

A 507.12 TAY

Project Director John Taylor

Editorial Team Jackie Hardie Peter Llewellyn Colum Quinn Keith Roberts

Language Consultant Grahame Mitchell

This book from an original manuscript by Sister Andrew, M. Morgan and W.J. Hoare.

Contents

1	Examining fibres		1	
	Durning fibres		,	
2	Burning fibres		4	
3	Paper		8	
4	Making fibres		11	•
5	The strength of fibres		14	
6	The wear of fabrics		18	
7	Fabrics as insulators		20	
8	Shrinkage		23	
9	Detergents		26	
10	Fabric brighteners		30	
	Acknowledgements-	-inside	back	cover

This book is to be returned on or before the last date stamped below. 1986

© 1979 by Addison-Wesley Publishers Limited West End House, 11 Hills Place, London W1R 2LR Philippines copyright 1979 by Addison-Wesley Publishers Limited.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the publisher.

ISBN 0 201 14000 4

Designed, set and illustrated by Parkway Group and printed in Great Britain by Pindar Print, Scarborough

ABCDEF 79

Examining fibres

Looking at fibres

Apparatus

- \star labelled samples of fabrics \star 2 slides ★ dropper ★ tweezers

"NNNN

marin

★ beaker of water

11)

★ microscope

★ lamp

You are going to look at different fibres.

Copy this table.

Put the slides under a microscope. Look at the middle and end of the fibre (Use low magnification.)

- Which fibres were twisted?
- Which fibres were covered in scales?
- Which fibres were made of 04 smaller fibres?

Examining fibres

Information: Cotton

Cotton fibres come from a bushy plant which grows in tropical countries. Cotton fabric is made in the following way.

When a cotton flower (left) dies it leaves behind seed pods called **bolls.** The bolls ripen and burst open, leaving fluffy cotton fibres (right). These are collected.

In cotton mills in countries like England and India, the picked cotton is torn apart by machines. This makes **lap**, which is like cotton wool.

A machine pulls the fibres of lap into thick ropes or **slivers.** These are combed to remove any short fibres. The slivers are then drawn out and spun into yarn. This is woven into fabric, like the towels in the photograph.

Q8 What is a cotton boll?

Q9 Why is cotton combed after it has been made into slivers?

- Q10 Name three countries where cotton is grown.
- Q11 Name some of your clothes that are made of cotton.

2 Burning fabrics

Identifying fabrics by burning

Apparatus

You are going to identify fabrics by burning them.

Copy this table.

Fabric	Did it melt	Did it burn-fast,	Was the burned fabric	Did the burned fabric	Fabric
name	on the lid?	slowly or not at all?	light, dark or black?	bend or snap?	number

Hold the second half of the fabric in a Bunsen flame. Record in your table how it burns.

When the burned fabric is cold, try to bend or snap it. Record the result in your table.

F Use the chart on the next page to identify your numbered fabrics.

other fabrics.

Repeat steps A to D for the

Information: Fabric identification chart

How would you tell the difference between wool and silk? (Clue: look at the work you did on page 1.)

Burning fabrics

Information: Flame resistant clothing

All fabrics are affected by heat.

Fabrics used for clothing must withstand the heat of washing and ironing.

Clothes must not catch fire easily. For example, children's night-clothes must be flame resistant. If children are in a room with a fire, a fire guard should be used.

This label tells you that the nightdress is flame resistant.

If a person's clothes catch fire, he must immediately be rolled in a rug. This keeps out the air.

- Q7 When do clothes get hot?
- Q8 How would you find out if a nightdress was flame resistant?

What must you do if a person's clothes catch fire?

Paper

Looking at the fibres in paper

Apparatus

- * newspaper
- * strawboard

★ paper towel

- ★ drawing paper
- * handkerchief tissue
 - * lamp

- ★ small sheet of black paper
- ★ blotting paper
- ★ clear tape

★ glass slides ★ microscope

You are going to find out what sorts of fibres make up different types of paper.

Which paper has the shortest fibres?

Which paper has the thickest fibres?

Making paper

Apparatus

★ cotton wool

★ mortar and pestle

- ★ a piece of felt or blanket ★ pencil
 - ★ felt tip pen
- ★ rolling pin ★ wire gauze
- ★ 2 sheets of metal ★ beaker of water

You are going to rearrange the fibres in cotton wool to make paper.

Information: Paper

Paper is made from fibres. Usually, the fibres come from wood. Sometimes, they come from rags or small plants.

The stages in paper making.

Recycling

Waste paper can be used again, or **recycled.** A de-inking process is used. The paper made is often of poor quality, and used for packing.

- Q8 What do all the materials used to make paper have in common?
- Q9 Why is wood pulp bleached?
- Q10 What does recycling mean?
- Q11 Why is it important to recycle paper?

4 Making fibres

Making nylon

Apparatus

- ★ 5 cm³ beaker
- ★ solution A
- ★ solution B
- ★ safety glasses

★ gloves

★ tweezers ★ glass rod

You are going to mix two chemicals to make a fibre, nylon.

Wear safety glasses and gloves. If any chemicals are splashed on your skin, wash them off immediately with soap and water.

Where in the beaker does the nylon form? Why is this?

Making fibres

Making fibres

Information: Man-made fibres

Until 70 years ago, all cloth was made from natural fibres. Some natural fibres are still used – as in this wool jacket.

Rayon was the first man-made fibre. It is made from wood pulp or cotton. Because it looks and feels like silk, it is called 'artificial silk'. These rayon fibres are being pulled from an acid ''bath'' and wound.

Nylon

Nylon is another manmade fibre. It is made from chemicals. The chemicals come from coal, oil or natural gas. The photograph shows nylon being spun.

Nylon was first produced in about 1935. It is used to make many things – strings for tennis racquets, the covers of tennis balls and cloth for these tracksuits.

- Q4 Name a natural fibre.
- Q5 What was the first man-made fibre?
- Q6 When was nylon first produced?

- Q7 What properties does nylon have?
- Q8 Why did you use filter paper in the making of rayon?

The strength of fibres

Testing thread to destruction

Apparatus

★ ruler

- \star clamp and stand \star a weight hanger and slotted weights \star "G" clamp

 - ★ pieces of sticky paper ★ samples of threads of equal thickness
- ★ split bung

You are going to find the strength of different threads. (Threads are made by twisting fibres together).

Copy this table. (You need one table for each thread you test.) Q1

200 300 400 600 700 800 900 Mass (weight) added to thread (grams)

Which thread held the heaviest mass (weight)?(This is the strongest thread.)

100

Which thread stretched the most?

Which was the weakest thread?

1000

Information: Ropes

.

The ropes on this sailing ship were made of natural fibres – Manila and Sisal. Some ropes were thicker than others, for extra strength. The problems with natural fibres are that they rot, and that the colour and stiffness cannot be changed.

The strength of fibres

Making ropes

- Q6 Which natural fibres are used to make rope?
- Q7 Put in order of size: yarn, rope, strand, fibre.
- Why are yarns twisted one way, and strands the other?
- Q9 What are the advantages of using a rope made of man-made fibres?
- Q10 What can damage ropes made of man-made fibres?

6 The wear of fabrics

Investigating wear

- Apparatus ★ wear wheel ★ stop clock ★ samples of fabrics ★ scissors ★ glue You are going to find out which fabrics stand up to the wear (rubbing). Copy this table. Q1 Piece of worn fabric Piece of unworn fabric Number of Fabric Name of fabric Fix the other half of A Cut each piece of fabric in half. Stick one half in the each piece on the wear "unworn" column of your wheel. Record the number of each fabric in your table. table. Turn the wheel for 5 D Take the fabrics off the minutes, making sure the wheel. Stick them in the "worn" column of your sandpaper touches the fabrics. table.
 - In which fabrics did holes, tears or loose threads appear?
 - Q3 Which fabrics became shiny?

In which fabrics did the colour or pattern fade?

Information: Standing up to wear

The fabrics of clothes and furnishings are rubbed each time they are used. They are also rubbed during washing. The lifetime of a fabric depends on how it stands up to this wear. Some fabrics have better wear resistance than others.

Making fabrics stronger

Children's clothes take a lot of wear. This fabric is a mixture of wool and polyester. The wool gives the fabric warmth and the polyester strength.

This jacket has patches at the cuffs and elbows to increase wear resistance. It will last longer if it is made from good quality wool. Hand-woven fabrics are tougher than machine-woven fabrics, because the fibres are woven at a lower tension.

What does wear resistance mean?

Write down two ways of making fabrics stronger.

How could you make the knees of a pair of trousers stand up to wear?

7 Fabrics as insulators

Investigating fabrics as insulators

Apparatus

Copy this table.

Time (minutes)	0	2	4	6	8	10	12	14	16
Water temperature CC), vessel covered in fabric 1									
Water temperature (C), vessel covered in fabric 2-									
Water temperature CC), vessel surrounded by air									

A Boil about 100 cm³ water in a beaker.

B Tape fabric 1 around the copper vessel.

C Put the fabric-covered vessel in a glass beaker.

Fabrics as insulators

Draw a graph like this of your results. Plot temperature against time. Use a different colour for each line. Label each line.

- Look at your graph.
- (a) How much did the temperature of the water surrounded by fabric 1 drop in 16 minutes?
- (b) How much did the temperature of the water surrounded by fabric 2 drop in 16 minutes?
- (c) How much did the temperature of the water surrounded by air drop in 16 minutes?
- Of your two fabrics and air, which keeps water warm longest? (In other words, which is the best insulator?)

The human body must be kept at about 37 °C if it is to work properly.

The body sweats to keep cool, shivers to warm up.

Insulating the body

Clothes help to keep the body warm. All fabrics have air trapped amongst their fibres. The more trapped air, the better the fabric is at keeping in the heat.

This anorak has padding to trap air and keep the wearer warm.

This wetsuit is made of neoprene rubber. There are tiny air bubbles in the rubber which insulate the wearer.

Insulating houses

Houses are built with cavity walls for insulation. The air trapped between the walls keeps heat in. Sometimes the space between the walls is filled with foam.

- Q5 What is the normal temperature of the human body?
- Q6 How does a padded anorak help to keep a climber warm?
- Q7 What is an insulator?
- Q8 How is foam used to insulate a house?

8 Shrinkage

Washing fabrics

Apparatus

- \star 3 samples of material
 - ★ thermometer
- ★ ruler ★ tripod
- ★ heatproof mat
 - ★ cloth

- ★ Bunsen burner ★ soap solution
- ★ beaker
- ★ laundry marker

★ gauze ★ glass rod

- ★ glue

You are going to find out if fabrics change their size when they are washed.

squares after washing? Which material shrunk the least? Which material shrunk the most?

Information: Care of fabrics

Fabrics may change when they are washed. Natural and man-made fabrics change in different ways.

Most clothes carry a care label. This tells you how to wash the clothes. It may also give information about bleaching, ironing and dry cleaning the clothes.

The care label is made up of symbols. The symbols were worked out by the Home Laundering Consultative Council (HLCC for short).

Washing symbols

Symbol	Maximum temperature (machine wash)	Maximum temperature (hand wash)	Agitation	Rinse	Spinning/ wringing
1 95	Very hot (95 °C)	Hand hot (50 °C)	Maximum	Normal	Normal
2	Hot (60 °C)	Hand hot (50 °C)	Maximum	Normal	Normal
3	Hot (60 °C)	Hand hot (50 °C)	Medium	Cold	Short spin or drip dry
4	Hand hot (50 °C)	Hand hot (50 °C)	Medium	Cold	Short spin or drip dry
5	Warm (40 °C)	Warm (40 °C)	Medium	Normal	Normal
6 40	Warm (40 °C)	Warm (40 °C)	Minimum	Cold	Short spin
7	Warm (40 °C)	Warm (40 °C)	Minimum do not rub	Normal	Normal spin do not hand wring
8	Cool (30 °C)	Cool (30 °C)	Minimum	Cold	Short spin do not hand wring
9 95	Very hot (95 °C)	Hand hot (50 °C)	Maximum	Cold	Drip dry
1	Do not machine was	h			
X	Do not wash				

Bleaching symbols

This symbol means bleach can be used.

This symbol means bleach must not be used.

Ironing symbols

The ironing temperature is shown by the number of dots in the symbol.

Dry cleaning symbols

Dry clean with any solvent (liquid).

These symbols mean a special solvent has to be used to clean the clothes. So take the clothes to a dry cleaners.

- What is a care label? 04
- What does HLCC stand for?
- What do these symbols mean?

40

What does 40° mean in this symbol?

Here are two labels. What do they mean?

25

Detergents

What detergents do

Apparatus

- ★ 2 pieces of writing paper
- ★ 2 pieces of cotton fabric ★ liquid detergent
- ★ 2 pieces of greaseproof paper ★ 2 droppers
- \star 2 pieces of glass ★ beaker of water

You are going to find out how a detergent affects drops of water.

Copy this table.

Repeat steps A to D with the other materials.

Are all the drop shapes the same? Q4

Did the detergent make any difference to the drop shapes? If a drop is flat the water must have gone into the material. How many of your materials were wetted in this way?

Detergents

Cleaning fabrics Apparatus ★ 1 clean piece of fabric ★ 6 dirty pieces of fabric ★ glass rods ★ 6 numbered beakers ★ tweezers ★ syringe ★ glue ★ hot water ★ laundry marker ★ liquid detergent ★ stop clock You are going to find out the best way to clean dirty cotton fabric. Copy this table. Piece of the Stir Detergent fabric Hot water Cold water Beaker number 1 $\sqrt{}$ 2 3 4 5 V 1 * Using a syringe, put A Half-fill the beakers 1 cm³ of detergent in with cold or hot tap water beakers 3, 4, 5 and 6. as shown in the table. 4 5 3 6 1 3 2 6

Detergents

G Stick the dry, washed fabrics in the last column of your table. Also stick an unwashed, clean piece of fabric in your book.

- Were the 6 pieces of dry washing as clean as the one clean piece?
- Does stirring (or agitation) help to clean the fabric?

- Does heat help to clean the fabric?
- What are the best conditions for washing fabric?

Information: How detergents work

The water surface behaves as though it has a 'skin'. This 'pulls' the water into droplets, and stops water wetting a fabric.

Detergent behaves as though it breaks the water's 'skin'. The needle in the left hand picture is held up by the 'skin'. When detergent is added, the 'skin' is broken and the needle sinks.

Q11 Many washing machines have agitators. Explain why agitation helps get clothes clean.

10 Fabric brighteners

Investigating fabric brighteners

★ washing powder A

Apparatus

★ pins

- ★ piece of black card
- ★ tweezers ★ laundry blue

★ washing powder B

- ue \star bleach
 - ★ ultraviolet light box

★ lamp

★ numbered cotton samples

You are going to find out how effective fabric brighteners are.

Do not look straight at the ultraviolet light.

Copy	y this table.			Appearance in
Cotton sample	Treatment	Appearance in daylight	Appearance in electric light	ultraviolet light
The second				
2				
3		Alter and a second		
4				
5	a she had a she had a she had a she			

Fabric brighteners

Which sample looked whitest in electric light?

Fabric brighteners

Information: Added chemicals

Some washing powders contain fluorescers. These chemicals glow purple in ultraviolet light. Daylight contains some ultraviolet light, so fabrics washed in fluorescers look blue-white.

Although foam does not help to clean clothes, it helps to sell washing powder. So modern powders have foam stabilisers added to them, to stop the foam dying away.

Other chemicals

Washing powders may also have perfume and bleach added to them. By adding chemicals, detergent companies are trying to improve their washing powders all the time.

What else do washing powders contain as well as detergent?

Q6 Look at some detergent packets and make a list of the added chemicals.

Teachers' Guide to Fibres and Fabrics

BULMERSHE COLLEGE OF

SCIEN

Introduction

The units

Science at Work is a series of 12 science units for 14-16 year old, less able pupils. Each unit consists of a pupils' book and a teachers' guide. Each provides a complete half-term's course of study. The units are self-contained, and can be taken in any order.

The pupils' books

The pupils' books provide information, practical investigations and questions. Pupils are thus able to work from the books at their own pace; generally, the work becomes more difficult towards the end of each book and the weakest pupils are not expected to finish every unit. The material has been checked by a language specialist, who has ensured that the reading level is as low as possible.

INVESTIGATIONS

Each investigation begins with a list of the apparatus required. The purpose is then stated, and instructions for the investigation given (in words and pictures). Finally, the pupils are asked questions which help them record their results and draw conclusions. (Throughout the books a pupil is expected to make a written response each time a 'Q' appears.)

INFORMATION

Appropriate information from the real world follows most investigations, in most cases from the world of work. Questions are also asked about these information sections.

The teachers' guides

Each unit has a teachers' guide. This contains record sheets and information for the teacher.

RECORD SHEETS

Record sheets in the form of masters are provided in each guide. These sheets will save pupils copying tables, and will help them write answers to questions as complete sentences. One record sheet is provided for each chapter of the pupils' book. Teachers may decide to give record sheets only to those pupils who have difficulty with writing; alternatively, they may be given to all pupils.

HIGHER E	DUCATION
CLASS No.	ACCESS No.
FT 599.07	124335

OTHER RESOURCES FOR THE TEACHER

Each teachers' guide contains: course and unit objectives hints on introducing and teaching the unit an apparatus list (for technicians) safety procedures new scientific words (which pupils may have difficulty reading) answers to questions in the pupils' book a resource list. Specimen questions for a post-unit test are also included.

Examining the course

Science at Work is derived from a successful and wellproven modular scheme developed by teachers in Manchester LEA. Most of the pupils following the course in Manchester gain a CSE Mode III certificate in science. A paper giving information on CSE Mode III construction for this course is available from Addison-Wesley.

Aims of the course

1. To provide a flexible science course based on nonsequential study units. Though developed predominantly for less able pupils, the course can cater for pupils capable of CSE grade I by the addition of suitable extension work.

2. To develop pupils' thinking in scientific methodology and the approach to problem solving.

3. To give knowledge and understanding of science relevant to pupils' interests, environment, and future work and leisure needs.

4. To develop pupils' interest in science and enjoyment of science.

5. To provide a wide range of practical experiences and develop practical skills.

6. To develop the ability to work both independently and as a member of a team.

General objectives of the course

1. To develop the ability to carry out experimental procedures and written work according to instructions.

2. To develop manipulative skill in handling equipment and an awareness of safe practice.

3. To develop powers of accurate observation.

4. To develop the ability to check statements and assertions against tests of observation and experiment.

5. To develop skill in handling the interpretation of data.

6. To develop the ability to look for and make generalisations (this objective is likely to be achieved by only the ablest pupils).

7. To be able to understand and recall the factual content of the material.

8. To develop communication skills-verbal, written, and mathematical.

9. To develop the ability to apply knowledge gained.

10. To encourage pride in neatly and accurately produced work.

11. To develop awareness of the responsible use of science and technology.

Objectives of the Fibres and Fabrics unit

When they have completed this unit, the pupils will have practised the following skills:

the use of a microscope and hand lens

the preparation of a specimen for viewing under a microscope

the use of a Bunsen burner

the use of a syringe

the timing of processes or events

the measurement of liquid volumes

the meaurement of temperature

the measurement of length and mass

the drawing of microscope specimens

the recording of observations in table form

the use of an identification key

the plotting of results as line graphs.

In their work on *Fibres and Fabrics* pupils will find out: that fabrics are made up of fibres

that fibres can be identified by their microscopic appearance and burning characteristics

that flameproofing retards the burning of fabrics that paper is made from treated and rearranged plant fibres that artificial or man-made fibres are made either by rearrang-

ing fibres from plant sources or by mixing chemicals that fibres have different strengths

that fabrics have different wear resistances

that fabrics vary in their insulation characteristics

that some fabrics shrink when washed

that detergents affect the surface tension of water and so act as wetting agents for fabrics

that detergents clean fabrics best in agitated hot water

that detergents contain additives that may affect fabrics in ways other than just cleaning.

Teaching the Fibres and Fabrics unit

Introducing the unit

It is suggested that the unit be introduced with an exhibition of fibres and fabrics so that the pupils will begin to appreciate the dependence of humans on such items. Pupils may bring in some items for the display.

The display could incorporate newspaper and magazine pictures with samples and information from the following: British Wool Marketing Board (Education Dept), Oak Mills,

Station Road, Clayton, Bradford, West Yorkshire

International Wool Secretariat (Education Dept), Wool House, Carlton Gardens, London SW1 5AE

The Commonwealth Institute (Information on books and films on cotton), Kensington High Street, London W8

English Sewing Ltd (Educational and Promotions Manager), 56 Oxford Street, Manchester M60 1HJ

Irish Linen Guild, 70-71 New Bond Street, London W1 Other display material can be obtained from suppliers indicated in the apparatus notes.

Teaching the unit

The pupils' book contains 10 chapters.

Each chapter has practical and information sections. There are sequential questions within each chapter: these indicate when a student has to write in a notebook. For slow readers and writers, there are record sheets to each chapter. The record sheets are copyright free and are contained within this teachers' guide (pages 7-15).

Samples of the type of questions that may be used for assessment when pupils have completed the unit are on page 16.

In the pages which follow, each chapter is discussed with reference to: apparatus per working group; new scientific words; safety and teaching hints; answers to practical questions (where necessary); resources.

General objectives of the course

1. To develop the ability to carry out experimental procedures and written work according to instructions.

2. To develop manipulative skill in handling equipment and an awareness of safe practice.

3. To develop powers of accurate observation.

4. To develop the ability to check statements and assertions against tests of observation and experiment.

5. To develop skill in handling the interpretation of data.

6. To develop the ability to look for and make generalisations (this objective is likely to be achieved by only the ablest pupils).

7. To be able to understand and recall the factual content of the material.

8. To develop communication skills-verbal, written, and mathematical.

9. To develop the ability to apply knowledge gained.

10. To encourage pride in neatly and accurately produced work.

11. To develop awareness of the responsible use of science and technology.

Objectives of the Fibres and Fabrics unit

When they have completed this unit, the pupils will have practised the following skills:

the use of a microscope and hand lens

the preparation of a specimen for viewing under a microscope

the use of a Bunsen burner

the use of a syringe

the timing of processes or events

the measurement of liquid volumes

the meaurement of temperature

the measurement of length and mass

the drawing of microscope specimens

the recording of observations in table form

the use of an identification key

the plotting of results as line graphs.

In their work on *Fibres and Fabrics* pupils will find out: that fabrics are made up of fibres

that fibres can be identified by their microscopic appearance and burning characteristics

that flameproofing retards the burning of fabrics that paper is made from treated and rearranged plant fibres

that artificial or man-made fibres are made either by rearranging fibres from plant sources or by mixing chemicals

that fibres have different strengths

that fabrics have different wear resistances

that fabrics vary in their insulation characteristics

that some fabrics shrink when washed

that detergents affect the surface tension of water and so act as wetting agents for fabrics

that detergents clean fabrics best in agitated hot water that detergents contain additives that may affect fabrics in ways other than just cleaning.

Teaching the Fibres and Fabrics unit

Introducing the unit

It is suggested that the unit be introduced with an exhibition of fibres and fabrics so that the pupils will begin to appreciate the dependence of humans on such items. Pupils may bring in some items for the display.

The display could incorporate newspaper and magazine pictures with samples and information from the following:

British Wool Marketing Board (Education Dept), Oak Mills, Station Road, Clayton, Bradford, West Yorkshire

International Wool Secretariat (Education Dept), Wool House, Carlton Gardens, London SW1 5AE

The Commonwealth Institute (Information on books and films on cotton), Kensington High Street, London W8

English Sewing Ltd (Educational and Promotions Manager), 56 Oxford Street, Manchester M60 1HJ

Irish Linen Guild, 70-71 New Bond Street, London W1 Other display material can be obtained from suppliers indicated in the apparatus notes.

Teaching the unit

The pupils' book contains 10 chapters.

Each chapter has practical and information sections. There are sequential questions within each chapter: these indicate when a student has to write in a notebook. For slow readers and writers, there are record sheets to each chapter. The record sheets are copyright free and are contained within this teachers' guide (pages 7-15).

Samples of the type of questions that may be used for assessment when pupils have completed the unit are on page 16.

In the pages which follow, each chapter is discussed with reference to: apparatus per working group; new scientific words; safety and teaching hints; answers to practical questions (where necessary); resources.

Detailed teaching notes

1 EXAMINING FIBRES

LOOKING AT FIBRES (pupils' book page 1)

Apparatus: named samples of fabric: cotton, wool, linen, silk and nylon; 2 microscope slides; microscope; lamp; tweezers; beaker of water; dropper New Words: fibre, fabric, scales

IDENTIFYING FIBRES (pupils' book page 2)

Apparatus: numbered samples of fabric-1 = wool, 2 = nylon; 2 microscope slides; lamp; microscope; dropper; tweezers; beaker of water New Words: boll, lap, sliver The fabric should be white or undyed. The pieces should be labelled by name with laundry marker to make the pupils' collection of samples easier and eliminate confusion. Some pupils may need help in the adjustment and focusing of the microscope.

Q2 Cotton fibres are usually twisted.

Q3 Wool is covered in scales.

Q4 Depends on the way the fibres have been spun (see specimens used).

The fabric samples can be coloured or dyed.

Q5 Wool

Q6 Nylon

Q7 Top photograph: terylene. Bottom photograph: wool.

A selection of fabric samples and 35 mm slides showing fibres in length and cross-sectional view can be purchased from: Shirley Institute, Didsbury, Manchester M20 8RX.

2 BURNING FABRICS

IDENTIFYING FABRICS BY BURNING (pupils' book pages 4-5)

Apparatus: numbered samples of fabrics-1 = Tricel (triacetate), 2 = polyester, 3 = nylon, 4 = Dynel (modacrylic), 5 = Acrilan, 6 = Orlon (acrylic), 7 = glass fibre, 8 = wool, 9 = silk, 10 = cotton; tongs; pair scissors; gauze; tripod; tin lid; hand lens; Bunsen burner; heatproof mat New Words: Triacetate, polyester, modacrylic, acrylic

MAKING FABRICS FLAME RESISTANT (pupils' book page 6)

Apparatus: 2 sample pieces for each pupil/group of: cotton, nylon, glass fibre and wool in labelled (named) containers; flame-proofing solution in labelled beaker; Bunsen burner; heatproof mat; tongs; tweezers; stop clock; safety glasses; gloves SAFETY: You may feel that the pupils should wear safety glasses and gloves. Each pupil or group should attempt a few of the fabrics. Fabrics can be coloured or dyed. Fabrics should be numbered with a laundry marker.

Q2 By examing fibres under a microscope.

SAFETY: Safety glasses and gloves to be worn.

Flame-proofing solution. To make 500 cm^3 -43.5 g borax and 18.5 g boric acid in 500 cm^3 water.

Sample pieces of fabric should be of different patterns and a poster should be displayed with samples fixed and named.

Q4 Cotton or wool (nylon will melt).

Q5 Nylon or glass fibre (they do not burn with a flame).

Information on burning and accidents in the home can be obtained from: ROSPA, Cannon House, The Priory, Queensway, Birmingham B4 6BS.

3 PAPER

LOOKING AT THE FIBRES IN PAPER (pupils' book page 8)

Apparatus: sample pieces of newspaper, paper towel, drawing paper, handkerchief tissue, strawboard and blotting paper in labelled containers; small sheet of black card; roll of clear tape; 6 microscope slides; lamp; microscope.

MAKING PAPER

(pupils' book page 9)

Apparatus: wad of cotton wool; piece of felt or blanket; rolling pin; 2 sheets of metal; mortar and pestle; wire gauze; beaker of water; pencil; felt-tip pen; roll of clear tape.

New Words: pulp, recycle

4 MAKING FIBRES

MAKING NYLON (pupils' book page 11)

Apparatus: labelled beakers of solution A and solution B; 5 cm³ beaker; pair tweezers; glass rod; safety glasses; gloves

MAKING RAYON (pupils' book page 12)

Apparatus: labelled beaker of ammonia solution; reagent bottle of dilute sulphuric acid; watch glass of copper(II) carbonate; spatula; three 250 cm³ beakers; glass rod; 6 filter papers; 5 cm³ disposable syringe (no needle); safety glasses; gloves New Word: rayon

5 THE STRENGTH OF FIBRES

TESTING THREADS TO DES-TRUCTION (pupils' book pages 14-15)

Apparatus: 30 cm lengths of cotton, polyester, nylon, silk and wool threads in labelled containers; clamp and stand; weight hanger and slotted 100 g weight; Sample pieces of paper should be named and fixed on to a display poster. Q1-Q4 Depend on observation.

Information on paper can be obtained from: Bowater Paper Corporation, Sittingbourne, Kent ME10 3ET.

The wad of cotton wool should be large enough to cover the palm of the hand. The "paper" will be of very poor quality.

Q5 Cotton wool derived from plant material. Paper is made from another plant material, wood.

Q6 The fibres are being rearranged.

SAFETY: You may feel that the experiment should be done in a fume cupboard. Safety glasses and gloves must be worn. If the chemicals are splashed on to the skin, they must be washed off at once with soap and water. Solution A: 5% hexamethylene diamine in water

Solution B: 5% adipyl chloride in cyclohexane

- Q1 The fibre can be very long. When dry it may be "powdery".
- Q2 The nylon forms at the interface of the 2 solutions: here the chemicals react together.

SAFETY: You may feel that the experiment should be done in a fume cupboard. Safety glasses must be worn. You may feel that gloves should be worn.

Ammonia solution is 1 part concentrated ammonia to 1 part water. The fumes given off from this solution are very strong.

The rayon made by this method will be of poor quality. The method is successful only if the filter paper is shredded very finely. The contents of the syringe must be expelled very slowly.

Q3 The rayon is a very light blue, thick thread.

Rayon is sometimes known as viscose.

Information on man-made fibres may be obtained from: British Man-Made Fibres Federation, Information Dept, Bridgewater House, 58 Whitworth Street, Manchester 1.

SAFETY: A bucket or bowl, half-filled with sand should be placed beneath the assembled apparatus so as to catch falling weights.

The samples should be either those of knitting/crochet materials or sewing materials. It may not be possible to get all 5 samples of the same thickness.

"G" clamp; ruler; pieces of sticky paper; split bung

New Words: Manila, Sisal, yarn, strand

6 THE WEAR OF FABRICS

INVESTIGATING WEAR (pupils' book page 18)

Apparatus: 10 cm squares of cotton, nylon, glass fibre, wool, Tricel, linen and Acrilan in labelled containers; scissors; glue; wear wheel; stop clock

7 FABRICS AS INSULATORS

INVESTIGATING FABRICS AS INSULATORS (pupils' book page 20)

Apparatus: 2 different, large sample pieces of fabric from the following: wool, cotton, nylon, glass fibre; beaker with polystyrene in base; tripod; Bunsen burner; gauze; heatproof mat; stop clock; thermometer in polystyrene lid; copper vessel (calorimeter); cloth or tongs; 250 cm³ beaker; sticky tape New Word: insulator The rubber bung is slit lengthwise across the radius.

The record sheet gives only one blank table. You will need to duplicate more than one record sheet per pupil.

Q3-Q5 Man made fibres usually suspend the greatest mass and stretch most.

Instructions for a home-made wear wheel are in the "Apparatus Guide" of Nuffield Secondary Science (pub. Longman 1971) page 292.

Manufactured wear testers can be bought from suppliers such as Griffins (Wembley, Middlesex). The way the fabric is fixed to the tester depends on the type of tester used.

A display poster should have patterned samples secured and named.

Q2-Q4 The type of wear depends very much on the tension of the weaving and the type of fabric printing. Wool, linen and cotton usually have loose threads appearing. Wool and Acrilan become shiny.

Information sheets on the different uses of fibres and fabrics may be obtained from: Procter and Gamble Educational Service, PO Box 1EE, Gosforth, Newcastle-upon-Tyne NE99 1EE.

The width of the fabric pieces should be the same as the height of the copper vessel (calorimeter) and the length such that there will be a snug fit when the fabric is wrapped around the vessel and put in the beaker. For varied results, give different groups different sample fabrics. The size of the beaker depends on the size of the copper vessel provided. The copper vessel must be fitted with a polystyrene lid holding a 0 $^{\circ}$ -110 $^{\circ}$ C thermometer. A paint mark should be inside the copper vessel to mark the level of the water, the mark should be just below the lid.

Q3-Q4 Answers depend on the results. Wool should be the best insulator. A selection of 35 mm slides illustrating the clothing and heat insulating system used on moon landing (courtesy of Dupont Ltd) can be purchased from Shirley Institute, Didsbury, Manchester M20 8RX.

8 SHRINKAGE

WASHING FABRICS (pupils' book page 23)

Apparatus: 7 cm squares of cotton, nylon and pre-shrunk cotton in labelled containers; ruler; tripod; Bunsen burner; gauze; heatproof mat; cloth (or tongs); thermometer; glue; glass rod; soap solution (about 100 cm³ in labelled beaker); 250 cm³ beaker; laundry marker New Words: shrinkage, solvent

9 DETERGENTS

WHAT DETERGENTS DO (pupils' book page 26)

Apparatus: sample pieces (2 of each) of writing paper, greaseproof paper, glass

Samples with an obvious line or square pattern should be avoided.

- Q2 Nylon should shrink least.
- Q3 Untreated cotton should shrink most.

The soap solution is 1 part liquid detergent to 20 parts water.

- Information on the care of fabrics during washing may be obtained from:
- a) Procter and Gamble, PO Box 1EE, Newcastle-upon-Tyne
- b) Home Laundering Consultative Council, 41-42 Dover Street, London W1X 4DS.

The glass used can be clean microscope slides. All other materials can be of the same size.

and cotton fabric in labelled containers; liquid detergent in labelled 100 cm³ beaker; 2 droppers; water in labelled 100 cm³ beaker New Word: detergent

CLEANING FABRICS (pupils' book pages 27-28)

Apparatus: pieces of clean and dirty cotton fabric in labelled containers; 6 beakers (labelled 1-6); 2 glass rods; tweezers; 1 cm³ or 5 cm³ disposable syringe (no needle); liquid detergent in labelled beaker; laundry marker; stop clock; access to hot and cold tap water; glue

New Word: agitation

10 FABRIC BRIGHTENERS

INVESTIGATING FABRIC BRIGHTENERS (pupils' book pages 30-31)

Apparatus: 5 cm squares of white cotton, numbered 1-5 in labelled containers; ultraviolet lamp; cardboard box; piece of black card; tweezers; in labelled beakers: laundry blue, bleach, washing powder A, washing powder B; lamp, pins New Words: fluorescer, stabiliser

- Q2 The drops on detergent-free material should be all the same shape.
- O3 Drops are "flat".
- Q4 Writing paper, greaseproof paper and cotton.

White cotton fabric pieces should be soiled by rubbing in a mixture of equal parts petroleum jelly and carbon.

Q7-08 Yes.

Q9 Hot water, detergent and agitation.

Information on detergents can be obtained from: Unilever Education Section, Unilever House, Blackfriars, London EC4P 4BQ.

The cotton samples must be secured to the black card which must fit into a cardboard box. The card can be secured by wire. A hole must be cut in one side of the box to accommodate the UV light source. A flap in the top of the box is used for viewing the fabric samples. An "upside down" shoe box is ideal. Supply the box with the UV source attached.

A UV light source can be purchased from Griffins (Wembley, Middlesex). Laundry blue can be "Reckitt's Liquid Blue". This and the bleach should be used undiluted.

Soap powders such as Daz, Tide and Fairy Snow are best to use. (2 spatula tips to 50 cm³ warm water.)

Q2-Q4 Depend on observations. Bleach may "yellow" the fabric. In UV light, anything with a fluorescer looks blue.

Information on laundry finishes may be obtained from: Reckitt Products, Household and Toiletries Division, Stoneferry Road, Hull.

Reference books

- A. M. Collier. A handbook of textiles, Pergamon, 1970
- J. C. Cook. Handbook of textile fabrics, Merrow, 1964
- I. and R. Adler. Fibres, Dennis Dobson, 1970
- B. Anderson. Creative spinning, weaving and plant dyeing, Angus and Robertson, 1971
- J. Bainbridge. Man made, Evans, 1973
- S. E. Ellacott. Spinning and weaving, Methuen, 1962
- L. M. Gawthrope. Fabrics and laundry work, Hulton, 1971
- B. Gurbutt. Paper, Watts, 1976

- S. Hood. Adventures in weaving, Wolfe, 1970
- G. M. Lambert. Your book of chemistry, Faber, 1968
- A. M. McFarland. Let's learn about what we wear, Johnston & Bacon, 1964
- O. Robinson. Making paper, OUP, 1969
- P. Shillinglaw. Introducing weaving, Batsford, 1972
- R. W. Thomas. The household chemicals, Wheaton, 1975
- M. Wilkerson. Clothes, Batsford, 1970
- Junior Reference Library. Textiles, Macdonald, 1969

6

1 Examining fibres

LOOKING AT FIBRES (page 1)

13

01			
uī	Name of fabric	Drawing of fibre	
	Cotton		
	Wool		
	Linen		
	Silk		
	Nylon	-	
02 03 04	The twisted fibres were The fibres covered in scales we	re	
4			
IDE	NTIFYING FIBRES (page 2)		
Q5	Fabric 1 is		
Q6	Fabric 2 is		
Q7	Top photo: The fabric is		
	Bottom photo: The fabric is .		
INF	ORMATION: COTTON (page 3	3)	
Q 8	A cotton boll is		
Q9	Cotton is combed after it has b	been made into slivers because	
			· · · · · · · · · · · · · · · · · · ·
Q10	Cotton is grown in	,	and
Q11	Some of my clothes made of c	otton are	

2 Burning fabrics

IDENTIFYING FABRICS BY BURNING (page 4)

Q1

Fabric name	Did it melt on the lid?	Did it burn— fast, slowly or not at all?	Was the burned fabric light, dark or black?	Did the burned fabric bend or snap?	Fabric number
					1
					2
					3
					4
					5
					6
					7
					8
C.					9
					10

INFORMATION: FABRIC IDENTIFICATION CHART (page 5)

Q2 You can tell the difference between wool and silk by

MAKING FABRICS FLAME RESISTANT (page 6)

Q3	Name of fabric	Time for unsoaked fabric to start burning (seconds)	Time for flame proofed fabric to start burning (seconds)

- Q4 The unsoaked fabric which took the shortest time to start burning was
- Q5 The unsoaked fabric which took the longest time to start burning was
- Q6 Flame proofer *did/did not* stop any fabric burning.

INFORMATION: FLAME RESISTANT CLOTHING (page 7)

Q7	Clothes get hot when
08	You can find out if a nightdress is flame resistant by
Q9	If a person's clothes catch fire you should

3 Paper

LOOKING AT THE FIBRES IN PAPER (page 8)

1 j

1 1)

1

Ĩ

Q1	The paper with the longest fibres is
Q2	The paper with the shortest fibres is
03	The paper with the thinnest fibres is
Q4	The paper with the thickest fibres is
MAI	KING PAPER (page 9)
Q5	Cotton wool is used to make paper because
Q6	When pulped in a mortar the fibres in cotton wool are
07	

Stick your sample here

My sample of paper.

INFORMATION: PAPER (page 10)

Q 8	All the materials used to make paper are
Q9	Wood pulp is bleached to
Q10	Recycling means
Q11	It is important to recycle paper because

4 Making fibres

MAI	KING NYLON (page 11)
Q1	The nylon fibre is
Q2	In the beaker nylon forms
MA	KING RAYON (page 12)
Q3	The rayon is
INF	ORMATION: MAN-MADE FIBRES (page 13)
Q4	is a natural fibre.
Q 5	The first man-made fibre was
Q6	Nylon was first produced in
Q7	The properties of nylon are
Q 8	Filter paper was used in making rayon to

5 The strength of fibres

TESTING THREAD TO DESTRUCTION (page 14)

6 The wear of fabrics

INVESTIGATING WEAR (page 18)

Q1

Name of fabric	No. of fabric	Piece of unworn fabric	Piece of worn fabric
	1		
	2		
	3		
	4		
	5		
	6		
	7		

Q2	The fabrics in which holes, tears or loose threads appeared were
Q3	The fabrics that became shiny were
Q4	The fabrics that faded were
INF	ORMATION: STANDING UP TO WEAR (page 19)
Q5	Wear resistance means
Q6	Two ways of making fabric stronger are
Q7	To make the knees of trousers stand up to wear you could

7 Fabrics as insulators

INVESTIGATING FABRICS AS INSULATORS (page 20)

Q1	Time (minutes)	0	2	4	6	8	10	12	14	16
	Water temperature (^O C), vessel covered in fabric 1					-				
	Water temperature (^O C), vessel covered in fabric 2									
	Water temperature (^o C), vessel surrounded by air								0.50	

Q2

Q3	 Look at your graph. (a) In 16 minutes the temperature of the water surrounded by fabric 1 dropped (b) In 16 minutes the temperature of the water surrounded by fabric 2 dropped (c) In 16 minutes the temperature of the water surrounded by air dropped 	°C. °C.
Q4	The best insulator was	
INF	ORMATION: KEEPING WARM OR COOL (page 22)	

Ω5	The normal temperature of the human body is
Q6	A padded anorak helps to keep a climber warm by
Q7	An insulator is
Q8	Foam insulates a house by

8 Shrinkage

WA	SHING FABRICS (page 23)
Q1	The sizes of the squares after washing were:
	cotton = , nylon = , pre-shrunk cotton =
02	The material which shrunk least was
Q3	The material which shrunk most was
INF	ORMATION: CARE OF FABRICS (page 25)
Q4	A care label is
Q5	HLCC stands for
Q6	(a)
	means
	(b) means
	(c) K means
Q7	The 40 ^o in the symbol means
Q8	
	1_{95} A M means
Q9	A solvent is

9 Detergents

WHAT DETERGENTS DO (page 26)

Q1

Name of material	Shape of water drop on material	Shape of water drop on material + detergent

Q2 All the drops *are/are not* the same.

Q3 The detergent *did/did not* make a difference to the drop shapes.

Q4 materials were wetted by the water drop going into the material.

CLEANING FABRICS (page 27)

Q5	Beaker number	Cold water	Hot water	Detergent	Stir	Piece of the fabric
	1	\checkmark				
	2		\checkmark			
	3	\checkmark		\checkmark		
,	4		\checkmark	\checkmark		
	. 5	\checkmark		\checkmark	\checkmark	
	6		\checkmark	\checkmark	\checkmark	

Q6 The 6 pieces of dry washing were/were not as clean as the one clean piece.

Q7 Stirring *does/does not* help clean the fabric.

Q8 Heat does/does not help clean the fabric.

Q9 The best conditions for washing fabric are

9 Detergents (continued)

INFORMATION: HOW DETERGENTS WORK (page 29)

Q10	Insects like pondskaters can walk on water because
	•••••••••••••••••••••••••••••••••••••••
Q11	A detergent is called a "wetting agent" because
	•••••••••••••••••••••••••••••••••••••••
Q12	Agitation helps get clothes clean because
	•••••••••••••••••••••••••••••••••••••••

10 Fabric brighteners

INVESTIGATING FABRIC BRIGHTENERS (page 30)

Q1	Cotton sample	Treatment	Appearance in daylight	Appearance in electric light	Appearance in ultraviolet light
	1				
	2				
	3				
	4				
	5				

Q2	The sample that looked whitest in daylight was number
Q3	The sample that looked whitest in electric light was number
Q4	When I looked at the samples under ultraviolet light I saw

INFORMATION: ADDED CHEMICALS (page 32)

Q5	As well as detergent, washing powders contain
Q6	Some of the chemicals added to detergents are
	Convict trac

Specimen post-unit questions

- 1 Which of the fibres or fabrics in the list is man-made? (Tick √ the right answer.)
 a) cotton b) wool c) nylon d) linen
- 2 Which of the fibres or fabrics in the list comes from an animal? (Tick √ the right answer.)
 a) cotton b) paper c) sisal rope d) wool
- 3 Which of the symbols in the list means a fabric should be ironed with a cool iron? (Tick $\sqrt{}$ the right answer.)

- 4 What is a fluorescer? (Tick √ the right answer.)
 a) it makes water flow
 - b) it makes a lot of froth in water
 - c) it makes fabric reflect ultraviolet light
 - d) it contains fluorine
- 5 Four fabric pieces were held in a flame. The time taken for each fabric to start burning was noted.

Fabric	Time (in seconds) to start burning
Linen	4
Cotton	2
Nylon	3
Asbestos	never started

Now write the answers to the questions about this table.

- a) Which fabric caught fire quickest?
- b) Which fabric caught fire slowest?
- c) Which fabric could you use to make a fire-proof overall?....

6 Read the following paragraph carefully.

Wool is a natural fibre. Wool must be washed with care. Experts say that wool must be washed with soapless detergent in hard water areas like Lancashire. Scum is formed by soap in hard water. Scum clings to the wool fibres and may not be removed by rinsing. If a woollen garment is not washed properly, it may shrink. When it shrinks, wool may felt. This makes the garment become stiff and smaller. Felting happens like this. Wool fibres have an outer layer of tiny rough scales. These scales can be seen under a microscope. When they are woven into a fabric, wool fibres move against each other. If a fabric felts, the scales on the fibre tangle.

Now answer these questions.

- a) Name one natural fibre other than wool.
- b) Name one part of England where water is hard
- .

- c) Why must soap not be used to wash woollens in hard water areas?
- d) What would happen to a woollen jumper if it felted?
- e) How could you see the scales on wool fibres?
- 7 A piece of cotton thread was fixed into a stopper. The stopper was fixed as shown in the diagram. Weights were added to the weight hanger. Each time a weight was added, the distance between the markers was noted.

The same experiment was done with nylon. The results were plotted as line graphs.

Now answer these questions about the experiment and graph.

- a) What was the distance between the markers on the nylon thread when the mass (weight) on the hanger was 200 g?
- b) When the distance between the markers was 70 cm, how much mass (weight) had been added to the nylon thread?
- c) Why do the "lines" for nylon and cotton on the graph both start at 10 on the vertical (upright) axis?
- e) Why do you think there are no values for cotton after the addition of 400 g to the weight hanger?

Acknowledgements

The publishers wish to thank the following for kind permission to reproduce photographs:-

Courtaulds Limited (cover; fibres, page 2; machine forming lap and weaving, page 3; production of rayon and nylon, page 13); Shirley Institute (cotton flowers and boll, page 3); Bowater Paper Limited (waste paper, page 10); International Wool Secretariat (person dressed in wool, page 13); Dunlop Sports Company Limited (nylon products, page 13); John Mortlock (Cutty Sark, page 16); John Woodhouse (rock climber, page 17); Health Education Council/Fotocall (person running, page 22); V. Yakovlev (APN) (eskimo, page 22); Blacks of Greenock (anorak, page 22); E.T. Skinner and Company Limited (wetsuit, page 22); Megafoam Limited (cavity wall insulation, page 22); Lever Brothers Limited (Lux advertisement, page 32).

Project Director John Taylor

The books in this series are:

Fibres and Fabrics Electronics Forensic Science Photography Gears and Gearing Cosmetics Body Maintenance Pollution Building Science Food and Microbes Domestic Electricity Dyes and Dyeing

