hering portions are forced to imitate the motion. These

portions force those situated a little further away to

imitate the same motion, and so on, so that a wave is

set up in the medium. If we keep in mind the distinc-

tion between the motion of the medium and the mo-

tion of the wave we see that here they do not lie on the

same line. The wave is propagated in the direction of

the radius of the sphere, while the parts of the medium

move perpendicularly to this direction. We have thus

created a transverse wave.

Waves spreading on the surface of water are trans-

verse. A floating cork only bobs up and down, but the

wave spreads along a horizontal plane. Sound waves,

on the other hand, furnish the most familiar example

of longitudinal waves.
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One more remark: the wave produced by a pulsat-

ing or oscillating sphere in a homogeneous medium is

a spherical wave. It is called so because at any given

moment all points on any sphere surrounding the

source behave in the same way. Let us consider a por-

tion of such a sphere at a great distance from the

source. The farther away the portion is, and the

smaller we take it, the more it resembles a plane. We
can say, without trying to be too rigorous, that there

is no essential difference between a part of a plane and

1

a part of a sphere whose radius is sufficiently large. We
very often speak of small portions of a spherical wave

far removed from the source as plane ivaves. The far-

ther we place the shaded portion of our drawing from

the center of the spheres and the smaller the angle be-

tween the two radii, the better our representation of a

plane wave. The concept of a plane wave, like many
other physical concepts, is no more than a fiction which

can be realized with only a certain degree of accuracy.

It is, however, a useful concept which we shall need

later.
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Many aspects of the music produced by Instruments,

such as tone, consonance, dissonance, and scales, are

closely related to physical laws.

15 Musical Instruments and Scales

Harvey E. White

A chapter from his book Classical and Modern Physics, 1940.

Musical instruments are often classified under one of the follow-

ing heads: strings, winds, rods, plates, and bells. One who is more or

less familiar with instruments will realize that most of these terms

apply to the material part of each instrument set into vibration when

the instrument is played. It is the purpose of the first half of this

chapter to consider these vibrating sources and the various factors gov-

erning the frequencies of their musical notes, and in the second part

to take up in some detail the science of the musical scale.

16.1. Stringed Instruments. Under the classification of strings

we find such instruments as the violin, cello, viola, double bass, harp,

guitar, and piano. There are two principal reasons why these instru-

ments do not sound alike as regards tone quality, first, the design of

the instrument, and second, the method by which the strings are set

into vibration. The violin and cello are bowed with long strands of

tightly stretched horsehair,

the harp and guitar are N ^

plucked with the fingers or

picks, and the piano is ham-

mered with light felt mallets.

Under very special condi-

tions a string may be made

to vibrate with nodes at either

end as shown in Fig. 16A. In this state of motion the string gives rise

to its lowest possible note, and it is said to be vibrating with its funda-

mental frequency.

Every musician knows that a thick heavy string has a lower natural

pitch than a thin one, that a short strong string has a higher pitch than

a long one, and that the tighter a string is stretched the higher is its

pitch. The G string of a violin, for example, is thicker and heavier

than the high pitched E string, and the bass strings of the piano are

longer and heavier than the strings of the treble.

Fig. 16A—Single string vibrating with its funda-

mental frequenqr.
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Accurate measurements with vibrating strings, as well as theory,

show that the frequency n is given by the following formula:

= k^^im. (16^)

where L is the distance in centimeters between two consecutive nodes,

F is the tension on the string in dynes, and 7n the mass in grams of one

centimeter length of string. The equation gives the exact pitch of a

string or the change in pitch due to a change in length, mass, or tension.

If the length L is doubled the frequency is halved, i.e., the pitch is

lowered one octave. If m is increased n decreases, and if the tension F
is increased n increases. The formula shows that to double the fre-

quency by tightening a string the tension must be increased fourfold.

n

zn

371

4n

6n

fundamental

1st overtone

Znd overtone,

3rd. overtone,

5th overtone

Fig. 16B—Vibration modes for strings of musical instruments.

16.2. Harmonics and Overtones. When a professional violinist

plays ''in harmonics" he touches the strings lightly at various points

and sets each one vibrating in two or more segments as shown in

Fig. 16B. If a string is touched at the center a node is formed at that

point and the vibration frequency, as shown by Eq. (16^/), becomes

just double that of the fundamental. If the string is touched lightly

at a point just one-third the distance from the end it will vibrate in

three sections and have a frequency three times that of the fundamental.

These higher vibration modes as shown in the figures, which always

have frequencies equal to whole number multiples of the fundamental
frequency ;;, are called overtones.

It is a simple matter to set a string vibrating with its fundamental
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frequency and several overtones simultaneously. This is accomplished

by plucking or bowing the string vigorously. To illustrate this, a dia-

gram of a string vibrating with its fundamental and first overtone is

shown in Fig. 16C. As the string vibrates with a node at the center

and a frequency 2n, it also moves up and down as a whole with the

fundamental frequency n and a node at each end.

It should be pointed out that a string set into vibration with nodes

and loops is but an example of standing waves, see Figs. 14K and 14L.

Vibrations produced at one

end of a string send a con-

tinuous train of waves along

the string to be reflected back

from the other end. Th>s is
^'='

•'^7/ta^;ttLn,:l;eou'st'"^°"'
true not only for transverse

waves but for longitudinal or torsional waves as well. Standing waves
of the latter two types can be demonstrated by stroking or twisting one

end of the string of a sonometer or violin with a rosined cloth.

16.3. Wind Instruments. Musical instruments often classified

as "wind instruments" are usually divided into two subclasses, "wood-

winds" and "brasses." Under the heading of wood-winds we find

such instruments as the ^ute, piccolo, clarinet, bass clarinet, saxophone,

bassoon, and contra bassoon, and under the brasses such instruments as

the French horn, cornet, trumpet, tenor trombone, bass trombone, and

tuba (or bombardon)

.

In practically all wind instruments the source of sound is a vibrating

air column, set into and maintained in a state of vibration by one of

several different principles. In instruments like the saxophone, clari-

net, and bassoon, air is blown against a thin strip of wood called a

reed, setting it into vibration. In most of the brasses the musician's

lips are made to vibrate with certain required frequencies, while in

certain wood-winds like the flute and piccolo air is blown across the

sharp edge of an opening near one end of the instrument setting the

air into vibration.

The fundamental principles involved in the vibration of an air

column are demonstrated by means of an experiment shown in Fig. 16D.

A vibrating tuning fork acting as a source of sound waves is held over

the open end of several long hollow tubes. Traveling down the tube

with the velocity of sound in air, each train of sound waves is reflected

from the bottom back toward the top. If the tube is adjusted to the
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proper length, standing waves will be set up and the air column will

resonate to the frequency of the tuning fork. In this experiment the

proper length of the tube for the closed pipes is obtained by slowly

pouring water into the cylinder and listening for the loudest response.

Experimentally, this occurs at several points as indicated by the first

three diagrams; the first resonance occurs at a distance of one and one-

quarter wave-lengths, the second at three-quarters of a wave-length,

and the third at one-quarter of a wave-length. The reason for these
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Fig. 16D—The column of air in a pipe will resonate to sound of a given pitch if the length

of the pipe is properly adjusted.

odd fractions is that only a node can form at the closed end of a pipe

and a loop at an open end. This is true of all wind instruments.

For open pipes a loop forms at both ends with one or more nodes

in between. The first five pipes in Fig. 16D are shown responding to a

tuning fork of the same frequency. The sixth pipe, diagram (f), is

the same length as (d) but is responding to a fork of twice the fre-

quency of the others. This note is one octave higher in pitch. In

other words, a pipe of given length can be made to resonate to various

frequencies. Closed pipe (a), for example, will respond to other

forks whose waves are of the right length to form a node at the bottom,

a loop at the top and any number of nodes in between.

The existence of standing waves in a resonating air column may be

demonstrated by a long hollow tube filled with illuminating gas as

shown in Fig. 16E. Entering through an adjustable plunger at the left

the gas escapes through tiny holes spaced at regular intervals in a row
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along the top. Sound waves from an organ pipe enter the gas column
by setting into vibration a thin rubber sheet stretched over the right-

hand end. When resonance is attained by sliding the plunger to the

correct position, the small gas flames will appear as shown. Where
the nodes occur in the vibrating gas column the air molecules are not

moving, see Fig. 14L (b) ; at these points the pressure is high and the

flames are tallest. Half way between are the loops; regions where the

molecules vibrate back and forth with large amplitudes, and the flames

are low. Bernoulli's principle is chiefly responsible for the pressure

>.,
organ pipe

gas flames

illuminatlnq ocls
\

airblast

Fig. 16E—Standing waves in a long tube containing illuminating gas.

difl^erences, see ^tc. 10.8, for where the velocity of the molecules is

high the pressure is low, and where the velocity is low the pressure

is high.

The various notes produced by most wind instruments are brought

about by varying the length of the vibrating air column. This is illus-

trated by the organ pipes in Fig. 16F. The longer the air column the

lower the frequency or pitch of the note. In a regular concert organ

the pipes vary in length from about six inches for the highest note to

almost sixteen feet for the lowest. For the middle octave of the musical

scale the open-ended pipes vary from two feet for middlt C to one

foot for O- one octave higher. In the wood-winds like the flute the

length of the column is varied by openings in the side of the instru-

ment and in many of the brasses like the trumpet, by means of valves.

A valve is a piston which on being pressed down throws in an addi-

tional length of tube.

The frequency of a vibrating air column is given by the following

formula,

where L is the length of the air column, /C is a number representing

the compressibility of the gas, p is the pressure of the gas, and d is its
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Fig. 14L—Illustrating standing waves as they are produced with (a) the longitudinal

waves of a spring, (b) the longitudinal waves of sound in the air, and (d) the transverse

waves of a rope, (r) and (e) indicate the direction of vibration at the loops.
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density. The function of each factor in this equation has been verified

by numerous experiments. The effect of the length L is illustrated in

Fig. 16F. To lower the frequency to half-value the length must be
doubled. The effect of the density of a gas on the pitch of a note may
be demonstrated by a very interesting experiment with the human

Do ^^
Fig. 16F—Organ pipes arranged In a musical scale. The longer the pipe the lower is

its fundamental frequency and pitch. The vibrating air column of the flute is terminated

at various points by openings along the tube.

voice. Voice sounds originate in the vibrations of the vocal cords in

the larynx. The pitch of this source of vibration is controlled by mus-

cular tension on the cords, while the quality is determined by the size

and shape of the throat and mouth cavities. If a gas lighter than air

is breathed into the lungs and vocal cavities, the above equation shows

that the voice should have a higher pitch. The demonstration can be

best and most safely performed by breathing helium gas, whose effect

is to raise the voice about two and one-half octaves. The experiment

must be performed to be fully appreciated.

16.4. Edge Tones. When wind or a blast of air encounters a

small obstacle, little whirlwinds are formed in the air stream behind

the obstacle. This is illustrated by the cross-section of a flue organ

pipe in Fig. 16G. Whether the obstacle is long, or a small round

object, the whirlwinds are formed alternately on the two sides as shown.

The air stream at B waves back and forth, sending a pulse of air first

up one side and then the other. Although the wind blows through

the opening A a.s a. continuous stream, the separate whirlwinds going

up each side of the obstacle become periodic shocks to the surrounding

air. Coming at perfectly regular intervals these pulses give rise to a
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musical note often described as the whistling of the

wind. These notes are called "edge tones."

The number of whirlwinds formed per second,

and therefore the pitch of the edge tone, increases flue

with the wind velocity. When the wind howls

through the trees the pitch of the note rises and

falls, its frequency at any time denoting the velocity ; . . v^gvl

of the wind. For a given wind velocity smaller

objects g\s^ rise to higher pitched notes than large

objects. A fine stretched wire or rubber band when
placed in an open window or in the wind will be set

into vibration and giv^ out a musical note. Each

whirlwind shock to the air reacts on the obstacle

(the wire or rubber band)
,
pushing it first to one

side and then the other. These are the pushes that

cause the reed of a musical instrument to vibrate

and the rope of a flagpole to flap periodically in the

breeze, while the waving of the flag at the top of a

pole shows the whirlwinds that follow each other

along each side.

These motions are all "forced vibrations" in that
'""^

they are forced by the wind. A stretched string or ^^^- i^G—^ ""^^y"'..•'
.

o stream or air blown
the air column in an organ pipe has its own natural across the lip of an

frequency of vibration which may or may not coin- ^^f>^, . pJP^ .

^"^
, "P.,.,, ^ f . , T/-1 whirlwinds along both

cide with the frequency of the edge tone. If they do sides of the partition,

coincide, resonance will occur, the string or air

column will vibrate with a large amplitude, and a loud sound will result.

If the edge tone has a diff^erent frequency than the fundamental of the

string, or air column, vibrations will be set up but not as intensely as

before. If the frequency of the edge tone of an organ pipe, for example,

becomes double that of the fundamental, and this can be obtained by a

stronger blast of air, the pipe will resonate to double its fundamental

frequency and give out a note one octave higher.

16.5. Vibrating Rods. If a number of small sticks are dropped

upon the floor the sound that is heard is described as a noise. If one

stick alone is dropped one would also describe the sound as a noise,

unless, of course, a set of sticks of varying lengths are arranged in

order of length and each one dropped in its order. If this is done, one

notices that each stick gives rise to a rather delinite musical note and

the set of sticks to a musical scale. The use of vibrating rods in the

design of a musical instrument is to be found in the xylophone^ the

inarhnha, and the tviangle. Standing waves in a rod, like those in a
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stretched string, may be any one of three different kinds, transverse,

longitudinal, and torsional. Only the first two of these modes of vi-

bration will be treated here.

Transverse waves in a rod are usually set up by supporting the rod

at points near each end and striking it a blow at or near the center. As

Fig. 16H—The bars of the marimba or xylophone vibrate transversely with nodes near

each end.

illustrated in Fig. l6H(a) the center and ends of the rod move up and

down, forming nodes at the two supports. Like a stretched string of

a musical instrument, the shorter the rod the higher is its pitch, and

the longer and heavier the rod the lower is its frequency of vibration

and pitch.

The xylophone is a musical instrument based upon the transverse

vibrations of wooden rods of different lengths. Mounted as shown in

Fig. l6H(b) the longer rods produce the low notes and the shorter

ones the higher notes. The marimba is essentially a xylophone with

a long, straight hollow tube suspended vertically under each rod. Each

tube is cut to such a length that the enclosed air column will resonate

to the sound waves sent out by the rod directly above. Each resonator

tube, being open at both ends, forms a node at its center.

Longitudinal vibrations in a rod may be set up by clamping a rod

at one end or near the center and stroking it with a rosined cloth.

Clamped in the middle as sliown in Fig. 161 the free ends of the rod

move back and forth while the middle is held motionless, maintaining

a node at that point. Since the vibrations are too small to be seen

with the eye a small ivory ball is suspended near the end as shown.

The bouncing of this ball is indicative of the strong longitudinal vi-

brations. This type of vibra-

node jt-.tion in a rod is not used in

musical instruments.

16.6. Vibrating Plates.

Although the drum or the

cymbals should hardly be

called musical instruments

\>mmmmm//m^m/Jmmm//m'^Mm/mym ,! ,

M
^ A

Fig. 161—Diagram of a rod vibrating longitu-

dinally with a node at the center.

221



they are classified as such and made use of in nearly all large orchestras

and bands. The noise given out by a vibrating drumhead or cymbal

plate is in general due to the high intensity of certain characteristic

overtones. These overtones in turn are due to the very complicated

modes of vibration of the source.

Cymbals consist of two thin metal disks with handles at the centers.

Upon being struck together their edges are set into vibration with a

clang. A drumhead, on the other hand, is a stretched membrane of

Fig. 16J—Chladni's sand figures showing the nodes and loops of (a) a vibrating drum-

head (clamped at the edge) and (b) a vibrating cymbal plate (clamped at the center).

leather held tight at the periphery and is set into vibration by being

struck a blow at or near the center.

To illustrate the complexity of the vibrations of a circular plate,

two typical sand patterns are shown in Fig. 16J. The sand pattern

method of studying the motions of plates was invented in the 18th

century by Chladni, a German physicist. A thin circular metal plate

is clamped at the center C and sand sprinkled over the top surface.

Then while touching the rim of the plate at two points Ni and N2 a

violin bow is drawn down over the edge at a point L. Nodes are

formed at the stationary points Ni and N2 and loops in the regions of

Li and L2. The grains of sand bounce away from the loops and into

the nodes, the regions of no motion. At one instant the regions marked

with a -|- sign all move up, while the regions marked with a — sign

all move down. Half a vibration later the -|- regions are moving

down and the — regions up. Such diagrams are called Chladni's sand

figures.

With cymbal plates held tightly at the center by means of handles

a node is always formed there, and loops are always formed at the

periphery. With a drumhead, on the other hand, the periphery is

always a node and the center is sometimes but not always a loop.

16.7. Bells. In some respects a bell is like a cymbal plate, for

when it is struck a blow by the clapper, the rim in particular is set
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Fig. 16K—Experiment illustrating that the rim of a bell or glass vibrates with nodes
and loops.

vibrating with nodes and loops distributed in a symmetrical pattern

over the whole surface. The vibration of the rim is illustrated by a

diagram in Fig. l6K(a) and by an experiment in diagram (b). Small

cork balls are suspended by threads around and just touching the out-

side rim of a large glass bowl. A violin bow drawn across the edge

of the bowl will set the rim into vibration with nodes at some points

and loops at others. The nodes are always even in number just as they

are in cymbal plates and drumheads, and alternate loops move in while

the others move out.

Strictly speaking, a bell is not a very musical instrument. This is

due to the very complex vibrations of the bell surface giving rise to so

many loud overtones. Some of these overtones harmonize with the

fundamental while others are discordant.

16.8. The Musical Scale. The musical scale is based upon the

relative frequencies of different sound waves. The frequencies are so

chosen that they produce the greatest am.ount of harmony. Two notes

are said to be harmonious if they are pleasant to hear. If they are not

pleasant to hear they are discordant.

The general form of the musical scale is illustrated by the symbols,

letters, terms, and simple fractions given in Fig. 16L.

-O-
C D

-Q-
-e- CT

-Q-

tomc second^ M^^^m SI S^A ^^^^^^

^ ^ ^ ^ ^A %
Fig. 16L—Diagram giving the names, and fractional ratios of the frequencies, of the

different tone intervals on the diatonic musical scale.
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The numbers indicate that whatever the frequency of the toriic C,

the frequency of the octave C^ will be twice as great, that G will be

three halves as great, F four thirds as great, etc. These fractions below

each note are proportional to their frequencies in whatever octave of

the musical scale the notes are located.

The musical pitch of an orchestral scale is usually determined by

specifying the frequency of the A string of the first violin, although

sometimes it is given by 7niddle C on the piano. In the history of

modern music the standard of pitch has varied so widely and changed

so frequently that no set pitch can universally be called standard.*

For many scientific purposes the A string of the violin is tuned to a

frequency of 440 vib/sec, while in a few cases the slightly different

scale of 256 vib/sec is used for the tonic, sometimes called middle C.

16.9. The Diatonic Scale. The middle octave of the diatonic

musical scale is given in Fig. 16M assuming as a standard of pitch

A= 440. The vocal notes usually sung in practicing music are given

in the second row. The ratio numbers are the smallest whole numbers

proportional to the scale ratios and to the actual frequencies.

The tone ratios given at the bottom of the scale indicate the ratio

between the frequencies of two consecutive notes. Major tones have

a ratio of 8 : 9, minor tones a ratio of 9 : 10, and diatonic semitones a

ratio 15 : 16. (The major and minor tones on a piano are called

whole tones and the semitones are called half tones.)

Other tone intervals of interest to the musician are the following:

Interval Frequency Ratio Examples

Octave 1:2 CO, DD', EE^
Fifth 2:3 CG, EB, GD^
Fourth 3:4 CF, EA, GC*
Major third 4:5 CE, FA, GB
Minor third 5:6 EG, AC^
Major sixth 3:5 CA, DB, GE'
Minor sixth 5:8 EC, AF'

A scientific study of musical notes and tone intervals shows that

harmony is based upon the frequency ratios between notes. The
smaller the whole numbers giving the ratio between the frequencies of

* For a brief historical discussion of normal standards of pitch the student

is referred to the book 'The Science of Musical Sounds" by D. C. Miller. For
other treatments of the science of music see "Sound" by Capstick, "Science and
Music" by James Jeans, and "Sound and Music" by J. A. Zahn.
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scale notes

vocal notes

ratio numbers

frequencies

scale ratios

tone ratios

SI

<a" i!

Ho

c D £ F G A B C D'

Do Re Mi Fa So La Ti Do Re

Z^ 27 30 3Z 36 40 45 48 54

Z64 Z97 330 35Z 396 44C 495 5za 594

1 % %. ^/3 % % '% z %
3 :9 9:JO J5:}6 3-9 9-/0 6:9 /5-/6 6:9

Fig. 16M—The diatonic musical scale illustrated by the middle octave with C as the
tonic and A = 440 as the standard pitch.

two notes the more harmonious, or consonant, is the resultant. Under
this definition of harmony the octave, with a frequenq^ ratio of 1 : 2,

is the most harmonious. Next in Hne comes the fifth with a ratio 2 : 3,

followed by the fourth with 3 : 4, etc. The larger the whole numbers

the more discordant, or dissonant, is the interval.

Helmholtz was the first to giwQ a physical explanation of the various

degrees of consonance and harmony of these different intervals. It is

based in part upon the beat notes produced by two notes of the interval.

As shown by Eq. (15<^) the beat frequency between two notes is

equal to their frequency difference. Consider, for example, the two

notes C and G of the middle octave in Fig. 16M. Having frequencies

of 264 and 396, the beat frequency is the difference, or 132. This is a

frequency fast enough to be heard by the ear as a separate note, and in

pitch is one octave below middle C. Thus in sounding the fifth, C and

G, three harmonious notes are heard, 132, 264, 396. They are har-

monious because they have ratios given by the smallest whole numbers

1:2:3.
Harmonious triads or chords are formed by three separate notes

each of which forms a harmonious interval with the other two, Avhile

the highest and lowest notes are less than an octave apart. Since there

are but six such triads they are shown below.

Harmonic Triads or Chords Frequency Ratio Example

Major third followed by minor third 4
" fourth 3

Minor third " " major third 5

Minor third " " fourth 5

Fourth
" " major third 4

Fourth
" " minor third 3

5 :6

4 : 5

6, 4

6, 3

5, 3

4, 5

G
A
B
O
A
O
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Consider the beat notes or di§erence tones between the various pairs

of notes in the second triad above. The notes themselves have fre-

quencies C= 264, F=352, and /4 = 440. The difference tones

F-C^88, ^-F^88, and A-C^^ll6. Being exactly one and two

octaves below C, one of the notes of the triad, they are in harmony

with each other. Grouping the first two beat frequencies as a single

note, all the frequencies heard by the ear have the frequencies 88,

176, 264, 352, and 440. The frequency ratios of these notes are

1:2:3:4:5, the first five positive whole numbers.

16.10. The Chromatic Scale. Contrary to the belief of many

people the sharp of one note and the jiat of the next higher major or

minor tone are not of the same pitch. The reason for this false im-

pression is that on the piano the black keys represent a compromise.

The piano is not tuned to the diatonic scale but to an equal tempered

scale. Experiments with eminent musicians, and particularly violinists,

have shown that they play in what is called pure intonation, that is, to

a chromatic scale and not according to equal temperament as will be

described in the next section.

On the chromatic scale of the musician the ratio between the fre-

quency of one note and the frequency of its sharp or flat is 25 : 24.

This ratio is just the difi^erence between a diatonic semitone and a minor

tone. I.e. rio 25,
^4. The actual frequencies of the various

sharps and flats for the middle octave of the chromatic scale, based

upon A =z 440, are shown above in Fig. 16N. C* for example has

C^D'' p^^b
^ Z7S 28^.7 ^309.^316.8 3667 3B0.Z

F _L_L 6
412.5 422.4

I I,

4583 47SZ
A jL_i_5

major ton e rrimor tone semi-
tone

major tone minor tone major tone semi-
tone

264- 297 330 352 396 440 49S 5Z8

B
whole ' tone whole\tone half whole 'tone whole •tone tvhole\tone half

Z61.6 I -293 7 I 329.6 349 2 j 39Z | 440 \ 493 9
277.2 311. 1 370 4153 466.1 S23.2
^^nb n*^ch c*/:b /c*>iA Ait'ohC^D' D^E'- F'^G' G'^A' A^B'

Fig. 16N—Scale diagrams showing the diatonic and chromatic scale above and the equal

tempered scale below.

a frequency of 275 whereas D^ is 285.1. This is a difference of

10 vib/sec, an interval easily recognized at this pitch by most every-
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370.1 415.5 466A

ihlack

white

keys

Z6I.6 293.7 529.6 349.Z 391 440 493.9 5Z3.Z

Fig. 160—The equal tempered scale of the

piano illustrating the frequencies of the middle

octave based upon A = 440 as the standard pitch.

one. (The sharps and flats of the semitone intervals are not shown.)

16.11. The Equal Tempered Scale. The white keys of the

piano are not tuned to the exact frequency ratios of the diatonic scale;

they are tuned to an equal

tempered scale. Each octave

is divided into twelve equal

ratio intervals as illustrated

below in Fig. 16N. The
whole tone and half tone in-

tervals shown represent the

white keys of the piano, as

indicated in Fig. 160, and

the sharps and flats represent

the black keys. Including

the black keys, all twelve

tone intervals in every octave

are exactly the same. The frequency of any note in the equal tempered

scale turns out to be 6 percent higher than the one preceding it. More
accurately, the frequency of any one note multiplied by the decimal

1.05946 gives the frequency of the note one-half tone higher. For

example, A= 440 multiplied by 1.05946 gives A^ or B^ as 466.1 vib/

sec. Similarly, 466.1 X 1-05946 gives 493.9.

The reason for tuning the piano to an equal tempered scale is to

enable the pianist to play in any key and yet stay within a given pitch

range. In so doing, any given composition can be played within the

range of a given person's voice. In other words, any single note can

be taken as the tonic of the musical scale.

Although the notes of the piano are not quite as harmonious as if

they were tuned to a diatonic scale, they are not far out of tune. This

can be seen by a comparison of the actual frequencies of the notes of

the two scales in Fig. 16N. The maximum diff^erences amount to about

1 percent, which for many people is not noticeable, particularly in a mod-

ern dance orchestra. To the average musician, however, the difl^erence is

too great to be tolerated, and this is the reason most symphony orchestras

do not include a piano. The orchestral instruments are usually tuned

to the A string of the first violin and played according to the chromatic

and diatonic scale.

16.12. Quality of Musical Notes. Although two musical notes

have the same pitch and intensity they may difl^er widely in tone quality.

Tone quality is determined by the number and intensity of the over-

tones present. This is illustrated by an examination either of the vi-
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brating source or of the sound waves emerging from the source. There

are numerous experimental methods by which this is accomplished.

A relatively convenient and simple demonstration is given in

Fig. 16P, where the vibrating source of sound is a stretched piano

string. Light from an arc lamp is passed over the central section of

the string which, except for a small vertical slot, is masked by a screen.

As the string vibrates up and down the only visible image of the string

is a very short section as shown at the right, and this appears blurred.

By reflecting the light in a rotating mirror the section of wire draws

out a wave 1^ on a distant screen.

If a string is made to vibrate with its fundamental alone, its own
motion or that of the emitted sound waves have the form shown in

diagram (a) of Fig. 16Q. If it vibrates in two segments or six seg-

ments (see Fig. 16B) the wave forms will be like those in diagrams (b)

and (c) respectively. Should the string be set vibrating with its fun-

damental and first overtone simultaneously, the wave form will appear

something like diagram (d). This curve is the sum of (a) and (b)

and is obtained graphically by adding the displacement of correspond-

ing points. If in addition to the fundamental a string vibrates with

rotaiing
mirror

Fig. 16P—Diagram of an experiment demonstrating the vibratory motion of a stretched

string.

the first and fifth overtones the wave will look like diagram (e) . This

is like diagram (d) with the fifth overtone added to it.

It is difficult to make a string vibrate with its fundamental alone.

As a rule there are many overtones present. Some of these overtones

harmonize with the fundamental and some do not. Those which har-

monize are called harmonic overtones, and those which do not are

called anharmomc overtones. If middle C= 264 is sounded with its
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fundamental

1st overtone

5 th overtone

(a)f(b)

(a)Hb)t(c')

Fig. 16Q—Illustrating the form of the sound waves resulting from the addition of over-

tones to the fundamental.

first eight overtones, they will have 2, 3, 4, 5, 6, 7, and 8 times

264 vib/sec. These on the diatonic scale will correspond to notes

Ci, Gi, C2, £2^ G^, X, and C\ All of these except X, the sixth over-

tone, belongs to some harmonic triad. This sixth overtone is anhar-

monic and should be suppressed. In a piano this is accomplished by

striking the string one-seventh of its length from one end, thus pre-

venting a node at that point.

16.13. The Ranges of Musical Instruments. The various octaves

above the middle of the musical scale are often labeled with numerical

superscripts as already illustrated, while the octaves below the middle

are labeled with numerical subscripts.

The top curve in Fig. 16Q is typical of the sound wave from a

tuning fork, whereas the lower one is more like that from a violin.

The strings of a violin are tuned to intervals of the fifth, G\= 198,

D= 297, A = 440, and £i = 660. The various notes of the musical

scale are obtained by touching a string at various points, thus shorten-

ing the section which vibrates. The lowest note reached is with the

untouched Gi string and the highest notes by the E^ string fingered

about two-thirds of the way up toward the bridge. This gives the

violin a playing range, or compass, of 3^ octaves, from Gi= 198 to

<:3= 2112.

The viola is slightly larger in size than the violin but has the same

shape and is played with slightly lower pitch and more sombre tone

quality. Reaching from Ci to C^, it has a range of three octaves.

The cello is a light bass violin which rests on the floor, is played

with a bow, has four strings pitched one octave lower than the viola,

^2, G2, Di, and Ai, and has a heavy rich tone quality. The double

bass is the largest of the violin family, rests on the floor and is played
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with a bow. The strings are tuned to two octaves below the viola and

one octave below the cello. In modern dance orchestras the bow is

often discarded and the strings are plucked with the fingers.

Of the wood-wind instruments the jlute is nearest to the human

voice. It consists essentially (see Fig. 16R) of a straight narrow tube

about 2 feet long and is played by blowing air from between the lips

across a small hole near the closed end. The openings along the tube

are for the purpose of terminating the vibrating air column at various

points. See Fig. 16F. With all holes closed a loop forms at both

ends with a node in the middle. See Fig. l6D(d). As each hole is

opened one after the other, starting from the open end, the vibrating

air column with a loop at the opening grows shorter and shorter, giving

out higher and higher notes. To play the scale one octave higher, one

blows harder to increase the frequency of the edge tones and set the

air column vibrating, as in Fig. 16D(e), with three loops and two

nodes. Starting at middle C the flute can be extended in pitch for two

octaves, up to C-. The piccolo is a small flute, 1 foot long, and sings

one octave higher. The tone is shrill and piercing and the compass

iis Ci to A^.

The oboe is a melodic double-reed keyed instrument, straight and

about 2 feet long. It has a reedy yet beautiful quality, and starting at

Bi has a range of about two octaves. The clarinet, sometimes called

Fig. 16R—Musical instruments. Brasses: {a) horn, {b) bugle, {c) cornet, {d) trombone.
Wood-winds: {e) flute, (/) oboe, and {g) clarinet.
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the violin of the mihtary band (see Fig. 16R), is a single-reed instru-

ment about 3 feet long. It has a range of over three octaves starting

at £i. The bass clarinet is larger than the clarinet, but has the same

shape and plays one octave lower in pitch.

The bassoon is a bass double-reed keyed instrument about 4 feet

long. The tone is nasal and the range is about two octaves starting

at Si's.

The horn is a coiled brass tube about 12 feet in length (see Fig. 16R)

but interchangeable according to the number of crooks used. It has

a soft mellow tone and starting at C2 has a range of three octaves.

The cornet, not usually used in symphony orchestras (see Fig. I6R), is

a coiled conical tube about 41/2 feet long with three valves. It has a

mellow tone starting at middle C and extends for two octaves. The

trumpet is a brass instrument having a similar shape as, and slightly

larger than, the cornet. Having three valves, it extends to two octaves

above middle C. The purpose of the valves is to vary the length of

the vibrating air column.

The trombone is a brass instrument played with a slide, is a conical

tube about 9 feet long when straightened (see Fig. 16R), and has a

tone range from F2 to C^. Since the length of the vibrating air column

can be varied at will it is easily played to the chromatic scale. The

tuba is the largest of the saxhorns and has a range from F3 to Fi.

Fig. 16S—Diagram of a phonodeik. An instrument for observing the form of sound waves.

The bugle (see Fig. I6R) is not capable of playing to the musical

scale but sounds only certain notes. These notes are the harmonic

overtones of a fundamental frequency of about GG vibrations per sec-

ond. With a loop at the mouthpiece, a node in the center, and a loop

at the flared end, this requires a tube 8 feet long. The second, third,

fourth, and fifth overtones have the frequencies 66 X 3 = 198, GG 'X

4= 264, GGX "> = 330, and GGX ^^^ 396 corresponding to d,
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C, E, and G, the notes of the bugle. By making the lips vibrate to

near these frequencies the air column is set resonating with 3, 4, 5, or

6 nodes between the t^o open ends.

16.14. The Phonodeik. The phonodeik is an instrument designed

by D. C. Miller for photographing the minute details and wave forms

of all audible sounds. The instrument consists of a sensitive diaphragm

D (see Fig. 16S), against which the sound waves to be studied are

allowed to fall. As the diaphragm vibrates back and forth under the

impulses of the sound waves the thread T winds and unwinds on the

spindle S, turning the tiny mirror AI up and down. A beam of light

from an arc lamp A and lens L is reflected from this mirror onto a ro-

tating mirror RAi. As RAi spins around the light sweeps across a dis-

tant screen, tracing out the sound wave. The trace may be either pho-

tographed or observed directly on the screen. Persistence of vision

enables the whole curve to be seen for a fraction of a second.

Several sound curves photographed by Miller are redrawn in

Fig. 16T. In every graph except the one of the piano, the sound is

/lute

voice vowel 'a.

Aoyixi/w
bass voice

piano

Fig. 16T—Various types of sound waves in music as observed with a phonodeik or cathode

ray oscillograph.

maintained at the same frequency so that the form of each wave, no

matter how complex, is repeated the same number of times. The
tuning fork is the one instrument which is readily set vibrating with

its fundamental alone and none of its harmonics. Although each

different instrument may sound out with the same note, that is, the

same fundamental, the various overtones present and their relative

loudness determines the quality of the note identified with that

instrument.
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The four members of the violin family have changed very

little In hundreds of years. Recently, a group of musi-

cians and scientists have constructed a "new" string

family.

16 Founding a Family of Fiddles

Carleen M. Hutchins

An article from Physics Today, 1967.

New measmement techniques combined with recent acoustics research enable

us to make vioUn-type instruments in all frequency ranges with the properties built

into the vioHn itself by the masters of three centuries ago. Thus for the first time

we have a whole family of instruments made according to a consistent acoustical

theory. Beyond a doubt they are musically successful

by Carleen Maley Hutchins

For three or folti centuries string

quartets as well as orchestras both

large and small, ha\e used violins,

violas, cellos and contrabasses of clas-

sical design. These wooden instru-

ments were brought to near perfec-

tion by violin makers of the 17th and

18th centuries. Only recendy, though,

has testing equipment been good

enough to find out just how they work,

and only recently have scientific meth-

ods of manufactiu-e been good enough

to produce consistently instruments

with the qualities one wants to design

into them. Now, for the first time,

we have eight instruments of the \ iolih

family constructed on principles of

proper resonance for desired tone

quality. They represent the first suc-

cessful application of a consistent

acoustical theorv- to a whole family of

musical instruments.

The idea for such a gamut of violins

is not new. It can be found in Mi-

chael Praetorius's Syntagma Musicum

published in 1619. But incomplete

understanding and technological ob-

stacles have stood in the way of practi-

cal accomplishment. That we can

now routinely make fine violins in a

variety of frequency ranges is the re-

siJt of a fortuitous combination:

violin acoustics research—showing a

resurgence after a lapse of 100 years—

and the new testing equipment capa-

ble of responding to the sensitivities of

wooden instruments.

As is shown in figure 1, oiu new in-

struments are tuned in alternate inter-

vals of a musical fourth and fifth over

the range of the piano keyboard.

Moreover each one has its two main
resonances within a semitone of the

tuning of its middle strings. The re-

sult seems beyond a doubt successful

musically. Over and over again we
hear the comment, "One must hear the

new instruments to believe such

sounds are possible from strings."

Catgut Acoustical Society

Groundwork in the scientific investiga-

tion of the violin was laid bv such men
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as Marin Mersenne (1636), Ernst

Chladni (1802), Felix Savart (1819)

and Hemiann L. F. Helmholtz (1860).

Savart, who can rightly be considered

the grandfather of violin research,

used many ingenious devices to ex-

plore the vibrational characteristics of

the violin. But he was unable to gain

sufficient knowledge of its complicat-

ed resonances to apply his ideas suc-

cessfully to development and construc-

tion of new instruments. Recent re-

search that has led to our new fiddle

family is largely the work of Hermann
Backhaus, Herman Meinel, Gioacchino

Pasqualini, Ernst Rohloff, Werner Lot-

ternioser and Frieder Eggers in Eu-

rope and of the late Frederick A.

Saunders, John C. Schelleng, William

Harvey Fletcher and myself in the

United States.

Saunders, widely known for his

work on Russell-Saunders coupling, pi-

oneered violin research on this side of

the Atlantic. He was a former chair-

man of the physics department of Har-

vaid Uni\ersity, a fellow of the Na-

tional Academy of Sciences and presi-

dent of the Acoustical Society of

America. In his work on violin acous-

tics, Saunders gradually became as-

sociated with colleagues who were

highly competent in various scientific

and musical disciplines. These associ-

ates greatly furthered the development

of his work and contributed valuable

technical knowledge, but they had lit-

tle time for experimentation. Some
were skillful musicians living under

the pressure of heavy teaching and

concert schedules. Nevertheless some

were able to find time for the testing,

designing and craftsmanship needed

in the development of experimental in-

struments. In 1963 about 30 persons

associated with Saunders in this proj-

ect labeled themselves the "Catgut

Acoustical Society." This infonnal so-

ciety now has more than 100 members
(see box on page 26), publishes a

semiannual newsletter and holds one

or two meetings each year. Among its

members are acousticians, physicists,

chemists, engineers, instrument mak-
ers, composers, performing musicians,

musicologists, patrons and others who
believe that insufficient attention has

been paid to the inherent potentialities

of bowed string instruments. They
are making a coordinated effort to dis-

cover and develop these potentialities

and are encouraged that many mem-
bers of the violin fraternity share their

aims.

Among other accomplishments of

our Catgut Acoustical Society is a con-

cert played at Harvard last summer
during the meeting of the Acoustical

Society of America. It was dedicated

to Saunders and the instruments were

our eight new fiddles, which are the

outgrowth of research he began. I

write about the concert and about the

instruments as a member of the society

and as one who worked with Saunders

from 1948 until his death in 1963.

My activities include reconciliation of

the wisdom of experienced musicians

In addition to nur- W
turing her fiddle

\

family, the author

shows interest in

children. .After Krul-

uatiiig from Come
she taiiKhl for IS

years in Now Yoik

schools, acquiring an

M.\ from New York

l'ni\crsity nican-

whilc. She also ,u- ^ ,#10^ i

(piiii'il a clicmist hits- Ij ^''jT
h.uul and two iliil- Ij ^^^M_
(Iren, all of whom 1 '^HV^
live MnnU'laiv. f^ ^^^u

I -Mm

and violin makers, coordination of

much technical information from

widely separated sources, and design,

construction and testing of experimen-

tal instruments. In 1937 Saunders re-

portedi in the Journal of the Acousti-

cal Society of America what later

proved to be basic to the development

of the new violin family, namely the

position of the main body resonance

as well as the main cavity resonance

in a series of excellent violins. (The

main body resonance is the lowest

fundamental resonance of the wood
structure; the cavity resonance is that

of the air in the instrument cavity.)

But the necessary knowledge of liow

to place these resonances with any de-

gree of predictability in instruments of

good tone (jualit)' was not evolved and

reported until 1960.2 The tonal effect

of this placement of the two main

resonances for each instrument and the

necessar>' scaling theory was not re-

ported until 1962.3

Between 1950 and 1958 Saunders

and I undertook a long series of exper-

iments to test various features of violin

construction one at a time. We deter-

mined effect of variations in length,

shape and placement of the f holes,

position of the bass bar and sound

post, significance of the inlay of pur-

fling around the edges of top and back

plates and frequency of the ca\ity res-

onance as a function of rib height and

f hole areas (see figure 2). Because

many of these experiments needed de-

finitive testing equipment not then

available, most of the results are still

unpublished in Saunders's notebooks.

One sobering conclusion we reached

was that with many alterations in such

features as size and shape of f holes,

position of the bass bar and sound

post, the best tonal qualities resulted

when conventional violin-making rules

were followed. In other words, the

early violin makers, working empirical-

ly b\' slow trial and error, had evoked

a s\stem that produced practically op-

timal relationships in \iolin construc-

tion.

In 1958. during a long series of ex-

periments to test the effect of moving

\i()lin and viola resonances up and

down scale, the composer in residence

at Bennington College, Henry Brant,

and the cellist. Sterling Hunkins, pro-

posed development of eight violin-

type instruments in a .scries of tunings
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Founding a Family of Fiddles

D 293.7-

C 261.6

B 246.9

!

E 329.6

F 349.2

G 392

A
27.5

A
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A
110

A
220

A
440 880 1760

FREQUENCY (cycles/sec)
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TREBLE (6-D-AE)
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SOPRANO ((>G-D-A)
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MEZZO (6-D-A-E)
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ALTO (C-G-D-A)
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SMALL BASS (A-IW3-C)
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A
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CONTRABASS (E-A-IVG)

NEW INSTRUMENT TUNING spans the piano range with eight fiddles that

range in size from 210-cm contrabass to a 27-cm treble. The conventional

violin is the mezzo of the new scries. Colored keys show tuning of new in-

struments and white dots that of conventional instruments. —FIG. 1
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and sizes to cover substantially the

whole pitch range used in written

music; these instruments would start

with an oversize contrabass and go to

a tiny instrument tuned an octave

above the violin. Their request was

so closely related to our experimental

work that after half an hour's discus-

sion Saunders and I agreed that a seri-

ous attempt would be made to de-

velop the set. The main problem

would be to produce an instrument in

each of the eight frequency ranges

having the dynamics, the expressive

qualities and overall power that are

characteristic of the violin itself, in

contrast to the conventional viola, cello

and string bass.

Research and new fiddles

The problem of applying basic re-

search results to actual design and

construction of new instruments now
faced us. From the previous ten

Who's Who in Catgut Acoustics

Without cross fertilization of

ideas from experts in many
related disciplines our new
fiddle family could not have
evolved in the short period of

nine or ten years. No listing

of names and activities can

do justice to each one whose
thinking and skills have been
challenged and who has

given time, energy and
money. Their only reward

is sharing in the project.

The spirit of the group has
been likened to the informal

cooperation tha; flourished

among scientists in the 18th

century. In addition many
of the active experimenters

are themselves enthusiastic

string players so that a tech-

nical session is likely to end
with chamber-music playing.

In the following list I try to

include all those who have
helped along the way, listing

those who have been most
active first even though they

are not all members of CAS.
Some of the numerous
musicians are not actually

familiar with the new instru-

ments, but their comments
on earlier experimental mod-
els of conventional violins,

violas and cellos have provid-

ed musical insights and in-

formation necessary to the

new instruments.

Physicists. Basic re-

search and scaling for the

new instruments: Frederick

A. Saunders, John C. Schel-

leng and myself. Theory of

vibrations, elasticity, shear

and damping in the instru-

ments and their parts: Ar-

thur H. Benade, Frieder Eg-

gers, Roger Kerlin, Max V.

Mathews, Bernard W. Robin-

son, Robert H. Scanlan, John
C. Schelleng, Eugen J.

Skudrzyk, Thomas W. W.
Stewart, Sam Zaslavski.

Chemists. Effects of var-

nish and humidity on the in-

struments; varnish research:

Robert E. Fryxell, Morton A.

Hutchins, Louis M. Condax.
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Broadus Erie, William Kroll

Sonya Monosoff, Helen Rice
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Violists. Robert Courte,

Lilla Kalman, Maxwell Kim-

ball, David Mankovitz, Louise

Rood, Frederick A. Saunders
—and John A. Abbott, Alice

Schradieck Aue, Virginia

Apgar, Emil Bloch, Harold

Coletta, Helene Dautrich,
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Bassists. Julius Levine,

Alan Moore, Ronald Naspo,
David Walter—and Alvin

Brehm, John Castronovo,
Garry Karr, Stuart Sankey,
Charel Traeger, Howard Van
Sickle, Ellery Lewis Wilson.
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REHEARSAL for a

concert with Henry
Brant conducting an
octet of fiddles.
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BRIDGE

years' experimentation, the following

four working guides were at hand:

1. location of the main body and

main cavity resonances of several

hundred conventional violins, violas

and cellos tested by Saunders and oth-

ers.i. 4-«

2. the desirable relation between

main resonances of free top and back

plates of a given instrument, devel-

oped from 400 tests on 35 violins and

violas during their construction, 2,10,11

3. knowledge of how to change

frequencies of main body and cavity

resonances within certain limits

(learned not only from many experi-

ments of altering plate thicknesses, rel-

ative plate tunings and enclosed air

volume but also from constru'^tion of

experimental instruments with varying

body lengths, plate archings and rib

heights) and of resultant resonance

placements and effects on tone quality

in the finished instruments,**-^^

4. observation that the main body

resonance of a completed violin or

viola is approximately seven semitones

above the average of the main free-

plate resonances, usually one in the

top and one in the back plate of

a given instrument.'- This obsen'a-

tion came from electronic plate test-

ing of free top and back plates of

45 violins and violas under construc-

tion. It should not be inferred that

the relation implies a shift of free-plate

resonances to those of the finished in-

strument. The change from two free

plates to a pair of plates coupled at

their edges through intricately con-

structed ribs and through an off-center

soundpost, the whole \mder varying

stresses and loading from fittings and

string tension, is far too complicated to

test directly or calculate."

What is good?

In developing the new instnmients our

main problem was finding a measura-

ble physical characteristic of the violin

INSTRUMENT PARTS, except for

scaling, have remained the same since

master makers brought the violin to

near perfection about three centuries

ago. —FIG. 2

I

itself that would set it apart from its

cousins, the viola, cello and contra-

bass. The search for this controlling

characteristic, unique to the violin,

led us through several hundred re-

sponse and loudness curves of violins,

violas and cellos. The picture was at

first confusing because many varia-

tions were found in the placement of

the two main resonances. However,
Saunders's tests on Jasha Heifetz's

Guamerius violin^^ showed the main-

body resonance was near the fre-

quency of the unstopped A 440-cycles-

per-second string and the main cavity

resonance at the unstopped D 294
string. Thus the two main resonances
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of this instrument were near the fre-

quencies of its two unstopped middle

strings.

Ten violins, selected on the basis

that their two main resonances were

within a whole tone of their two open

middle strings, were found to be some

of the most musically desirable instru-

ments—Amatis, Stradivaris, Guar-

neris and several modem ones. In

marked contrast to these were all vi-

olas and cellos tested, which charac-

teristically had their main body and

cavity resonances three to four semi-

tones above the frequencies of their

two open middle strings although they

still had the same separation, approxi-

mately a musical fifth, between these

two main resonances.

We reasoned that the clue to our

problem might be this placement of

the two main resonances relative to

the tuning of the two open middle

strings. A search through many small

violins and cellos, as well as large and

small violas, showed enormous varia-

tion in the placement of these two res-

onances. We hoped to find some in-

strument in which even one of these

resonances would approximate what

we wanted for the new instruments.

In one quarter-size cello the body

resonance was right for viola tuning, D
294, but the cavity resonance was too

low at D 147. We bought this

chubby Uttle cello and reduced the

rib height nearly 4 in. (10 cm),

thereby raising the frequency of the

cavity resonance to the desired G 196.

When it was put back together, it

looked very thin and strange with ribs

only 1.5 in. (3.8 cm) high and a body

length of over 20 in. (51 cm), but

strung as a viola it had tone quality

satisfactory beyond expectations!

An experimental small viola that I

had made for Saunders proved to have

its two main resonances just a semi-

tone below the desired frequency for

violin tone range. When strung as a

1/ '^

2 3 4 S

WAVELENGTH (relativ»—log scale)

'«S

violin, this shallow, heavy-wooded in-

strument had amazing power and clar-

ity of tone throughout its range. It

sounded like a violin although the

quality on the two lower strings was
somewhat deeper and more viola-like

that the normal violin.

The next good fortune was discov-

ery and acquisition of a set of three in-

struments made by the late Fred L.

Dautrich of Torrington, Conn., during

the 1920's and '30's. He had de-

scribed them in a booklet caUed Bridg-

ing the Gaps in the Violin Family.^

His vilonia, with a body length of

20 in. (51 cm) was tuned as a viola

and played cello-fashion on a peg.

The vilon, or tenor, which looked like

a half-size cello, was tuned an octave

below the violin, G-D-A-E. His vi-

lone, or small bass, with strings tuned

two octaves below the violin, filled the

gap between the cello and the con-

trabass. These represented three of

the tone ranges we had projected for

the new violin family. Tests showed

that their resonances lay within work-

ing range of our theory. A year of

work, adjusting top and back plate

wood thicknesses for desired reso-

nance frequencies and rib heights for

proper cavity resonances in each of the

three instruments gave excellent re-

sults. The vilono proved to have ex-

actly the resonance frequencies pro-

jected for the enlarged cello, or bari-

tone. So it was moved up a notch in

the series and tuned as a cello with

extra long strings.

Dautrich's pioneering work had

saved years of cut and try. We now
had four of the new instruments in

playing condition; mezzo, alto (verti-

BODY LENGTHS for new instniments

w«re determined by plotting lengths

of known instruments against wave-

length, then extending data in a

smooth curve to include treble at one

end and contrabass at the other.

Identified points show where old and
new instruments fall. —FIG. 3
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cal viola), tenor and baritone. I was

able to add a fifth by making a so-

prano, using information gained from

many tests on three-quarter- and half-

size violins.

With five of the new instruments

developed experimentally and in play-

ing condition, we decided to explore

their musical possibilities and evaluate

the overaU results of our hypothesis of

resonance placement. In October

1961 the working group gathered at

the home of Helen Rice in Stock-

bridge, Mass., where Saunders and his

associates had, for some years, met fre-

quently to discuss violin acoustics and

play chamber music. Short pieces of

music were composed for the five in-

struments, and the musicians gave the

new family of fiddles its first workout.

The consensus was that our hypothesis

was working even better than we had
dared to hope! Apparently the violin-

type placement of the two main reso-

nances on the two open middle strings

of each instmment was enabling us to

project the desirable qualities of the

violin into higher and lower tone

ranges.

The next step was to explore the

resonances of various size basses to

help in developing the small bass and

the contrabass. A small three-quarter-

size bass with arched top and back

proved to have just about proper reso-

nances for the small bass. With re-
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moval of its low E 41 string and the

addition of a high C 131 string to

bring the tuning to A-D-G-C (basses

are tuned in musical fourths for ease of

fingering) it fitted quite well into the

series as the small bass. But as yet no
prototype for the contrabass could be
located. This final addition to the se-

ries was to come later.

First musical success

By January 1962 we were ready for a

real test in which experts could hear
our six new instruments and compare
them with good conventional violins,

violas and cellos. Composers ar-

ranged special music, and professional

players had a chance to practice on
the new instruments.

Ensemble results exceeded all our
expectations. We had violin-like

quality and brilliance through the en-

tire range of tones. Our soprano pro-

duced a high clear quality that carried

well over the other instruments al-

though the high positions on its two
lower strings were weak. The mezzo
tone was powerful and clear although
somewhat viola-like on the two lower
strings. The alto (vertical viola) was
judged a fine instrument even with in-

adequate strings. The unique tone of

the tenor excited all who heard it.

The baritone produced such powerful
and clear tones throughout its range
that the cellist playing it in a Brahms
sonata commented, 'This is the first

time I have been able to hold my own
with the piano!" The small bass was
adequate but needed more work.
General comments told us that the
new instr\iments were ready to stand
on their own, musically, although
much more work was to be done on
adjustments, strings and proper bows.

End-of-scale problems

With the helpful criticisms and
suggestions that came from the first

musical test we were encouraged to

LOUDNESS CURVES are useful

evaluations of instrument character-

istics. Each is made by bowing an
instrument to maximal loudness at 14

semitones on each string and plotting

the resulting loudness ceiling against

frequency of sound. —FIG. 4

k
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tackle the problems of the largest and

smallest instruments. No existing in-

struments could be adapted experi-

mentally. We had to design and build

them.

The largest bass available for testing

was a huge Abraham Prescott, with a

48-in. (122-cm) body length, made in

Concord, N.H., in the early 1800's but

even that was not big enoughl A tiny

pochette, or pocket fiddle, from the

Wurlitzer collection, with a body
length of 7 in. (18 cm) had the right

cavity resonance, but its body reso-

nance was much too low.

The body length of each of the new
instruments has been one of the con-

trolling factors in all of our experi-

ments. Thus it was decided that the

best way to arrive at the dimensions

for the largest and smallest would be

to plot a curve of body lengths of

known instruments, to check against

their resonance placement and string

tuning. This tvorking chart is shown
in figiure 3 in which linear body length

is plotted against the logarithm of

wavelength. The curve for the new
instnmients was extended in a smooth

arc to include the contrabass fre-

quency at the low end and the treble

frequency at the upper end, an octave

above the normal violin. This proce-

dure gave a projected body length of

51 in. ( 130 cm) for the contrabass and

10.5 in. (26.5 cm) for the treble. Of

course rib height and enclosed air vol-

ume were separately determined by

other considerations.

Current design practice

From all of this experience we have

developed what we might call a "de-

sign philosophy." It depends mainly

on resonance placement and loudness

curves.

Our resonance principle, according

to which each member of the new
violin family has been made, can be

stated as follows: The main body res-

onance of each of the instruments

tuned in fifths is placed at the fre-

quency of the open third string, and

the main cavity resonance at the fre-

quency of the open second string.

Another way of stating the principle,

and one that includes the instruments

tuned in fourths as well as those timed

in fifths, is this: Wood prime is

placed two semitones above the lowest

2 1.5
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tone, and the cavity resonance is a

fourth above that. (Wood prime is

the strengthened frequency one oc-

tave below the main body—"wood"
—resonance.) These conditions are

exemplified in Heifetz's Guamerius

violin and many other good ones, but

they are not found in all good violins.

The loudness curve developed by

Saunders is one of our most useful

measures for evaluating overall instru-

ment characteristics. We make such a

curve by bowing an instrument as

loudly as possible at 14 semitones on

each string and plotting maximal loud-

ness against frequency. Despite una-

voidable variations in any test that re-

quires a musician to bow an instru-

ment, the loudness curve is significant

because there is a fairly definite limit

to the momentary volume an experi-

enced player can produce with a short

rapid bow stroke.

As you will see in figure 4, the loud-

ness ceiling varies for each semitone

on a given instniment. The curves of

this figure were made by bowing each

instrviment without vibrato at a con-

stant distance from a sound meter.

From them you can see the placement

of main body and cavity resonances in

eight conventional instnmients—two

violins, two violas, two cellos and two

basses. You can see that in the vio-

lins the wood prime adds power to the

low range of the G string. In the vi-

olas, cellos and basses the two main
resonances, which are higher in fre-

quency relative to string timing, create

SCALING FACTORS for old and new
instruments are a useful reference

guide for designers. —FIG. 5
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a condition of somewhat weaker re-

sponse on the lowest four or five semi-

tones.

Fitting fiddles to players

After you decide what kind of acous-

tics you want, you still have another

problem: You have to make fiddles

that people can play. For years we
worked toward design of an acousti-

cally good instrument with genuine

viola tone. Meanwhile we had to

keep in mind such conflicting require-

ments as large radiating areas in the

plates and adequate bow clearance in

the C bouts (figure 2). Relation of

string length to other dimensions that

define tone spacing on the fingerboard

—the viohn maker's "mensure"—is an-

other consideration important to the

player. With our acoustic pattern as a

model we undertook enlarging, scahng

and redesigning all our new instru-

ments, always keeping violin place-

ment of resonances in each tone range.

From our set of experimentally

adapted instruments, which represent

a variety of styles and designs in violin

making, we had learned many things.

The vertical viola was about right in

body dimensions, but its strings were

too long for viola fingering and too

short for cello fingering. The tenor

was too small, and the cellists were

asking for it to have strings as long as

possible. The baritone was right for

body size, but it had much too long

strings. The bass players were asking

for a long neck on the small bass and a

short one on the large bass with string

lengths as close as possible to conven-

tional.

From such comments we realized

that there were two basic designs for

ease of playing in relation to string

lengths and overall mensure of each

instrument. ControlHng factor in the

instrument mensure is placement of

the notches of the f holes because a

line drawn between these two points

dictates the position of the bridge and
the highest part of the arch of the top

plate. Mensure for the tenor and
small bass would need to be as great

as possible and for the vertical viola

and baritone it would need to be as

small as possible. Since the relative

areas of the upper and lower bouts are

critical factors in plate tuning, adjust-

ment of these mensures posed quite a

set of problems.

We developed a series of scaling

factors^ based on relative body length,

relative resonance placement and rela-

tive string tuning that could be used as

a reference guide in actual instrument

construction. Figure 5 shows the set

which has proved most useful in mak-
ing the eight new instruments as well

as those of conventional instruments.

We had a problem in measuring re-

sponses of plates of many sizes—all the

way from the 10.5-in. (26-cm) one of

the treble violin to the 51-in. (130-

cm ) one of the contrabass. We solved

it by redesigning our transducer from
a magnet-armature to a moving-coil

type. Then the wooden fiddle plate,

suspended at its comers by elastic

bands, was made to vibrate as the

cone of a loudspeaker (figure 6).

Using the know-how developed in

making and testing several hundred
violin, viola and cello plates, I could

tune the plates of new instruments so

that not only did each pair of top and
back plates have the desired frequency

relation, 2 but it also had its wood
thicknesses adjusted to give a reason-

able approach to what would be an
optimal response. ^^

As a starting guide in adjusting plate

frequencies I used the finding that a

seven-semitone interval should sepa-

rate the main body resonance of the

finished violin from the average of the

two frequencies of the free plates. It

was soon obvious, however, that this

relationship was not going to hold as

the instnmients increased in size. As
the instrument gets larger the interval

becomes smaller, but we do not have

enough data yet to make a precise

statement about it.

We used scaling theory and the

three basic acoustical tools of scientific

violin making: (a) frequency rela-

tionship between free top and back

plates, (b) optimal response in each

plate and (c) interval between body
resonance and average of free-plate

frequencies. We are able not only to

create new instruments of the violin

family but also to improve the present

members. But we have to combine
the acoustical tools with the highest

art of violin making.

Traits of family members

Any family has its resemblances and

its differences. So it is with our vio-

lins. They make a family (figure 7)

with basic traits in common. But they
also have their own personalities.

Treble ( G-D-A-E ) . The main prob-
lem with our treble has been to get the

frequencies of body and cavity reso-

nances high enough and still keep the

mensure long enough for a player to

finger consecutive semitones without
having to slide his fingers around.
We projected a theoretical body
length of 10.5 in. (26.7 cm) and a
string length of 10 in. (25.4 cm), but
to have the proper cavity resonance in

this size body, the ribs would be only

3 mm high-a potentially dangerous
structural condition! Besides we
knew of no string material that could
be tuned to E 1320 at a length of 25.4
cm without breaking. At one point
we thought we might have to resort to

a three-stringed instrument in this

range as was indicated by Michael
Praetorius in 1619.1^

The cavity-resonance problem was
solved by making six appropriately
sized holes in the ribs to raise its fre-

quency to the desired D 587. A string

material of requisite tensile strength to

reach the high E 1320 was finally

found in carbon rocket wire, made by
National Standard Company. This
proved suitable not only for the high E
string but for a number of others on
the new instruments. As a temporary
measure the ribs were made of soft

aluminum to prevent the holes from
unduly weakening the structure. Re-
design should eliminate the nasal
quality found on the lower strings and
improve the upper ones. Despite this

nasal quaHty many musicians are
pleased with the degree in which the
upper strings surpass the normal violin

in the same high range.

Plans are to redesign this instrument
in several different ways in an effort to

discover the best method of achieving
desired tone quality throughout its en-
tire range.

Soprano (C-G-D-A). The soprano
was designed to have as large a plate
area as possible, with resulting shallow
ribs and fairly large f holes to raise the
cavity resonance to the desired G 392.
The overall tone has been judged good
and is most satisfactory on the three
upper strings. The instrument needs
redesign, however, for a better quality

on the lower strings. The mensure is

as long as possible for playing con-
venience. J. S. Bach wrote for an in-
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TESTING FIDDLES. New tech

niques enable today's makers to

achieve results their predecessors

could not produce. Redesigned trans-

ducer measures response of plate that

is made to vibrate like a loudspeaker

cone in operation. —FIG. 6

strument in this tuning, which Sir

George Grove describes in Grove's dic-

tionary:^'^ "The violino piccolo is a

small violin, with strings of a length

suitable to be tuned a fourth above the

ordinary violin. It existed in its own
right for playing notes in a high

compass. . . .It survives as the 'three-

quarter violin' for children. Tuned
like a violin, it sounds wretched, but

in its proper pitch it has a pure tone

color of its own, for which the high

positions on the ordinary violin gave

no substitute."

Mezzo (G-D-A-E). The present

mezzo with a body length of 16 in.

(40.5 cm) was added to the new
violin family when musicians found

that even an excellent concert violin

did not have the power of the other

members of the group. According

to scaling theory^^ this instrument,

which is 1.14 times as long as the

violin, has somewhat more power than

necessary to match that of the others.

So a second instrument has been de-

veloped that is 1.07 times as long as

the violin. It has violin placement of

resonances yet is adjusted to have con-

ventional violin mensure for the play-

er. '^ It has more power than the nor-

mal violin and seems most satisfactory.

In fact several musicians have indicat-

ed that it may be the violin of the fu-

ture.

Alto (vertical viola) (C-G-D-A).

The greatest difficulty with the alto

is that it puts the trained viola player

at a distinct disadvantage by taking

the viola from under his chin and set-

ting it on a peg, cello fashion on the

PHOTOS BY PETER PRUYN

floor. Even with an unusual body

length of 20 in., its mensure has been

adjusted to that of a normal 17.5-in.

(44.5-cm) viola, and some violists

with large enough physique have been

able to play it under the chin. Cello

teachers have been impressed by its

usefulness in starting young children

on an instrument that they can handle

readily as well as one they can con-

tinue to follow for a career. The
greatest advantage is the increase in

power and overall tone quality.^o

Leopold Stokowski said when he

heard this instrument in concert, "That

is the sound I have always wanted

from the violas in my orchestra. No
viola has ever sounded like that be-

fore. It fills the whole hall."

Tenor ( G-D-A-E ) . The body length

of the tenor was redeveloped from the

Dautrich vilon which had a length

ratio of 1.72 to the violin. The pres-
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PHOTOS BY J. KELLUM SMITH

THE WHOLE FAMILY poses

for pictures with performers

trying them out. —FIG. 7

MAX POLLIKOFF
treble

ERNESTINE BREIMEISTER
soprano

LILLA KALMAN
mezzo

ent tenor has a ratio of 1.82 with

other factors adjusted accordingly, and

the strings as long as possible for con-

venience in cello fingering. Many
musicians have been impressed with

its potential in ensemble as well as solo

work. They are amazed to find that it

is not a small cello, musically, but a

large octave violin.

The main problem for this instru-

ment is that there is little or no music

for it as yet. Early polyphonic music,

where the tenor's counterpart in the

viol family had a voice, has been rear-

ranged for either cello or viola. It has

no part in classical string or orches-

tral literature, and only a few con-

temporary compositions include it.

Grove'" has this to say: "The gradual

suppression of the tenor instrument in

the 18th century was a disaster;

neither the lower register of the viola

nor the upper register of the violon-

cello can give its effect. It is as

though all vocal part music were sung

without any tenors, whose parts were

distributed between the basses and

contraltos! It is essential for 17th

century concerted music for violins

and also for some works by Handel

and Bach and even later part-writing.

In Purcell's Fantasy on One Note the

true tenor holds the sustained C. . .

The need for a real tenor voice in the

19th century is evidenced by the many
abortive attempts to create a substi-

tute."

Baritone ( C-G-D-A ) . The body res-

onance of our baritone is nearly three

semitones lower than projected, and

this departure probably accounts for

the somewhat bass-like quality on the

low C 65.4 string. Its strings are 0.73

in. (1.8 cm) longer than those of the

average cello. One concert cellist said

after playing it for half an hour, "You

have solved all the problems of the

cello at once. But I would like a con-

ventional cello string length." Thus a

redesign of this instrument is desirable

by shortening the body length a little.

This redesign would raise the fre-

quency of the body resonance and at

the same time make possible a shorter

string.

Small bass (A-D-G-C). Our first

newly constructed instrument in the

bass range is shaped like a bass viol

with sloping shoulders, but has both

top and back plates arched and other

features comparable to viobn construc-

tion. This form was adopted partly to

discover the effect of the sloping

shoulders of the viol and partly be-

cause a set of half-finished bass plates

was available. The next small bass is

being made on violin shape with other

features as nearly like the first one as

possible. Bass players have found the

present instrument has a most desira-

ble singing quality and extreme play-

ing ease. They particularly like the

bass-viol shape. It has proved most

satisfactory in both concert and re-

cording sessions.

Contrabass (E-A-D-G). Our con-

trabass^i is 7 ft (210 cm) high overall;

yet it has been possible to get the

string length well within conventional

bass mensure at 43 in. (110 cm) so

that a player of moderate height has

no trouble playing it except when he
reaches into the higher positions near

the bridge. For sheer size and weight

it is hard to hold through a 10-hr re-

cording session as one bassist did.

When it was first strung up, the player

felt that only part of its potential was
being realized. The one construction-

al feature that had not gone according

to plan was rib thickness. Ribs were 3

mm thick, whereas violin making indi-

cated they needed to be only 2 mm
thick. So the big fiddle was opened;

the lining stripes cut out, and the ribs

planed down on the inside to an even

2 mm all over—a job that took 10 days.

But when the contrabass was put to-

gether and strung up, its ease of play-

ing and depth of tone delighted all

who played or heard it. Henry Brant

commented, "I have waited all my life

to hear such sounds from a bass."

How good are they really?

All who have worked on the new in-

struments are aware of the present

lack of objective tests on them—aside
from musician and audience com-
ments. In the near future we plan to

compare comments with adequate

tonal analyses and response curves of

these present instruments as well as

new ones when they are made. The
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only objective evaluation so far comes

from A. H. Benade at Case Institute:

"I used my 100-W amplifier to run a

tape recorder alternately at 60 and 90

cps while recording a good violin with

the machine's gearshift set at the three

nominal 1-, 3.5- and 7.5-in/sec speeds.

This was done in such a way as to

make a tape which, when played back

at 3.5 in/sec, would give forth sounds

at the pitches of the six smaller instru-

ments in the new violin family (small

bass and contrabass excluded). There

were some interesting problems about

the subjective speed of low- compared
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Some nonscientlsts hold odd views of the nature of

science. This article catalogs and analyses the most

common fallacies.

17 The Seven Images of Science

Gerald Helton

An article from Science, 1960.

Pure Thought and Practical Power

Each person's image of the role of

science may differ in detail from that

of the next, but all public images are

in the main based on one or more of

seven positions. The first of these goes

back to Plato and portrays science as

an activity with double benefits: Science

as pure thought helps the mind find

truth, and science as power provides

tools for effective action. In book 7 of

the Republic. Socrates tells Glaucon
why the young rulers in the Ideal State

should study mathematics: "This, then,

is knowledge of the kind we are seek-

ing, having a double use, military and

philosophical; for the man of war must

learn the art of number, or he will not

know how to array his troops; and the

philosopher also, because he has to rise

out of the sea of change and lay hold

of true being. . . . This will be the eas-

iest way for the soul to pass from be-

coming to truth and being."

The main flaw in this image is that

it omits a third vital aspect. Science

has always had also a mythopoeic func-

tion—that is, it generates an impor-

tant part of our symbolic vocabulary

and provides some of the metaphysical

bases and philosophical orientations of

our ideology. As a consequence the

methods of argument of science, its

conceptions and its models, have per-

meated first the intellectual life of the

time, then the tenets and usages of

everyday life. All philosophies share

with science the need to work with

concepts such as space, time, quantity,

matter, order, law, causality, verifica-

tion, reality. Our language of ideas,

for example, owes a great debt to

statics, hydraulics, and the model of

the solar system. These have furnished

jjowerful analogies in many fields of

study. Guiding ideas—such as condi-

tions of equilibrium, centrifugal and

centripetal forces, conservation laws,

feedback, invariance, complementarity

—enrich the general arsenal of imagina-

tive tools of thought.

A sound image of science must em-

brace each of the three functions.

However, usually only one of the three

is recognized. For example, folklore

often depicts the life of the scientist

either as isolated from life and from

beneficent action or, at the other

extreme, as dedicated to technological

improvements.

Iconoclasm

A second image of long standing is

that of the scientist as iconoclast. In-

deed, almost every major scientific ad-

vance has been interpreted—either tri-

umphantly or with apprehension—as

a blow against religion. To some ex-

tent science was pushed into this posi-

tion by the ancient tendency to prove

the existence of God by pointing to

problems which science could not solve

at the time. Newton thought that the

regularities and stability of the solar

system proved it "could only proceed

from the counsel and dominion of an

intelligent and powerful Being." and

the same attitude governed thought

concerning the earth's formation before

the theory of geological evolution, con-

cerning the descent of man before the

theory of biological evolution, and con-

cerning the origin of our galaxy before

modern cosmology. The advance of

knowledge therefore made inevitable

an apparent conflict between science

and religion. It is now clear how large

a price had to be paid for a misunder-

standing of both science and religion:

to base religious beliefs on an estimate

of what science cannot do is as fool-

hardy as it is blasphemous.

The iconoclastic image of science

has, however, other components not as-

cribable to a misconception of its func-

tions. For example, Arnold Toynbee

charges science and technology with

usurping the place of Christianity as

the main source of our new symbols.

Neo-orthodox theologians call science

the "self-estrangement" of man be-

cause it carries him with idolatrous

zeal along a dimension where no ulti-

mate—that is, religious—concerns pre-

vail. It is evident that these views fail

to recognize the multitude of divergent

influences that shape a culture, or a

person. And on the other hand there

is, of course, a group of scientists,

though not a large one, which really

does regard science as largely an icono-

clastic activity. Ideologically they are, of

course, descendants of Lucretius, who
wrote on the first pages of De renim

naiiira, "The terror and darkness of

mind must be dispelled not by the rays

of the sun and glittering shafts of day.

but by the aspect and the law of na-

ture: whose first principle we shall be-

gin by thus stating, nothing is ever got-

ten out of nothing by divine power."

In our day this ancient trend h;is as-

sumed political significance owing to

the fact that in Soviet literature scien-

tific teaching and atheistic propaganda

are sometimes equated.

Ethical Perversion

The third image of science is that

of a force which can invade, possess,

pervert, and destroy man. The current

stereotype of the soulless, evil scientist

is the psychopathic investigator of

science fiction or the nuclear destroyer

—immoral if he develops the weap-

ons he is asked to produce, traitorous

if he refuses. According to this view,

scientific morality is inherently nega-

tive. It causes the arts to languish, it

blights culture, and when applied to hu-

man affairs, it leads to regimentation

and to the impoverishment of life.

Science is the serpent seducing us into

eating the fruits of the tree of knowl-

edge—thereby dooming us.

The fear behind this attitude is genu-

ine but not confined to science: it is

directed against all thinkers and inno-

vators. Society has always found it

hard to deal with creativity, innovation,

and new knowledge. And since science

assures a particularly rapid, and there-
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fore particularly disturbing, turnover of

ideas, it remains a prime target of sus-

picion.

Factors peculiar to our time intensify

this suspicion. The discoveries of

"pure" science often lend themselves

readily to widespread exploitation

through technology. The products of

technology—whether they are better

vaccines or better weapons—have the

characteristics of frequently being very

effective, easily made in large quanti-

ties, easily distributed, and very ap-

pealing. Thus we are in an inescapable

dilemma—irresistibly tempted to reach

for the fruits of science, yet, deep in-

side, aware that our metabolism may
not be able to cope with this ever-in-

creasing appetite.

Probably the dilemma can no longer

be resolved, and this increases the

anxiety and confusion concerning

science. A current symptom is the pop-

ular identification of science with the

technology of superweapons. The bomb

is taking the place of the micro>copc.

Wernher von Bruun. the place of Ein-

stein, as svnibols for modern science

and scientists. The efforts to convince

people that science itself can give man
only knowledge about himself and his

environment, and occasionally a choice

of action, have been largely unavail-

ing. The scientist as scieniisi can take

little credit or responsibility either for

facts he discovers—for he did not

create them—or for the uses others

make of his discoveries, for he gen-

erally is neither permitted nor specially

fittcil to make these decisions. They

are controlled by considerations of

ethics, economics, or politics and

therefore arc shaped by the values and

historical circumstances of the whole

society.

There are other evidences of the

widespread notion that science itself

cannot contribute positively to culture.

Toynbce, for example, gives a list of

"creative individuals," from Xenophon

to Hindenburg and from Dante to

Lenin, but docs not include a single

scientist. I cannot forego the remark

that there is a significant equivalent on

the level of casual conversation. For

when the man in the street—or many
an intellectual—hears that you are a

physicist or mathematician, he will

usually remark with a frank smile, "Oh.

I never could understand that subjec:"";

while intending this as a curious com-
pliment, he betravs his intellectual dis-

sociation from scientific fields. It is not

fashionable to confess to a lack of ac-

quaintance with the latest ephemera in

literature or the arts, but one may even

exhibit a touch of pride in professing

ignorance of the structure of the uni-

verse or one's own body, of the be-

havior of matter or one's own mind.

The Sorcerer's Apprentice

The last two views held that man is

inherently good and science evil. The

next image is based on the opposite as-

sumption—that man cannot be trusted

with scientific and technical knowledge.

He has survived only because he lacked

sufficiently destructive weapons: now

he can immolate his world. Science, in-

directly responsible for this new power,

is here considered ethically neutral.

But man, like the sorcerer's apprentice,

can neither understand this tool nor

control it. Unavoidably he will bring

upon himself catastrophe, partly

through his natural sinfulness, and

partly through his lust for power, of

which the pursuit of knowledge is a

manifestation. It was in this mood that

Pliny deplored the development of pro-

jectiles of iron for purposes of war:

"This last I regard as the most criminal

artifice that has been devised by the hu-

man mind; for. as if to bring death

upon man with still greater rapidity,

we have given wings to iron and taught

it to fiy. Let us, therefore, acquit Na-

ture of a charge that belongs to man
himself."

When science is viewed in this plane

—as a temptation for the mischievous

savage— it becomes easy to suggest a

moratorium on science, a period of

abstinence during which humanity

somehow will develop adequate spirit-

ual or social resources for coping with

the possibilities of inhuman uses of

modern technical results. Here I need

point out only the two main misun-

derstandings implied in this recurrent

call for a moratorium.

First, science of course is not an oc-

cupation, such as working in a store or

on an assembly line, that one may pur-

sue or abandon at will. For a creative

scientist, it is not a matter of free

choice what he shall do. Indeed it is

erroneous to think of him as advancing

toward knowledge; it is, rather, knowl-

edge which advances towards him,

grasps him, and overwhelms him Even

the most superficial glance at the life

and work of a Kepler, a Dalton. or a

Pasteur would clarify this point. It

would be well if in his education each

person were shown by example that

the driving power of creativity is as

strong and as sacred for the scientist

as for the artist.

The second point can be put equally

briefly. In order to survive and to pro-

gress, mankind surely cannot ever know
too much. Salvation can hardly be

ihought of as the reward for ignorance.

Man has been given his mind in order

that he may find out where he is. what

he is. who he is, and how he may as-

sume the responsibility for himself

which is the only obligation incurred in

gaining knowledge.

Indeed, it may well turn out that the

technological advances in warfare have

brought us to the point where society

is at last compelled to curb the aggres-

sions that in the past were condoned

and even glorified. Organized warfare

and genocide have been practiced

throughout recorded history, but never

until now have even the war lords

openly expressed fear of war. In the

search for the causes and prevention

of aggression among nations, we shall,

I am convinced, find scientific investi-

gations to be a main source of under-

standing.
I

I

Ecological Disaster

A change in the average temperature !

of a pond or in the salinity of an ocean

may shift the ecological balance and

cause the death of a large number of

plants and animals. The fifth prevalent

image of science similarly holds that

while neither science nor man may be

inherently evil, the rise of science hap-

pened, as if by accident, to initiate an

ecological change that now corrodes

the only conceivable basis for a stable

society, .n the words o Jacques Mari-

tain, the "deadly disease" science set off

in society is "the denial of eternal truth

and absolute values."

The mam events leading to this state

are usually presented as follows. The

abandonment of geocentric astronomy

implied the abandonment of the con-

ception of the earth as the center of

creation and of man as its ultimate pur-

pose. Then purposive creation gave

way to blind evolution. Space, time,

and certainty were shown to have no

absolute meaning. All a priori axioms

were discovered to be merely arbitrary

conveniences. Modern psychology and
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anthropology led to cultural relativism.

Truth itself has been dissolved into

probabilistic and indcterniinistic state-

ments. Drawing upon analogy with the

sciences, liberal philosophers have be-

come increasingly relativistic, denying

either the necessity or the possibility of

postulating immutable verities, and so

have imdcrmined the old foundations

of moral and social authority on which

a stable society must be built.

It should be noted in passing that

many applications of recent scientific

concepts outside science merely reveal

ignorance about science. For example,

relativism in nonscientific fields is gen-

erally based on farfetched analogies.

Relativity theory, of course, does not

find that truth depends on the point of

view of the observer but, on the con-

trary, reformulates the laws of physics

so that they hold good for every ob-

server, no matter how he moves or

where he stands. Its central meaning

is that the most valued truths in science

are wholly independent of the point of

view. Ignorance of science is also the

only excuse for adopting rapid changes

within science as models for antitradi-

tional attitudes outside science. In real-

ity, no field of thought is more conserv-

ative than science. Each change neces-

sarily encompasses previous knowledge.

Science grows like a tree, ring by ring.

Einstein did not prove the work of

Newton wrong; he provided a larger

setting within which some contradic-

tions and asymmetries in the earlier

physics disappeared.

But the image of science as an eco-

logical disaster can be subjected to a

more severe critique. Regardless of

science's part in the corrosion of ab-

solute values, have those values really

given us always a safe anchor? A priori

absolutes abound all over the globe in

completely contradictory varieties. Most

of the horrors of history have been

carried out under the banner of some

absolutistic philosophy, from the Aztec

mass sacrifices to the auto-da-fe of the

Spanish Inquisition, from the massacre

of the Huguenots to the Nazi gas cham-

bers. It is far from clear that any so-

ciety of the past did provide a mean-

ingful and dignified life for more than

a small fraction of its members. If,

therefore, some of the new philoso-

phies, inspired rightly or wrongly by

science, point out that absolutes have a

habit of changing in time and of con-

tradicting one another, if they invite

a re-e\amination of the bases of social

authority and reject them when those

bases prove false (as did the Colonists

in this country), then one must not

blame a relativistic philosophy for

bringing out these faults. They were

there all the time.

In the search for a new and sounder

basis on which to build a stable world,

science will be indispensable. We can

hope to match the resources and struc-

ture of society to the needs and poten-

tialities of people only if vc know

more about man. Already science has

much to say that is valuable and im-

portant about human relationships and

problems. From psychiatry to dietetics,

from immunology to meteorology, from

city planning to agricultural research,

by far the largest part of our total sci-

entific and technical cfTort today is con-

cerned, indirectly or directly, with man

—his needs, relationships, health, and

comforts. Insofar as absolutes are to

help guide mankind safely on the long

and dangerous journey ahead, they

surely should be at least strong enough

to stand scrutiny against the back-

ground of developing factual knowl-

edge.

Scientism

While the last four images implied

a revulsion from science, scientism may

be described as an addiction to science.

Among the signs of scientism are the

habit of dividing all thought into two

categories, up-to-date scientific knowl-

edge and nonsense: the view that the

mathematical sciences and the large

nuclear laboratory offer the only per-

missible models for successfully employ-

ing the mind or organizing efTort; and

the identification of science with tech-

nology, to which reference was made

above.

One main source for this attitude is

evidently the persuasive success of re-

cent technical work. Another resides in

the fact that we are passing through a

period of revolutionary change in the

nature of scientific activity—a change

triggered by the perfecting and dissem-

inating of the methods of basic research

by teams of specialists with widely dif-

ferent training and interests. Twenty

years ago the typical scientist worked

alone or with a few students and col-

leagues. Today he usually belongs to a

sizable group working under a contract

with a substantial annual budget. In the

research institute of one university

more than 1500 scientists and techni-

cians are grouped around a set of mul-

timillion-dollar machines: the funds

come from government agencies whose

ultmiate aim is national defense.

Everywhere the overlapping interests

of basic research, industry, and the mil-

itary establishment have been merged

in a way that satisfies all three. Science

has thereby become a large-scale oper-

ation with a potential for immediate

and world-wide effects. The results are

a splendid increase in knowledge, and

also side effects that are analogous

to those of sudden and rapid urbaniza-

tion—a strain on communication facil-

ities, the rise of an administrative bu-

reaucracy, the depersonalization of

some human relationships.

To a large degree, all this is unavoid-

able. The new scientific revolution will

justify itself by the flow of new knowl-

edge and of material benefits that

will no doubt follow. The danger

—

and this is the point where scientism

enters—^is that the fascination with the

Diechanisii) of this successful enterprise

may change the scientist himself and

society around him. For example, the

unorthodox, often withdrawn individ-

ual, on whom most great scientific ad-

vances have depended in the past, does

not fit well into the new system. And

society will be increasingly faced with

the seductive urging of scientism to

adopt generally what is regarded—of-

ten erroneously—as the pattern of or-

ganization of the new science. The

crash program, the breakthrough pur-

suit, the megaton effect are becoming

ruling ideas in complex fields such as

education, where they may not be ap-

plicable.

Magic

Few nonscientists would suspect a

hoax if it were suddenly announced

that a stable chemical element lighter

than hydrogen had been synthesized,

or that a manned observation platform

had been established at the surface of

the sun. To most people it appears that

science knows no inherent limitations.

Thus, the seventh image depicts science

as magic, and the scientist as wizard,

dens ex nwcliino, or oracle. The atti-

tude toward the scientist on this plane

ranges from terror to sentimental sub-

servience, depending on what motives

one ascribes to him.

i
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Science's greatest men met with opposition, isolation,

and even condemnation for their novel or '"heretic"

ideas. But we should distinguish between the heretical

innovator and the naive crank.

18 Scientific Cranks

Martin Gardner

An excerpt from his book Fads and Fallacies in the Name of Science, 1957.

Cranks vary widely in both knowledge and intelligence. Some are

stupid, ignorant, almost illiterate men who confine their activities to

sending "crank letters" to prominent scientists. Some produce crudely

written pamphlets, usually published by the author himself, with long

titles, and pictures of the author on the cover. Still others are brilliant

and well-educated, often with an excellent understanding of the branch

of science in which they are speculating. Their books can be highly

deceptive imitations of the genuine article—well-written and impres-

sively learned. In spite of these wide variations, however, most pseudo-

scientists have a number of characteristics in common.
First and most important of these traits is that cranks work in

almost total isolation from their colleagues. Not isolation in the geo-

graphical sense, but in the sense of having no fruitful contacts with

fellow researchers. In the Renaissance, this isolation was not neces-

sarily a sign of the crank. Science was poorly organized. There were

no journals or societies. Communication among workers in a field was

often very difficult. Moreover, there frequently were enormous social

pressures operating against such communication. In the classic case

of Galileo, the Inquisition forced him into isolation because the

Church felt his views were undermining religious faith. Even as late

as Darwin's time, the pressure of religious conservatism was so great

that Darwin and a handful of admirers stood almost alone against the

opinions of more respectable biologists.

Today, these social conditions no longer obtain. The battle of

science to free itself from religious control has been almost completely

won. Church groups still oppose certain doctrines in biology and

psychology, but even this opposition no longer dominates scientific

bodies or journals. Efficient networks of communication within each

science have been established. A vast cooperative process of testing

new theories is constantly going on—a process amazingly free (except,

of course, in totalitarian nations) from control by a higher "ortho-

doxy." In this modern framework, in which scientific progress has

become dependent on the constant give and take of data, it is impos-

sible for a working scientist to be isolated.
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The modern crank insists that his isolation is not desired on his

part. It is due, he claims, to the prejudice of established scientific

groups against new ideas. Nothing could be further from the truth.

Scientific journals today are filled with bizarre theories. Often the

quickest road to fame is to overturn a firmly-held belief. Einstein's

work on relativity is the outstanding example. Although it met with

considerable opposition at first, it was on the whole an intelligent

opposition. With few exceptions, none of Einstein's reputable oppo-

nents dismissed him as a crackpot. They could not so dismiss him

because for years he contributed brilliant articles to the journals and

had won wide recognition as a theoretical physicist. In a surprisingly

short time, his relativity theories won almost universal acceptance,

and one of the greatest revolutions in the history of science quietly

took place.

It would be foolish, of course, to deny that history contains many
sad examples of novel scientific views which did not receive an un-

biased hearing, and which later proved to be true. The pseudo-

scientist never tires reminding his readers of these cases. The opposi-

tion of traditional psychology to the study of hypnotic phenomena

(accentuated by the fact that Mesmer was both a crank and a charla-

tan) is an outstanding instance. In the field of medicine, the germ

theory of Pasteur, the use of anesthetics, and Dr. Semmelweiss' in-

sistence that doctors sterilize their hands before attending childbirth

are other well known examples of theories which met with strong

professional prejudice.

Probably the most notorious instance of scientific stubbornness

was the refusal of eighteenth century astronomers to believe that

stones actually fell from the sky. Reaction against medieval supersti-

tions and old wives' tales was still so strong that whenever a meteor

fell, astronomers insisted it had either been picked up somewhere and

carried by the wind, or that the persons who claimed to see it fall

were lying. Even the great French Academie des Sciences ridiculed

this folk belief, in spite of a number of early studies of meteoric

phenomena. Not until April 26, 1803, when several thousand small

meteors fell on the town of L'Aigle, France, did the astronomers de-

cide to take falling rocks seriously.

Many other examples of scientific traditionalism might be cited,

as well as cases of important contributions made by persons of a

crank variety. The discovery of the law of conservation of energy by

Robert Mayer, a psychotic German physician, is a classic instance.

Occasionally a layman, completely outside of science, will make an

astonishingly prophetic guess—like Swift's prediction about the moons

of Mars (to be discussed later), or Samuel Johnson's belief (ex-

pressed in a letter, in 1781, more than eighty years before the dis-

covery of germs) that microbes were the cause of dysentery.
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One must be extremely cautious, however, before comparing the

work of some contemporary eccentric with any of these earlier ex-

amples, so frequently cited in crank writings. In medicine, we must

remember, it is only in the last fifty years or so that the art of healing

has become anything resembling a rigorous scientific discipline. One
can go back to periods in which medicine was in its infancy, hope-

lessly mixed with superstition, and find endless cases of scientists with

unpopular views that later proved correct. The same holds true of

other sciences. But the picture today is vastly different. The prevail-

ing spirit among scientists, outside of totalitarian countries, is one of

eagerness for fresh ideas. In the great search for a cancer cure now
going on, not the slightest stone, however curious its shape, is being

left unturned. If anything, scientific journals err on the side of per-

mitting questionable theses to be published, so they may be discussed

and checked in the hope of finding something of value. A few years

ago a student at the Institute for Advanced Studies in Princeton was

asked how his seminar had been that day. He was quoted in a news

magazine as exclaiming, "Wonderful! Everything we knew about

physics last week isn't true!"

Here and there, of course—especially among older scientists who,

like everyone else, have a natural tendency to become set in their

opinions—one may occasionally meet with irrational prejudice against

a new point of view. You cannot blame a scientist for unconsciously

resisting a theory which may, in some cases, render his entire life's

work obsolete. Even the great Galileo refused to accept Kepler's

theory, long after the evidence was quite strong, that planets move
in ellipses. Fortunately there are always, in the words of Alfred Noyes,

"The young, swift-footed, waiting for the fire," who can form the

vanguard of scientific revolutions.

It must also be admitted that in certain areas of science, where

empirical data are still hazy, a point of view may acquire a kind

of cult following and harden into rigid dogma. Modifications of Ein-

stein's theory, for example, sometimes meet a resistance similar to

that which met the original theory. And no doubt the reader will have

at least one acquaintance for whom a particular brand of psycho-

analysis has become virtually a religion, and who waxes highly indig-

nant if its postulates are questioned by adherents of a rival brand.

Actually, a certain degree of dogma—of pig-headed orthodoxy

—

is both necessary and desirable for the health of science. It forces

the scientist with a novel view to mass considerable evidence before

his theory can be seriously entertained. If this situation did not exist,

science would be reduced to shambles by having to examine every

new-fangled notion that came along. Clearly, working scientists have

more important tasks. If someone announces that the moon is made
of green cheese, the professional astronomer cannot be expected
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to climb down from his telescope and write a detailed refutation.

"A fairly complete textbook of physics would be only part of the

answer to Velikovsky," writes Prof. Laurence J. Lafleur, in his excel-

lent article on "Cranks and Scientists" {Scientific Monthly, Nov.,

1951), "and it is therefore not surprising that the scientist does not

find the undertaking worth while."

The modern pseudo-scientist—to return to the point from which

we have digressed—stands entirely outside the closely integrated

channels through which new ideas are introduced and evaluated. He
works in isolation. He does not send his findings to the recognized

journals, or if he does, they are rejected for reasons which in the vast

majority of cases are excellent. In most cases the crank is not well

enough informed to write a paper with even a surface resemblance to

a significant study. As a consequence, he finds himself excluded from

the journals and societies, and almost universally ignored by the

competent workers in his field. In fact, the reputable scientist does

not even know of the crank's existence unless his work is given wide-

spread publicity through non-academic channels, or unless the scien-

tist makes a hobby of collecting crank literature. The eccentric is

forced, therefore, to tread a lonely way. He speaks before organizations

he himself has founded, contributes to journals he himself may edit,

and—until recently—publishes books only when he or his followers

can raise sufficient funds to have them printed privately.

A second characteristic of the pseudo-scientist, which greatly

strengthens his isolation, is a tendency toward paranoia. This is a

mental condition (to quote a recent textbook) "marked by chronic,

systematized, gradually developing delusions, without hallucinations,

and with little tendency toward deterioration, remission, or recovery."

There is wide disagreement among psychiatrists about the causes of

paranoia. Even if this were not so, it obviously is not within the scope

of this book to discuss the possible origins of paranoid traits in indi-

vidual cases. It is easy to understand, however, that a strong sense of

personal greatness must be involved whenever a crank stands in

solitary, bitter opposition to every recognized authority in his field.

If the self-styled scientist is rationalizing strong religious convic-

tions, as often is the case, his paranoid drives may be reduced to a

minimum. The desire to bolster religious beliefs with science can be

a powerful motive. For example, in our examination of George

McCready Price, the greatest of modern opponents of evolution, we

shall see that his devout faith in Seventh Day Adventism is a sufficient

explanation for his curious geological views. But even in such cases,

an element of paranoia is nearly always present. Otherwise the pseudo-

scientist would lack the stamina to fight a vigorous, single-handed

battle against such overwhelming odds. If the crank is insincere

—
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interested only in making money, playing a hoax, or both—then

obviously paranoia need not enter his make-up. However, very few

cases of this sort will be considered.

There are five ways in which the sincere pseudo-scientist's paranoid

tendencies are likely to be exhibited.

( 1 ) He considers himself a genius.

(2) He regards his colleagues, without exception, as ignorant

blockheads. Everyone is out of step except himself. Frequently he

insults his opponents by accusing them of stupidity, dishonesty, or

other base motives. If they ignore him, he takes this to mean his

arguments are unanswerable. If they retaliate in kind, this strengthens

his delusion that he is battling scoundrels.

Consider the following quotation: "To me truth is precious. ... I

should rather be right and stand alone than to run with the multitude

and be wrong. . . . The holding of the views herein set forth has

already won for me the scorn and contempt and ridicule of some of

my fellowmen. I am looked upon as being odd, strange, peculiar. . . .

But truth is truth and though all the world reject it and turn against

me, I will cling to truth still."

These sentences are from the preface of a booklet, published in

1931, by Charles Silvester de Ford, of Fairfield, Washington, in

which he proves the earth is flat. Sooner or later, almost every pseudo-

scientist expresses similar sentiments.

(3) He believes himself unjustly persecuted and discriminated

against. The recognized societies refuse to let him lecture. The jour-

nals reject his papers and either ignore his books or assign them to

"enemies" for review. It is all part of a dastardly plot. It never occurs

to the crank that this opposition may be due to error in his work.

It springs solely, he is convinced, from blind prejudice on the part

of the established hierarchy—the high priests of science who fear to

have their orthodoxy overthrown.

Vicious slanders and unprovoked attacks, he usually insists, are

constantly being made against him. He likens himself to Bruno,

GaHleo, Copernicus, Pasteur, and other great men who were unjustly

persecuted for their heresies. If he has had no formal training in the

field in which he works, he will attribute this persecution to a scientific

masonry, unwilling to admit into its inner sanctums anyone who has

not gone through the proper initiation rituals. He repeatedly calls

your attention to important scientific discoveries made by laymen.

(4) He has strong compulsions to focus his attacks on the great-

est scientists and the best-established theories. When Newton was the

outstanding name in physics, eccentric works in that science were

violently anti-Newton. Today, with Einstein the father-symbol of

authority, a crank theory of physics is likely to attack Einstein in the

name of Newton. This same defiance can be seen in a tendency to
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assert the diametrical opposite of well-established beliefs. Mathema-
ticians prove the angle cannot be trisected. So the crank trisects it.

A perpetual motion machine cannot be built. He builds one. There

are many eccentric theories in which the "pull" of gravity is replaced

by a "push." Germs do not cause disease, some modern cranks insist.

Disease produces the germs. Glasses do not help the eyes, said Dr.

Bates. They make them worse. In our next chapter we shall learn

how Cyrus Teed literally turned the entire cosmos inside-out, com-

pressing it within the confines of a hollow earth, inhabited only on

the inside.

(5) He often has a tendency to write in a complex jargon, in

many cases making use of terms and phrases he himself has coined.

Schizophrenics sometimes talk in what psychiatrists call "neologisms"

—words which have meaning to the patient, but sound like Jabber-

wocky to everyone else. Many of the classics of crackpot science

exhibit a neologistic tendency.

When the crank's I.Q. is low, as in the case of the late Wilbur

Glenn Voliva who thought the earth shaped like a pancake, he rarely

achieves much of a following. But if he is a brilliant thinker, he is

capable of developing incredibly complex theories. He will be able

to defend them in books of vast erudition, with profound observations,

and often liberal portions of sound science. His rhetoric may be enor-

mously persuasive. All the parts of his world usually fit together

beautifully, like a jig-saw puzzle. It is impossible to get the best of

him in any type of argument. He has anticipated all your objections.

He counters them with unexpected answers of great ingenuity. Even

on the subject of the shape of the earth, a layman may find himself

powerless in a debate with a flat-earther. George Bernard Shaw, in

Everybody's Political What's What?, gives an hilarious description of

a meeting at which a flat-earth speaker completely silenced all op-

ponents who raised objections from the floor. "Opposition such as

no atheist could have provoked assailed him"; writes Shaw, "and he,

having heard their arguments hundreds of times, played skittles with

them, lashing the meeting into a spluttering fury as he answered

easily what it considered unanswerable."

In the chapters to follow, we shall take a close look at the leading

pseudo-scientists of recent years, with special attention to native

specimens. Some British books will be discussed, and a few Conti-

nental eccentric theories, but the bulk of crank literature in foreign

tongues will not be touched upon. Very little of it has been trans-

lated into English, and it is extremely difficult to get access to the

original works. In addition, it is usually so unrelated to the American

scene that it loses interest in comparison with the work of cranks

closer home.

253



The laws of mechanics apply, of course, equally to all mat-

ter, and therefore to the athlete, to the grasshopper, and to

the physics professor too.

19 Physics and the Vertical Jump

Elmer L. Offenbacher

An article from the American Journal of Physics, 1970.

The physics of vertical jumping is described as an interesting and "relevant" illustration for

motivating students in a general physics course to master the kinematics and dynamics of one
dimensional motion. The equation for the height of the jump is derived (1) from the kine-

matic equations and Newton's laws of motion and (2) from the conservation of energy
principle applied to the potential and kinetic energies at two positions of the jump. The
temporal behavior of the reaction force and the center of gravity position during a typical
jump are discussed. Mastery of the physical principles of the jump may promote under-
standing of certain biological phenomena, aspects of physical education, and even of docu-
ments on ancient history.

I. INTRODUCTION

When the New York Mets recently won the

1969 World Series in basebalV the New York
Times carried a front page picture of one of the

players jumping for joy into the arms of another.

Jumping for joy might occur even in a physics

class if a student should suddenly realize that he
understands something new. The something new
can be on quite an old subject. This paper ^\^ll

present some aspects of the ancient subject of

jumping, the broad jump, and the high jump.^

The physics of the verticaljump, in particular, is

sufficiently simple in its basic elements that it can
be mastered by most students in an introductory

physics course. At the same time, it has the

appealing feature for our hippie-like alienated

college student of being relevant to so many
modern experiences. Neil Armstrong's ability to

jump up high on the moon,' or Bob Beamon's
record breaking broad jump in Mexico,* or just

plain off-the-record jumping on a dance floor or

basketball court are more exciting illustrations of

the pull of gravity to the average student—and
perhaps to some professors too—than are Galileo's

bronze balls rolling down inclined planes.* (No
slight to Galileo is intended!)

Should these examples not produce enough class

participation (or even if they do), the instructor

can liven things up by on the spot jumping

experiments. For example, he can suspend from the

ceiling some valuable coin (a "copper sandwich"

quarter will do too) which is just an inch or two

above the jumping reach of a six footer (about nine

feet from the floor). The instructor then might

announce that the coin will be given to whoever

can jump up and reach it. To the surprise of most

of the class, the six footer can't quite make it.

For the participation of the shorter members of

the class, one can suspend other coins at lower

levels and allow students in certain height ranges

to jump for specific coins.*

The problem of class involvement in a recitation

section of an introductory noncalculus physics

course was the stimulus which lead the author to

research the "science" of jumping; his findings

may perhaps provide other teachers with a

stimulant (legal and harmless) for their class

discussions.^

A description of the physics of vertical jumping

can be directed towards one or more of several

goals such as (a) appUcation of one dimensional

kinematic equations of motion, (b) illustration of

Newton's third law on reaction forces,' (c) study

of nonuniformly accelerated one dimensional

motion, (d) motivation for learning the derivation
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or kinematical equations, and (e) application of

physical principles in other disciplines such as

zoology, physical education, and physiology.

For simpUcity, the presentation which follows

will be restricted primarily to the standing vertical

jump. However, some features can easily be

extended to other kinds of jumping such as the

standing broad jump or the swimmer's dive. The

latter examples illustrate the appUcation of the

kinematic equations in two dimensions.

n. THE PHYSICS OF JUMPING:
CLASS PRESENTATION

One can initiate the class discussion on jumping

by such questions as: How high can you jump?

Could you do better if you were in a high flying

airplane, if your legs were longer, if you were in

Fig. 1. Positions of the standing vertical jump: (a) lowest

crouched position, (b) position before losing contact with

the ground, (c) highest vertical position. F = foot, S =shin,

T = thigh, and B=back. marks the position of the

center of gravity.

Philadelphia or in Mexico City, if you wore

sneakers or jumped with barefeet? How good is

man as a jumper compared to a kangaroo or a

grasshopper? In what way does an individual's

physical condition affect the maximum height of

his jump?
The order and nature of the presentation can be

varied according to the instructor's imagination.

Physics and the Vertical Jump

If the class is "willing" to be taught a derivation,

then one can start by deriving

d = Vot-\-^af. (1)

It is useful to impress upon the students the fact

that this kinematical equation for uniform

acceleration can be derived purelj^ from the

definitions of average velocity and acceleration.^

Such a derivation can be easily mastered by

virtually every student.

Derivation of the Height Equation from the

Kinematic Equations and Newton's Third Law

The definition of uniform acceleration can be

written as

v/ = Vo-\-at (2)

where V/ is the final velocity, ^o is the original

velocity, a is the uniform acceleration, and t is the

interval over which the velocity change occurred.

Eliminating the time between Eqs. (1) and (2),

one obtains the well-known relation between V/, Vo,

and the distance d over which uniform acceleration

takes place:

v/ = VQ^-\-2ad (3)

The total distance over which the displacement of

the center of gravity takes place during the jump

may be divided into two segments (see Fig. 1),

the stretching segment S and the free flight path

H. One can now apply Eq. (3) over the two differ-

ent segments as follows. For the stretching part

{which extends from the beginning of the crouched

position to the erect position before contact ^\ith

the ground is lost [Figs. 1(a) and 1(b)]} the

acceleration, a, is given by the average net upward

force on the jumper, F„, divided by the mass of

the jumper, m. As fo = 0, .substitution in Eq. (3)

gives

vjo'={2Fn/m)S, (4a)

where

F„ = Fr-mg,

Fr is the average reaction force of the ground on

the jumper during the upward displacement S.

We have labeled the final velocity at the end of

segments as Vjq, the jumping off velocity.

For the free flight path, however, the final
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Fig. 2. Grasshopper's jump. Just before a takeoff all the joints of the hindlimbs of a grasshopper are tightly folded up at

the sides of the body. As soon as the jump begins these joints extend. The limbs extend to their maximum extent in

about 1/30 sec. (From J. Gray, Ref. 10.)

velocity at the highest position is zero, the ac- When solved for H this gives an equation ecjuiva-

celeration is —g, and Vq = Vjq. One then obtains H, lent to (5)

the displacement of the center of gravity from the

erect position to the highest point, [^Figs. (lb) and
1 (c)] from the equation

= v,o'-2gH. (4b)

Or, combining (4a) and (4b) one finally obtains

H = FnS/mg. (5)

Derivation Based on Conservation of Energy

An alternative way of deriving this result using

the conservation of energy principle is as follows

:

Take the crouched position as the zero reference

potential. The total amount of work done on the

jumper by the floor during the push off period is

equal to the potential energy change, mgS, plus

the kinetic energy imparted at position S which is

/:
FndS.

At the top of the jump the Idnetic energy is again

zero and the potential energy is nuj{H-\-S).

Therefore, from the conservation of energy

principle

m(i{H+S)=mgS+ ( F„(IS.

H = / F.IS/ mg. (6)

Note that FnS in Eq. (5) is replaced by the

integral

/ FndS.

This makes Eq. (6) valid for nonuniform accelera-

tion, whereas use of Eq. (3) in the previous

derivation involves the assumption of uniform

acceleration.

In a typical jump a man weighing 140 lb

producing an average reaction force during take

off of about 300 lb and able to stretch over a

distance /8 of 1 .4 ft \\\\\ lift his center of gravity

1.6 ft:

\ 140 /
X 1.4 = 1.6 ft.

With the help of Ya\. (5) the student should now

be able to answer many of the questions posed

earlier such as the effect of gravity or of the length

of one's legs. Consideration of Eq. (5) might also

give the student some clue about the remarkable
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jumping ability of the grasshopper. A series of

positions during a grasshopper's jump are shown

in Fig. 2.^° The pictures were taken at intervals of

1/120 sec. Particularly noteworthy are (1) the

rapid take off for his jump (about 1/30 sec com-

pared to the human take off time of more than

half a second) and (2) the long stretch, ,S,

permitted because of his long hind legs and their

particular construction. (See Sec. IV for further

details). Indeed, these pictures might instill the

student high jump athlete (the one who may have

succeeded in getting the valuable coin) with a

bit of humility. Whereas for a superior athlete a

jump up to ^ his height is a creditable perform-

ance, an average grasshopper can jump well over

ten times his own height and even a 5-ft kangaroo

can jump up to 8ft above the ground!

m. GERRISH'S STANDING VERTICAL JUMP

In Fig. 3(a) is shown the time record of the

center of gravity position and the ground's

reaction force Fr in a typical vertical jump of Paul

H. Gerrish, the author of a 1934 Ph.D thesis

on the subject of jumping." It is interesting to

note that during the first 0.42 sec of the jump the

reaction force is less than the static weight, ^^ and

that the downward velocity reaches a maximum

of 3.8 ft/sec. After 0.61 sec, the velocity is zero

and the drop of the center of gravity is about

1.2 ft. The upward acceleration has a duration of

0.24 sec; during that period the reaction force

varies from about twice his weight to about 2.4

times his w^eight. The ''gravity controlled" part of

his jump (from lift off to the highest point) takes

about 0.3 sec while the total time for the entire

jump is less than 2 sec.

Apparatus

Gerrish designed his own force meter." This

was a device which minimized the vibration and

inertia forces and which transmitted the force of

the jump on a platform via hydrostatic pressure to

an Ashton single spring Bourbon-type pressure

gauge. He used a calibrated 16-mm movie camera

\N-ith a speed of 53.1 frames per second for timing

the sequence of positions. He obtained the

appropriate height in each frame by aligning, with

the aid of 22 (or 44) fold magnification, a refer-

Physics and the Vertical Jump

ence mark close to the center of gravity of his body

(over the anterior superior spine of the right

ilium) with the divisions of a surveyor's measuring

rod.

Statistical Results for Other Jumpers

In Gerrish's analysis of 270 jumps of 45

Columbia University men he found that the

tallest or heaviest jumpers did not always demon-

strate greater maximum forces, velocities, powers,

or height displacements for the jump than the

shortest or Ughtest jumpers, respectively." He also

noted that maximum height displacement varied

within the rather narrow range of 1 and 2 ft and

that the subjects demonstrated a range oiminimum

forces from 15%-74% of their static weight, and a

range of rnaximum forces from 210%-375% of this

weight.

Analysis of Jump

An interesting aspect of the jump is the energy

and power requirement for jumping. From the raw

data of Fig. 3(a) one can compute the velocity

curve and then construct a power curve by

multiplying the latter with the appropriate

ordinates of the force curve. These curves are

shown in Fig. 3(b). The reader may find it

interesting to analyze these curves in detail. It

should be noted that the force and height curves

are consistent with each other, thus providing

evidence for the validity of the measurements in

Fig. 3(a). This consistency was checked in two

ways. (1) The impulse imparted to the jumper at

the end of the stretch P,o can be calculated from

the integral

r Fndt.

This value agrees to within 0.4% with the momen-

tum obtained from the free flight deceleration to

maximum height, PjQ= mvjo=mg{Ti— Ti). (2)

The force curve can be integrated twice with

respect to time and the resultant curve turns out

to agree well with the height curve.

The achievement in the vertical jump is

directly related to the power developed during the

jump. This in turn depends on the steepness of the

velocity curve and the ability to maintain close
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Fig. 3. (a) The temporal sequence of the floor's reaction

(FORCE) and the center of gravity position (HEIGHT)
during a typical vertical jump beginning with the standing

position, (b) The velocity of the center of gravity

(VELOCITY) and the applied (POWER) [the product

of FORCE of Fig. 3(a) and VELOCITY of Fig. 3(b)].

to the maximum torce durmg the 0.2 sec of the

stretching segment^^ [see Fig. 3(b)].

IV. JUMPING AND OTHER DISCIPLINES

The student's motivation for learning a new
subject is usually enhanced if he is made to realize

its connection wth other studies he is undertaking

simultaneously or in which he has some innate

interest. To cite a few examples of how an under-

standing of the physics of jumping can be helpful

in other fields of study, let us turn to an application >

in biology (the jump of the grasshopper) and to i

two applications in physical education (Olympic '

records and the Sargent jump).

Biological Application

The outstanding animal jumpers include, in

addition to the kangaroo and grasshopper, the
j

frog and the flea. Although these animals perform

much better than man when their jumps are

measured in terms of their body length,^® the ratio

of their broad jump to high jump lengths is be- ,

tween 3 and 4 which is similar to man's perform- :

ance. Actually, the fact that animals can jump
,

higher in terms of their own dimensions is not

surprising as can be shown by the following simple

scaling argument. If it is assumed that the strength

of an animal to exert a force F is proportional to i

the cross sectional area of his muscular tissue A
then F is proportional to U, where L specifies its

linear dimension. However, the mass m for con-

stant density is proportional to U. Therefore, the

acceleration, being equal to F/m, is proportional

to L~K As the stretch distance S is propor-

tional to L, one sees from Eq. (4a) that Vjo is

unaffected by a down scaling. Therefore, the

relatively large jumping achievements of the

smaller insects are not really too surprising be 'ause

if Vjo is unaffected, so is H [see Eq. (4b)].

In a 1958 article in Scientific American, a

grasshopper's physiology, responsible for its skill •

in jumping, is described. One of its secrets lies in

the construction of its hind legs. These legs differ

from those of most other insects in that the angle

between the femur (thigh) and the tibia (shin) is

not obtuse but acute. This permits a bigger value

for S and a longer period of possible acceleration as

was mentioned before. Another feature is that its

extensor muscle (which straightens the leg) is

larger than its flexor muscle (which bends it). It

can lift off from the ground a weight ten times its

own and develops, during this feat, a tension

equal to 250 times its own weight.

Jumping and Athletics

While jumping is a component of many sports

(for example, basketball, diving, skiing) , it has for

many centuries captured men's imagination in its
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own right. Indeed, Beamon's record-breaking

broad jump of 29 ft 2f in. bettering the previous

world record by almost two feet (1 ft 9| in.) was
the sensation of the 1968 Mexico Olympics.^

Olympic Records and the Acceleration of Gravity

In comparing record performances, one should,

in all fairness, take account of variations in g that

exist between tw^o localities. ^^ From Eq. (5) one

can culculate the difference in height, AH, which

results from the difference in the g values between

two localities. Namely, the fractional change in H
is equal to the negative of the fractional change in

g: dkH/H = — Ag/g. As the maximum variation of g

on the surface of the earth is about ^%, in a seven

foot jump AH expressed in inches may be as much
as 0.42 in. (7X12X0.005). As high jumps and

broad jumps are customarily recorded to -j-th of an

inch or even Ys-th. of an inch, a fair comparison

B

Fig. 4. Comparison of the takeoff position in the standing

high jump, A, and the standing broad jump of a skilled

college woman. (From J. M. Cooper and R. B. Glassow,

Ref. 22.)

may very well reverse the standings of the record

holders. An examination of the broad iump winners

at the 1948 London Olympics (Latitude 5r30'N)

and the 1956 ^Melbourne Olympics (Latitude

37°52'S) shows indeed that W. Steele's (U.S.)

performance in London of 25 ft Sre in. was better

than G. Bell's (U.S.) jump of 25 ft 8i in. in

Melbourne when their jumps are compared at the

same g. The increase in g of 1.09 cm/sec^ from

Physics and the Vertical Jump

Melbourne to London accounts for a decrease in

jump length of 0.34 in.,^^ whereas their actual

recorded difference is only 0.19 in. This "injustice"

in reality didn't matter too much because both

records were below the 26 ft 5^^ in. record

established by Jesse Owens in the 1936 Olympics

in Berlin. This wasn't broken until the 1960

Olympics, which in turn was bettered phenom-
enally two years ago by Beamon.

The Sargent Jump
(or jumping as a test of athletic ability)

The standing vertical jump has been used for

close to half a century by persons interested in

tests and measurements in physical education. In

searching for a physical ability test which would

correlate with an individual's performance in

track and field events, it was found that a particu-

lar type of vertical jump, known as the Sargent
jump,2o produced a high correlation with such

events as the six second run, running high jump,

standing broad jump, and the shot put. The
instructions for the adminstration of the Sargent

jump read as follows:

the jumper is to swing his arms downward
and backward inclinging the body slightly

forward and bending the knees to about 90°

and raising the heels. He is to pause a

"moment" in this position and then to jump
vertically upward as high as possible,

swinging his arms vigorously forward and

upward to a vertical position. Just before the

highest point of the jump he is to swing his

arms forward and downward to his side. The

end of the downward swing should be timed so

as to coincide with the reaching of the highest

point of the jump. The legs should be

stretched downward and the head should be

stretched upward without tilting the chin.^^

Gerrish's jump was similar to the Sargent jump
except for the arm movements. In his thesis, he

makes the interesting observation that the loca-

tion of the center of gravity did not vary by more

than 5 in. for various body positions (with legs

bent, trunk inclined forward, etc.) assumed

during his jump. Apparently, the purpose of the

downward swing of the arms in the Sargent jump
is to displace the center of gravity downward with
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respect to the body so as to increase the height

reached by the top of the head.

Broad jumping

Broad jumping is closely related to the high

jump except that the initial velocity is at an angle

less than 90° with the horizontal. Ideally, if the

body were to be considered as a free projectile, for

maximum range the take off velocity should be

directed at 45° with the horizontal (see equation

in Ref. 19) . The actual take off directions of broad

jumpers turn out to be around 30°.

The take off position in the standing high jump
and the standing broad jump of a skilled college

woman is shown in Fig. 4.^2 Note that the differ-

ence in inclination of body segments is mainly due
to the difference in foot incHnation. In the broad
jump additional distance can be gained by shifting

the center of gravity backwards through the

motion of the arms, especially if the broad jumper
grasps weights in each hand. Recent experiments

have shown that the length of the jump could be

increased by 15-20 cm if the jumper holds 5-lb

weights in each hand.^^ These experiments were

conducted in a historical-philological study to

understand some "legends" of broad jumping

feats of Phajdlos of Kroton and Chionis of Sparta.

This study arrives at the conclusion that if the

pentathlon events of these two athletes consisted of

five partial jumps (i.e., five standing broad

jumps with a pause in between each jump), then

the record distances of 55 and 52 ft, respectively

attributed to the above athletic heroes are believ-

able; yet they represent superior performances

worthy of legendary transmission.

V. SUMMARY AND SUGGESTIONS FOR
JUMPING FARTHER

It is suggested in this paper that jumping
"exercises" could provide lively, student-involv-

ing, real physical situations to teach some of the

beginning fundamentals of mechanics. Realistic

discussion of the factors affecting the "altitude"

of a jump can be conducted with the help of Fig. 3

which describes the temporal behavior of the

reaction forces and center of gravity positions in a

typical jump. Although this provides only sample

curves for a specific type of jump, most likely the

general features are similar in many other kinds

of jumps such as the broad jump or the chalk and

Sargent jumps. The phase lag of the force curve

behind the position curve and the initial dip in the

force curve are common features of all of these

jumps.

The application of the laws of mechanics to

biology and athletics will motivate some students

to make the special effort required to understand

such concepts as Newton's third law, the relation-

Copyright by Philippe Halsman

Fig. ."). J. Robert Oppenheimer's jump as recorded in

Halsmau's Jump Book (Simon and Schuster, New York,

19.')*)).
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ship of velocity to position in nonuniform accelera-

tion, the physical concept of power and momen-
tum, the effect of gravity and its variation with

position, even the meaning of conservation of

energy when biological systems are involved.

Furthermore, to the interested and capable

student, it might provide the stimulus for con-

ducting some fairly simple experiments which will

provide useful information to the coach or athletic

director as well as possibly to the psychologist and
physiologist. These experiments may include

different kinds of jumps (i.e., jumping off with one

leg, the broad jump, or the Sargent jump) or

varying the footwear used, the jumping surface or

the rest period between jumps. It should also be

possible with today's advances in photographic

techniques and data analysis to improve and
enlarge on Gerrish's work to the point where the

jumping process could be analyzed reliably in

varied situations.

In searching for references on the physics of

jumping I came across an amusing book entitled

The Jump Book (Simon and Schuster, New York,

1959) by the prize winning Life photographer

Philippe Halsman, self-styled founder of the

"science" of Jumpology. In describing and

categorizing the jumps of the famous people who
his s5Tichromzed camera caught up in the air, he

jovally suggests that jumping could be used as a

psychological test (a la Rorschach), and its analysis

could constitute a new field of psychological in-

vestigation which he named Jumpology.

Although the persons in these photographs were

evidently not instructed to jump for height, some

of them did seem to reach for that goal. One of

them was J. Robert Oppenheimer (Fig. 5). Who
knows whether having students jump up in the

physics laboratory might instantaneously identify

a potentially great scientist. One might just com-

pare the student's jump with the one by J.

Robert Oppenheimer.

1 The New York Mets won the 1969 World Series against

the Baltimore Orioles after a phenomenal rise from last

place to take the Eastern Division title and the National

League pennant.
2 A certain kind of broad jump was one of the five track

and field events of the annual Tailteann games held at

Tailtu, County Meath, Ireland as early as 1829 B.C. It

was also one of the features of the Pentathlon in the

ancient Olympic games (Encyclopedia Brittanica, 1967

Edition, Vol. 13, p. 132).

» New York Times, July 21, p. 1, Col. 3 (1969).

* New York Times, Oct. 27, Sect. 5, p. 3, Col. 6 (1968)

;

World Almanac, p. 878 (1969).

' Galileo's Two New Sciences (1638).

* The average vertical jumping height with ordinary

shoes and in shirt sleeves is about 19 inches. This figure

is based on a study made by Franklin Henry [Res. Quart.

13, 16 (1942) ] of 61 male students aged 19-24 years at the

Berkely campus of the University of California.

' H. R. Crane suggested in a recent article in this

Journal [36, 1137 (1968)] that relevant examples and

exercises be incorporated into noncalculus physics course.

An exercise involving the physics of jumping can be found

in, S. Borowitz and A. Beiser, Essentials of Physics

[(Addison-Wesley Publ. Corp., Reading, Mass., 1966),

Chap. 5, Problem 7.] Even though this is a calculus level

text, students usually are not able to solve this problem

without the use of the energy conservation principle,

which is described only later on in the text in Chap. 7.

Also see F. W. Sears and M. W. Zemansky, University

Physics (1964) Problem 6-16.

* The third law also explains the physics of walking.

For a note on the physics of walking see R. M. Sutton,

Amer. J. Phys. 23, 490 (1955).

» J. G. Potter, Amer. J. Phys. 35, 676 (1967).
1" J. Gray, How Animals Move (Cambridge University

Press, London, 1953), opposite p. 70.

" P. H. Gerrish, A Dynamical Analysis of the Standing

Vertical Jump, Ph.D. thesis Teachers College, Columbia

University, 1934.

" In all 270 tests of 45 other jumpers, he found this time

always to be less than 0.5 sec.

" Reference 11, p. 7.

" In the 1960 Rome Olympics, the much shorter Russian

Shav Lakadze won the high jump gold medal whereas the

tall world record holder at that time, John Thomas,

barely got the bronze medal. [^Olympic Games 1960,

H. Lechenperg, Ed. (A. S. Barnes & Co., 1960), p. 198.]

Also see H. Krakower, Res. Quart. 12, 218 (1941).

»^ See article by R. M. Sutton [Amer. J. Phys. 23, 490

(1955) ] for a discussion of the forces developed in the foot.

i« Reference 10, p. 69.

1' G. Hogle, Scientific American 198, 30 (1958).
1* This was pointed out by P. Kirkpatrick, Scientific

American 11, 226 (1937) ; Amer. J. Phys. 12, 7 (1944).

"The range formula applicable to broad jumping, i.e.,

R = Vit^ sin2a/g, where a is the angle of the jumping off

direction with the horizontal also gives AR/R= —Ag/g.

Therefore, AR=2o.7X12 (in.) X1.09/978=0.34 in.

» D. A. Sargent, Amer. Phys. Ed. Rev. 26, 188 (1921).

"D. Van Dalen, Res. Quart. 11, 112 (1940). Also see

footnote cited in Ref. 6.

^ J. M. Cooper and R. B. Glassow, Kinesiology (C. V.

Mosby Co., St. Louis, Mis.souri, 1963).

^Joachim Ebert: Zum Pentathlon Der Antike Unter-

suchungen uber das System der Siegerermittlung und die

Ausfiihrung des Halterensprunges, Abhandlung der

Sachsichen Akademie der Wissenschaft zur Leipzig

—

Philologisch-Historische Klasse Band 56 Heft 1, Akademie
Verlag, Berlin (1963).
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