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FOREWORD

This volume is one of the first to be produced by the Nuffield
Science Teaching Project, whose work began early in 1962. At that
time many individual schoolteachers and a number of organizations
in Britain (among whom the Scottish Education Department and
the Association for Science Education, as it now is, were conspicu-
ous) had drawn attention to the need for a renewal of the science
curriculum and for a wider study of imaginative ways of teaching
scientific subjects. The Trustees of the Nuffield Foundation con-
sidered that there were great opportunities here. They therefore
set up a science teaching project and allocated large resources to
its work.

"The first problems to be tackled were concerned with the teaching
of O-Level physics, chemistry and biology in secondary schools.
The programme has since been extended to the teaching of science
in sixth forms, in primary schools and in secondary school classes
which are not studying for O-Level examinations. In all these pro-
grammes the principal aim is to develop materials that will help
teachers to present science in a lively, exciting and intelligible
way. Since the work has been done by teachers, this volume and.
its companions belong to the teaching profession as a whole.

The production of the materials would not have been possible with-
out the wholehearted and unstinting collaboration of the team mem-
bers (mostly teachers on secondment from schools); the consulta-
tive committees who helped to give the work direction and purpose;
the teachers in the 170 schools who participated in the trials of these
and other materials; the headmasters, local authorities and boards
of governors who agreed that their schools should accept extra
burdens in order to further the work of the project; and the many
other people and organizations that have contributed good advice,
practical assistance, or generous gifts of material and money.

To the extent that this initiative in curriculum development is
already the common property of the science teaching profession, it
is important that the current volumes should be thought of as con-
tributions to a continuing process. The revision and renewal that
will be necessary in the future, will be greatly helped by the interest
and the comments of those who use the full Nuffield programme
and of those who follow only some of its suggestions. By their
interest in the project, the trustees of the Nuffield Foundation have
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sought to demonstrate that the continuing renewal of the curricu-
lum - in all subjects — should be a major educational objective.

Brian Young
Director of the Nuffield Foundation
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To those on whom these problems are inflicted
First of all, don’t worry.

You will probably be able to answer some of the problems. Others
you will find too difficult. Some, you will find, have no simple
answer: this is intentional, but see what you can do. And some
problems are simply meant to start discussion — they ask, ‘What
do you think?’

Some problems will involve things you have already covered in
your physics. Others will bring in new topics. And some problems
will be concerned with things which are unfamiliar but which are
linked with what you have already heard about. Some questions
are just problems to test your ingenuity. A good scientist tests
what he can, and what he has time for, but he cannot test every-
thing, he cannot find all the answers. All the same, he enjoys
speculating about — wondering about — a lot of other things.

Altogether there are far too many problems for you to be able to
tackle all of them. You will have to pick and choose. Some prob-
lems will be more interesting, or provoking, than others. Do them.
With luck, you will enjoy them.

Above all, don’t worry.
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1 Introduction to circular motion

A circular hoop is placed on a flat floor and a large ballbearing (or
heavy marble), B, is set rolling round the inside of the hoop. So
long as it is moving the ballbearing presses against the inside of the
hoop - try it and see. You will probably have to hold the hoop in
position.

Figure 1

a. Which way is the force exerted by the hoop on the ball — to-
wards the centre C, or away from it? Which way is the force
exerted on the hoop by the ball?

b. When the ball has reached the position D the hoop is suddenly
lifted off the floor. What happens to the ball? Draw a diagram to
illustrate your answer.



1 Introduction to circular motion 2

AA’ and BB’ are the two rails of a single flat railway track. A train
proceeds from the straight portion at AB towards the lefi-hand
curve at A'B’.
B’
D
A

A T B
Figure 2
a. Suppose first that there are no flanges on the wheels. What
happens when the train reaches the curve?
b. But of course there are flanges on the wheels, and these flanges
fit inside the rails. When the train rounds the curve, which rail
presses against the wheel flanges? Is it the inner rail, AA’, or the

outer, BB’? Give a common-sense reason for your answer, using
the word ‘momentum’.

Difficulr. In question 2 we thought about the horizontal forces
between rails and train. Now let us think about the vertical forces.
When the train is on the straight portion AB, its weight is equally
supported by each rail.

a. When the train is moving round the curve, are the rails still
exerting equal upward forces? Or if not, which rail exerts the
greater force?

b. What happens if the train goes round ‘too fast’? (Think of a
toy train if you like; the answers are the same for a toy train and a
real train. Saying ‘it comes off the rails’ is not enough.)

c. Give the reasons for your answers to (¢) and ().

d. On both toy tracks and real tracks, curves are usually ‘banked’.
Which way are they banked, with AA’ lower or BB’ lower? Give
the reason for the kind of banking you suggest.



1 Introduction to circular motion 3
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a. A nearly frictionless object, e.g. a ‘carbon dioxide puck’ is
placed on a smooth table, and a length of elastic is fixed to it
(figure 4). The other end of the elastic is fixed at C. The puck is
then given a quick push in the direction of the arrow. What hap-
pens? Illustrate by a diagram if you like.

b. Show on a diagram what happens if the elastic cannot stand the
strain, and breaks.

Figure 4

The diagram shows a stone attached to a string held at O, and
being swung round in a verzical circle (i.e. in a vertical plane).

B

Figure 5

a. What force is keeping the stone moving in a circle when it is at
A, or at C?

b. What rwo forces are keeping the stone moving in a circle when
it is at B?

c. If the string is weak it is most likely to break when the stone
is near D. Why is this?

d. Draw a diagram showing the path of the stone if the string
breaks at D. You may suppose that ground level is at a distance
equal to BD, below D.

e. Draw a diagram showing the path of the stone if, in the portion .
AB, it is ‘not moving fast enough’.



1 Introduction to circular motion 4

Fill a pail with water and turn it upside down, keeping the water in
the pail all the time. (If you have not sufficient confidence in the
principles of physics you had better wear a macintosh - or a bath-
ing suit — and do it in the garden anyhow!)

a. How did you do it?

b. Why did the water stay in the pail? (This is quite difficult to
answer — if you answer it properly you really do understand motion
in a circle.)

By now you are probably reasonably convinced that a ‘centripetal’
force (force towards the centre) is needed whenever a body moves

" in a circle. What is it that provides the centripetal force in the

following cases of circular motion?

a. A coin placed on a rotating gramophone turntable.

b. A car going round a bend.

¢. The Moon going round the Earth.

d. The Earth going round the Sun.

e. A stream of water going round inside a bent pipe.

/- Electrons moving at right-angles to a magnetic field. (Explain
the circular motion by referring to the force exerted by a magnet
on a wire carrying a current.)

The following observations were made in ‘experiments’ with a
rough gramophone turntable and a sixpence (try. for yourself if
you like).

(¢) The sixpence was placed near the edge of the turntable. At 33}
and 45 revolutions per minute it stayed on. At 78 revolutions per
minute it came off.

(i) At 78 revolutions per minute the sixpence stayed on, provided
that its centre was less than 9-5 cm from the centre of the turn-
table, but came off if its centre was more than 95 c¢cm from the
turntable centre.

(@7) A record was placed on the turntable, and the sixpence was
placed on the record. At 78 revolutions per minute the sixpence
now came off if it was 7-5 cm (or more) from the turntable centre.

What can be deduced from these observations:

a. About centripetal force and rate of revolution?
b. About centripetal force and speed of movement in a circle?



Note:

1 Introduction to circular motion 5

¢. About centripetal force and radius of revolution, when the rate
of revolution is constant?

d. See note below.

e. About friction between sixpences and turntable baize, and fric-
tion between sixpences and record material?

The answer to (¢) is that the greater the radius, the greater the
centripetal force necessary to keep the object moving in a circle —
provided it is the raze of revolution which is constant. Question (d)
should be ‘About centripetal force and radius when the speed of
movement in a circle is constant’. Unfortunately it would be difficult
to get any information about this from experiments with a gramo-
phone turntable (though not impossible). We shall see later that
the answer to (d) is that the greater the radius, the Jess the centri-
petal force when the speed of movement is constant.
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2 Satellites

Isaac Newton recorded in a letter how he noticed an apple falling
in an orchard, and conceived the idea that the same force that
caused the apple to fall also held the Moon in orbit. Perhaps he
started to think in this way: ‘There is no wind and the apple falls
vertically. If the wind blows? If a boy up the tree throws the
apple? If, instead of an apple, it is a cannon-ball fired from a gun?
Suppose it travels so fast that it passes beyond the horizon before
reaching the ground?’

Write a story on these lines, linking the apple and the Moon, and
including a diagram showing what happens to the apple when it
is projected horizontally with varying speeds. (Newton did in
fact draw such a diagram.)

An artificial satellite is orbiting 200 kilometres above the Earth’s
surface, and the radius of the Earth can be taken as 6400 kilo-
metres. Acceleration of gravity, g, may be taken as 10 metres
per second per second.

50km

6600km 6600km

Figure 10

a. Show that, under this acceleration, the satellite ‘falls® 50 km in
100 seconds (use s = %gz2).

b. The radius of the orbit is 6400 - 200 = 6600 km. In 100
seconds the satellite has turned in its orbit through an angle 6 (sce
figure 10). If you know some trigonometry, then you can find 6

because you see that cosine 6 = %2—8 and so you can find 6 from

tables. If you do not know trigonometry you must accept the
answer, 6 = 7° (or more exactly 7-1°). (continued on next page)
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2 Satellites 7

c. If 7° of orbit is covered in 100 seconds, how long does it take to
make one complete orbit of 360°? (My answer is 86 minutes; do you
agree?)

We shall now repeat question 10 for the Moon instead of an
artificial satellite close to the Earth. Instead of 6600 km, we have
the distance from Earth.to Moon, about 400,000 km. Since we are
dealing with greater distances, we had better work with a greater
time of fall; 1000 sec instead of 100 sec.

a. Use the same value of g as before, and show that the Moon
“falls’ 5000 km in 1000 seconds, starting from rest.

b. The ‘new’ angle ¢ (ﬁgure 10)is 9°. If you can use trigonometry
to find this, show that 9° is correct.

¢. Show that, if 9° of the whole orbit of 360° is correct in 1000
seconds, then the time of one complete orbit of the Moon round
the Earth is about 11 hours.

The answer to question 11 (¢) is ridiculous: the Moon does not
circle the Earth in 11 hours; it actually takes about 27 days.

a. Where did we go wrong?
b. What do we deduce about gravitational acceleration (due to the
Earth) at the distance of the Moon, and near to the Earth’s surface?

a. A satellite just above the Earth would have to circle the Earth
in 86.minutes in order to stay up. How fast would it have to travel
in miles per second? (Radius of the Earth = 4000 miles, circum-~
ference = 27 X radius.)

b. What would happen to a satellite travelling within the Earth’s
atmosphere with this speed?

Read the first sentence of question 13 (@) and then answer the
following question: What would happen near the equator if, in-
stead of rotating once every 24 hours, the Earth rotated once every
hour?
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3 Derlvatlon of (centnpetal acceleration)
and R (centnpetal force)

A
L vt
h B
T X
2R-h
Ce
De T

Figure 15

2
First proof of %— An object is moving in a circular path (or orbit)

with a constant speed represented by v. o is really the velocity of
the object, always changing in direction but constant in magnitude.
At one instant it is at A and its velocity, tangential to the circle is
shown by the arrow at A. A short time # later it is at B, and its
velocity is represented by the second arrow. The radius of the
circle is R and the distance between A and B is x. A chord is drawn
from B at right angles to AC. Since the time z, and therefore AB,
is supposed to be very small, the length of the chord is, for all
practical purposes, equal to 2x.

If the object had not been pulled round in a circle it would have
travelled from A to K. Because of the force pulling it, it has fallen,
in time #, through the distance KB, which we will call %. An equal

distance / is marked off from A, towards C. As a first step towards
2

.« o . v .
obtaining the expression R We write:

M2R—B) =2 . . . (D
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3 Derivation of v?/R (centripetal acceleration) and mv?/R (centripetal force) 9

a. Explain (as if to another pupil) why equation (1) is correct.
We can write this,
x2
h=3k—%

and then, quite correctly, we can leave out the / from 2R — 4 and
write
xZ

h=gs -0 -

b. Explain why we can leave out the # in 2R — 4. -

Since the object travels from A to B in time ¢ with speed v, there-
fore x = wvr, and we write

h=(§’22=%(?1§)z2 i

Now, % is the distance fallen towards the centre, and there was no
initial velocity at A in that direction. There must have been an
acceleration a towards the centre, and by using

s = ut + }ar® a o . @

We sece that,

a=— . . Sl (5))

where a is the centripetal acceleration.
¢. Explain how equation (3) and equatlon (4) together lead to
equation (5). .

This question is not essential, and you do nor have to learn this
proof for an examination. However, if you have worked through
question 15, you can now:

Copy figure 15 and write out a proper proof, with ‘sufficient
explanation, but not too much, of:

2

' d . '0
centripetal acceleration = 2

“for a body moving in a circular orbit.



3 Derivation of 22/R (centripetal acceleration) and mv®/R (centripetal force) 10

2 . A
17 Alternative proof of % for centripetal acceleration

g 18 ‘A Auoojea mau

™
T
\
)

Figure 17

An object is moving with a constant speed v in a circular path.
At one instant it is at A and its velocity, tangential to the circle,
is shown by the arrow. A short time, ¢z, later it is at B and its
velocity is represented by the second arrow. The radius of the
circle is R. The velocity line at B is produced backwards to meet
that from A at D. On the right, a second diagram is drawn, also
from D, but the circle part of the diagram is left out, so as to make
it look simpler. DP represents the velocity at A. DQ, of equal
length, represents the velocity at B. The triangles PQD and ABC
are similar.

a. Why is PQ labelled ‘change of velocity’?
b. Why are PQD and ABC similar triangles?

We then say,
change of velocity  AB ]
[4] = _TQ— s . ( )
or, change of velocity = A];'v

¢. Why is equation (1) true?
We remember that ¢ = time taken, A to B, and write

change of velocity AB.w

7 = : 5 (@)
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3 Derivation of 2[R (centripetal acceleration) and mv?/R (centripetal force) 11
which is simply dividing both sides by z. So we get,

A o 0P
acceleration = VR= R c . 3

d. Explain how equation (3) follows from equation (2).
e. How do you know, from the right-hand diagram, that the ac-
celeration is dirécted towards the centre?

This question is nor essential, and you do not have to learn this
proof for an examination. However, if you have worked through
question 17, you can now:

Copy figure 17 and write out a proper proof, with sufficient ex-
planation, but not too much, of:

2

. . D
centripetal acceleration = R’

for a body moving in a circular orbit.

2
Difficulr. Whether we have used the first method of proving % for

centripetal acceleration or the alternative method of question 17
we have had to make approximations, or use phrases such as ‘for
practical purposes’. Yet the final equation,
7)2
a=—=

R

is not an approximation; mathematically it is completely correct.
Explain (as if to Uncle George) why this is so.

a. If a body moving in a circle has a centripetal acceleration, then
there must exist a centripetal force producing that acceleration.
Mention three examples of an object moving in a circular path, and
say in each case what provides the centripetal force.

b. The acceleration is v2/R, so the force must be mz?/R. Why?

¢. In the expression 22/R, where did the v? come from? (Or why

1 .
2?2 rather than v or 5 Of 23, etc.?) (continued)
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3 Derivation of 2%/R (centripetal acceleration) and mv?/R (centripetal force) 12

d. In the expression v?/R, where did the %come from? (Or why

Il{' rather than R or R? or %‘5, etc.?)

A heavy ball rolls round inside a hoop resting on the floor, as in
question 1. The mass of the ball is 0-25 kg, the radius of the hoop
is 0-4 metre, and the ball rotates through a full circle once in every
second.

a. What is the speed, v, of the ball?

b. What force does the hoop exert on the ball, keeping it on a
circular path (i.e. what is the centripetal force)? Note, 72 is very
nearly equal to 10, and you may take »? = 10.

¢. Work out (@) and (b) again, this time for a hoop of radius 0-3
metre.

d. Your answers to (b) and (c) should be 4 newtons and 3 newtons.
How do you account for the fact that the smaller circle requires the

2
smaller force, although, from ﬂ, you might think that, since R
- R

is in the denominator, the smaller circle would require the Jarger

force?
b ®
Figure 22 \

You are inside a cage which is being rapidly rotated as in figure 22 -
the sort of thing you might pay to have done to you at a fair. After-
wards you tell a friend that  Centrifugal force flung me against the
outer wall and kept me pressed there’. ‘Rubbish,” he says, ‘there
is no centrifugal force; it was only that you tried to go straight on,

- like Newton said.” Explain what happened to you from your

friend’s point of view, that is, in terms of centripetal force.
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3 Derivation of v*/R (centripetal acceleration) and mv?/R (centripetal force) 13

a. Difficult. Explain using centripetal force (nor centrifugal) how it
is that a spin-dryer can extract water from wet clothes, so that they
are as dry as they would be if they had been put through a mangle.
b. Easy. A spin-dryer has a tub which is 0-25 metre in radius. It
makes 5 revolutions per second. What is the value of the centripetal
acceleration (v%/R) at the rim of the tub?

¢. Your answer to () should be in metres per seconds per seconds.
The acceleration of gravity, g, is 10 metres per seconds per seconds.
How many times gravitational acceleration might your mother be
using to dry clothes in her kitchen?

Experimental tests

In answering questions 24, 25, 26:

() draw a diagram of the apparatus you use (but of course one
diagram will do for all three questions, if you use the same ap-
paratus);

(#7) say what measurements you take and how you take them;
(#%) say how you would use the measurements to arrive at the
result you are asked to obtain.

How would you show that the centripetal force, required to keep
an object moving in a circular path, varies as the square of the
speed of the object (v%)?

Difficult. How would you show by an experiment that centripetal

force varies nversely with the radius of the circular path <%)>

This is not quite straightforward. The question means that centri-
petal force varies as B if the velocity for different radii is the same.

You can probably keep the revolutions per second the same, but
that is not the same thing as keeping the velocity the same. What
do you suggest?

How would you show that the expression for centripetal force,

mo?

SSRE

is correct in any one particular case?
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4 Electrons travelling in straight lines and circles

a. Make a sketch showing the electrodes (filament and anode) of a
‘hot cathode’ discharge tube, and add to your sketch the items
which are connected externally.

b. State the uses of (z) the filament, (i) the anode, (7i7) the specially
treated screen, of a cathode-ray discharge tube.

The ‘fine-beam’ tube does not have a fluorescent screen, but the
beam is visible inside the tube. An ordinary cathode-ray tube does
not have a visible beam. How is the beam inside the ‘fine-beam’
tube made visible?

a. Make a sketch of a *Maltese cross’ tube.

b. What particular property of cathode rays does it show us?

¢. For what historical reason do manufacturers usually use a
Maltese cross as an obstacle?

P,
: P N /\
o
P
> T
3 ' \j
\‘_ e
Q

Figure 30

a. The diagram above is a rough sketch of a cathode-ray tube with
a beam going straight through the tube and forming a bright spot
on the screen. Draw a similar but larger sketch showing the path of
the beam when a potential difference is established between P and
Q with P positive and Q negative. Omit the dotted circle.

b. Draw a second sketch, omitting P and Q, but showing what
happens when the beam passes through a magnetic field which
covers the space shown by the dotted circle. The direction of the
magnetic field is such that a wire carrying a positive electric cur-
rent going from left to right would be deflected towards the top of
the paper.
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4 Electrons travelling in straight lines and circles 15

The two experiments you have illustrated in question 30 are
usually said to show that cathode rays are megatively charged.
Someone says: ‘These experiments do not show that at all; the
result would be just the same if the rays are positively charged and
going in the opposite direction.’

What arguments could you put forward to suggest that it is ex-
ceedingly unlikely that, in this apparatus, the rays could be ‘going
in the opposite direction’? (Confine the discussion to the deflexion

‘experiments themselves; do not bring in other information.)

Discuss briefly whether the experiments considered in this section
(cathode-ray oscilloscope tubes, Maltese cross tube, fine beam
tube) give us any evidence about the particle nature of cathode
rays — that is, about whether the rays are particles (electrons) or a
continuous form of something we might call ‘juice’.
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5 Measurement of e/m for electrons

We shall now talk about ‘electrons’, and forget about the ‘juice’
possibility (question 32). The fact that we determine ‘e/m for
electrons’ does not in itself mean that electrons exist; it could be
that a mass m is always associated with a charge in a ‘continuous
something’ that we call cathode rays, so that e/m is constant for
any part of the rays. However, there is convincing evidence for
electrons (e.g. Millikan’s experiment), and it would now be un-
realistic to pretend that we do not know whether or not they exist.

rmotion N
Figure 33 (a) ' Figure 33 (b)
N
S
Figure 33 (¢)

a. In figure (a) the wire jumps off the magnet to the /efz, as shown.
(z) Which way will the wire move if the magnet is turned the other
way up (S-pole at top)?

(#) Which way will the wire move if the current is reversed, but
the magnet is as in figure (a)?

(s17) Which way will the wire move if, compared with figure (a),
the current is reversed and the magnet is placed S-pole uppermost?
b. What happens to the wire in figure (b)?

c. What zwo things, one after the other, happen to the wire in
figure (c)?
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5 Measurement of e/m for electrons 17

Figure 34 shows a piece of wire of length /, carrying a current 7, and
placed in a magnetic field. The current enters the wire by two
leads x and y coming from a battery well outside the magnetic

field.
T —————————————— X
] J
e y
Figure 34

a. In what direction is the force on the piece of wire?

b. Why is there no force acting on the leads x and y?

¢. The force on the piece of wire varies directly as its length / and
the current 7. On what else, besides 7 and /, would you expect the
force to depend?

d. If B = the force on a wire of unit length carrying unit current
(or, more correctly, B = force per unit length per unit current),
what is the force F on a wire of length / carrying current 7? (Write
F =, .. something in terms of B, 7, and 1)

In an experiment to determine B for a pair of Helmholtz coils
(which will later be used with a ‘fine-beam’ tube) a ‘test-wire’
20 cm (0-20 metre) long was placed in the magnetic field of the
coils, and a current of 20 amperes was passed through it. An extra
load on the wire of 0-5 gm (0-0005 kg) had to be attached to the
wire to keep it in place. The weight of this load balances the force
of the magnetic field.

a. Use the equation F = Bil (question 34 (d)) to find B from these
figures. (First write B = fl’ then substitute. You need to remem-

ber that g = 10 newtons per kg Give your answer to B in units
of ‘newtons per ampere-metre’.)

b. Draw a rough sketch of the apparatus you have used (or seen
used) to determine B in this way. You need not draw the coils;
just indicate the magnetic field direction.
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5 Measurement of e/m for electrons i 18

We now imagine an electron beam in the magnetic field in place
of the wire carrying a current. Instead of:

F = Bil
we have to find a similar expression for the force on an electron

having a charge ¢ and a velocity ». Suppose that, in a time z, N
electrons pass any place, Y for example, in the beam.

Z i sssses

——

X
Figure 36

a. What is the charge passing Y in time #?

b. What is the current 7 (charge per second) at Y?

¢. If the speed is v, what length /, of beam passes Y in time 7?
(Hin. Suppose a length XY of the beam will pass Y in time z.
How long is XY?)

d. Use F = Bil and substitute in it the value of from (b) and of
I from (c). What do you get for the force on N electrons?

e. What is the force on a single electron?

~ (Now check your answers with the answers at the end of this

section.)

a. With no magnetic field, the electron beam in a fine-beam tube
follows a stra1ght path. How would you descrxbe the path when a
magnetic field is switched on?

b. If the path is circular, it is because a centripetal force is exerted

. on the electrons, given by

F = Bev

But we can also write an expression for the centripetal force
needed by a particle of mass  if it is to move with a speed v in a
circular path of radius R. What is this other expression?

¢. Write an equation putting Bev equal to the second expression
you wrote in (b). Check your answer with those at the end of this
section.
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The equation of 37 (¢) contains an unknown quantity v, the speed
of the electrons, as well as e/m. To find v and e/m separately we
must have another equation as well. We get this by measuring
the potential difference, V, between the cathode and the anode of
the ‘electron gun’ from which the electrons come.

a. What does ‘potential difference’ mean? And what does 1 volt’
mean (in terms of coulombs and joules)? Look it up in Year IV notes
or answers to questions if you have forgotten.

c_-IA

;

Figure 38 (b)

(b) Figure 38 is a simplified diagram of the connections to the

- cathode, C, and anode, A, of an electron gun. If the charge on an
electron is e and the potential difference between cathode and

anode is v, how much energy does each electron acquire by the
time it reaches A?

¢. This energy is in the form of kinetic energy of motion of an elec-
tron. Write down the usual expression for the kinetic energy of a
particle of mass m having velocity v.

d. Write an equation putting the two expressions for energy, from
(6) and (c) equal to each other. Check your answers with those at
the end of this section.

Write down again the answer you obtained (after checking its
correctness) to question 37 (¢), and the answer to 38 (d).

a. Find from these two equations an expression for the velocity,
v, of the electrons.

b. Now find an expression for e/m, the ratio of charge to mass, for
the electrons.

¢. If we know the value of the electron charge, e (from Millikan’s
experiments for example), how do we find the mass m of an
electron?
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Answer to Question 35 (a): B = 0-00125 newtons per ampere
metre. (Note: This is the arithmetical result of the calculation,
written to more figures than the given values justify.)

Answers to Question 36
a. Ne
e
t
c.l=ut
4 F— B.]\Ze.fvt — BNew

e. F = Bev for one electron

Answers to Question 37

a. Circular
mv?
T
2
¢. Bev = "-;—g—

Answers to Question 38

a. The potential difference between two points (or two places in a
circuit) is the energy transferred from electrical energy to some
other form when unit charge passes from one point to the other.
1 volt is the p.d. when 1 joule of electrical energy is changed to
another form when 1 coulomb (or 1 ampere for 1 second) passes
between the two points. V volts means V joule/coulomb

b. eV

c. mv?

d. eV = imv?
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6 Electrolysis. Electrons, ions, protons

Note : Questions 40 to 45 are the same as questions in Year IV, If they

40

have previously been worked through, or if, as suggested, electroly-
sis is largely left to Chemistry, they can now be passed with a
casual glance, except for question 45, which should be studied
carefully.

A current of 1-5 amperes is passed for 1 hour through a solution
of copper sulphate and, at the end of that time, it is found that
1-78 gm of copper has been deposited. This result gives one point
on each of two graphs, (i) and (iz), drawn below.

1.78 ®

o 1] 1 i i i i 1
0 10 20 30 40 50 60 70
time, minutes

Figure 40 (2)

1.78 O]

0 inp T ! 1
0 05, 10 16
- current, amps. i

Figure 40 (i%)

a. Copy and complete graph (7), drawing a line showing how
the mass of copper deposited by 1-5 ampere increases with time.
How long will it take for 1-0 gm to be deposited by 1-5 ampere?
b. What assumption about mass deposited and time elapsed have
you made in drawing your graph?
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¢. Copy and complete graph (i), drawing a line showing how the
mass deposited in 1 hour increases with the current. How much
current is needed to deposit 1-0 gm.in 1 hour?

d. What assumpuon about  mass deposited and current passed
have you made in drawing your graph?

a. Find from the figures given in the first sentence of question 6-1,
how many coulombs are required to deposit 1-78 gm of copper.
b. How many coulombs are required to deposit half that much, i.e.
0-89 gm?

¢. How many coulombs are required to deposit 1-0 gm of copperTJ
d. In working your answers to (b) and (c), what are you assuming
about grams of copper deposited and coulombs of electricity
passed? Is this assumption the same as, or different from, the
assumption made in (b) and (d) of question 40? Explain.

e. Suppose you wished to extend your answers to very tiny de-
posits. What would you do to predict how many coulombs would
deposit one-millionth of 1-78 grams of copper? Can you see any
objection to extending this to one-millionth of one-millionth of
one-millionth of one-millionth of 1-78 gm?

a. Draw a circuit diagram of the apparatus you would use to show
by experiment that mass of copper deposited is proportional to the
quantity of electricity passed (the assumption you made in ques-
tion 41). What are the plates made of,, and what liquid would you
use?

b. What three measuring instruments are needed to perform the
experiment?

¢. What readmgs would you take, and what would you do with the
results, in order to show convincingly that mass deposited varies
directly as the quantity of electricity that has passed?

a. When electricity is passed through copper sulphate solution
copper is deposited on the cathode (the plate )omed to the negative
end of the battery). We explain this by saying that the copper
atoms in the solution must be charged: with positive charge or
negative charge? Give the reason for your answer.

b. Yes, the answer to (@) is ‘positive’. Does this mean that we
must have positive charge flowing from the cathode to the battery
through the wire connecting them? Or is there an alternative
explanation? If so, say what it is.
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a. The current through a copper sulphate solution is carried, at
least in part, by copper atoms with a positive charge (question 43).

" Are negative charges also being carried through the solution? Give

45

Note:

46

a reason for your answer.

b. If the current in the solution is carried by both positive and
negative charges, does this mean that the wires joined from the
battery to the plates must also be carfying both positive and
negative charges? Explain the reason for your answer.

The same quantity of electricity (about 96 million coulombs)
which sets free 1 kg of hydrogen in electrolysis also sets free 32 kg
of copper or 108 kg of silver. The masses of the atoms of hydrogen,
copper and silver are in the ratio:

1:64:108

a. What do these figures suggest about the charges carried by one
atom of hydrogen and one atom of silver in electrolysis?

b. What do they suggest about the charge carried by one atom
of copper compared with the charge carried by a single atom of
hydrogen or a single atom of silver? '

Charged atoms are called 10Ns to distinguish them from ordinary
uncharged atoms. A hydrogen ion (which is just a hydrogen
nucleus) is called a PROTON.

. charge
The ratio g
mass

for electrons is, approximately,

7—2 = 1-76 X 10! coulombs per kg

charge
mass
mately, 9-6 X 107 coulombs per kg
a much smaller value.

e

The ratio M

for hydrogen ions in electrolysis — is, approxi-

a. This could mean,

(?) that e is larger for electrons, or

(#2) that m is smaller, or

(#i7) a bit of both, viz. e larger and m smaller.

Which of these alternatives do you think is most likely to be correct,
and why? (continued)
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b. Assuming that e is'the same for electrons and hydrogen ions,
we have,

% = 176 x 10! coulombs per kg (electrons).
ﬁ = 9-6 X 107 coulombs per kg (protons).
Find the ratio = of electron mass to proton mass, by dividing the
M g

second equation by the first.
The value for e found by Millikan’s experiment is
e = 1-6 X 10™® coulomb
From this, and from the values of % and ;—4 in question 46 (),
find:
a. the mass‘ of an electron

b. the mass of a proton
c. the number of hydrogen azoms in 1 kg of hydrogen.
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7 Positive rays and isotopes

Place a penny, or better, a larger round object such as a beaker or a
cup or a saucer, on a sheet of paper and draw round it. Mark one
point on the circle, then shift the penny slightly, so that you can
draw a slightly displaced circle through the same point. Draw one
or two more circles, not greatly displaced from the original circle.
Imagine that the original point was the starting-point for a stream
of ions splaying out in slightly different directions, and that the
ions were bent into circular orbits by a magnetic field, all with the
same radius. What does your sketch show you about these orbits?

Figure 49

Here is a diagram, figure 49, of a type of magnet used in the
‘modern mass spectrometer’ described in question 50. It focuses
streams of ions that have been deflected only 60°, instead of 180°
as in question 48.

Give in a sentence or two a reason why a magnet like this would
focus the stream after a deflexion which is much smaller than
180°, ’
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50 ‘Here is a diagram which shows the basic idea of a modern 60-
degree mass spectrometer.

&—— magnetic fleld
Tegion

electron . A'
N = .
- photographic film
A\\\ or other detector
ges enters
IoN GUN
Figure 50

A slow stream of gas at low pressure enters the apparatus through
the slit A, The gas is continuously pumped away elsewhere. Be-
tween A and B the gas is ‘bombarded’ by an electron stream from
an electron gun.; These electrons knock other electrons off the
atoms of gas, thus making positive ions. Some of these, under the
_ influence of a weak electric field between A and B, drift through the
-slit B with only very small velocities. These positive ions are ac-
celerated from B to C by a strong electric field, so that some of
them emerge from C with large velocities and large energies
(K.E. = {mv?). Since they have all been accelerated by the same
field between B and C, they all have very nearly the same kinetic
energy. Even though a fine slit is used at C, the ion beam splays
out through a small angle, and it is focused on a photographic film
XY, or some other detector, by a magnetic field whose d1rect10n
is perpendicular to the paper.

a. Why is it necessary to have ions coming through C all with the
same energy? What would be the dlsadvantage if this were not the
case?

b. Why is it necessary to have B negative with respect to A, but
only slightly negative?

¢. Suppose the gas contains a mixture of atoms of two different
masses, 7, and m,, m, being greater than m,. Suppose also that all
the gas ions formed carry an equal positive charge (i.e. all have lost
the same number — one or more — of electrons). What is going to
happen when the ion beam has been focused by the magnetic field?
Will the 7, ions be focused on the film nearer to X, or nearer to Y,
than the , ions are?
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Figure 51

a. Neon gas, under low pressure, is fed into the mass spectro-
meter apparatus of question 50. When the film at XY is developed

‘it shows three traces, a very dark one, at 1, a very faint trace at 2,

and a not so faint trace at-3. The gas was pure neon, and no other
gas was present. How may we explain these three traces?
b. Use the example in (@) to explain what is meant by ‘isotopes’.

Look again at figure 50. What would happen if, by mistake, both
batteries had been connected the wrong way round?

A mass spectrometer shows that chlorine gas contains two iso-
topes, ‘that is, it has atoms of two different masses. One isotope
has an atomic weight of 35, the other has atomic weight 37.
Roughly, the atomic We1ght of chlorine as found by the chemist
is 35-5. What, roughly, is the proportion of ¢35 atoms to ‘37
atoms’ in chlorine?

Uranium contains two isotopes, U,s; (i.e. uranium atoms of
atomic weight 235) which is ‘fissionable’ in a nuclear reactor or
in an atomic bomb, and Uy, which is stable. In natural uranium,
only 1 atom in 140 is U,,; the other 139 are U,,, atoms. A pro-

-blem arises: how to separate the 235 isotope from the 238,

a. How might this be done on a very small scale, that is, how might
you collect a very small quantity of U,y in a small rnetal con-
tainer?

b."Suggest two possible ways of separating Um and U,y on a
larger scale, or at any rate, of obtammg a specimen of uranium
containing more than 1 atom of Uy, in 140. (Just make two sug-
gestions ; do not trouble about whether or not your ideas are known
to be used in practice.)
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8 The heavens:
what do we see (without telescopes)?

On a clear cloudless day — or night — the sky above us looks like
an inverted hemispherical bowl, with ourselves at the centre: a
bright blue bowl by day, or a black bowl by night. Inside this bowl
but above us we see objects that clearly belong to the Earth - clouds,
and man-made things such as aircraft. Obviously farther away,
part of the bowl perhaps, are the Sun, the Moon and the stars,
including the very interesting objects we call planets.

a. Certainly to us, on Earth, the Sun is the most important and
necessary of these objects — why?

b. Moonlight may be useful at night, but the most 1mportant thing
to us here about the Moon is that it produces tides: what evidence
is there that the Moon, rather than the Sun or stars, is chiefly
associated with oceanic rise and fall?

¢. Have the stars any practical usefulness to us at all? If so, what?

Which looks the larger, the Sun or the Moon? What evidence is
there ~ evidence which men could have known 3,000 years ago -
that the Sun is farther away than the Moon?

a. How far away from you must you hold a penny so that it looks
the same size as the moon? (Diameter of the moon makes an angle
of 4° at our eyes. Diameter of a penny = 3 cm. Answer to nearest
centimetre.)

b. If the Moon is 400,000 kilometres away, what is its diameter?

Look at the diagram on the next page.

a. Is this in the northern or the southern hemisphere? Or can’t
you be sure? Explain.

b. Is it morning or afternoon? How do you know?

¢. Suppose figure 58 refers to England in winter time. What time
(nearest hour) would you expect a clock to show when the shadow
is shortest?

d. But suppose it is England in summer time, what time would you
expect a clock to show? Why?
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Sun's
roys

path oi"( shaaow iz

Eigure 58

Suppose now that figure 58 is a correct picture at a certain place in
March. What would the picture be like (@) in December, (b) in
June? (Answer by drawing two sketches. You may suppose that at
this place the Sun never comes directly overhead.)

a. What if the Sun did go directly overhead? Draw a sketch, like
figure 58, but referring to a place and a date for which the Sun
passes overhead. _

b. When does the Sun pass overhead at the equator? — or does it
pass overhead on every day?

The Sun, like the Moon, makes an angle of about 4° at your eye.
If the Sun is 150 million kilometres away, what is its diameter?

You know what the Moon looks like when seen at ‘full Moon’ on

a clear night. What would the Earth look like to a space-man
standing on the Moon and looking at the Earth? (Write a brief
account comparing what he would see of the earth with what you
see of the Moon.)
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Figure 63

63 An observer at P, in the ‘night-time’ portion of the Earth (figure
63), looks at the Moon. Draw diagrams to show what the shape of
the ‘Moon is, as he sees it, when it is (a) at A, () at B, (¢) at C,
(d) at D. (Draw little diagrams like the one at x. The others will
have different shapes. Label them correctly, (a), etc. You may
assume that, even for position D, Sun, Earth and Moon are not
- exactly in line.)

Whereabouts, on the diagram, would the Moon be if no Moon is
visible anywhere on Earth?

64 a. Write a few sentences describing the appearance of the sky on a
" clear moonless night.
b. Describe the gradual changes in the appearance of the sky as
night turns into day (or day into night if you prefer!).
c. Why is the townsman much less conscious of the existence of the
stars than is the countryman?

65 a. Why is the Pole Star important to us?
b. Draw a sketch of the constellation called the Plough and show
how it helps in finding the Pole Star.
¢. The Sun, the Moon and most of the stars rise in the east, move
westwards across the sky, and set in the west. But some stars can
be seen moving eastwards across the sky. How do you explain this?
Whereabouts are they, with respect to the Pole Star?
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Draw some constellation other than the Plough; say where you
saw it in the sky (north, north-east, etc.; near the horizon, or
nearly overhead); and say at what time and on what date you saw

st.-:.fan Aot Jan' lst.Ja stsJan
midnight Ol 4 neme 6 a.me.

STAR CLOCK

1st.Feb.

WEUANHEpa Kb
N
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midnight

lst.March
nidnight

1lgt.April
midnight \b

Figure 67

Use the diagram, figure 67, to explain what happens to the star
pattern in the sky,
a. hour by hour on the same night;

b. month by month at the same hour.

Explain why the star pattern, seen at the same hour, revolves, ap-~
proximately, 15° every hour in the same night, and 30° every
month.
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At noon the Sun crosses the zenith, which is an imaginary vertical
north-south plane. The solar day is the time interval (24 hours)
between two successive passages of the Sun across the zenith.
The star day is the time interval between two successive passages
of any one particular star across the zenith.

Which is the longer, a solar day or a star day? Why?

The Sun appears to move backwards among the star constellations
by about 1° a day.

a. What do you think is meant by ‘move backwards among the
star constellations’?

b. Why is the backward movement ‘about 1° a day’?

¢. Romeo said to Juliet,

‘Lady by yonder blessed moon I swear ...

But Juliet said,

‘Q! Swear not by the moon, the inconstant moon . ..’

Juliet had, presumably, followed ‘ O’ level physics this far; what do
you think she had in mind when she described the moon as in-
constant? (Juliet gives the answer in her next line, but you might
give a slightly better answer.)

If you had been an observant person Lving three thousand years ago
you might have picked out four of the ‘stars® as behaving dif-
ferently from the rest. These we now call ‘planets’. Write a page
or so explaining in what way they are ‘different’ and describing
how they differ. You might write this brief essay under four head-
ings: Apparent movement among the stars, position in the sky
where seen, brightness, colour. Those planets are, of course, Venus,
Mars, Jupiter, Saturn.
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Supposing you look through any small telescope such as an
amateur astronomer might use, what is there especially striking
you would notice,

a. if you looked at Venus (at different times during the year);

b. if you looked at Jupiter (Galileo saw this and it caused a lot of
trouble);

c. if you looked at Saturn (we all know this one!)?

Unfortunately you would need a much more powerful telescope,
plus considerable imagination, to see the canals on Mars,
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9 Greek astronomical theories

‘What is truth? said jesting Pilate; and would not stay for an’
answer’ (Francis Bacon).

Must a theory be true, if it is to be useful? This is a question we
shall be better able to answer, or to reword, at the end of this
section.

If you live near London, look at the Underground map of London
Transport. Compare that with the London Transport map of bus
routes (which also shows Underground railways). Which is right?
Which would you rather use? Why?

Which picture of atoms or molecules is the right one to use in
thinking out a simple kinetic theory of gases? In discussing electron
bombardment making ions . . .?

What evidence is there for believing the Earth is round?

a. Give three reasons that might have been known to, or discovered
by, the Greeks two thousand years ago. Illustrate your answers
by diagrams where necessary.

b. Mention, if you can, some further reasons belonging to the
twentieth century.

Suppose you could meet and talk with a young Greek man or
woman of your own age, living in the year 500 B.C. What reasons
might he or she give for supposing that the Earth is stationary,
immovable in space? And what might you reply?

Questions 76-79 are based on the diagram labelled figure 76. You
can answer them from common sense and common everyday
knowledge, even if you have never before seen anything like figure
76. The black blob at the centre of the main diagram is the Earth,
supposed stationary in space. The little man standing on it (he is
only a few thousand miles high!) is supposed to be at latitude 521°;
he might be at Birmingham for example. On the outside of the
diagram you see the rotating sphere that contains the stars studded
into it. The ‘equator plane’ and ‘horizon plane’ are imaginary
planes, although useful mathematically. The Sun is set in a crystal
sphere inside the sphere of the stars. This sphere rotates on an

axis which makes an angle of 231° with the axis of the starry
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sphere; this makes the Sun go round the Earth, not in the plane
of the equator, but in the ‘ecliptic’ plane. Outside the sphere of
the stars you can put what you like: the Abode of the Blessed
perhaps, and the celestial machinery for turning everything round.

Zenith
(for little
men standing
on earth)

!

sphere of stars

sphere of sun

-horizon plane
(for littie man)

Earth

524°(central England
'k\, and Wales)
Earth

td
equator -~

Figure 76

stationary Earth, rotating stars and Sun

76 Why are the pole star and the southern cross put where they are
on the diagram? How would you define the ‘equator plane’? (This
is the celestial equator. The Earth’s equator is contained in that
equator plane, of course.)

77 Do the stars appear to move in the direction of the arrow at the
top of the diagram, or in the opposite direction? Give the reason
for your answer by quoting your everyday (or rather, ‘everynight?)
experience. (continued on next page)
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What do you think is meant by the ‘zenith’, and what is meant by
the ‘horizon plane’? (This is the celestial horizon of course.) What
is the angle between the zenith direction and the horizon plane?

Could the horizon plane be the same as it is in figure 76 for a per-
son in (a) the United States, (b) Canada? Give the reason for your
answers. (Note. No catch here; remembering that Alaska is one
of the United States makes no difference!)

a. What evidence can you give for supposing that the ecliptic plane
is at an angle with the equator plane?

b. Optional and difficult. What evidence is there that this angle is
233°? !

Optional. Try this if you are interested, otherwise omit. Figure 80
is a simplified form of figure 76, meant to concentrate attention
on the spheres of the stars and the Sun.

24 hours (?)

-l o -

pphere of stars

sphere of Sun

~L

Figure 80
spheres of stars and Sun (Pythagoras)

a. Does the sphere of the stars rotate once in exactly 24 hours?
Think carefully, and give the reason for your answer.

b. Suppose first that the sphere of the Sun is entirely independent
of the sphere of the stars, at what rate does it rotate? And in which
direction? (continued on next page)
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¢. But suppose instead that the Sun’s sphere has its axle embedded
in the sphere of the stars, as shown by the dotted lines so that they
rotated together. What independent rotation (rate and direction)
would the Sun’s sphere have to have?

Optional. Try this if you are interested, otherwise omit.

a. Where would you put the sphere of the Moon in the scheme of
figure 80? If this also is given the rotation of the starry spheres,
what rotation of its own would it have to have?

b. Where would you put the sphere of Venus? of Mars? of Jupiter?

Oprional. The arrangement of one crystal sphere for each of the
heavenly bodies did not satisfactorily account for their observed
motions, and Eudoxus had four spheres for each planet (figure 82).
Describe the arrangement shown in figure 82, saying what you
can about the reasons for including the third and fourth spheres.

rotation once - 24 hours rotation

in planet'\j

year

\_ first sphere (outermost)

b—second sphere
| third sphere

ourth sphere (immermost)

Figure 82
four crystal spheres. for each planet (Eudoxus)
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Figure 83
scheme due to Ptolemy

E = the Earth which C = centre of the Q = equant point, with

is in fixed position main circle, with arm arm QA rotating at
CA of constant length constant speed
Note. CQ = CE

Figure 83 shows, for one planet, a system invented by Ptolemy,
which imitated very closely the motions of Sun, Moon and planets.
Use this diagram to explain how Ptolemy ‘saved the phenomena’,
that is, explained the observed motions round the Earth. On what
occasions will the motion of a planet be retrograde (moving back-
wards) as seen from the Earth?

‘The Ptolemaic scheme was efficient and intellectually satisfying’
(Eric M. Rogers). Why was it “efficient’? Why was it ‘intellectually
satisfying’? Suppose that an Alexandrian of the second century
says that the Ptolemaic theory is ‘true’, what would you say in
reply?
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Professor Herbert Butterfield says of Ptolemy that he is . . . one
of those individual makers of world systems . . . who astonish us by
the power which they showed in producing a synthesis so mythical
... that we should regard their work as a matter for aesthetic
judgement alone’ (The Origins of Modern Science).

Is Butterfield being fair to Ptolemy? Write a few sentences of
discussion. (Mythical = purely fictitious; aesthetic = in ac-
cordance with good artistic taste, or with beauty.)

Difficult. Compare and contrast the Ptolemaic theory of the
motions of heavenly bodies with the kinetic theory of motions of
molecules, by considering whether either theory is true, useful
and satisfying, and whether it links up with knowledge in quite
different fields. You need not describe either theory; assume
that your reader understands the mathematics and physics of both, but
has not considered the philosophical implications’.
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10 The search for simplicity or for "truth’:
orbits replace crystal spheres

0

Figure 87
the Copernican system

a. Copy figure 87 and mark on your diagram S (for Sun), M
(Mercury), V (Venus), E (Earth), m (Moon), Mars, Jupiter and
Saturn. (Exact radii do not matter, but make the diagram look
something like figure 87.)

b. What did Copernicus know about the speeds of the planets —
that is, on his model, are they moving faszer farther from the Sun,
or all at the same speed, or more slowly the greater the distance?
¢. Where would you put Uranus, Neptune, Pluto on this scheme?
What might you put round the outside dot in figure 87?
Where would you put the asteroids (little planets)? (All these were
unknown to Copernicus.)
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88 What do you think are the main differences between the Coperni-

89

can system, figure 87, and those shown in the diagrams of section 9
(Pythagorus, Eudoxus, Ptolemy)? How did Copernicus explain the
apparent 24-hourly rotation of the fixed stars?

Apparent
position

of Jupiter
as seen
among the
fixed stars.

Apparent retrograde
motion of Jupiter.
Note how "1234" has
y become "'2134".

Figure 89

Copy figure 89 on a larger sheet of paper so that you have plenty
of space to continue the sight lines such as E,J, farther out
to a ‘sphere of fixed stars’ far out at the edge. Continue the sight
lines and mark the apparent positions of Jupiter among the fixed
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Note:

_stars. Use your diagram to explain the fact that Jupiter sometimes

appears to move backwards (retrograde) against the background of

the fixed stars.

This diagram has been drawn roughly to scale both as regards

distances and speeds of motion of the planets.

90

91
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94

Figure 89 is drawn for one Earth year, that is, one complete rota-
tion of the Earth round the Sun from E, through E,, E; and E,.
Complete the diagram for the next Earth year, E; to Eg (using
Js to Jg). Will this show another period of apparent retrograde
motion of Jupiter?

How would Copernicus explain the following facts?

a. Backward motions are seen only when Sun and planet are ‘in
opposition’, that is, on opposite sides of the Earth.

b. No retrograde motions are ever seen for the inferior planets,
that is, those whose orbits lie between the Earth’s orbit and the
Sun.

How, on the Copernican theory, do you ex?lain the following?

a. Mars appears brighter at some times of the year than at others.
b. Venus is invisible when it is closest to us (two reasons).

a. The Babylonians called the planet Venus ‘Ishtar of the horns’.
Why ¢ of the horns’; can you suggest a reason? Did the Babylonians
have very good eyesight?

b. Explain, preferably with the help of a diagram, why Venus
shows “phases’ like the Moon.

a. Difficulr. Why is it that Venus is at its brightest when seen as
‘half-Venus’ or even less, while the Moon is brightest at full
Moon?

b. Why do we see no phases of Mars or Jupiter? (Use a sketch to
answer.)



96

96

i

10 The search for simplicity or for ‘truth’: orbits replace crystal spheres 43

Venus seen at greatest angle, x, from the Sun,
X = 450-, or more nearly 46°

' Figure 95

Figure 95 shows Venus at a time when, as seen from the Earth,
it appears at its greatest distance from the Sun, that is the angle
SEV (Sun Earth Venus) has its largest value. This largest angle,
x in figure 95, is 46°. Show that the ratio,

radius of orbit of Venus
radius of orbit of Earth

is about 0-72.

a. What sort of observations concerning heavenly bodies are ex-
plained equally well by the system of Ptolemy and that of Coperni-
cus (give some examples)?

b. In what respects is the Copernican system superior to that of
Ptolemy? (If stumped, get a hint from the previous seven ques-
tions.)

Why were people in the sixteenth century (when Copernicus’s
book was published) not very eager to accept his ideas? (There
are a number of reasons of dlfferent kinds, not all directly con-
cerned with physics.).
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11 Laws all planets obey
Kepler’s laws state:

I Each planet moves in an ellipse with the Sun at one focus of the

ellipse.

II The line joining the Sun to a planet (called the radius vector)

sweeps out equal areas in equal times.

III The squares of the times of revolution of the planets (planets’

‘years’) are directly proportional to the cubes of their average
3

distances from the Sun (or % is the same for all the planets).

What do ellipses look like ? The circumference of a circle is drawn
round one fixed point, the centre, and the distance from the centre
to every point on the circumference is the same. The circumference
of an ellipse is drawn round zzo fixed points, the two foci, and the
sum of the distances from each focus to every point on the circum-
ference is the same. In the ellipse drawn in figure 98, S and S? are
the two foci, and P is any point on the ellipse. Then, wherever P
may be, SP - S1P always has the same value.

Draw some ellipses and see what they look like. All circles have
the same shape! Not so ellipses; they can be long and thin, right
down to being nothing but a straight line. Or they can be round,
right up to being circles. Or they can have shapes which are in
between these two extremes.

Figure 98
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Take a length of strong cotton or thread not more than 20 cm long
and tie it into a loop — the one used for figure 98 ended up as a
loop 9-2 cm long when stretched out straight. Put a piece of paper
on wood or wallboard and push into it two drawing pins - those
used for figure 98 were 8:0 cm apart. Loop the cotton round the
pins and place the point of a pencil in the loop. Push the pencil
round, keeping the thread taut. A little practice is necessary. Slope
the pencil slightly outwards so that the thread does not slide under-
neath.

Now try drawing ellipses with the pins (the foci) at different
distances apart. If you use only one pin‘'what do you get?

If SS* = 8-0 cm and the length all round the cotton loop is 18-4
cm, what is SP + S'P? Why? The ‘major’ axis of the ellipse is the
‘big diameter’ through SS*; prove that the major axis also equals
SP + SP.

Draw an ellipse carefully, on a piece of paper. Draw a line from
one focus to some point on the ellipse and a line from the other
focus to that point. Do that for several different points. Now sup-
pose a small lamp at one focus sends out rays of light along the
lines you have drawn. Look at the angles in your drawing. Can
you say where those rays would go after they met the ellipse if the
ellipse were a wall of polished metal acting as a mirror. Try mak-
ing some measurements to check your guess.

Suppose waves (e.g. water ripples) started out from one focus,
where would a reflected ripple arrive, all parts arriving at the same
instant?

Use figure 98 to explain to Uncle George the meaning of Kepler’s
Law I.
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Figure 101

- Kepler’s second law

Use figure 101 to explain to Uncle George the meaning of Kepler’s
Law II. 8

Orbit Orbit R3[T?
radius period R3 T2 (miles)®/

- Planet R (miles) 7 (days) (miles)? (days)? (days)?*
Venus 67 x 107 220 300 x 10* 50 x 103 6-0 x 108
Earth 93 x 107 365 800 x 102t 134 x 103 e
Mars 140 x 107 690 2800 X 102 470 x 103 ?
Jupiter 480 x 107 4300 ? ? ?
Saturn 89-0 x 107 10800 ? ? ?

Complete Table 102 so as to show Uncle George that Kepler’s
Law III is correct for the five planets mentioned. (Noze. The
numbers are known much more exactly than is shown in the table,
but approximations are used here so as to avoid lengthy arithmetic.,
Do not work to more than two, or at the most, three, significant
figures.)

Figure 103 is drawn to show the very small ‘eccentricity’ of the
Earth’s orbit — only 4-0006 cm at ‘maximum’ radius, compared
with 4-0000 cm at ‘minimum’ radius.
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Figure 103

Eccentricity of the Earth’s orbit. This is, of course, drawn simply és a circle,
because 0-0006 c¢m is much less than the thickness of a pencil line

a. The actual radius of the Earth’s orbit is about 150 million
kilometres. How big a difference is there between the smallest
and the largest value of the Sun-to-Earth distance?

b. What do S and S?* represent in figure 103? Actually, bozZ points
are inside the Sun; where exactly is one of them?

Suppose you could fire a projectile straight out, horizontally from
the top of a very high mountain. If you chose the right speed it
would go right round the Earth in a circular orbit — and it would
continue to go round, if it were not for the effect of air-resistance.
If you fired it a little more slowly it would not follow a circle, but
an ellipse, a ‘Kepler ellipse’. If you like, here is how you could
draw some Kepler ellipses for such an ‘Earth satellite’.
Draw a circle, about 2 in. radius, to represent the Earth. Sketch
a mountain £ in. high at one place on that Earth’s surface. Sketch
a circular orbit through the mountain-top, a circle 2% in. in radius
(1000 miles). You can draw that orbit with a loop of thread just
5 in. total length. Put a drawing pin through the centre of the
Earth, place the loop over the drawing pin and pull the thread
taut. Run the pencil round to draw the circular orbit.
(continued)
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An elliptical orbit starting from the same mountain-top must have
one focus at the Earth’s centre, where you already have a drawing
pin. Put a second drawing pin in above the Earth’s centre a short
distance out towards the mountain. Pull the same loop taut and
run the pencil round to draw an ellipse. Do not continue the ellipse
inside the earth!

Suppose the projectile was fired with a faszer speed than is required
for a circular orbit, what would be its path now, and how would
you illustrate this with the drawing pins and the cotton? (Hint, you
would require a larger loop.)

An artificial satellite is elevated by rockets to 2000 miles above
the Earth’s surface, and is then fired off horizontally (i.e. at right-
angles to the line between it and the centre of the Earth). The
intention is to give it exactly the velocity needed to make it follow a
perfectly circular orbit. But, as a result of a miscalculation, al-
though it is fired horizontally, it is given zoo big a velocity.

a. Draw a diagram with the Earth represented by a circle about the
size of a penny, and sketch in an orbit like that you think it might
possibly follow — make sure, at any rate, that it is an orbit which
Kepler would not consider impossible.

b. Write a few sentences discussing the various things that might
happen if the satellite were given too small a horizontal velocity.

Assume that, when fired horizontally, it has no vertical velocity.

Kepler is principally remembered for zwo theories of planetary
motion. One is the elliptical orbits theory, with which the previous
questions of this section have been concerned. The other is an
earlier scheme of placing the planets by means of the five regular
solids.

Describe Kepler’s ‘five regular solids’ theory very briefly. Give
rough sketches if you like, but do not spend a long time drawing
anything complicated.

(Following from 106.) Write about two pages of discussion, ex~
plaining why one of Kepler’s theories is interesting but of no
present value, while the other is regarded as completely successful.
Your brief essay can be written under three headings:
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() which theory best fitted the facts known to Kepler;

(#2) which deals the better with subsequently discovered facts, e.g.
newly discovered planets;

(#77) which theory best links up with other knowledge in quite
different fields, e.g. mechanics?

Perhaps this question is best left until you have learnt a little about
Galileo and Newton.
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Galileo heard that a Dutchman had made an optical instrument
which would make distant things look closer — a “tele-scope’ as
Galileo named it. So Galileo made one himself, then he looked
through it at objects in the heavens.

Sometimes scientists use instruments in order to provide senses
with which the human body is not equipped, e.g. apparatus for
detecting and measuring radio waves. More often instruments are
used to extend in some way the range and sensitivity of the senses
we already possess. The zelescope is one of the second kind of
instrument.

a. Obviously a telescope is useful because it makes distant things
look bigger and we see greater detail. What other useful function
does a telescope perform besides making things look bigger?
(Noze. The name ‘tele-scope’ seems to refer more to this second
function than to the first.)

b. How can it perform this second function? (Hinz. Think of the
size of a telescope lens and the size of the human eye.)

¢. You have convex lenses of about 30 cm and 5 cm focal length,
and a means of mounting them and sliding them up and down on a
metal rod. You also have a piece of tissue paper. To make a tele-
scope,

() which lens would you take first, and whereabouts on the rod
would you mount it?

(%) what would you do with the tissue paper?

(#i7) where would you put the second lens?

(7v) at what position would you expect to have your eye when
looking through the telescope — up against the lens? — 25 cm from
the lens? ~ or where?

a. Galileo’s telescope was not quite like the one in (c) above. What
lenses did he use? What is the name of an optical instrument in
use today which has Galileo’s telescopic arrangement of lenses?
b. If you can, obtain a long-focus convex lens and a short-focus
concave lens, and make a Galileo telescope, even if you only
hold the lenses in your two hands. What advantages has it over the
‘two-convex’ telescope in 108? (It also has disadvantages, and is
not much used for astronomical purposes.)
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‘Galileo looked through his telescope at the planet Jupiter and
saw some small stars near it. Next night the star pattern had
changed. Waiting impatiently through a cloudy night, Galileo saw

one night, later still, that the pattern had again changed.’
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Galileo’s observations of Jupiter’s moons

These sketches are copied from Galileo’s handwritten record. The orbits of the
moons are nearly in a plane containing our line of sight ffom Earth to Jupiter;
so the moons are often in front of Jupiter or behind, and they are often eclipsed
by moving into Jupiter’s shadow. They move quickly round their orbits. That
is why the pattern changes so quickly and why, often, less than four moons are
visible. (For a copy of Galileo’s written record, see Galileo, by J. J. Fahie.)

Figure 110

‘It was clear that the small stars were moons (satellites) moving
round ]up1ter Delighted with this, Galileo published a full des-
cription and claimed Jupiter and the Jovian moons as strong

support for Copernicus’s idea of the solar system.’

a. How did the discovery of these satellites support the Copernican
view as against that of Ptolemy?

b. Why did the discovery bring Galileo into trouble with the
Church authorities?

¢. Mention two other things besides the satellites of Jupiter. that
Galileo saw through his telescope and whlch were ‘disturbing to
the traditional view’,
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Galileo, like Copernicus, considered that the Earth was just one .
member of the solar system and that there was no evidence that it
was any more important or distinguished than the others. He also
developed and taught, though in an unfinished form, a new view of
force and motion. But a precise statement of the laws of motion,
and of gravitation, and their application to bodies both in the
heavens and on Earth had to wait for Isaac Newton, who built
upon the work of Kepler and Galileo.

The Moon, of mass m, rotates in an orbit round the Earth with
radius R. Let v be its orbital speed, and let ¢ be the value of the
Earth’s gravitational acceleration at the Moon. Then we can write

R

a. What do the expressions on the two sides of the above equation
represent, and why can they be put equal to each other?

b. If T == time for one revolution of the Moon round the Earth,
then,

s
v
Why is this?
¢. Show by algebra that,
T2 — 47°R
g

a. Use the last equation (111 (¢)) to calculate T for the Moon,
taking,

£ = 10 metres per second per second.
R = 400,000 kilometres.

100
9

correct value for the period of one revolution of the Moon roun
the Earth? '

b. Did you get the result —5-, or about 11, hours? Could this be a

a. The answer to 112 (b) is incorrect because we have assumed
that g is the same whatever the distance from the Earth. Clearly
g must diminish with distance. The simplest assumption was that
g is inversely proportional to distance. If g¢ = 10 metres per second
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per second at the Earth’s surface, what is g at the Moon, 60 times
as far from the centre of the Earth?

b. Use this value of g to calculate T for the Moon. Does this result
agree with observation?

a. The answer to 113 (b) does not fit the facts either. Let us follow
Newton and use an inverse square law.

What value does this give for g at the Moon which is 60 times as

.far from the Earth’s centre as the surface of the Earth?

b. Now return to the previous question and calculate T for the

Moon. T/is value should be correct, within the approximations
we have made.

Newton’s law of gravitation can be represented by the equation,

F— GA;Im
r

where F is the gravitational attraction between two masses M and
m at a distance r apart.

a. In this equation, why does #? appear in the denominator?

b. What experiments show us that F is proportional to m, that
is, what experiments show that the force exerted by one body
(which may be the Earth) on another depends on the mass of the
other?

¢. By what argument did Newton decide that F is proportional to
m and M, that is, Mm?

d. Why is G called a ‘universal constant’? ,
e. How do you know, from common observation, that G, when
measured in our metre-kilogram-second units, must have a very
small value?

(Hinz. Think about two masses each of 1 kg placed 1 metre apart.)
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Remembering that the weight of an object of mass # at the Earth’s
surface can be written mg, where g is gravitational acceleration at
the surface, show that

M R2
g=GE§,or ngA—/I

where R = radius, and M = mass, of the Earth.

In earlier work we have seen that ‘gravitational acceleration’, re~
presented by g and measured in metres per second per second,
may equally be called gravitational field strength’, and be mea-
sured in newtons per kilogram.

Show that, )
1 metre per second per second = 1 newton per kilogram.

(Hint. Use F = ma.)

2 .
You might think we could use the equation G = g% (question

116) to calculate G, but of course we do not know. M, the mass of
the Earth. In fact, we have to determine G in the laboratory, or
outside, and then use the equation to find M.

By what sort of experiment (in principle, not in detail) could we,
in the laboratory, find the value of G?
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a. Jack and Jill are attracted to each other, and tend to come to-
gether. Could any appreciable portion of this attraction be gravita-
tional? Calculate the gravitational attraction they have for each
other when they are 2 metres apart, given that,

the mass of Jack = 70 kg
the mass of Jill = 60 kg
G = 6'6 X 107" newton-metres? per kilogram?

Express your answer in newtons. Make a rough estimate of how
this answer compares with the weight of the tiniest piece of paper
you could tear off. (Note. This question is not entirely silly. It
shows the difficulty of measuring gravitational forces between
objects in the laboratory, even if they are ‘bodies’ denser than those
of Jack and Jill, lumps of lead or platinum, for example.)

b. Where did the ‘newton-metres? per kilogram?’ come from?

¢. Taking this question more seriously than it deserves, and re-
membering the shape and size of Jack and Jill, what exactly do you
think is meant by saying they are ‘2 metres apart’?
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13 Applying Newton’s laws of motion and of
gravitation

The gravitational law may be stated as an equation (see question
115),

F=c2r

The laws of motion may be stated,

I Any object remains at rest, or continues to move with constant
speed in a straight line, if it is left alone; that is, if there is no re-
sultant (unbalanced) force acting on it. /

II A force acting on an object makes it accelerate in the direction
of the force. The acceleration is given by,

Force = mass X acceleration, or F = ma.
We may also write,

Force X time = change of momentum, or,
Ft = change of mw.

III When one object pushes or pulls another, the other always
exerts an equal and opposite push or pull. This is true whether the
objects are at rest, moving with constant velocity, or accelerating.

Using these laws as starting-points, Newton ‘derived’ or ‘ex-
plained’ or ‘predicted’ the following:

1 The Moon’s motion round the Earth, controlled by inverse-
square-law gravity (Newton’s original test).

2 Kepler’s Law I. Planets’ orbits are ellipses with Sun in one focus.
3 Kepler’s Law II. Arm from Sun to planet sweeps out equal areas
in equal times (shown to be true for any ‘central’ force pulling a
planet straight towards the sun).

4 Kepler’s Law III. (Orbit radius)?/(Planet’s year)? same for all
planets of the solar system.

5 Planet’s moons: same rule applies to all the satellites of a planet,
but with different value of constant (e.g. Jupiter’s moons and now
Earth’s satellites).
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6 Comets, until then lawless and mysterious, follow elliptical orbits
according to Kepler’s Law I, as members of solar system. Times of
comets’ returns predicted successfuily.

7 Relative masses of Earth and Sun, Earth and Jupiter, etc., esti-
mated through Kepler’s Law III (estimate can be made for any
two bodies which own satellites).

8 Shape of Earth must be oblate spheroid: proportion of radii
estimated.

9 Small differences of g predicted: due to shape of Earth and due to
Earth’s spin: both make measured g slightly smaller at equator.
10 Ocean tides, due to differences of Moon’s attraction. (Two tides
in 24 hours predicted.)

Similar tides due to Sun are smaller; added to Moon’s tides, they
make spring tides, subtracted they make neap tides. (Relation with
phases of Moon also predicted.)

11 Mass of Moon estimated by treating our ocean tide as a satellite
of the Moon.

12 Precession of the equinoxes: shown to be consequence of gra-
vitational pulls of Sun and Moon acting on the equatorial bulge of
the spinning Earth. The 26,000-year period predicted roughly.

13 Irregularities of the Moon’s motion. The elliptical orbit changes
its ellipticity and moves round in its own plane; the plane of the
orbit slews round slowly ; and the Moon shows small extra monthly
and yearly accelerations. All are symptoms of small differences of
Sun’s gravitational pull. Newton predicted several, tested some of
them.

14 Perturbation of planetary orbits. Each planet is affected slightly
by the gravitational pulls of other planets. Newton started the
prediction of these small perturbations.

- Discovery of Neptune. Long after Newton’s death, when the planet
Uranus had been discovered, it showed small residual perturba-
tions from its expected orbit in addition to the effects of known
planets. From these, Adams and Leverrier independently pre-
dicted the location and size and orbit of an unknown planet that
could produce these tiny perturbations by inverse-square-law
gravitation. Then the planet was seen: a triumph of Newtonian
theory.
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Questions 111 and 114 dealt in a simple fashion with the first
of Newton’s ‘predictions’, listed above. The second, Kepler’s
Law I, is mathematically difficult. The third, Kepler’s Law 1I,
does not depend on inverse square gravitation. The fourth, Law
111, is the subject of question 122.

Take any one of the others, 5 to 14, say what it means and give as
much as you can of Newton’s explanation.

a. ‘Prediction 3’ above, Kepler’s Law II. Draw a diagram of a
planet moving in an ellipse round the Sun, and use your diagram
to help you to explain what is meant by ‘Arm from Sun to Planet
sweeps out equal areas in equal times’. ,
b. Describe some simple demonstration of Kepler’s Law II, for
spinning bodies, that you have seen. Say what was done, and what
happened.

‘Prediction 4°, Kepler’s Law III. If you turn back to question
102 you will see how the Law III can be verified from observations
and measurements for five planets of the solar system. We can also
test this Law for other satellite systems, e.g. the ‘Jovian System’,
for which figures are given below. We could, of course, convert
the figures for R into metres by multiplying by the diameter of
Jupiter in metres, but that is not necessary in order to test Law IIL

Jupiter’s satellites and Kepler’s Third Law

Orbit radius in Time of

Jovian diameters revolution in
Satellite (R) hours R? T R3|T?
To 30 42 27 18 x 10? 1-5 x 10?
Europa 4-8 85 110 72 x 102
Ganymede 7-7 172
Callisto 135 400

Complete the above table.

Read the passage on the next page headed De Mundi Systemate.
You need read only the English. The diagram is from Newton’s
book, together with his own latin, and dates from 1726. The
translation was made a year or so later. Copy the diagram and
write a brief description of what it illustrates, in good twentieth-
century English!
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DE MUNDI SYSTEMATE

non amplius in terram caderet. Designet AFB superficien Terrae;

e centrunm ejus; & VD, VE, VF, li-
nees curvas, quas projectile de mon-
tis praealti vertice v, secundum li-
neas horizonti parallelas, auctis cum
velocitatis gradibus, successive e
missum describat. Et ne a¥ris re-
sistentia, qua motus coelestes vix
retardantur, in computum veniat,
fingsmus hunc omnem tolli, vel
saltem nil resistere. Et eadem ra=-

Figure 123

NEWTON’S SYSTEM OF THE WORLD
¢3. The action of centripetal forces.

That by means of centripetal forces the planets may be retained
in certain orbits, we may easily understand, if we consider the
motions of projectiles . . .; for a stone that is projected is by the
pressure of its own weight forced out of the rectilinear path, which
by the initial projection alone it should have pursued, and made to
describe a curved line in the air; and through that crooked way is at
last brought down to the ground; and the greater the velocity is
with which it is projected, the farther it goes before it falls to the
earth ...

Let AFB represent the surface of the earth, C its centre, VD, VE,
VF the curved lines which a body would describe, if projected in an
horizontal direction from the top of an high mountain successively
with more and more velocity . . . let us suppose either that there
is no air about the earth, or at least that it is endowed with little
or no power of resisting; and for the same reason that the body
projected with a less velocity describes the lesser arc VD, and
with a greater velocity the greater arc VE, and, augmenting the
velocity, it goes farther and farther to F and G, if the velocity was
still more and more augmented, it would reach at last quite beyond
the circumference of the earth, and return to the mountain from
which it was projected.’
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Take another of the ‘predictions’, 5 to 14, not the one you chose
for your answer to question 120, say what it means, and give as
much as you can of Newton’s explanation.

Look at the chart on pages 60-61, which runs from ‘primitive
man’ to Einstein. You may have seen a larger version of this with
the three pieces put together into a single ‘tall chart’.

Study this for about ten minutes — you are sure to find something
of interest in it. Now choose some small part of it and write for a
quarter of an hour about that, or about some thoughts it suggests
to you.

Look again at the chart. It would not be sensible to try to c6py out
that huge diagram — it is just a picture that someone drew to re-
mind you of the growth of knowledge. Copying it out or trying to
learn it by heart would not be learning science. But you could
develop your knowledge of science if you developed your own
version of such a chart. Try drawing your chart of some part of
the story, not trying to copy it from this one but starting afresh,
thinking and reading and then making your own sketch.

Turn back to section 9, and look at questions 82 and 83, the
planetary schemes of Eudoxus and of Ptolemy. Think also of
Newton’s planetary scheme of elliptical orbits under inverse
square law forces.

a. The schemes of Eudoxus and Ptolemy are very good ‘models’.
Why?

b. But the Newtonian scheme is a much better kind of model.
Why?

’
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14 Things moving backwards and forwards.
Experiments with a pendulum

Ave)
Oy
B el
= it}
Figure 128

Look at any kind of to-and-fro motion that is smooth and not
jerky, e.g. a pendulum or a trolley attached to two horizontal
springs (figure 129) or a mass on the end of a vertical spring
(figure 128). Let O be the rest position or centre position of the
motion, A one extreme position and B the extreme position in the
opposite direction. A and B are the positions where ‘displace-
ment’ of the mass from its rest position is a maximum. Copy and
complete the following table. If you choose a horizontal motion
you can say ‘left’ and ‘right’ instead of ‘up’ and ‘down’.

position displacement velocity acceleration

A maximum Zero maximum
upwards downwards

0 maximum '

B up OR down

Explain why there are two answers for velocity at O.

B

Figure 129

Figure 129 shows a trolley attached to two springs stretched
horizontally. The mass of the trolley can be increased by loading
it with pieces of anything suitable or even a second similar trolley
placed upside down on top of it, thus doubling the mass. (Anything
placed on the trolley must be firmly attached so that it does not
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slide about when the trolley moves.) The ‘stiffness’, or ‘spring
factor’, may be altered by using stronger springs or by using four
similar springs instead of two, thus doubling the ‘spring factor’.

a. What kind of motion do you see when you displace the trolley
and then release it?

b. Why does it do this; that is, why doesn’t it simply come back
to the rest position and stay there?

c¢. If masses are loaded on to the trolley, what do you expect to
happen to the trolley’s ‘time of oscillation’ (the time it takes to
move to and fro or one complete cycle)? Why does this happen?
d. If four springs are used instead of two, what do you expect to
happen to the time of oscillation? Why does this happen?

e. What would you do experimentally to find out whether doubling
the mass factor has the same effect on the time of oscillation as
halving the spring factor? (Hint. As well as the straightforward
obvious tests, there is an ingenious one. Can you think of it?)

Question 128 was'about displacements, velocities and acceleration
of particles moving with a to-and-fro motion. Question 129 was
concerned with mass and ‘springiness’. In your own investigations
in the laboratory, did you find out anything that is not included
under the first two questions? If so, what? (Say what you did and
what happened, and, if possible, give an explanation.)

SIMPLE HARMONIC MOTION: what meanings do these three words
have? Motion is easy; first we have had motion-in a straight line,
then circular motion and now to-and-fro motion. These are kinds
of motion that occur naturally, and which can fairly easily be
expressed mathematically.

Why ‘simple’? Of the many kinds of to-and-fro motion, only one
kind is called ‘simple’. Simple harmonic motion (SHM) is a to-
and-fro kind of" motion which is the simplest to deal with by
mathematics. In an SHM the acceleration towards the ‘rest
position’ (O in figure 128) is “directly’ proportional to the distance
from the rest position. At 2 cm distance from the ‘rest’ or ‘zero
displacement’ position the acceleration is twice as much as it is at
1 cm distance. This makes the mathematics simple, but even so,
you will not have to worry with the maths during the present year.
Harmonic motion refers to ‘the kind of motion that produces
musical notes’; in other words, it is another name for to-and-fro
motion, because that is the kind of motion (provided it is fast
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enough) that produces a musical sound. (Simple harmonic motion
produces a single ‘pure’ musical note.)

a. How would you show, to your own satisfaction, that objects
that produce sound are vibrating?

b. What is meant by ‘frequency’ of vibration? What relation is
there between frequency of vibration and the pitch of the note
produced?

Experiments to try at home

1 Make a flat soap film (a soap bubble on a wire frame, or between
thumb and finger held to make a circle). Whistle through the film
and watch it. What do you see? Can you give a scientific explana-
tion? ;

2 Make a tiny tambourine by pasting a piece of tissue paper across
a small metal or cardboard ring. Put a few grains of sand on it and
sing or whistle to it.

3 Get a large fork from the kitchen. Hit its prongs and listen,
holding it close to your ear. Then try dipping the tips of the prongs
in water just after you have hit them: watch.

4 Drive two nails in a piece of wood about 6 in. apart. Stretch a
rubber band between them. Stick a tiny piece of mirror (from a
broken powder-compact mirror) across the two rubber strips, near
the centre, using a little rubber cement. Shine a beam of light on
the mirror (sunlight does well) and watch the reflection on a wall
when you twang the rubber band.

a. If the acceleration of an object towards a fixed point - the ‘rest
position’ ~ is proportional to its displacement from that point,
then the object moves with SHM (that is the definition of SHM).
It follows that the force tending to return the object to the rest
position must be proportional to its displacement: why does this
follow?

b. A mass on a spring, when displaced and released, vibrates with
SHM if the spring ‘obeys Hooke’s law’. Why is this?
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Figure 134

Diagrams (a) to (f) above show a small ball-bearing ball which can
move on six different surfaces. In (a) and (b) the ball is given a
small push. In the others the ball is held in place and then re-
leased.

(7) In some of the cases the ball will not oscillate at all. Which?
(7)) In some cases the ball will oscillate, but not with SHM.
Which?

(iiz');In one case the ball may very well oscillate with SHM. Which
one?

Write a few sentences about positions (¢) and (f).

Figure 135

Figure 135 shows a carbon dioxide puck resting on a smooth
horizontal surface — a bird’s eye view, seen from above. It is tied
to two fixed pins A and B by two equal lengths of elastic, both
‘slack’, as shown. The puck is moved at right angles to AB, so
that the elastic threads become taut and stretched. It is then re-
leased. Do you think its motion will be simple harmonic? Give a
reason for your answer.
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a. An experiment to be tried at home, or rather, outside your
home! You need a path of asphalt or concrete or anything that
shows up a water trace. You also need an empty fruit can with the
top taken off, a hammer and a medium-size nail.

Use the nail and hammer to bang four holes, equally spaced, under
the top rim of the can. Put a piece of string through the holes so
that you have two loops you can hold in your hand, and on which
you can allow the can to swing. Knock a small hole in the bottom
of the can.

Now fill the can with water and let it swing steadily to and fro
across the path while you walk forward at a steady rate (best
practise this over grass or gravel first, if the supply of path is
limited.) The water makes a trace on the path; sketch the general
shape of the trace you get. What is the mathematical name for a
smooth curve of this type?

b. (srill more messy) Bang the exit-hole in the side of the can near
the bottom, instead of in the bottom. Hang the can from a strong
spring, so that it can bounce up and down, with SHM. Hold it
near a wall, or a vertical sheet of cardboard, which catches the
spouting water. Make the can bounce up and down and watch
the water mark on the wall. Then give the can a rwist as well, so
that the water mark also moves horizontally. If you add a piece of
string above the spring this horizontal motion can be practically
uniform, as the string twists.

¢. With the same can on a string, with no spring, try making the
can swing to and fro as a pendulum, while the water spouts out
horizontally and hits a vertical sheet of cardboard. Then draw the
cardboard quickly, smoothly, upward, to obtain a time graph of
pendulum motion.

Describe a demonstration you have seen of an SHM, produced as
a ‘projection’ of a circular motion. Draw a diagram, and say what
you observed.

a. What is meant by the ‘amplitude’ of a vibration or oscillation?
b. What is meant by the ‘period’? In what units is it measured?
¢. What is meant by the ‘frequency’? In what units is it measured?
d. A very short pendulum makes two complete swings to and fro
per second. What is its period?

e. What is the period of ¢50-cycle alternating current’?



15

140

14 Things moving backwards and forwards. Experiments with a pendulum 68

a. By what experiments would you find whether the period of a
pendulum depends on -its amplitude? What result would you
expect?

b. What experiments would you perform in order to discover
whether the period of a pendulum depends on the mass of the
bob? What result would you expect?

In order to find how the period of a pendulum depends on its
length, you ‘timed’ the pendulum for various lengths, and then,
by dividing by the number of swings you counted, you found the
period, T, for each length, /. You then plotted T against / and then
T against /. i

S

a. Why is it more useful to plot T2 against [?

b. Figure 140 (b) shows a pendulum with the top end of its string
clamped between two pieces of wood. Copy the diagram and show
on it exactly what length you would measure in order to find /,
the ‘length of the pendulum’.

fi\ ™~ o~

‘o) 0 O
C—> Lo L r s
(b) (e) (at_)

Figure 140

c. Figure 140 (¢) shows a badly fastened pendulum. Does this
pendulum oscillate in SHM? Why not?

d. Hard. Figure (d) shows another badly fastened pendulum. What
would it do? (continued on next page)
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e. A pendulum of length 1-0 metre has a period of 2-0 seconds.
What is the period of a pendulum of length,

(#) 2:0. metres?

(7%) 4-0 metres?

(#17) 0-5 metres?

Difficulr.

a. Suppose the trolley-and-springs arrangement, see figure 129, is
taken from the Earth to the Moon. Freddie Jones thinks that its
period of oscillation would be found to be the same as on the
Earth. Do you agree with him? Give the reason for your answer.
b. A spring with a mass attached to it (see figure 128) is taken from
the Earth to the Moon. It is found:

(¢) that, when the spring is held vertically in the usual way, it
stretches less than it does on Earth;

(#) that, when the load is allowed to oscillate up and down, the
period of oscillation is the same as on the Earth.

How do you explain these two results?
¢. A pendulum (see figure 140 (b)) is taken from the Earth to the

Moon. Its period is found to be greater than on Earth. How do you
explain this?
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i

Figure 142

142  Difficult. A pendulum consists of a light conducting ball on a fine
insulating thread. It swings above a metal plate held on an in-
sulating handle (figure 142). The ball is charged positively. What

difference will it make to the period of the pendulum if the plate is
charged: '

a. negatively;
b. positively?

Give the reasons for your answers.

Also,

¢. do you think the pendulum, in (a) or in (b), still oscillates in a
simple harmonic motion? Give the reason for your answer.
d. suppose the ball is charged (+) as above but the metal plate is

connected to ground. Would there be any difference? Give the
reason for your answer.
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15 Electric charges moving backwards and
forwards: alternating currents

Section 14 was concerned with oscillation of material objects; this
section deals with oscillation of electric charge.

Figure 143 shows a generator, such as a bicycle dynamo (BD in
the diagram) joined to a small lamp and to a-meter, X. Say what is
noticed in (a), (b) and (c) below.

(2)milliammeter
b)DC volimeter
c)#C voltmeter

T~

- Figure 143

a. The dynamo is turned very slowly, and X is a milliammeter
(possibly with a resistor in series, so as to keep the pointer de-
flexions on the scale).

b. X is a voltmeter designed to work with ‘direct current’ genera-
tors or batteries, and the dynamo is turned sufficiently rapidly to
light the lamp.

¢. The dynamo lights the lamp, and X is a voltmeter intended for
use with alternating-current generators.

A narrow beam of electrons from an electron gun E, figure 144,
travels along an oscillograph tube, past the plates P and Q, and
makes a spot at the centre of the screen.

Figure 144
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a. Draw a sketch of the tube showing what happens when the
switch S is closed.

b. Draw a second sketch showing what happens when the switch
is closed after the battery has been reversed, - for —

¢. Next, the bicycle dynamo of question 143 is connected in place
of the battery. Draw a third sketch showing, by shading, all pos-
sible positions the electron beam might occupy during a time
interval of, say, 1 second, when the dynamo is turned rapidly.

Only the plates and the electron beam need be drawn for () and

(©)-

The secondary winding of a transformer is now joined in place of
the three cells in figure 144. The transformer, when joined to a
6-volt bulb, lights it with the same brightness as the cells gave
before. Draw the appearance as seen on the, screen at the end of
the tube:

a. with the battery;
b. with the transformer.

A “time base’ is now applied to the oscillograph in figure 144. This
causes the spot to move across the screen from left to right at a
steady speed The spot then travels back from rlght to left very
quickly in almost no time at all
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(1)

(i1)

(ii1)

(iv)

v)

90000

Figure 146

Five experiments are done, in which the plates P and Q are either
joined together or joined to a battery or a.c. supply; see A to E
below.

A = P and Q joined together, no battery or a.c. supply.
B = battery, P joined to +, Q to —

C = battery, P joined to —, Q to +

D = a.c. supply, 50 cycles per second

E = a.c. supply, 100 cycles per second.

Each time a sketch is drawn (see diagrams 1 to 5 at the side) show-
ing what is seen on the screen. Unfortunately nobody labelled the
sketches A, B, C, etc.
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a. Say which sketch is A, which is B, and so on.

b. What was the period of the time base; that is, how long did the
spot take to go across the screen and return to start again? Give the
reason for your answer.

The supply of electricity to houses in a certain city is stated by the
local Electricity Board to be ‘230 volts a.c.’. When this supply is
applied, in a suitable manner, to a cathode-ray oscillograph, the
voltage is found to swing from --325 volts to —325 volts (figure
147).

+ 325
\volts

W 55

Figure 147

a. Is the Electricity Board wrong in calling this 230 volts a.c.?

b. If the board is not wrong, what do they mean by calling this
€230 volts’?

¢. What is the peak voltage of the supply shown in figure 1472
What is the average voltage?

What is the R.M.S. (root mean square) voltage?

(Choose your answers from the three values, 0 volt, 230 volts,

325 volts.)

Look back to question 145. Note that the 6-volt battery and the
a.c. transformer both light the bulb with the same brightness, that
is, normally bright

a. What is the peak voltage of the a.c.?
b. If the spot on the screen is displaced 1-5 cm when the battery

is applied, how wide is the trace seen on the screen when the
transformer voltage is applied?

Root mean square voltage or current is —\—% of peak voltage or

current.
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A d.c. voltmeter is joined across a ‘very slow a.c.’ supply (figure
149). A ‘load’ consisting of:

ka) =N

) el
© EEEEE

"slow” D.C.
A.C. voltmeter

Figure 149

a. a resistor,

b. a capacitor,

¢. an inductance,

is joined to the supply, and the current through the load is mea-

~ sured on a d.c. milliammeter. You may assume that supply, load

and meters are correctly matched so that easily observable readmgs
are obtained.

In each case, (), (b) and (c), what would you notice about the
readings of the two meters?

Look back to question 149. If a rectifier were joined in series with
the milliammeter, what would then be your answer to (a), that is,
with the resistor?
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76
16 Revision of Year lll work on waves.
SHM and wave motion

One example (A) of wave motion is given below, together with the
way in which it is started, what it is that oscillates and whether
it oscillates at right-anglés to the direction of motion, or in the
direction of motion. Copy this, and add two more examples, B
and C.

Example A Example B Example C

Wave: stretched string
How set up:  plucked sideways
What
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